Abstract. The usual way of computing partial correlations is based on the formation of the
covariance matrix, that amounts to squaring the data matrix, thus inviting a potential loss of
numerical accuracy. This paper recommends the determination of partial correlations from the
data matrix: the QR decomposition of the data matrix is computed and plane rotations are applied
to the resulting upper triangular matrix, which is the Cholesky factor of the covariance matrix.
We show that if rotations are applied to the triangular matrix so as to leave the number of its
zero entries invariant, the sines of the rotation angles are partial correlations. Different ways of
organizing the computations are presented for extracting any set of partial correlations.
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1. Introduction

Classical texts [1] on multivariate statistics suggest the computation of partial correlations by
first forming the empirical covariance matriz —15(A — A)T(A — A), where A is the m x n data
matriz, whose 1th column is associated with random variable A;, and A = #eeTA is the empirical
mean matriz (e is the m X 1 vector of ones). Substantial loss of numerical accuracy is incurred
by squaring the data matrix thus resulting in errors in the computed partial correlations (one can
easily construct examples where a full-rank matrix A— A leads to a numerically indefinite covariance
matrix). This loss of accuracy is inherent in the use of the covariance matrix and independent of
the formulas and recursions employed to compute the partial correlations.

These shortcomings may be avoided with a method working directly on the data matrix and,
in addition, employing orthogonal transformations. Our approach consists of two steps: after the
QR decomposition of the matrix A — A the resulting upper triangular matrix U is transformed to
lower triangular form L via plane rotations. The rotations are executed in a specific order which
exploits the zero structure of the upper triangular matrix, and the values of their sines constitute
the partial correlations between variables A; and A;, for ¢ < j, holding variables A; ;... 41
" fixed.

By effecting the rotations on only a submatrix of U, the partial correlations between A; and
Aj; where variables Ay ... A;_; and A;;1...A;_; are held fixed are efficiently computed, without
having to reorder the columns of either the data matrix A or the upper triangular matrix U. In
general, we will present ways of organizing the computations so as to determine any set of partial

correlations while keeping arbitrary collections of variables fixed.

2. Partial Correlation Coefficients

The column vector of m observed values ay;, 1 < k < m, of a real random variable A; is

denoted by
aig
az;

a; =

Ami
The centered, or zero-mean, data vector is o; = a; — @;, where the barred quantity denotes the
mean vector

a; = e(eTa,-),

1
m

and e is the column vector of m ones.



The empirical correlation coefficient p;; of two random variables A; and A; is defined as the

cosine of the angle 6;; between the centered data vectors oy and «;:

T, .

o o
T . Tn.
\/ o a,,/aja,

The correlation between two variables A; and A; can arise, in part, from the fact that both

pij = cosby; =

A; and A; show a correlation with a third variable A;. The ‘partial correlation between A; and A;
given Aj’ then represents the correlation between A; and A; after the dependence on Ay has been
removed. Formally, the empirical partial correlation coefficient pfj between variables A; and A;
given (conditioned with respect to) variable Ay is defined to be the cosine of the angle 05- between

a? and a;? where

k
o,

= oy — (of ox)(ofar) ok, of = a; — (of on)(of o) tou,

are the respective projections of o; and «; onto the subspace orthogonal to the vector oy (note
that superscripts here denote conditioning rather than powers). Substituting this into the formula

for the cosine . N
(0‘; )Taj

k
pt.j =
\/ (ef)Tof \/ (o) oy

of aj — (e o) (of o)~ (eF o)

y/oFai - (oF ) (e o) (of i)y foT o — (T o) (@f o) (f )

Note that all quantities in the expression for pg‘j are of the form ag‘aj. This means that in the

yields

k _
Pij =

general case of n variables A; with m observed data values each, the partial correlations pf-‘j can be

computed from the elements of the n X n empirical covariance matriz
B=(b;j)=(A-A)T(4A- A),

where A — A is the centered m X n data matrix, and the data matrix A and its mean matrix A are

defined by

1
A=la1 ... au], Azze(eTA)

(the empirical covariance matrix is usually defined as (m — 1)~!B; since partial correlations are
normalized quantities, independent of the scaling by (m—1)~!, we shall use here the more convenient

unscaled expression). Denoting by

bl = bij — birbipbry = (of o — (of o) (off o) 2 (0f o)) = (oF) Tk
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the elements of the Schur complement in B with respect to by [2, 3] one has

In general, the conditioning may occur with respect to more than one variable, for instance,
with respect to A;, Ax and A, or with respect to a sequence Aj...Ag4;. In that case the involved

vectors «; and o are projected onto a subspace orthogonal to the subspace spanned by oy, o;

and a,, or by oy ...ag4, respectively. Denoting by bz!l’m and bfjfk"'l the elements of the respective
Schur complements of

ber  bu bim ber ... brrt

by by bim and : :

bk bmi  bmm bettk  o-v bktikt

in B, the partial correlation between A; and A; given Ag, A; and A, is

k,l,m
b; ;

k,lm —

Sy
1 23

and the partial correlation between A; and A; given Ak, Agi1,...,Ax4i is

phik-+
kik+l _ ij

Pij .
[pkk+l  [rk:k+l
bii + bj]

Our notation automatically incorporates the so-called quotient property for Schur complements

[2], which essentially states that the effect of conditioning with respect to variables belonging to a
set S can be accomplished by first conditioning with respect to variables that belong to a subset of
81 of S followed by conditioning with respect to the remaining variables in S — S;, the complement
of S; in S. The quotient property for Schur complements yields readily recursive formulas for the

fjl’m or pfjfk"'l and these formulas are the ones generally used to compute the partial

computation of p
correlation coefficients [1, 3]. An inconvenience with such formulas, that rely on the computation
of Schur complements in the covariance matrix, is that construction of the covariance matrix itself
implies squaring up the data, A — A, and thus a doubling of the dynamic range and potential loss

of accuracy as the subsequent example shows.

Example. Suppose that the following zero-mean data matrix is given,




where € is non-zero, and that the partial correlation
pls = —-‘Ls
ERVER
is to be determined. The corresponding covariance matrix is
1+ —-14€ 2
B=|-1+¢ 1+¢ 0 ,
2¢ 0 1+ €2

and in exact arithmetic, one has

(—1+€?)?

b§3=2€, b%1=1+€2— 1+€2 ) b§3=1+€2
so that
9 . () {1 e>0
P13 = sign(e) = .
13 -1 e€<0

However, in finite precision floating point arithmetic and with € chosen to be sufficiently small (e-g-
€ is the largest number so that the computed fi(1 + 4¢?) = 1), the computed quantities turn out to
be

1 -1 2
i(By=|-1 1 o0
2 0 1

and

b%3 == 26, b%l = 0, b§3 =1
so that p2; is not a finite number.

The next section introduces a numerical method that achieves much higher accuracy by working
directly on the data matrix A — A.

In order to avoid squaring the data matrix one may try to work with the Cholesky factor of B.
Indeed the n X n upper triangular Cholesky factor U can be obtained without squaring from the
QR factorization of the scaled centered data matrix since, if A — A is decomposed into the product

QU where Q has orthogonal columns,
B=(A-A)T(A-4A)=(A-A)TQQRT(A- A) =UTU.

It is known that the elements of the Cholesky factor can be represented in terms of elements

of Schur complements with respect to the leading principal submatrices of B:
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Lemma 2.1. The non-zero elements of the Cholesky factor U of B are of the form
uj; = (b}{:i—l _1/26};‘_1, j > i
Proof. Let U be an upper triangular matrix with elements @;; = (b};‘—l)‘ll 2 b}}i_l, j > 1. The
(¢,7)th element, 7 > i, of the symmetric matrix UTU is
1

i i

o 1k—1\—1/271:k—1731:k—1\—1/271:k—1 __ 1:k—1771:k—1y—171:k—1
Zukiuk.‘i“Z(bkk ) / by (b /bkj "Zbik (b bkj
= k= k=1

Zb,:, (1.1 Il(bll) b1])+Zblk -1 lk 1) lblk 1_ +Zblk 1 lk 1 lb,];}k—l

=b¢J—(b}]—b;l2(b%2) 1b2] +Zb1k l(blk 1) lblk l—b,J—b}2+Zb1k 1 lk 1\ — blk 1

cen = by — (bglf 1_ pLi- 1(b1z -1 1bi1;i—1) = by,

where the telescoping of the sum is achieved by making use of the quotient property of Schur
complements. Hence UTU = B, and the uniqueness of the Cholesky factor implies U = U.
|

The partial correlation between A; and A; given the intermediate variables A;, ..., A;_; can

be expressed as

p'1]c— (bl' -1 1/2b};i—1(b};i—l)-—1/2 _ uij(b}}i—l)—l/z.

Thus it seems that the partial correlations may be computed as simple functions of the elements
of the Cholesky factor. Yet unfortunately the desired quantity (bl’ 1)-1/2 differs from u;jl =
(IJJIJJ ~1)~1/2. Moreover, it is hard to see how to determine the quantities (b}}‘_l)“l/ ? without the
use of squaring operations.

The next section introduces a numerical method that gets around this difficulty by applying

plane rotations to the columns of the Cholesky factor.

3. New Algorithm

From the previous section it is clear that one must think of more subtle means to employ the
Cholesky factor: our method determines partial correlations as cosines evaluated through inner
products but instead as sines of rotations that zero out components of certain column vectors. The
key idea for the new algorithm is based on the fact that the data vectors are initially represented

by a triangular matrix, the Cholesky factor; and that the partial correlations may be computed by
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Figure 1: Angles in the 2 x 2 Example.

applying plane rotations in a particular order to the columns of the Cholesky factor. To see that
consider a simple 2 X 2 example.

Let

be the upper triangular factor (with positive diagonal elements) in the QR decomposition of a
m X 2 matrix A — A. The (partial) correlation p;3 between A; and A is the cosine of the angle 6;5
between the two columns of U. Because of the triangular structure of U its first column, [u;; O]T,
is a positive multiple of the first canonical vector e; = [1 0]7 while its second column is a linear
combination of e; and the second canonical vector ez = [0 1 ]T.

The columns of the matrix U may be rotated in such a way that the second column becomes

a positive multiple of e; thereby turning the first into a linear combination of e; and ej:
l 11 0
L=0U = .
lyy la

Suppose the angle between e; and ez, denoted by /(ey, e2), is +7/2 then the angle between the two
columns can be defined as 612 = Z(u1,uz). The fact that the first column is a positive multiple of
e1 implies /(e1,uz) = f12. To turn the second column into a positive multiple of ez requires that

all columns of U be rotated by the angle
Z(th,ez) = 1(61,62) - L(el,ug) = 7l'/2 - 012,

see Figure 1. Hence the angle between the two columns of U is preserved under the rotation, and
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the angle of such a rotation

completes 012 to a right angle: ¢ = cos (/2 — 6;2) and
s =sin(7/2 — 012) = cosf12 = p13.

Consequently, the desired (partial) correlation is the sine of the rotation ©.

The above suggests that, in general, certain partial correlations may be computed from the
plane rotations that transform the upper Cholesky factor to the lower Cholesky factor. The tri-
angular zero-structure of U makes it possible to rotate columns in a manner illustrated above and
determine a partial correlation from the sine of a rotation.

A brief look at the 3 x 3 case

U1 U2 Uig
U=1]0 uzx wus;
0 0 wuzs
illustrates the above.
At first, because the second column has only one more non-zero element than the first, the

columns of U can be rotated in the (e, ez)-plane so as to make the second column co-linear with

€2,
c12 —812 07 [uyn w1z wuig * 0 %
s12 c12 O 0 ugp wugs|=1]% * x |,
0 0 1 0 0 uss 0 O wuss

and p12 = s12. Here, ‘co-linear’ is used to mean ‘a positive multiple of’ and * denotes terms that
are non-zero in general.

Next, to achieve conditioning of A; and As with respect to A, the first and third columns
are projected onto the subspace orthogonal to the second column. Due to the triangular structure
of U and the effect of the previous rotation the second column is co-linear to ez, and the subspace
orthogonal to it is just the plane (ey, e3). The partial correlation p25 can then be determined from
that rotation that makes co-linear with ez the projection of the third column onto (e1,e3). Since
this rotation takes place in a subspace orthogonal to the second column it does not affect the second

column, and the zero element introduced by the previous rotation is preserved:

C%s 0 —8%3 % O * 111 0 0
0 1 0 * % % = % % %
sl 0 0 0 wuss x 0 =




and p?; = s%;. Note that another non-zero element is introduced in the first column.

Again, because of the triangular structure of U and the effect of the second rotation the zero-
structure of the second and third columns is the same save for one element, the second column
is co-linear with ez while the third is a linear combination of e; and es. Thus the columns of
the matrix can be rotated to yield p23 by applying a rotation that makes the whole third column

co-linear with e3, and turns the second column into a linear combination of e; and es.

1 0 0 ly 00 lhn 0 O
0 C23 —823 * % % = 121 122 0
0 s23 ca3 * 0 = l31 I3z lss

and p23 = s23.

Theorem 3.1. If the elements in the Cholesky factor U of the covariance matrix B are eliminated

in the order

Tk 1 20 ... n—1 1
* n 2n -3
)
* n(n—1)/2
L * J

that is, proceeding row after row from top to bottom, and within each row from left to right, then the

sine of the rotation that eliminates element (1,7), j > 1, is equal to the partial correlation p::;-H:j -1

Proof. The proof proceeds by induction.
The induction basis comprises the computation of partial correlations between A; and all other

variables. To start with, the matrix U is of the form

ERERERE * ]
* % % *

* % *

* *

! ]

From the 2 X 2 case one can see that elimination of element (1,2) in the upper triangular matrix U
by a rotation in plane (e, ez) provides pj. The second column of the resulting matrix becomes

co-linear to ez while the first column becomes a linear combination of e; and e;. Hence, there is a
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new non-zero element in the first column and a zero has been introduced in the first row:

[ % L I * 7]
L T . *
L *
* *

L *

The 3 x 3 case showed that the correlation p%; between A; and Ag given A, could be computed by
rotating the first and third column and thereby introducing a non-zero element in position (3,1)

and a zero in position (1,3):

[ % * % ]
x % % % *
* % * *

* cee *

| *

Continuing this argument, the partial correlation pi;.j ~! between A; and Aj, given Az, ..., Aj_1is
computed by peforming a rotation in plane (e;, ¢;) thereby creating a zero element in position (1, 7).
Thus, once all correlations involving A; have been computed the first column of the matrix has

totally filled in, and the first row is zero except for the first element:

% -
LI I . *
* * ¥ *
* * *

L & *

Assume that the partial correlations p’,:;"”"l have already been computed for £k < 7 and
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k <1 < j. The corresponding matrix is of the form

Lo

* Vi 2% *

* Vit+1,i Vit1i+1 --- Vig15-1 Vig1 *

. . - . . . ’
* vj_l,{ vj_lxj_l vj_lrj *

* V5.d *

* U0 J

where Lo is lower triangular and Uj is upper triangular.
By induction hypothesis the entire lower triangular part of the leading 7 — 1 columns is non-
zero, and the ith column has j — 2 non-zeros in its lower triangular part due to the computation of
i+1:5—-2 i41:5—1

Piji+1, .-+, P;;_1 - In order to compute the next correlation Pij

the corresponding columns
Vi, ..., v; of the current matrix must be projected onto a subspace orthogonal to the subspace
spanned by A;i;, ..., Aj—1. Due to the initial ‘nesting’ of the column subspaces (i.e. the original
upper triangular structure of U) the trailing components 7, ..., n of v;yy, ..., v;j_1 are zero; and
due to the rotations performed in order to retrieve previous partial correlations (i.e. the appearing
lower triangular structure of L) the leading components 1, ..., ¢ of viyq, ..., vj—1 are zero.
Hence the subspace spanned by A;11, ..., A;j- is the space spanned by €;y1, ..., €j—1, and the
space orthogonal to it is the space spanned by e, ..., €, €;, ..., e,. Similarly, components
1, ...,1—-1,7, ..., nof v; and components 1, ..., ¢ —1, 5+1, ..., n of v; are zero; and the
projections of v; and v; onto ey, ..., €, €, ..., e, are respectively co-linear to e; and a linear

combination of e; and e;. Thus, p::;'hj ~1 is obtained by applying the rotation in plane (e;, ¢;) that

makes the projection of v; co-linear with e;; p::;."hj ~1 is the sine of that rotation. After the rotation

the matrix has the form

Lo

* vl *

* Vi+1: Vitlg+1 ... Vidl5-1  Viglg *

. . . . .

* Vj-14 Yi-17-1 Yi-1; *

! !
* ., .. %
Yid Y55
* U0 J
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Remark. If the matrix L is not needed about half of the arithmetic operations can be saved by

applying the rotations merely to the trailing principal submatrix of interest.

Returning to the example of the previous section it becomes clear that the new method can

avoid the loss of accuracy associated with the explicit formation of the covariance matrix.

Example. Performing a QR decomposition of the matrix A — A yields 4 x 3 matrix Q with

orthonormal columns and a 3 X 3 upper triangular factor

1+€e —1+¢ 2¢
1
U= —— 0 2|e sign(e)(1 — €2
0 0 0
in exact arithmetic and
1 -1 2¢
i(U) = |0 2|¢|] sign(e)
0 O 0
in finite precison arithmetic with the same choice of ¢ as before. The first rotation with fi(s12) = -1

and fl(ci2) = 2|¢| yields
2le|] 0 sign(e)

(U)y=|-1 1 0
0 O 0
and the second rotation gives c}; = 0 and s%; = sign(e) so that fl(p?;) = sign(e) indicates a linear

dependence between the three columns of A — A as in the true computation.

4. Computation of Arbitrary Partial Correlations

Subject to a certain inital ordering of the random variables Ay, ..., A, our algorithm computes
the partial correlations p::;."lzj ~! between A; and Aj given A1, ..., Aj—1 by completely reducing

the upper triangular matrix U to a lower triangular matrix L.
Other partial correlations may be computed by performing only a partial reduction. For

instance, consider the following 6 x 6 example

U311 U2 U113 U4 U5 Uie ]
U2z U23 U24 UK U2

Ug3 U34 U35 U36

U=
Ugq4 U45  U4gp
Uss Use
L Ug6 -
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The leading three columns of U span the subspace of Ay, A2 and As, and this is equal to the space
spanned by the first three canonical vectors e;, e; and es due to the triangular structure of U. The
space orthogonal to it is the one spanned by e4, €5, eg and is, because of the triangular structure,
equal to that of columns 4 through 6 of U with components 1 to 3 set to zero. This means that
the correlation p}3 between A4 and As, given A;, A3 and As, can be computed by a rotation of U

in plane (e4, €5). The resulting matrix has a new zero in column five and a fill-in in column four:

[U11 U122 %13 U14 Uls  U16 ]
Uz U23 U24 U5 Ug2e
U3z U34 U3 U3G
* *
* * *
L Ugg

The next correlation that can be computed is pi?ﬁ

orthogonal to Ay, A2, Az and As:

with a rotation in plane (e4,e€g), the subspace

[u11 U12 Y13 U14 U35 U6 ]
U22 U3 U4 U5 U2
Ugz Uz4 U35 U3
1
11
* * *
L % %

The last correlation pi3 is determined by completing the transformation of the 3 x 3 trailing

principal submatrix to lower triangular form:

[u11 Y12 U183 U4 UI5  U16 ]
Uzz U23 U4 U5 U6
U3z U34 U35 U3e
Iy
By
- Iy1 3 l:'asJ

In general, the correlation p};a”-"l:’ “lfori>aandi< J < n can be determined be preserving

the leading o rows and columns of U and transforming the trailing principal submatrix of order n—a
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to lower triangular form L, by appropriate plane rotations:

[ *

Similarly, the computation of p

i+1:5—-1
ij

%

*

[ *

*

* J

Mot gy j<n—B+1and1<i < J is accomplished

by transforming U to lower triangular form L (or obtaining directly a QL factorization of A — A)

and then transforming the leading 8 X B principal submatrix of L to upper triangular form Ug:

[ *

*

[ *

L %

*

[ %

L %

*

ij

*

Combining the two above strategies makes it possible to determine p!:a’iﬂzj ~Ln=f+ln

for

a <t <j<n-—pf+1 by transforming the trailing (n — &) X (n — &) principal submatrix of U to
block lower triangular form L, (see the sketch below) and subsequently transforming the leading
(8 — @) x (B — «) triangular submatrix of L, to upper triangular form U, 4:

*

*
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If it is known in advance which partial correlations are to be determined then the columns
of the m x n data matrix may be ordered so as to minimize the number of arithmetic operations
succeeding the computation of the Cholesky factor.

For instance, a lower bound on the number of arithmetic operations in the computation of
p;.gj, where S is a subset of k > 0 numbers in 1 ... n not containing 1 and j, is O(n — k) since
our method requires at least one rotation to compute a partial correlation and the dimension of
the space involved is n — k. This lower bound is attained by ordering the columns so that the
set S represents the leading k columns of the data matrix followed by columns A; and A;. The
correlation pfj can then be determined by one rotation in the plane (eg4+1,ex+2) that, due to the
triangular structure of the Cholesky factor, involves O(n — k) non-zero element pairs.

Not only the ordering of the columns is important but also the sequence in which particular

correlations are computed. Consider the computation of a partial correlation between two variables

S1
ij o

A; and A; with successively more variables fixed: p!, ..., pz.", where S; C ... C Sy and 1, 5 & S;.
It seems that the following order of rotations constitutes the simplest way of determining the above
correlations. It is illustrated by means of a 5 x 5 example for the computation of p12, p3,, p3it, and
p35. At first the columns of the data matrix are ordered so that ¢ and j represent the first two
columns followed by the columns of S, the columns of S; — S, the columns of S5 — S; — Sy, etc. In
the example this amounts to the ‘natural’ ordering A; ... As of the variables. The first correlation
p12 can now be computed with one rotation from the Cholesky factor U. To compute p3, columns
two and three of U are exchanged and a rotation in plane (e, e3) results in the Cholesky factor U’
corresponding to the data matrix with variables in the order Ay, Az, Az, A4, As. Since Ag is

situated between A; and A two rotations suffice for the computation of p”;’z. The effect of these

steps on the matrix is depicted below:

U11 U112 U13 U4 U5 Uil U113 U12 U4 U1s U1l U1 U122 Y14 U5
U2 U23 U24 U2 U2z U2z U4 U2 u’zz u'zg u’24 u'zs
uzz uz4 uss | — u33 uz4 ugs | — ubs Uy, uhs
Ugq Ugp Ugq U45 Ugq Ugs
i Uss | L Us5 | Uss |
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E * * % ] [ * % ]
* % % * * * % k% *
- ugg ugy ugs | — | * * % *
Ugqg U4gs Ugq4 U4
L Us5 | A Us5 |

Similarly, exchanging columns three and four of U’', performing a rotation in plane (es, e4) to get
the Cholesky factor U" of the data matrix corresponding to the ordering A;, As, A4, Az, As, and
performing three more rotations on U" results in the extraction of p3it. In general, if the sets S;
differ by more than one index, more columns of the Cholesky factor must be exchanged to ensure
that all fixed variables are situated between A; and A;.

As for arbitrary sequences of partial correlations, the determination of the column ordering of
the data matrix as well as the computation sequence of the partial correlations so as to minimize
the number of arithmetic operations seems to be an NP-complete problem. The use of heuristics,
such as the following greedy approach, might leadvto acceptable operation counts: the random
variables are ordered so that as many partial correlations as possible can be determined from the
resulting Cholesky factor. Repeatedly, the columns of the Cholesky factor are then re-ordered
according to the same strategy, the matrix returned to upper triangular form, and appropriate

rotations performed until all correlations have been computed.

5. An Open Problem

Adding a row aT to the m x n data matrix A results in a rank-two update to the Cholesky
factor U of A — A. Suppose the QR-factorization of A — A, A — A = QU where Q is m x n with
orthogonal columns is available. At first the rank-one n X n matrix QTe(LeT A — L5 (eT A +aT)),
which can be computed in O(mn) operations, is added to U and then the row a — 15 (e A+aT)
is appended as the (n + 1)st row. The so augmented Cholesky factor can be reverted to upper
triangular form U’ by means of rotations in O(n?) operations. The quantities of interest, the partial
correlations of the updated matrix, can be computed from U’. However, instead of starting all over
from U’, a more effective approach could be to use the augmented Cholesky factor as starting point

in order to ‘update’ the partial correlations computed from U. A similar problem arises after the

deletion of a row from the data matrix.
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