A New List Compaction Method

Kai Li and Paul Hudak

Research Report YALEU/DCS/RR-362
February 1985

This research was supported in part by NSF Grant MCS-8302018 and DCR-8106181.

Table of Contents

TIntroduction L e e e e e e e e e e e e e e e e e e e 1
2Cdr-Coding i i i e e e e e e e e e e e e e e e e e e e 2
BParallel Comsing i e e e e e e e e e e e e e e e e e e 3
4 A New List Data Structure and Compaction Strategy 5
4.1 List representation using linked vectors, 6
4.2 List compaction using linked vectors00 0000, 6
4.3 Further opportunities for compaction 9
5 Implementation Issues L. L0 e e e e e e 11
5.1 Encoding strategies ot e e e e e e e e e e 11
5.2 Garbagecollection e e 12
5.3 Auxiliary memories and list traversing functions 12
5.4 Other uses for auxiliary MEMOMIES . « o o o e o e e e e e e e e 15
5.5 Impact on Destructive Operations 16
6 Simulation L L e e e e e e e e e e e e e e e 17
TComclusion i i e 20

A New List Compaction Method
Kai Li and Paul Hudak

Yale University
Department of Computer Science

Abstract

List compaction, or so called “cdr-coding,” can greatly reduce the storage needs of list-
processing languages. However, existing methods do not perform well when several lists are being
constructed simultaneously from the same heap, since the non-contiguous nature of the cells being
allocated eliminates the opportunity for compaction. This situation arises not only in true parallel
systems sharing a common memory, and sequential systems supporting multiple processes, but also
quite often in purely sequential systems, where it is not uncommon to build several different lists
simultaneously within a single loop.

In this paper a new list compaction method is presented that performs well during both se-
quential and “parallel” list generation. The method is essentially a generalization of cdr-coding;
lists are represented as linked vectors, and an encoding scheme is used that is as simple or simpler
than all known encodings. In addition, a simple memory organization is proposed that supports
the underlying representation and allows very rapid access to random elements in the list. Support
of destructive operations is discussed, as well as primitive instructions specially tailored to the pro-
posed memory structure. Performance figures in a simulated environment suggest that the strategy
consistently performs better than conventional cdr-coding, with essentially the same complexity.

1. Introduction

Programming languages relying heavily on the list data structure have become very popular
in recent years. For example, various dialects of Lisp [McCarthy 62], including Scheme [Rees 82,
Sussman 75], Common Lisp [Steele 83], and others [Foderaro 82, Moon 78]; functional languages
such as ALFL [Hudak 84], SASL [Turner 76}, and ML [Milner 84}; and logic programming languages
such as Prolog [Clocksin 81], are playing an ever-increasing role in artificial intelligence, systems
programming, and many other fields. Furthermore, data-flow languages [Mcgraw 82], variations
of functional and logic programming languages [Hudak 85, Shapiro 84], and new dialects of Lisp
[Hastead 84, Gabriel 84] have entered into the realm of parallel processing. All of these languages
depend a great deal on the list data structure, and thus supporting lists efficiently has become a
major concern. The overall problem is rather complex, and involves issues such as the amount of
storage consumed, how it is structured, ways to reclaim “garbage” nodes, locality of reference, and
degree of page faulting.

In this paper we concentrate on how lists are represented, and the effect that has on storage
requirements and other system performance parameters. Several list compaction methods that can
be collectively called “cdr-coding” have been proposed in the past [Henson 69, Clark 76, Bobrow
75, Bobrow 79], and together with empirical data have been used in designing special-purpose
hardware to support lisp implementations [Bobrow 79, Roads 83, Weinreb 81]. We summarize
these approaches in Section 2. However, deficiencies in these schemes have led us to consider
an alternative list compaction strategy that can be viewed as a generalization of cdr-coding, in
which lists are represented as linked vectors. In Section 3 we point out the situations where the
conventional strategies perform poorly, and in Section 4 we present our new strategy, showing why
it does much better. In Section 5 we discuss further improvements and implementation issues, and
in Section 6 we present performance results for some sequential and parallel program simulations.

2. Cdr-Coding

A cons cell is traditionally represented by two contiguous memory locations, one for the car
and one for the cdr. Each of these contains either an atomic datum (such as an integer or boolean
value), or a pointer to some other cons cell. Since the memory locations are usually full machine
words, this allows the car and cdr to address any other location in memory.

It turns out that statistical studies have shown that in most cases the cdr field is a pointer
to some other cons cell [Clark 76]. The main idea behind cdr-coding is to take advantage of this
fact by arranging for that other cons cell to directly follow the car of the first, and to encode that
information in a few extra bits contained in the car of the first cell, rather than having an explicit
pointer to it. If all lists could be represented in this way, it is easy to see that such a strategy could
save almost half of the overall storage requirement.

The known methods of cdr-coding can be classified into three kinds, according to the coding
technique. One kind is to let the car field of a cons cell have full addressing capability and to
use two extra bits to indicate different cdr types. This style of coding is used in the MIT lisp
machine [Bawden 77], and is shown in Table 1. Code 00 indicates that the cdr is NIL; code 01
indicates that the next cell is the car of the cdr, and can be viewed as an “implicit pointer” to
the cdr; code 10 indicates that the contents of the next cell is the cdr; and code 11 means that
the current cell contains an indirection pointer to the “real” pair - this happens as a result of
destructive operations. The coding technique used in the Symbolics 3600 [Roads 83] is similar,
but does not have the indirection code, since it has a transparent addressing strategy built into its
memory addressing mechanism.

The second kind of cdr-coding is to let the car field of a cons cell have full addressing capability,
but to encode the cdr field to allow referencing cells by offsetting from the current location. This
is a generalization of the first scheme, in that the first scheme only allows encoding the “next”
location as the cdr. It is the method used in the Xerox lisp machine [Deutsch 73], where 8 bits are
used for the cdr code, as shown in Table 2.

coding-bits meaning storage/cell
00 the CDR is NIL 1 word
01 . the CDR begins in next word 1 word
10 the CDR is contained in next word 2 words
11 current cell contains indirect pointer 2 or 3 words

Table 1: MIT lisp machine cdr-coding

cdr-coding bits cdr storage/cell
0 NIL 1 word
1to 127 offset of cdr 1 word
128 extended 2 or 3 words
129 to 255 offset of indirect cdr 2 words

Table 2: Xerox lisp machine edr-coding

Although this method requires 8 bits for the cdr code, in practice it supports as large an addressing
space as the MIT lisp machine. This is because the MIT machine actually uses 5 or more bits in
each word as its data type tag, whereas the Xerox machine uses page numbers to identify data
types, by only storing data of the same type on each page. Thus both machines support a 24-bit
virtual address within a 32-bit word. An advantage of the MIT machine is that its immediate
value range is as large as the car field of a cons cell minus the space for its type-tag field. The
Xerox machine, however, needs to use a reserved address, called an unbozed value, to represent an
immediate value [Moore 76]. The range of such a value is small, and the need arises for efficient
ways to implement “boxing” and “unboxing.”

The third coding strategy is to use page offsets for both the car and cdr fields [Clark 76, Bobrow
79]. It has been shown that this method can save more storage than either of the other two in
total number of bits [Bobrow 79]. However, it introduces the complexity of requiring an “escape”
mechanism for both the car and cdr fields (to reference cells that are too far away to encode as an
offset), because neither of them has full addressing capability. Another disadvantage is that many
list copying and garbage collection algorithms [Baker 78, Cheney 70, Clark 76, Deutsch 76, Fisher-D
75] cannot be used with this method because it cannot store forwarding addresses conveniently.

3. Parallel Consing

We use the phrase “parallel consing” to refer to any situation where two lists are being con-
structed simultaneously from the same heap. It is easy to see that whenever such a situation
arises, the interleaving of heap allocations makes the basic cdr-coding technique perform poorly.
Such behavior can take place in both sequential and parallel systems, as the following discussion

demonstrates.

Consider a parallel environment in which there are an arbitrary number of processes sharing
a single heap, and in which any process can perform a CONS operation on any list at any time.
Since CONS is a frequently used operation [Clark 76], one can expect such a parallel system to have

3

many interleaved CONS operations within a given interval of time. (We assume that appropriate
mutual exclusion mechanisms exist to handle simultaneous CONSes.) As an example of a parallel
program meeting this description, consider the following T program (T is a dialect of Scheme [Rees
82]), extended with a “parallel let” construct that evaluates the defined names in parallel:
(define (par-merge-sort 1)
(cond ((null? (cdr 1))
' 1)
(else
(par-let ((left (merge-sort (left-half 1)))
(right (merge-sort (right-half 1))))
(merge left right)))))

In this example we assume that there are two processors available, so that each will sort half of the
list by some sequential procedure called MERGE-SORT, and then one of the processors will merge
the results. For long lists, this program will have a speedup factor of almost 2. If the sequential
sort is purely functional, then each processor will make about (§) log (¥) cell allocations, where
N is the length of the list. If we assume that both processors run at approximately the same speed,
then most of the allocations will be interleaved.

To see how parallel consing can occur in a sequential environment, consider the following piece
of sequential T code:

(loop (while (some-condition))
(do (set L1 (cons el L1))

(set L2 (cons e2 L2))
(set LN (cons e3 LN))

))

The “loop” here is a widely-used macro [Charniak 80] whose meaning should be clear. It could be
replaced by its tail-recursive equivalent, where the updated lists are passed explicity as arguments
in the recursive call. As an example of a case where this situation occurs, consider the subfunction
of quicksort that splits the list into two, one containing all elements less than a certain value, the
other containing all other elements:

(define (split 1 head)
(let ((low ())
(high ()))
(loop (while (not (null? 1)))
(do (let ((x (car 1)))

(if (< x head)
(set low (cons x 1low))
(set high (cons x high))))
(set 1 (cdr 1)))
(return (list low high)))))

In both cases the CONS operations inside the loop are likely to become interleaved, and thus the
cons cells of each list will not be contiguous.

The non-contiguous memory allocation of a list that results from parallel consing hurts some
list compaction methods severely. Indeed, for the first kind of cdr-coding identified earlier, there
will be no compaction at all! The other two strategies will have compaction, but at the expense
of requiring more bits and thus reducing the effective virtual address size. (We are particularly
interested in strategies that will provide as many bits of addressability as possible on today’s
plethora of 32-bit machines - 24 bits is simply not enough for many applications.) Of course, the
non-contiguous memory allocations can be “linearlized” by a special pass over the heap (and also
may happen as a result of garbage collection), but this introduces considerably more work [Clark
76).

An interesting question in its own right is how often parallel consing of this sort occurs in prac-
tice. It depends a great deal on the algorithm, of course, and to some extent on the programmer’s
coding style. As an exersize in estimating how common this is, we scanned a rather large program
(the Bulldog Compiler [Ellis 84b] built at Yale for very-long-word instruction architectures [Ellis
84a, Fisher-J 84] consisting of about 50,000 lines of code). We found that several critical “inner
loops” used parallel consing, enough that a noticeable performance difference would occur depend-
ing on the cdr-coding technique used. Since sequential environments seem to have a non-trivial
amount of parallel consings, we can expect that parallel environments will have even more.

4. A New List Data Structure and Compaction Strategy

To summarize our goals, we want a representation for lists that:

o Allows significant compaction of long lists.
e Does not degrade during parallel consing.

o Allows the full range of list operations, including destructive ones, without loss (and hopefully
a gain) in efficiency.

Our approach is to represent lists as linked vectors. This idea was first proposed by Hansen
[Hansen 69], but his strategy does not provide a mechanism to perform destructive operations on
the resulting lists. This is a “feature” that all Lisp systems allow, and something that most Lisp
programmers are loath to live without. Our strategy is a variant of Hansen’s that allows destructive
operations.

4.1. List representation using linked vectors

' The car or cdr of a list (actually a pair) may be either an atomic value (such as NIL, an integer,
or a boolean), or another list (represented as a pointer). As discussed earlier, statistics show that

the cdr is usually another list, so we wish to optimize the storage requirements in that situation.

Our representation is described below. ‘

We distinguish between two kinds of cells: content cells and indsrection cells. A content cell
represents the car of a list, whose cdr is interpreted by looking at the next contiguous cell. If the
next cell is an indirection cell, the cdr fs contasned in that cell; if it is a content cell, the cdr is a
list whose car ss that cell. There is no need to distinguish between pointer types with this strategy,
because a pointer in a content cell means that the car of that list is itself a list, whereas a pointer
in an indirection cell is actually an indirect reference to the real list. An efficient encoding scheme
for this strategy is described in Section 5.1.

The list itself is stored as n linked vectors v!,v2,...,v". A vector v' has a number of cells

vi, vl .. ,vi. The first k — 1 cells are all content cells, each containing either the special value
“#” to indicate that it is unused, or a value representing an element of the list. The last cell v;;
is an indirection cell, and always contains a value representing the cdr of the list that begins at
vi_,. This value could be NIL for a proper list, some other atomic value for an improper list, or a
pointer to another list. The distinction between content cells and the indirection cell is significant:
for y = 1,...,k — 2, the cdr of a list starting at content cell v; is generally the list starting at
v;+1, whereas the cdr of vg_, is contained in vy. (Destructive operations change these relationships
somewhat, as will be described shortly.) Asking what is the edr of vi is the same as asking what
is the cdr of the object it points to — if v; contains an atomic value, taking its cdr should result in

error.

The above strategy provides a general way to construct a list. If we use vectors with a fixed-
length of two, the structure degenerates to the standard cons cell. v’ in this case is the sth cons
cell of the list. The “left” cell of v* (i.e., v}) contains the sth car of the list, and the “right” cell v}
contains the sth cdr. In general the lengths of the vectors can vary. For example, the list (A B C
(D E) F G) constructed using variable-length vectors is shown in Figure 1. In this and subsequent
figures, a box with no horizontal lines is a content cell, and a box with one horizontal line nears its
top is an indirection cell.

When referring to a list [, we consider / to be a pointer to its first element, which will usually
be a content cell v; in some vector v. For convenience we will assume that cells differ in address
by one, so that ! + 1 refers to the next cell v;4; in the vector v. Finally, the contents of the cell
pointed to by ! is denoted contents(!).

4.2. List compaction using linked vectors
The basic idea behind the allocation scheme is to allocate vectors one at a time, always filling
in the empty slots before allocating the next vector. More precisely, a vector is allocated as a result

6

p———

G |NIL

#|#| D| E|NIL

Figure 1: The representation of list L= (A B C (D E) F G)

of a CONS operation whenever a new list is being created or an element is being added to an old
vector that does not have an unused cell. If there ¢s an unused cell, the new element is simply
placed there. The following definition of CONS describes this behavior more formally:

(define (CONS x y)

IF <y is a list pointer and y-1 is unused>

THEN <put x into cell y-i;
return y-1>

ELSE <allocate a new vector u of length k;
put x in cell ui_;; '
put y in cell u; (i.e., the indirection cell);
return a pointer to ug_;>)

Note that no check is made to see if y is the first cell in the vector before checking to see if y — 1
is unused. This is because if y ss the first cell, then y — I will never be unused.

During parallel consing, this version of CONS will preserve compaction within a vector. The
degree of compaction depends of course upon the length of the vector and the total number of
unused cells in the program. The goal is naturally to make vectors as large as possible while
keeping the number of unused cells to a minimum. Unfortunately, these two goals are in direct
conflict with one another, since larger vectors tend to create more unused cells. In Section 4.3 we
present a variable-length vector strategy that eliminates this problem to some degree.

Given the above definition of CONS, the definitions of CAR and CDR are straightforward:

(define (CAR x)
IF <x is not a list> THEN ERROR
ELSE IF <x is an indirection cell>
THEN (CAR contents(x))
ELSE contents(x))

(define (CDR x)
IF <x is not a list> THEN ERROR
ELSE IF <x is an indirection cell>
THEN (CDR contents(x))
ELSE IF <x+1 is an indirection cell>
THEN contents(x+1)
ELSE x+1)

All of the known cdr-coding techniques require special treatment of destructive operations such
as RPLACA and RPLACD (which in this paper we will call SET-CAR and SET-CDR, respectively),
and our scheme is no different. The algorithm for SET-CAR is:

(define (SET-CAR x y)
IF <x is not a list> THEN ERROR
ELSE IF <x is an indirection cell>
THEN (SET-CAR contents(x) y)
ELSE <change contents(x) to y;
return y>)

The destructive operation SET-CDR changes the data dependencies between elements in a
list, and is thus a bit more complex. We need to consider two cases, ezplicit cdr and implicit cdr.
A list has an ezplicit cdr only when the next cell in the vector is an indirection cell; this always
happens for the last content cell v;_;, and also happens as a result of SET-CDR operations, as will
be described. In all other cases an smplicst cdr exists, because the first element in the cdr is stored
in the next cell in the vector, so there is no explicit pointer to it. Doing a SET-CDR in the former
case is easy if the indirection cell is also the last cell in the vector: we just change the contents
of the indirection cell to the new cdr (and is exactly what would be done in a conventional lisp
implementation). This works because it can never happen that some other cell is pointing to the
last cell in a vector, so there is no harm in modifying it.

However, if the indirection cell is not the last cell, or if the cdr is implicit, we need to copy
the car of the original list L into the last content cell u;~; of a new vector u, change the car of L
to a pointer to u;—;, and set the indirection cell of u to the new value we are setting L’s edr to.
For example, (SET-CDR L ’(X Y)) has the effect shown in Figure 2, where L is the same list as in
Figure 1. Note however, that if the list (X Y) has room in its first vector to contain the car of L,
we could avoid creating a new vector; this case is shown in Figure 3. It turns out that whether or
not a new vector is required is conveniently captured within the definition of CONS, leading us to
the following definition for SET-CDR:

(define (SET-CDR x y)
IF <x is not a list> THEN ERROR

8

G [NIL

#| X | Y |NIL #|#| D| E|NL

Figure 2: The consequence of (SET-CDR L (X Y)) with a
vector allocation

ELSE IF <x is an indirection cell>
THEN (SET-CDR contents(x) y)
ELSE <IF <x+1 is an indirection cell and last cell in the vector>
THEN <put y in x+1>
ELSE <temp := (CONS contents(x) y):
put temp in x;
make x an indirection cell>;:
RETURN y>)

Note that the statement “temp := (CONS contents(x) y)” will create a new vector if need be,
but will otherwise place the car of x into an unused cell of y.

L

l

G |NIL

A| X]|Y|NL # | #| D| E |NIL

Figure 3: The consequence of (SET-CDR L ’(X Y)) without
vector allocation

4.3. Further opportunities for compaction
It has also been observed that NIL is the most common element in a list [Clark 76], so it
might be worthwhile to optimize such occurrences. as is done in conventional cdr-coding. We call

9

this CDR-NIL compaction, and it can be implemented by extending our coding strategy to include
a code for NIL. Figure 4 shows how the list in Figure 1 might be represented with CDR-NIL
compaction, where a box with two horizontal lines near its top is a content cell whose cdr is NIL.
Ways to represent this information explicitly are discussed in Section 5.1.

L

l

]

#]#[p[E|

Figure 4: The list L = (A B C (D E) F G) represented using
CDR-NIL compaction

Another useful idea in a system using variable-length vectors is to give control of the vector size
to the programmer. This might be done by providing a function SET-CONS-VECTOR-SIZE that
takes an integer argument, or perhaps by letting the CONS function take an optional argument
indicating the length of the allocated vector (if any). In the latter case the programmer could then
write (CONS x y) to use the default vector length, or (CONS x y k) to specify the length to be k.

Such dynamic control of the vector length can be very useful in optimizing the storage needs
of a program. In particular, if a client knows, either statically or dynamicélly, the exact length of
a list being constructed, much better compaction can be obtained. An example of using CONS in
this way is in the definition of SET-CDR given earlier, where one might assume that destructive
operations do not occur very often, so that if a new vector is allocated it should be of length two.
This can be accomplished by changing the statement “temp := (CONS contents(x) y)” to “temp
:= (CONS contents(x) y 2).”

It should be noted that there is a significant advantage to using the variable-length method
in that if two vectors of a list are contiguous, they can become one. This situation happens often -
when one long list is being allocated during which there are no intervening allocations for other
lists. We can modify the CONS algorithm to take advantage of this situation as follows:

(define (CONS x y)

IF <y is a list pointer and y-1 is unused>
THEN <put x into cell y-1;

return y-1>
ELSE IF <y is a pointer to a cell v,

10

and v is the last vector allocated from the heap>
THEN <extend v by k cells, so that v; is now viy;;

put x in w;;

return a pointer to vg>
ELSE <allocate a new vector u of length k;

put x in cell uz_;; ‘

put y in cell u; (i.e., the indirection cell);

return a pointer to u;_;>) '

The reader should compare this to the previous definition of CONS. It is interesting to note that
when k = 1, this compaction method is functionaly equivalent to the MIT lisp machine cdr-coding
method.

5. Implementation Issues

§.1. Encoding strategies
In order to implement the algorithms described in the last section, we need to know whether
or not a cell: '

e is an indirection cell or a content cell.
o is the last cell of a vector.
e contains the unused value #.

e contains NIL.

As is true of most representational issues such as this, there are many ways this information could
be stored. We discuss in this section several suitable coding alternatives. The total requirements
of a particular implementation will dictate the final strategy used.

In most Lisp systems, values have a type-tag indicating their type. We could assume that
NIL and the special unused value # are suitably represented within this typing scheme, either by
introducing an extra type or by designating special values. One could also have different types to
distinguish indirect pointers from normal ones, but this will sometimes require coercing pointers
from one kind to the other. A better strategy might be to allocate a special bit for each cell to
indicate whether it is an indirection cell or a content cell.

Several possibilites also exist for indicating whether or not a cell is the last cell in a vector.
If we use a fixed-length k = 2* for all vectors, we do not have to explicitly remember which cell
is the first or last, as long as we allocate vectors on even k-word boundaries (often called k-word
allignment). This is because the address of the first cell will always have zeros for its s low-order
bits, whereas the address of the last cell will always have ones. However if we use variable-length
vectors, we really need an extra bit to encode the fact that a cell is the last.

11

It should be noted that the only routine that needs to know whether a cell is the last or not
is SET-CDR. This need could be eliminated altogether at the expense of having SET-CDR always
perform a CONS instead of performing the optimization of setting the last cell. This is not a great
loss, since it is easy to argue that such an optimization rarely happens, especially since SET-CDR
is a rare operation itself and one that most programmers try to avoid.

If CDR-NIL compaction is used, a particularly concise encoding of the cells is possible that
takes advantage of the fact that a cell cannot simultaneously be “several things at once.” It also
provides an encoding for an unused cell. The encoding is shown in Table 3.

coding-bits meaning storage/cell
00 the CDR is NIL 1 word
01 the CDR begins in next cell 1 word
10 the current cell is an indirection cell 2 words
11 the current cell is unused N/A

Table 3: Concise encoding for linked-vectors

Note that this encoding is as compact as, and very similar to, that used by the MIT lisp machine
shown in Table 1. An advantage of having a separate code for an unused cell is that if an “auxiliary
memory” is used as described in Section 5.3, entire areas of the heap may be cleared with little
effort.

5.2. Garbage collection

Garbage collection algorithms based on copying between two semi-spaces (such as Baker’s
algorithm [Baker 78], in which cdr-coding has been considered) can be used with our list represen-
tation without modification. This is because the interface to the list representation is the same in
our scheme as with conventional cdr-coding, and the car field can be used to store a forwarding
address. Standard mark-sweep algorithms can be used also, but the fractured free-list that results
will be difficult to allocate new vectors from, warranting some sort of compaction phase as well.
The details of such algorithms are beyond the scope of this paper. ’

If a reference counting strategy is used for garbage collection, the performance of SET-CDR
can be improved considerably. Specifically, when (SET-CDR x y) is performed, if x is not an
indirection cell and the reference count of x+1 is 1, then we can just change the contents of x+1
to y. This holds regardless of whether x+1 is a content cell or an indirection cell. The strategy
also eliminates the need to know which cell in a vector is its last, since that cell will never have a
reference count greater than one. Since measurements of Lisp programs show that about 97% of
list cells have just one reference to them [Clark 76], this optimization will eliminate most of the
unnecessary vector allocations and resultant indirect pointers.

5.3. Auxiliary memories and list traversing functions
Most lisp dialects support a variety of functions that need to traverse lists, such as APPEND,
REVERSE, LENGTH, NTH, NTHCDR, LAST, etc. Some of these functions provide the user

12

with a notion of “random access” to elements in a list, but a reference to the sth element typically
requires at least i memory references. The slowness of these operations is one reason why many
lisp dialects also provide contiguous data types such as vectors and arrays, whose elements can be
accessed in constant time. In this section we present a memory architecture based on linked vectors
that can speed up list traversing operations substantially, and has other advantages as well.

In a system using vectors of fixed-length k, one could skip over the first i vectors when
searching for the ith element in a list L, giving an average speedup of k. However, this strategy
does not work in a variable-length vector system unless we store the length of each vector, nor in
a system allowing destructive operations such as SET-CDR since they introduce indirection cells
that require a scan of the whole vector to determine their presence.

In this section we describe a simple memory architecture that solves this problem by pro-
viding hardware support for the “scanning” process. For generality, suppose we have a system
using variable-length vectors, CDR-NIL compaction, and the SET-CDR optimization that requires
knowing which cell is the last in each vector. The main idea is to extract the indirection-cell bit, the
CDR-NIL bit, and the last-cell bit from each word and put them into separate auzsliary memories,
as shown in Figure 5 (alternatively, one could use the more concise encoding described in the last
section). The main memory containing the contents of each cell is called the content memory. Each
bit in an auxiliary memory is associated with one word in the content memory. Thus if the content
memory contains N = 2" words, and W = 2™ is the number of bits per word in the auxiliary
memory, then there are é;', = 2™ words in each auxiliary memory.

We assume that when the contents of a cell is fetched, the corresponding word from each
auxiliary memory is loaded into the registers R;,d;,,,), R, and Rigee. Similarly, if a word is
written in content memory, we assume that the corresponding bits are set appropriately in the
auxliliary memories. In all cases these memory accesses can be done in parallel, so we assume
that no extra time is incurred. We also allow for the auxiliary memories to be read or written
independently of the content memory, by providing suitable machine instructions to do so.

With such a memory architecture, we can design special instructions to aid list processing
using linked vectors. In particular, to speed up list traversing operations, we would like to find the
next indirection cell or the next cell whose cdr is NIL. Let us define a word as interesting iff it
satisfies these properties. The instruction we want is then:

FINDI S, B, R

where S is a register containing the memory location from which the search is to begin, B contains
an upper bound on the number of words to “effectively” search through, and R is a result register.
Suppose 4 is the address of the next interesting word, and let r be the minimum of contents(B)
and ¢ — contents(S). Then after instruction execution, the following things happen:

o R is loaded with r.

13

I Rt'ndi'rect I | Rm'l] | Rla't I
y y y

et CDR-NIL Last element
auxiliary auxiliary auxiliary Content
memory memory memory Memory

t ‘)

Auxiliary address | T

[n-m | m]
Memory address
Figure §: Auxiliary memories and content memory

o B is decremented by r.

e S is incremented by r.

It is easy to see how this instruction might be implemented given our memory design: The auxiliary
memories are scanned sequentially until a non-zero word is found in either Ringirect OF Rni. The
first such bit that corresponds to a word in content memory greater than S is the desired one. The
scan stops prematurely if more than contents(B) words are effectively scanned in content memory.
We imagine that such an instruction could be implemented in micro-code very efficiently. Note
that the number of memory references needed to find the nth element in a contiguous list is at
most () + 1.

We would also like conditional branch instructions that branch based on the execution of
FINDI. For example:
BI <effective-address> ; branch if interesting word found
BNIL <effective-address> ; branch if interesting word is NIL
BBE <effective-address> ; branch if bound exceeded (contents(B)=0)

The instructions mentioned above can be used to implement operations requiring list traversals,
such as APPEND, REVERSE, LENGTH, NTH, NTHCDR, and LAST. The algorithms are fairly
straightforward, and are all variations of NTH, described below. NTH takes two arguments, a list
L and index n. We assume that they are in registers R1 and R2, respectively, and that RO is
available to store a result. The code for NTH is then:

NTH: FINDI R1,R2,RO ; find next interesting word
BBE EXIT ; found nth element

14

BNIL RINIL ; index is out of range

NOVE (R1) ,R1 ; follow indirect pointer
NP NTH : loop

RINIL: NOVE NIL,RO ; put NIL into RO
RTS ; return

EXIT: CAR R1i,RO ; put nth car into RO
RIS ; return

Note that the “inner loop” here consists of 5 instructions, the same number likely to be needed by an
implementation on a conventional architecture. Of course, one loop here corresponds to an arbitrary
number of loops on a conventional machine, and therein lies the increase in performance. More
precisely, whereas a conventional implementation might loop n times (corresponding to n elements),
the algorithm above only loops once for each indirect pointer found in the first n elements of the list,
and each of these loops involves one execution of FINDI whose micro-coded implementation scans
through the auxiliary memory as described earlier. Generally speaking, the number of memory
references saved when scanning a list of length n is:

n — auz — ind

where auz is the number of auxiliary memory references made by FINDI, and snd is the number of
indirect pointers in the list. It is easy to show that this quantity is always >= 0, because ind < n
and an auxiliary memory reference occurs only when the distance between the given address and
the next interesting word is greater than 1, in which case at least one reference in content memory
is saved. The upper bound of the speedup factor depends on W; the larger it is, the greater the
gain in speed, with a modest tradeoff in hardware cost.

-

5.4. Other uses for auxiliary memories
It is worth noting that the auxiliary memory concept can be used for other purposes as well.
In this section we point out two such applications.

Efficient garbage collection is an important issue in Lisp implementations. For example, the
Symbolis 3600 lisp machine [Moon 84, Roads 83] uses hardware to overcome the inefficiency of
scanning pointers. In addition to word-tags, each physical page of memory has a page-tag bit that
indicates when a pointer to temporary space has been written into some location on that page.
When the garbage collector wants to reclaim the temporary space, it only needs to scan the pages
whose page-tag bits were set. This speeds up selecting the pages to scan, but does not help in the
scan of the page itself - the garbage collector must do this sequentially. However a “GC auxiliary
memory” could be used to speed up the sequential scan. When a pointer to temporary space is
written into a word, its associated bit in the GC auxiliary memory is set (and is of course cleared
if that pointer is subsequently removed). During garbage collection the next word containing a
pointer to temporary space can be found in a way similar to that of FINDI described earlier.

' 15

Another use of auxiliary memories is in the support of parallel access to many elements in a list.
Since many of the elements will be contiguous, appropriate hardware to support vector operations
could be used just as in conventional vectorization strategies in high-performace machines. The
auxiliary memory would play the role of controlling the extent of the individual vector operations
and controlling the looping mechanism to traverse the entire list. Used in this way, one can imagine
parallel versions of the standard mapping functions such as MAP, MAPCAR, and MAPCDR (to
be used, of course, only when the parallel computations are simple enough and do not interfere
through side-effects).

5.5. Impact on Destructive Operations

In this section we discuss the advantage of representing lists as linked vectors when performing
destructive operations. In Section 4.2 we described how SET-CDR worked; here we concentrate
on two other frequently used functions that produce side-effects: APPEND! (destructive version of
APPEND) and REVERSE! (destructive version of REVERSE).

Implementing APPEND! by SET-CDR is fairly easy and very efficient, with or without CDR-
NIL compaction. Without using CDR-NIL compaction, the end of a list L is characterized by the
value NIL in the last cell of a vector; to accomplish (APPEND! L M) one simply replaces this value
with a pointer to M. When using CDR-NIL compaction, the cell containing the last element of
the list is specially marked, and if the list M has no unused cells in front of it, one cannot avoid
allocating a new vector. Whether or not a new vector is required is easily determined using CONS,
in a way almost identical to that of SET-CDR described in Section 4.2.

In all previous list compaction strategies, if one were to implement REVERSE! in the obvious
way using SET-CDR, the result would be a list of almost all normal (i.e., two-element) cons cells
- all compaction is lost. Doing this using our method is even worse when k > 2, because each
SET-CDR operation will create a new vector containing & — 2 unused cells! Of course, no matter
which compaction strategy is used, the correct way to solve this problem is to make REVERSE! a
primitive, as described below. -

In a system not using CDR-NIL compaction, the algorithm is rather simple:

(define (REVERSE! L)

o Let L consist of n vectors v! through v”, each vector v* having (variable) length ;.
o For each vector v* having form:
v =< v;', v;', cee ”i;-v "i.- >,
reverse its content elements destructively yielding:

v o= <v},‘_l, cee y U3, v}, v;‘>.

e Reverse all pointer cells destructively such that:
! =< v}‘_l, eee , v}, v}, NIL>

16

and for¢s =2,...,n:
v' =<vj_, ..., v} v}, pointer-to-v~! >,

e Return a pointer to v".)

Note that this algorithm can be done in one pass over the list.

In a system using CDR-NIL compaction, the algorithm becomes slightly more complex. To
avoid allocating extra storage, every vector except the first needs to shift one of its elements into
its left neighboring vector, since there is no slot in the last vector to store a pointer to its new cdr,
yet there is an extra slot in the first vector because one indirect cell was freed up by the CDR-NIL
encoding. The resulting algorithm is as follows:

(define (REVERSE! L)

o Let L consist of n vectors v! through v®, each vector v* having (variable) length &;.

o Reverse the elements in v! and shift in vf, such that:

v = <} Vh—1r -r 0 U3, V] >
and set the CDR-NIL bit of the last cell.
eFori=2,...,n—1, reverse v* such that:
v o= <oft! i1 --- » Y}, pointer-to-vi~!>.

o Reverse v™ such that:

n

v* = <vl, ..., v3, vf, pointer-to-v"! >,

and make the last cell an indirection cell.

e Return a pointer to V,.)

This algorithm can also be implemented in a single pass.

8. Simulation

Most of the algorithms and data structures described in this paper have been simulated on
real programs by making modifications to a compiler for T [Rees 82]. The compiler was changed to
produce new closed code for the primitive operations CAR, CDR, CONS, SET-CAR, and SET-CDR
(and also involved re-compiling all list routines used by the compiler). The new versions of these
primitives allocate lists as linked vectors (with CDR-NIL compaction) in a simulated heap that is
represented as a very large vector in T. Thus a list in the simulated environment is a word whose
type-tag is the same as a cons cell in the normal environment, but whose value is an index into
the vector representing the heap. After programs were ran, statistical information was gathered by
scanning through the entire vector representing the heap. Since the simulation was in essence done

17

“on top of” the original environment, it’s correctness was preserved even during garbage collection.
Overall this was a non-trivial effort, but was worthwhile since it allowed us to run any T program
without modification in the new environment.

One of our primary goals was to simulate parallel execution to maximize the effect of “parallel
consing.” We did this by first running the parallel program segments sequentially, while keeping
track of every CONS operation that was invoked. We could then simulate parallel allocations from
the heap by either randomly or regularly interleaving the resulting “cons traces.” In the examples
below the basic model is one of two parallel processors sharing the same heap memory.

In the first example we simulate the simultaneous copying of two independent lists — one
would expect an extensive amount of parallel consing in such a case. Table 4 shows the results
when copying a list of 1001 elements on each processor, simulated by perfectly interleaving the cons
traces. A more descriptive curve is given in the Appendix.

Vector length Memory used Unused elements Indirect pointers
1 4002 0 2000
2 4000 0 1998
3 3000 0 998
4 2672 4 666
5 2500 0 498
6 2400 0 389
7 2338 4 332
8 - 2288 2 284
9 2250 0 248

10 2240 13 222
11 2200 0 198
12 2184 2 180

Table 4: Memory usage of copying two lists in parallel

Several interesting (although quite predictable) things are worth noting. First, with vector length
one we are essentially simulating the MIT cdr-coding scheme - note that two cells get allocated
for each list element, as expected. With vector length two, essentially no improvement is realized,
since with CDR-NIL compaction the two schemes behave almost identically. Finally, note that as
the vector length increases, substantial improvements are obtained, which asymptotically should
approach a factor of two. The purpose of this first example is to show the worst case of MIT
cdr-coding and the best case of ours - we present a more realistic example below.

Consider the version of parallel merge sort (PAR-MERGE-SORT) given in Section 3, where we
assume that the sequential procedure MERGE-SORT is written without side-effects. The reason
for selecting this program and writing it in this particular way is that we want to create many lists
of different lengths, in order to avoid both the worst case of MIT cdr-coding and the best case of
our strategy. A recursive merge sort is ideal for this, since near the root of the recursion it creates

18

long lists, but towards the fringes very small lists are generated. We would expect our strategy to
do poorly at the fringes since many unused cells would be created, but do well near the root where
long lists are made. It seems like a good “average” test case.

!

Consing trace
of splitting L

T~

Consing trace of Consing trace of
merge-sort on processor 1 merge-sort on processor 2

\/

Consing trace
of final merging

'

Figure 6: Consing trace graph of a parallel merge sort

The resulting cons traces for PAR-MERGE-SORT were combined as shown in Figure 6. The
trace for the inital split and final merge (which are both very short) remain sequential, whereas
the parallel executions of MERGE-SORT were simulated by interleaving the cons traces randomly.
We ran the PAR-MERGE-SORT program on a large existing database file. The results are shown
in Table 5.

Vector length Memory used Unused elements Indirect pointers
1 6713 0 2792
2 6697 54 2721
3 5817 318 1598
4 5516 373 1122
5 5725 855 949
6 5934 1182 831
7 6076 1413 732
8 6208 1629 658
9 6651 2095 625
10 6970 2446 603
11 7348 2842 585
12 7788 3297 576

Table 5: Memory usage of a parallel merge sort

A normz! cons-cell implementation using no compaction at all uses 8042 words of memory for this
same pregram. Vector length 1 (corresponding to the MIT scheme) only requires 6713 words, an

19

immediate improvement of 16%. As the vector length increases beyond that, the improvement also
increases, reaching a maximum of 31% at vector length 4 — almost twice as much improvement as
the MIT scheme. Beyond vector length 4 the improvement begins to decrease, but even at vector
length 12 it is an improvement over no compaction at all, and up to vector length 10 there is still
an improvement over the MIT strategy. A more descriptive version of this data is given in the
Appendix.

7. Conclusion

In comparing our compaction scheme with previous ones, we can first of all conclude that it
performs as well and usually better than the MIT edr-coding strategy, with no greater complexity
in encoding. It is more difficult to compare to the Xerox lisp machine strategy since the latter is
in some sense only a “pseudo-compaction” scheme in that it uses a relatively large code that acts
as sort of a “local address” for nearby elements. Indeed, such a trick is not incompatible with our
scheme, whose encoding could easily be extended to include an offset field. In terms of maximum
compaction with minimum overhead in coding bits, our method seems superior to either of the

-

other two.

We have also suggested a physical memory organization to support our encoding scheme. This
“auxiliary memory” structure is quite simple, yet provides invaluable support for certain very com-
mon operations, such as rapid access to random elements in the list, and garbage collection tasks.
When coupled with micro-coded primitives for implementing common operations, this structure
seems to provide a realistic design choice for a fast lisp machine. Indeed, it might obviate the need
for vectors as a separate data-type.

Another way of viewing our list compaction strategy is to think of it as allocating many small
“mini-heaps” that collectively make up larger lists. As a list grows, its new elements are first
allocated from these mini-heaps, which are in turn allocated from a single main heap within which
conventional garbage collection is performed. A possibility for future research is the generalization
of this idea to distributed processing implementations.

Acknowledgement

We wish to thank John Ellis, Norman Adams, and Jonathan Rees for their invaluable help in
the simulation work. Without help from the latter two, the simulations using T would have been
impossible. Also thanks to Christopher Riesbeck and James Spohrer for providing Al programs
with which to run experiments. Finally, we wish to thank Professor Alan Perlis for his continual
help and inspiration.

This research was supported in part by NSF Grant MCS-8302018 and DCR-8106181.

20

References

[Baker 78]

[Bawden 77]

[Bobrow 75]

[Bobrow 79]

[Cheney 70}

[Clark 76]

[Clocksin 81]

[Deutsch 73]

[Deutsch 76]

[Ellis 84a]

[Ellis 84b)

[Fisher-D 75]

[Fisher-J 84]

[Foderaro 82]

Baker, Henry G Jr., “List Processing in Real Time on a Serial Computer,”
CACM Vol. 21, No. 4, April 1978, pp. 280-294

Bawden, A., R. Greenblatt, J. Holloway, T. Knight, D. Moon and D. Wein-
reb, “Lisp Machine Progress Report,” Memo 444, MIT Al Lab., Aug. 1977.

Bobrow, Daniel G., “A Note on Hash Linking,” CACM Vol. 18, No. 7, July
1975, pp. 413-415.

Bobrow, Daniel G. and Douglas W. Clark, “Compact Encodings of List Struc-
ture,” ACM Trans. on Programming Languages and Systems, Vol. 1, No. 2,
Oct. 1979, pp. 266-286.

Cheney, C. J., “A Nonrecursive List Compacting Algorithm,” CACM Vol. 13,
No. 11, Nov. 1970, pp. 677-678.

Clark, Douglas W., “List Structure: Measurements, Algorithms, and Encod-
ings,” Ph. D. thesis, Carnegie-Mellon University, August 1976.

Clocksin, W. F. and Mellish, C. S. , “Programming in Prolog,” Springer-
Verlag, 1981.

Deutsch, L. Peter, “A Lisp Machine with Very Compact Programs,” Pro-
ceeding of 3rd 1JACI, Stanford, 1973, pp. 697-703.

Deutsch, L. Peter and Daniel G. Bobrow, “An Efficient, Incremental, Au-
tomatic Garbage Collector,” CACM Vol. 19, No. 9, Sept. 1976, pp. 522-526.

Ellis, John R., “Bulldog: A Compiler for VLWI Architectures”, Ph. D. The-
sis, Yale University, expected Dec. 1984.

Ellis, John R. , Private coxﬁmunication, 1984

Fisher, David A. , “Copying Cyclic List Structures in Linear Time Using
Bounded Workspace,” CACM Vol. 18, No. 5, May 1975, pp. 251-252.

Fisher, Joseph A. , John R. Ellis, John C. Rutternberg, and Alexandru
Nicolau, “Parallel Processing: A Smart Compiler and a Dumb Machine,”
Proceedings of The SIGPLAN ’84 Symposium on Compiler Construction,
ACM SIGPLAN, Vol. 19, No. 6, June 1984, pp. 37-47.

Foderaro, J. K. and K. L. , Sklower, The Franz LISP Manual, Department
of Electrical Engineering and Computer Science, Univeristy of California,
Berkeley, April 1982.

21

[Gabriel 84]

[Halstead 84]

[Hansen 69]

[Hudak 84]

[Hudak 85]

Gabriel, Richard P. and John McCarthy, “Queue-based Multi-processing
Lisp,” 1984 ACM Symposium on Lisp and Functional Programming, Austin,
Texas, Aug. 1984, pp. 25-44.

Halstead, Robert H. Jr., “Implementation of Multilisp: Lisp on a Multi-
processor,” 1984 ACM Symposium on Lisp and Functional Programming,
Austin, Texas, Aug. 1984, pp. 9-17.

Hansen, Wilfred J. , “Compact List Representation: Definition, Garbage
Collection, and System Implementation,” CACM Vol. 12, No. 9, Sept. 1969,
pp. 499-507.

Hudak, P. , “ALFL Reference Manual and Programmers Guide,” Yale De-
partment of Computer Science Technical Report YALEU/DCS/TR-322, Oct.
1984.

Hudak, P. and Smith, L., “Explicit Mapping of Functional Programs to
Multiprocessor Systems” submitted to 1985 Symposium on Functional Pro-
gramming and Computer Architecture, 1985.

[McCarthy 62] McCarthy John, et al, LISP 1.5 programmer’s manual, MIT Press, Cam-

[Mcgraw 82]

[Milner 84

[Moon 78]

(Moon 84]

[Moore 76]

[Rees 82]

[Reads 83

bridge, Mass. , 1962.

Mcgraw, J. R., “The VAL language: description and analysis,” ACM Trans.
on Prog. Lang. and Sys., 4(1), Jan. 1982, pp 44-82.

Milner, R., “A Proposal for Standard ML,” in Proc. of ACM Sym. on LISP
and Functional Programming, August 1984, pp. 184-197.

Moon, David, MacLisp Reference Manual, Version 0, Technial Report, MIT
Laboratory for Computer Science, 1978

Moon, David, “Garbage Collection in a Large Lisp System,” In Proceedings
of the 1984 ACM symposium on Lisp and Functional Programming. August
1984.

Moore, J. Strother, “The Interlisp Virtual Machine Specification,” Xerox
PARC, CSL-76-5, 1976.

Rees, Jonathan A. and Norman I. Adams IV. “T: A Dialect of Lisp or,
Lambda: The Ultimate Software Tool,” In Proceedings of the 1982 ACM
Symposium on Lisp and Functional Programming. August 1982.

Roads, Curtis B., 3600 Technical Summary, Symbolics, Cambridge, Mass. ,
Feb. 1983

22

[Steele 83] - Steele, G. L., Common Lisp Reference Manual, Carnegie-Mellon Univerisity,
Computer Science Department, 1983

[Steele 80] Steele, G. L. and Sussman, G. J., “Design of a Lisp-Based Microprocessor,”
CACM Vol. 23, No. 11, Nov. 1980. pp. 628-645

[Sussman 75] Sussman, Gerald Jay and Guy Lewis Steele, “Scheme: An Interpreter for
Extended Lambda Calculus,® MIT Al Lab Memo 349, Dec. 1975.

[Turner 76] Turner, D. A., “SASL Language Manual,” University of St. Andrews Tech-
nical Report, 1976.

[Weinreb 81] Weinreb, Daniel and David Moon, “Lisp Machine Manual,” MIT Al lab, July
1981

23

8000

6000

4000

Number of memory words

2000

T I T I !] ' ! | '
Used memory

|
- N
P
7
- Indirect pointers PRGN

........... - - -

X '
\\ <
\‘ “
\‘ /
. -~
\‘ -
. ”~
\‘ /
o “ 4]
\‘ 4
\X r'd
\\~ - /
., . . - - - -
N\.-- P - -
=T - h
_____ -
Lo LT P
7 ..
T e e e L
S e e
Unused elements,_ _ - -~
-

1 = =i~ ~ 1] ! | ! | ! | ! |

Length of a vector

Vector length vs. memory usage of a parallel merge sort

25

