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Abstract

A context-free grammar is k-bounded if no production has more than k occurrences of
non-terminals in its right-hand side. We demonstrate an algorithm to learn k-bounded
context-free grammars using equivalence queries and non-terminal membership queries
that runs in time polynomial in the size of the unknown grammar and the length of the
longest counter-example. ’

1 Introduction

We consider the problem of learning a context-free grammar using queries to a teacher. The
paper (1] shows that the regular sets can be learned by an algorithm that uses equivalence
and membership queries and runs in time polynomial in the size of the smallest deterministic
finite acceptor for the unknown set and the length of the longest counter-example returned
by an equivalence query.

Berman and Roos [3] show that this result can be extended to the class of languages rec-
ognized by deterministic one-counter automata. The deterministic one-counter languages
are properly contained in the context-free languages and properly contain the regular lan-
guages. A non-regular example from this class is the set of all strings of a’s and b’s with
twice as many a’s as b’s.

The question of whether there is an analogous result for the full class of context-free
languages is open.

We introduce two additional assumptions: that the unknown grammar is k-bounded for
some fixed k, and that non-terminal membership queries are available. The assumption of
non-terminal membership queries is a strong one: the queries refer not just to the unknown
language, but also to the structure of the unknown grammar.

Two implemented systems are particularly relevant to this investigation. Knobe and
Knobe [5] describe a system for learning a context-free grammar using equivalence and
membership queries. Shapiro [7] gives an algorithm for learning a restricted class of k-
bounded context-free grammars using (in effect) full equivalence and non-terminal mem-
bership queries. Both systems successfully learned some interesting grammars. This paper
may be viewed as an analysis of a variant of Shapiro’s algorithm.
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The algorithm described in this paper achieves the polynomial time bound claimed for it,
but it is not particularly practical. Some partial suggestions for making it more reasonable
appear at the end of the paper.

2 Preliminaries

2.1 Context-free grammars and languages

Our notions of context-free grammars and languages are mostly standard. See reference [4]
for further information.

An alphabet is a finite non-empty set of distinct symbols. If X is an alphabet, the set of
finite strings of symbols from X is denoted X*. The empty string is denoted A. The length
of the string w is denoted |w|. If F is a finite set, |F| denotes the cardinality of F.

Given an ordered pair of alphabets N and T, the contezt-free productions on N and Tis
the set N x (NUT)". Since we consider only context-free productions, they will be called
simply productions. The production (4, a) is denoted A — a. The left-hand side is A and
the right-hand side is a. Note that @ may be ).

A contezt-free grammar is a 4-tuple (T, N, P,S), where T is the alphabet of terminal
symbols, N is the alphabet of non-terminal symbols, S € N is the start symbol, and P is a
finite subset of the set of productions on N and T. P is called the set of productions of G.
The size of the grammar G, denoted size(G), is the sum of |T|, |N|, |P|, and the sum of
the lengths of the right-hand sides of all the productions in P.

Let G = (T, N, P, S) be a context-free grammar and let 8 and 7 be elements of (TUN)*.
v is derived from B in one step if and only if there is a production A — o of G such that
for some strings 8; and B3,

B = B1ABz,
and

v = Brafhs.

That is, v is derived from B by replacing one occurrence of A by a. This is denoted B =n.
The reflexive, transitive closure of = is denoted =>*. The language of a non-terminal symbol
A, denoted L(A), is the set of all w € T* such that 4 =* w. (To emphasize the grammar
being used, we use the subscript G, e.g., S =% w or Lg(A).)

The language of the grammar G, denoted L(G), is just L(S), where S is the start
symbol. Two grammars G and G' are equivalent if and only if L(G) = L(G'). They are
fully equivalent if and only if they contain the same non-terminal alphabet N, and for every
A€EN, LG(A) LGI(A)

G is k-bounded if and only if the right-hand side of every production in P contains at
most k occurrences of non-terminal symbols. For example, linear grammars are 1-bounded
and Chomsky normal form grammars are 2-bounded. A context-free grammar is simple
if and only if there is only one non-terminal symbol, namely, the start symbol S. An
example of a 1-bounded simple grammar is G = ({a,b}, {S}, P1, S), where P, is the set of
productions

P={S—a,8—bS —aSae,S — bSh}.




With the usual abbreviating conventions, G, is simply written as
S—a|b|aSa|bSh.

This grammar generates the language of all non-empty palindromes over the alphabet {a, b}.
This language cannot be recognized by a deterministic one-counter automaton.

2.2 Parse-DAGs

In order to be able to handle productions with A on the right-hand side smoothly, we
introduce a slight generalization of a parse-tree, called a parse-DAG. Let the grammar
G = (T,N,P,S) be fixed.

A parse-DAG for G is a finite directed acyclic graph with at least two nodes that has
a number of special properties. At each node there is a fixed linear ordering, called left-to-
right, of the edges directed out of that node. There is exactly one node with in-degree zero,
called the root. Each node with out-degree zero is called a leaf; the other nodes are called
internal nodes. Every internal node has a label consisting of an element of N, and every
leaf has a label consisting of an element of T*. For each node n, the nodes n' such that
there is an edge from n to n' are called the children of n. Finally, for each internal node n,
if its label is A and the concatenation of the labels of its children in left-to-right order is Q,
then A — a is an element of P.

The size of the parse-DAG D, denoted size(D), is defined to be the sum of the number
of nodes in D, the number of edges in D, and the sum of the lengths of the labels on all the
nodes of D. The depth of a parse-DAG D is the maximum number of nodes in any directed
path in D.

If n is any internal node of a parse-DAG D, the sub-DAG rooted at n is the induced
subgraph of D on all the nodes reachable from n by a directed path in D. Note that this
is also a parse-DAG for the grammar G.

We define the yield of any node of a parse-DAG inductively as follows. The yield of any
leaf is just its label, an element of T*. Once the yields have been determined for the children
of a node n, the yield of n is the concatenation of the yields of its children in left-to-right
order. The yield of a parse-DAG is the yield of its root node. Note that the yield of every
node of a parse-DAG can be computed in time polynomial in its size.

An example showing the advantages of a parse-DAG over a parse tree is the grammar
G2 with productions S — AjA;, A; — Aiy14i41 foreachi=1,...,n— 1, and A, — A.
To witness that S =>* A requires a parse tree with 2" leaves. However, a parse-DAG with
n + 2 nodes labelled S, Aj,...,Ap, and )\, and two edges from each of these nodes to its
successor suffices to to witness A =* A.

2.3 Replacements, incorrectness, correctness

Assume that a non-terminal alphabet N and a terminal alphabet T are fixed. A replacement
is a finite tuple

((yl’ Al)’ RE) (ym’ Am))

such that each y; is a finite string of terminal symbols, and each A; is a non-terminal symbol.




Suppose p is the replacement ((y1, A1), ..., (Ym,Am)), and B is a finite string of symbols
from T U N. Then p is compatible with 8 if and only if there are finite strings of terminal
symbols zo,...,z,, such that

B=1x0A121A2  AmZm.

(That is, the successive occurrences of non-terminals in 8 are precisely Ay, ... yApm.) I p
is compatible with 8, then the application of p to 8, denoted p[B], is the terminal string
obtained by substituting the terminal string y; for the ** occurrence of a non-terminal
symbol in 8, that is,

P8l = Zo1 %192+ * YmTm.

(A replacement may be empty, in which case it is only compatible with terminal strings,
and the result of applying it to a terminal string w is w.)
For example, the replacement

p = ((bug, A)(bit, B)(man, A))
is compatible with 8 = aABtheA, and
p|B] = abugbittheman.

We define a production A — a to be incorrect for a grammar G = (T, N, P, S) if and
only if there is a replacement

p={(y1,A1),..., (ym, Am))

that is compatible with o such that for each 1, y; € Lg(A;), but the string y = p[a] is not
in Lg(A). A production is correct for G if and only if it is not incorrect for G. Clearly,
every production in P is correct for G.

2.4 Types of queries

Suppose G is the unknown grammar. This is the grammar that we assume is known to the
teacher, and that is to be learned (up to equivalence) by the learning algorithm.

A membership query proposes a string w and asks whether it is in L(G). The reply is
either yes or no.

A non-terminal membership query proposes a string w and a non-terminal symbol A of G
and asks whether w is in L(A). The reply is either yes or no. If the start symbol S is known,
then a membership query with w can be accomplished by a non-terminal membership query
with w and S.

An equivalence query proposes a grammar G' and asks whether L(G) = L(G'). The
reply is yes or no. If it is no, then a counter-ezample is also provided, that is, a string w
such that w is in L(G) and not L(G’), or vice versa. If w € L(G) — L(G'), w is called a
positive counter-example, and if w € L(G') — L(G), it is called a negative counter-example.

The choice of a counter-example is assumed to be arbitrary. Note that equivalence of
context-free grammars is an algorithmically unsolvable problem. The paper [2] suggests
how to replace equivalence queries by stochastic equivalence testing in Valiant’s model [8].




Littlestone [6] shows that equivalence queries are essentially equivalent to mistakes in a
prediction scheme.

A full equivalence query proposes a grammar G’ with the same non-terminal set N as
G and asks whether G’ is fully equivalent to G. The reply is either yes or no. In the latter
case, a counter-ezample is returned, that is, a pair (w, A) such that w is in Lg(A) but not
in Lg1(A) or vice versa.

3 The learning algorithm

Let k be any non-negative integer. We assume that there is a k-bounded grammar G =
(T,N,P,S) to be learned, and that k, T, N, and S are known to the learning algorithm,
but P, the set of productions, is unknown. The assumption that the non-terminal alphabet
is known to the learning algorithm is similar to Shapiro’s assumption that the names of all
the relevant sub-procedures are known to his learning algorithm [7].

The learning algorithm has access to further information about G only via equivalence
and non-terminal membership queries. The goal of the algorithm is a set P’ of productions
such that G' = (T, N, P',S) is equivalent to G.

Theorem 1 There is an algorithm that learns a grammar equivalent to any k-bounded
contezt-free grammar G using equivalence and non-terminal membership queries that runs
in time polynomial in the size of G and the length of the longest counter-ezample.

Note that this generalizes the result in [1] for Chomsky normal-form grammars. Since
a simple grammar contains only one non-terminal, in this case non-terminal membership
queries reduce to membership queries, so we have the following.

Corollary 2 There is an algorithm that learns a grammar equivalent to any k-bounded
simple contezt-free grammar G using equivalence and membership queries that runs in time
polynomial in the size of G and the length of the longest counter-ezample.

Thus, in the terminology of [1], languages geherated by k-bounded simple context-
free grammars can be learned feasibly from a minimally adequate teacher. The proof of
Theorem 1 is a description and analysis of the learning algorithm.

The Learning Algorithm

1. The set P' of productions is initialized to the empty set. Then the algorithm iterates
the following loop.

2. An equivalence query is made, proposing G' = (T, N, P',S). If the reply is yes, the
algorithm outputs G' and halts. Otherwise, a counter-example w is returned, and
there are two cases.

(a) f wisin L(G'), then a parse-DAG is found (with respect to G') with root label
S and yield w. The parse-DAG is then diagnosed to find a production, A — a,
that is incorrect for G. This production is removed from P’.




(b) If wis not in L(G'), then the set C(w) of all candidate productions is computed
from w. Among these must be at least one production in P but not in P’'; all of
them are added to P'.

The algorithm relies on three sub-procedures: parsing, diagnosis, and the computation
of candidate productions. These are described in the following three subsections; the fourth
puts the pieces together.

3.1 Parsing

The parsing sub-procedure takes a terminal string w and the grammar G’ and determines
whether w is an element of L(G'). If so, a parse-DAG for G' with yield w and root node
labelled S is also returned. It is assumed that G’ is k-bounded.

A typical account [4] of parsing an arbitrary context-free grammar calls for the grammar
to be converted to an equivalent grammar in Chomsky normal form by elimination of null
and chain rules and introduction of new non-terminals. In order to get a parse-DAG with
respect to the original grammar, we would have to describe how to reverse the effects of
these transformations. Instead we choose to describe a simple but relatively inefficient
strategy for parsing in the original grammar G', which is nonetheless sufficient for the proof
of the main theorem.

Let

L = {y:y is a substring of w}.

There are at most (Jw|+ 1)? elements of L, and L is easily computed in time polynomial in
|w|. Let
I={(y,A):ye L,A€ N, and y € Lg(A)}.

There are at most |N|(|w|+ 1)? elements of I. Clearly, w € L(G") if and only if (w,S) is in
I. We compute I as follows.

Initially, for each production A — y in P’ such that y is a substring of w, the algorithm
puts the pair (y, A) in I. Then the following process is iterated until the first iteration in
which no new elements are added to I.

For each production A — a in P’ that contains m > 1 occurrences of non-terminals,
and for every m-tuple

p={(v1,41),- .-, (ym, Am))

of elements of I such that p is compatible with a, if y = p[a] is a substring of w, then put
the pair (y, A) in Q if it is not already there.

We omit the simple inductive proof that this procedure computes I.

A modification of this procedure records information for a parse-DAG. The nodes of
the parse-DAG will be elements of L and I. For each element (y, A) added to I during the
initialization, add an edge from (y, A) € I to y € L. Suppose (y, A) is added to I because
the algorithm finds the production

A — 20A1Z1 - AmZm

and the m-tuple of elements
((yh Al)’ ey (ym’ Am))




of I such that
Y=2ToY1Z1" " YmIm

is a substring of w. Then for the element (y, A) the algorithm adds an ordered list of 2m+ 1
edges from (y, A) to the following elements of L and I:

Zo, (yI)Al)’ Ti,..., (ym, Am)y Zm.

(The edges to those z; = A may be omitted.)

At the end of the procedure, if (w,S) is in I, a parse-DAG is constructed as follows.
Discard from LU all elements not reachable from (w, S) by a directed path of edges. Then
the label of each node y in L is just y, and the label of each node (y, A) in I is A. The root
node is (w,S). The yield of the internal node (y, A) in the resulting parse-DAG is y.

Lemma 3 There is a non-decreasing polynomial py(z,y) such that the time used by the
‘parsing algorithm on inputs G' and w is bounded by p (size(G'), |w)).

Every iteration of the loop except the last adds at least one element to I, so there are at
most |N|(|w| + 1)? iterations of the loop. Each iteration of the loop considers at most |P'|
productions, and for each production with m occurrences of non-terminals in its right-hand
side, considers at most all m-tuples of elements of I. Since G' is k-bounded, m < k. Hence
the basic operation of applying a replacement to the right-hand side of a production and
testing whether it is a substring of w is done no more than

[P'|(IN](Jw] +1)%)*

times in all. The time for parsing is bounded by a polynomial in the length of w and the
size of G' (but exponential in k). This proves Lemma 3.

Lemma 4 There is a non-decreasing polynomial ps(z,y) such that the parse-DAG returned
by the parsing algorithm on inputs G' and w is of size bounded by p2(|N|, |w]).

Clearly the parse-DAG has at most | L|+|I| nodes, which is bounded by (|N|+1)(jw|+1)2.
Each node has a label of length bounded by |w|+ 1, and each node has at most 2k + 1 edges
directed out of it. Thus the total size of the resulting parse-DAG is bounded by

(N + 1)(Jjw| + 1)?(Jw| + 2k + 3).

This proves Lemma 4.

3.2 Diagnosis

The diagnosis routine is essentially a special case of Shapiro’s algorithm for diagnosing an
incorrect output [7]. The input to the diagnosis routine is a correct parse-DAG D for G’
such that y is the yield of D, A is the label of the root, and y is not in Lg(A). That is, y is
derivable from A in the grammar G’, but not in the correct gramar G. The output of the
diagnosis routine is a production in P’ that is incorrect for G.




The diagnosis routine considers in turn each child of the root of D. If the child is
labelled with non-terminal B and has yield z, then the diagnosis routine makes a non-
terminal membership query with z and B. If the reply is no, then it calls itself recursively
with the sub-DAG rooted at the child, and returns the resulting production. If the reply is
yes, then it goes on to the next child of the root of D.

If all the queries are answered yes, then the diagnosis routine returns the production
A — a, where a is the concatenation of the labels of the children of the root of D in
left-to-right order.

Lemma 5 When the diagnosis routine is given as tnput a parse-DAG for G' that has yield
y and root label A such that y & Lg(A), it returns a production in P' that is incorrect for
G. : :

Assuming the input conditions are met on the initial call, each recursive call preserves
the input conditions. Also, each recursive call is with a proper sub-DAG of its input DAG,
so the procedure must eventually terminate and return a production.

If the production A — «a is returned, then it is clearly in P’, since the original DAG is
a correct parse-DAG for G' (as is every sub-DAG rooted at an internal node). When the
production is returned, the queries have witnessed that there is a replacement

p= ((y1,A1), ey (ym, Am))

compatible with o such that y = p[a] is not in Lg(A), that is, the production A — «'is
incorrect for G. This proves Lemma 5.

Lemma 6 There is a non-decreasing polynomial p3(z) such that the time required by the
diagnosis routine on input parse-DAG D is bounded by ps(size(D)).

The number of queries made by the diagnosis routine may be k times the depth of the
parse-DAG. It is clear that a straightforward implementation of the diagnosis routine runs
in time polynomial in the size of the input parse-DAG. This proves Lemma 6.

3.3 Candidate productions

The input to the candidate productions routine is a string w such that w is in L(G) but
not in L(G'), and the output is a set C(w) of productions such that at least one element of
C(w) is in P but not in P'.

The algorithm considers in turn every substring y of w. For every m < k, every factor-
ization of y into 2m + 1 substrings,

Y = ZoY1ZT1Y2Z2 " * YmTrm,
and every m + 1-tuple of non-terminals A, A;,...,A,, from N, the production
A— zoAlzlAzzz tee Amzm

is added to C(w).




Lemma 7 Let the candidate productions routine have input w € L(G)— L(G'). Then C(w)
contains some production in P but not in P'.

Since w is in L(G), there is a parse-DAG D (with respect to G) with root node labelled
S and yield w. We show that every production used in D is in C(w).

Consider any sub-DAG D' of D rooted at an internal node with label A and yield y.
Suppose the production used at the root of D' is

A > 20A121A229 - AT,

There is a replacement
p={(y1,41),- -, (Ym> Am))
such that
Y = ToY1Z1Y2Z2 - YmIm.-

Since y is a substring of w and m < k, the production
A— :!:QAlzlAz:L'z s Amzm

will be generated from y using the above factorization and choices of non-terminals.

Thus every production used in D is in C(w). If every production in C(w) N P were in
P', D would be a parse-DAG for the grammar G' witnessing w € L(G'), a contradiction.
Thus, C(w) contains some production in P — P’, which completes the proof of Lemma 7.

Lemma 8 There are non-decreasing polynomials py(z,y) and ps(z,y) such that on input
w the candidate productions routine runs in time bounded by ps(|N|,|w|) and produces an
output set C(w) with at most ps(|N|,|w|) elements. Moreover, every production in C(w)
has a right-hand side of length at most |w|+ k with at most k occurrences of non-terminals.

For each m < k, there are no more than (Jw| + 1)®™ factorizations of the string w into
2m + 1 substrings, and no more than |N|™*! choices of m + 1 non-terminals. Thus, the
total number of productions placed in C(w) is at most

1+ k(jw| + 1) N[5+

Computing these productions takes time bounded by a polynomial in |N| and |w|. The
right-hand side of each production consists of a subsequence of the terminals in w and at
most k non-terminals, for a total length bounded by |w| + k. This proves Lemma 8.

3.4 Correctness and analysis of the learning algorithm

Since P’ is initially empty and is only augmented by productions output by the candidate
productions routine, G' is k-bounded at all times, by Lemma 8. Clearly if the learning
algorithm ever terminates, its output is a grammar G' equivalent to G, which shows the
partial correctness of the learning algorithm.

We bound the number of iterations of the main loop (step 2) as follows.




Lemma 9 There are at most | P| iterations of the main loop with positive counter-ezamples.
If Mp 1s the mazimum length of any positive counter-ezample, then there are at most
|P|ps(|N|, M) iterations of the main loop with negative counter-ezamples.

By Lemma 7, each iteration of the loop with a positive counter-example must add to P’
at least one production in P — P'. This production is correct for G and therefore cannot
be removed from P’, because the only elements removed from P' are incorrect for G , by
Lemma 5. Hence there are at most |P| iterations with a positive counter-example.

Thus there are at most |P| positive counter-examples, say

w1, W2,..., Wy,

where r < |P|. Let M, be the maximum value of |w;| for i = 1,2,...,r.
The total number of productions added to P' is bounded by

[C(wi)l +|C(w2)| + ... +|C(wr)],

which by Lemma 8 is bounded by

ps(IN], lwa]) + ps(IN, [we]) + ... + ps (N, wr]).

Since ps(z,y) is non-decreasing we have a bound of
|Plps(|N], Mp)

on the total number of productions ever added to P'. (This is also a bound on the cardinality
of P'.)
Each iteration of the loop with a negative counter-example removes one production from

P'. Hence this can happen at most as many times as there are productions ever added to
P', which is bounded by
|Plps(|N|, Mp).

This proves Lemma 9.
Thus, in particular, the learning algorithm must terminate after at most

|P| + | Plps(|N|, M)

iterations of the main loop.

Let M, be the maximum length of any negative counter-example, and let M be the
maximum of M, and M,,. M is the maximum length of any counter-example encountered
before termination.

We bound the time used by the learning algorithm as follows.

Lemma 10 The time required for the parsing routine at each iteration of the main loop of
the learning algorithm is bounded by a polynomial in the size of G and the length of the
longest counter-ezample.

10




By Lemma 3 the time required for parsing each counter-example w is bounded by
p1(size(G'), |w|). Clearly |w| < M, but we need to establish a bound on size(G").
We have
size(G') = |T|+ |N|+|P'|+ L,

where L' is the sum of the lengths of the right-hand sides of the productions in P'. As
shown above,

|P'I < [P|(1+ ps(|N], My)).

Each production in P’ has a right-hand side of at most M, + k in length, by Lemma 8.
Hence,
size(G') < |T|+ |N| +|P|(1 + |Plps(|N|, Mp))(1 + M, + k).

So the size of G’ can be bounded by a non-decreasing polynomial in the size of G and the
length of the longest positive counter-example,

size(G') < pg(size(G), M,).
Thus at each iteration the time for parsing a counter-example is bounded by

p1(pe(size(G), M,), M),

which proves Lemma 10.

Lemma 11 The time required by the diagnosis routine in each iteration in which it is called
15 bounded by a polynomial in the size of G and the length of the longest counter-ezample.

By Lemma 6, the time required by the diagnosis routine on input D is bounded by
ps(size(D)). By Lemma 4, the size of the parse-DAG D for a negative counter-example
w is bounded by p3(|N|,|w|). Hence the time required by the diagnosis routine at each
iteration in which it is called is bounded by ps(p;(size(G), M)), proving Lemma 11.

Lemma 12 The time required by the candidate productions routine in each steration in
which it is called is bounded by a polynomial in the size of G and the length of the longest
counter-ezample.

By Lemma 8, the time required by the candidate productions routine with input w (a
positive counter-example) is bounded by p4(|N|, |w|) < p4(size(G), M), proving Lemma 12.
Putting the bounds from these three lemmas together with the bound of

|P| + | Plps(IN], Mp)

on the number of iterations of the main loop of the learning algorithm, we conclude that
the total time used by the learning algorithm is bounded by a polynomial in the size of G
and the length of the longest counter-example, proving Theorem 1.

If full equivalence queries are substituted for equivalence queries in the learning algo-
rithm, it will output a grammar fully equivalent to G, and the same running time bound
applies.

11




4 Comparison with Shapiro’s algorithm

Our algorithm is an (impractical) existence proof; Shapiro’s [7] is intended to be a practical
system. To what extent can we combine the strengths of the two algorithms?

Shapiro’s algorithm learns k-bounded context-free grammars with the following prop-
erty: for each non-terminal A, all the right-hand sides of productions with left-hand side
A begin with distinct terminal symbols. This restriction guarantees that a standard trans-
formation of a context-free grammar into a Prolog program will produce a program that
parses deterministically in polynomial time. The languages generated by such grammars
are deterministic, and therefore a proper subclass of the A-free context-free languages [4].

Shapiro proves a polynomial bound on his algorithm, but the setting is somewhat differ-
ent. His algorithm reads in “facts” from an external source, specifying whether a string is
generated by a non-terminal or not. These facts are in some arbitrary order. His algorithm
reads in a fact, updates the current program until it is consistent with all the known facts,
and then reads in another fact.

Shapiro’s result is that the time before reading the next fact is bounded by a polynomial
in the sum of the lengths of the known facts. For comparison with the setting in this paper,
we may assume that the next fact is generated by an equivalence (or full equivalence) query
with the current hypothesis. However, even in this case, Shapiro’s bound does not translate
into a polynomial bound on the total running time of the algorithm until convergence, since
there is no obvious bound on the number of counter-examples that will be required.

Shapiro’s algorithm incorporates a number of features that would improve our learning
algorithm in practice. One is that the answers to queries are saved, and not re-asked.
Another is that productions found to be incorrect with respect to G are saved, and not
allowed back into P'. Before performing an equivalence query, it is probably useful to check
the current hypothesis against all the previous answers to queries, using a discrepancy to
generate a counter-example. Shapiro has a method of selecting queries for diagnosis that
bounds the number of queries used by the diagnosis routine by a logarithm of the number
of nodes in the input parse-DAG. '

These improvements would all be easy to incorporate into our learning algorithm. How-
ever, a major difference between the two algorithms is that ours adds ALL of the productions
in C(w) to P' in response to a positive counter-example, while Shapiro’s algorithm just adds
one carefully selected production from C(w).

The reason for adding all of C(w) is to guarantee at least one element of P — P' is added
to P', which in turn is the basis of the polynomial bound on the number of iterations of
the main loop of our algorithm. The problem with adding all of C(w) to P' is that many
useless and redundant productions will be added, as well as many incorrect ones that must
be removed using the diagnosis routine.

One possible middle ground is to follow Shapiro’s approach to locate an “uncovered”
pair (y, A), and then to maintain a set of “upper bounds” for the candidate productions for
this pair in P'. (This is a subset of the candidate productions which when added to P’ allows
all the candidate productions to be derived.) This would preserve the bounding argument,
but would be more selective in the choice of productions added to P'. This follows Knobe
and Knobe’s emphasis on trying productions in decreasing order of generality [5].
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5 Remarks

A straightforward dovetailing argument shows that the union of two classes learnable in
polynomial time from a minimally adequate teacher is learnable in polynomial time from
a minimally adequate teacher. The k-bounded simple grammars (Corollary 2) and the
determinisitic one-counter automata (Berman and Roos [3]) define incomparable subclasses
of the context-free languages. The union of the two classes can be learned in polynomial
time from a minimally adequate teacher (who has to answer equivalence queries posed in
either representation.)

To improve parsing it is possible to treat the empty string specially. In the initialization
we make non-terminal membership queries, and place a production A — X in P’ for every
A such that A € Lg(A). A small change to the candidate productions routine excludes
productions that would cause A to be derivable from any other non-terminal. Then we
could get by with parse trees instead of parse-DAGs, and use a more standard approach to

improve parsing time.

As indicated in the preceding section, the primary open problem is to find a more
practical algorithm that still has a provable polynomial bound on its total running time.
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