YALE UNIVERSITY
Department of Computer Science

AN OPTIMAL LOWER BOUND ON THE NUMBER
OF VARIABLES FOR GRAPH IDENTIFICATION.

Jin-Yi Cai and Neil Immerman
YALEU/DCS/TR-626
May 1988
Revised October 1988

An Optimal Lower Bound on the Number of Variables
for Graph Identification

Neil Immerman*and Jin-yi Cait

Computer Science Dept.
Yale University
New Haven, CT 06520

Abstract

In this paper we show that Q[n] variables are needed for First-Order logic with
counting to distinguish a sequence of pairs of graphs G,, and H,. These graphs have n
vertices each, have color class size 4, and admit a linear time canonization algorithm.
This counterexample disposes of several conjectures concerning the sufficiency of first-
order logic with counting and v variables, or equivalently the stable colorings of (v —
1)-tuples of vertices for identifying simple classes of graphs. Our proof shows that
the number of variables needed to identify a class of graphs in first-order logic with
counting is almost exactly determined by the size of separators for these graphs. We
thus determine tight lower bounds on the number of variables needed to identify various
classes of graphs in first-order logic with or without counting.

1 Introduction

In this paper we show that Q[n] variables are needed for First-Order logic with counting to
distinguish a sequence of pairs of graphs G, and H,. These graphs have n vertices each,
have color class size 4, and admit a linear time canonization algorithm. This contrasts
sharply with results in [13] where it is shown that two variables suffice to identify all trees
and almost all graphs, and that three variables suffice even without counting to identify all
graphs of color class size 3 or less.

Our result disposes of several conjectures concerning the sufficiency of first-order logic
with counting and v variables, or equivalently the stable colorings of (v—1)-tuples of vertices

*Research supported by NSF grants DCR-8603346 and CCR-8806308.
tResearch supported by NSF grant CCR-8709818.

for identifying simple classes of graphs. (We note that Fiirer has independently proved a
similar counter-example concerning stable colorings [5].) The linear lower bound allows us
to precisely determine how many variables are needed to identify many classes of graphs in
first-order logic, with or without counting.

In the next section we provide some background material and we precisely state our
results. In Section 3 we prove the linear lower bound. Section 4 describes some corollaries
and extensions of this work.

2 Background

In [8,9,10,11] one of us has pursued an alternate view of complexity theory in which the com-
plexity of a problem is characterized in terms of the complexity of the simplest first-order
sentences expressing the problem. For example, it is shown in [8] that the polynomial-time
properties are exactly the properties expressible by first-order sentences iterated polynomi-
ally many times:

Fact 2.1 [8]
P = |J Fo(g)[n¥
k=1

The notation FO(<)[n*] denotes the set of properties describable by a very uniform
sequence of sentences {¢n} such that each sentence pn has length O[n*] and has a bounded
number of variables independent of n.! The symbol < is included to emphasize the presence
of a total ordering on the universe of the input structures. In [9] and in [16] it is also shown
that this uniform sequence of formulas can be represented by a least fixed point operator
(LFP) applied to a single formula. Thus,

P = FO(L)+LFP = G FO(L)[n"].
k=1

Fact 2.1 gives a natural language expressing exactly the polynomial-time properties of
ordered graphs. Let a graph property be an order independent property of ordered graphs.
One can ask the question,

Question 2.2 Is there a natural language for the polynomial-time graph properties?

Since the notion of “natural” is not well defined, some readers may prefer the more
precise question:

'In [8] the notation Var&Sz[O[1], n*] instead of FO[n*] was used.

Question 2.3 Is there a recursively enumerable listing of a set of Turing machines that
accept ezactly all the polynomial-time graph properties?

We remark that should it be the case that graph canonization (i.e. given a graph return
a canonical form such that two graphs are isomorphic iff their canonical forms are equal)
is in polynomial time, then the answer to Question 2.3 is, “Yes.” Thus a negative answer
would imply that P is not equal to NP.

Previous to this paper, the only polynomial-time graph properties known not to be
expressible in FO+ LFP (without ordering) were “counting problems”. For example, that a
graph has an even number of edges is not expressible in FO+LFP. In [11] the appropriately
defined class “FO + LFP + counting” was proposed as an answer to Question 2.2. We show
here that this language fails badly on certain linear time properties of graphs.

In [13] and [12] the exact number of variables needed to identify various classes of trees
with and without counting, respectively, is determined. (Without counting this number
increases linearly with the arity of the trees; with counting two variables suffice.) The
question of how many variables are needed to identify various classes of graphs is interesting
in its own right, and also has applications to temporal logic. We will show that the number
of variables is determined by the separator size of the graphs.

In the remainder of this section we explain some of the logical background we need,
including a description of the pebble game used to prove the lower bound. All the relevant
background material that we only sketch here may be found in [13].

2.1 First-Order Logic

For our purposes, a graph will be defined as a finite first-order structure, G = (V,E). V is
the universe, (the vertices); and E is a binary relation on V, (the edges).

The first-order language of graph theory is built up in the usual way from the variables,
z1,%2,..., the relations symbols, £ and =, the logical connectives, A,V,—,—, and the
quantifiers, V and 3. The quantifiers range over the vertices of the graph in question. For
example consider the following first-order sentence:

p =VaVy[E(z,y) = E(y,z) Az #y]

@ says that G is undirected and loop free. We will only consider graphs that satisfy o, in
symbols: G = ¢.

It is useful to consider a slightly more general set of structures. The first-order language
of colored graphs consists of the addition of a countable set of unary relations {C;,Cs,...}
to the first-order language of graphs.? Define a colored graph to be a graph that interprets

2Coloring relations are a clean tool for restricting the automorphisms of graphs. However, all the coloring
relations in this paper could be replaced by simple gadgets in the graphs, without changing any of the results.

these new unary relations so that all but finitely many of the predicates are false at each
vertex. These unary relations may be thought of as colorings of the vertices.

Definition 2.4 For a given language £ we say that the graphs G and H are L-equivalent
(G =¢ H) iff for all sentences p € L,

GEp & HEop.

We say that £ identifies the graph G iff for all graphs H, if G =, H then G and H are
isomorphic. L identifies a set of graphs S if it identifies every element of S.

Of course the First-Order Language of Colored Graphs identifies all colored graphs.
From a computational viewpoint it is interesting to consider weaker languages admitting
much faster equivalence testing algorithms.

2.2 The Languages £; and C;

Define L; to be the set of first-order formulas, o, such that the quantified variables in ¢ are
a subset of z1,29,...,zr. Note that variables in first-order formulas are similar to variables
in programs: they can be reused (i.e. requantified).

Define a color class to be the set of vertices which satisfy a particular set of color
relations. The color class size of a graph is the cardinality of its largest color class. In [13]
it is shown that L3 identifies the set of graphs of color class size 3.

As noted above, the languages £ are too weak to count, or even to express the parity
of the number of edges. It is thus natural to strengthen these languages by adding counting
quantifiers to the languages L, thus obtaining the new languages Ci. For each positive
integer, i, we include the quantifier, (3i z). The meaning of “(317 z1)p(z1)”, for example,
is that there exist at least 17 vertices such that .

Note that every sentence in Cj is equivalent to an ordinary first-order sentence with
perhaps many more variables and quantifiers. In [13] it is shown that testing Cj equivalence
corresponds to the stable coloring of k—1-tuples of vertices. It thus follows that the language
C2 identifies all trees and almost all graphs. In [13], TIME[n* log n] algorithms are presented
for testing Ly or C equivalence of graphs on n vertices.

2.3 Pebbling Games

We next describe two pebbling games that are equivalent to testing £; and C; equivalence,
respectively. These games are variants of the games of Ehrenfeucht and Fraisse, [3,4]. Our
lower bounds could be proved by induction on the complexity of the sentences in question;
but, we find that the games offer more intuitive arguments.

Let G and H be two graphs, and let k£ be a natural number. Define the £; game on G
and H as follows. There are two players, and there are k pairs of pebbles, g1, h1,..., gk, hk.
On each move, Player I picks up any of the pebbles and he places it on a vertex of one of
the graphs. (Say he picks up g;. He must then place it on a vertex from G.3) Player II
then picks up the corresponding pebble, (If Player I chose g; then she must choose k;), and
~ places it on a vertex of the appropriate graph, (H in this case).

Let p;(r) be the vertex on which pebble p; is sitting just after move r. Then we say
Player I wins the game at move r if the map that takes g;(r) to hi(r),7=1,...,k, is not an
isomorphism of the induced k vertex subgraphs. Note that if the graphs are colored then
an isomorphism must preserve color as well as edges. Thus Player II has a winning strategy
for the £ game just if she can always find matching points to preserve the isomorphism.
Player I is trying to point out a difference between the two graphs and Player II is trying
to keep them looking the same. The relevant theorem concerning the relationship between
this game and the matter at hand is:

Fact 2.5 [8] Player II has a winning strategy for the L game on G,H if and only if
G= Lk H.

A modification of the £ game provides a combinatorial tool for analyzing the expressive
power of Cx. Given a pair of graphs define the C; game on G and H as follows: Just like
the £ game we have two players and k pairs of pebbles. The difference is that each move
now has two steps.

1. Player I picks up a pebble (say g;). He then chooses a set, A, of vertices from one of
the graphs, (in this case G). Now Player II answers with a set, B, of vertices from
the other graph. B must have the same cardinality as A.

2. Player I places h; on some vertex b € B. Player II answers by placing g; on some
a€A. ,

The definition for winning is as before. What is going on in the two step move is that
Player I asserts that there exist |A| vertices in G with a certain property. Player II answers
with the same number of such vertices in H. Player I challenges one of the vertices in B
and Player II replies with an equivalent vertex from A. This game captures expressibility
in Cg:

Fact 2.6 [18] Player II has a winning strategy for the Cr game on G, H if and only if
G =c, H.

3To make the play of the games easier to follow we will use masculine pronouns for Player I and feminine
pronouns for Player II.

3 Construction

We construct our counterexample gréphs by starting with low degree graphs having only

linear size separators. We replace each vertex v of degree k in such a graph by the graph
Xk, defined as follows: X = (Vi, Ei), where

Vi = ArUBrUMwhere Ap={a; | 1<i<k}, Be={bj | 1<i<k}
and M = {mg | S C {1,...,k},|S| is even}
E, = {(ms,a,-) | iGS}] {(ms,b;) | i¢5}

Thus X} consists of a set of 2¥~1 vertices in the middle each connected to one vertex
from each of the pairs {a;,b;}, 1 < ¢ < k. Furthermore, each of the middle vertices is
connected to an even number of a;’s. (We will assume that the middle vertices (M) of
X have a different color, say magenta, from the others (Ag U Bg). Furthermore, the pairs
a; and b; should be able to recognize their mates. If necessary, add vertices ¢; colored
chartreuse, with edges to a; and b;.) The following lemma describes the relevant property
of the graph Xj. The proof is immediate.

Lemma 3.1 Suppose that we color the vertices a; and b; of graph X with the color 3.

(Thus all automorphisms of Xy must fiz the sets {a1,b1},..., {ak,br}.) Then there are
ezactly 2F=1 automorphisms of Xi. Each is determined by mterchanymg a; and b; for each
i in some subset S of {1,...,n} of even cardinality.

Let G be a finite, connected, undirected graph such that every vertex of G has degree at
least two. Define the graph X(G) (“X of G”) as follows. For each vertex v of G, we replace
v by a copy of Xk, call it X(v), where k is the degree of v. To each edge (v,w) of v we
associate one of the pairs {a;,b;} from X(v), call this pair a(v,w) and b(v,w). Finally, we
~ connect the a vertices and the b vertices at each end of each edge, that is we draw the edges
(a(v,v),a(v,u)) and (b(w,v),b(v,u)). If G is a colored graph, then each vertex in X(v)
should inherit the color of v. Next, define the graph X(G) (“X twist of G”) as follows:
In the above construction of X(G) arbitrarily choose one edge (v,w) and twist it, that is
reverse the connections, drawing edges (a(u,v),b(v,u)) and (b(u,v),a(v,u)). In the next

lemma we show some relevant properties of X(G) and X(G), including the fact that X(G)
is well defined.

Lemma 3.2 Let G be any finite, connected graph such that every vertez of G has degree at
least two. Let X(G) and X(G) be as above. Let X(G) be constructed like X (G), but with
ezactly t of its edges twisted. Then X(G) is isomorphic to X(G) iff t is even and X (G) s
isomorphic to X(G) iff t is odd.

Proof First observe the following fact about X X(G). Let v be any vertex of G, and let
(z,v), (y,v) be any two edges incident at v. If in X(G) we twist both (z,v) and (y,v), then
the resulting graph is isomorphic to X(G). (This is immediate from Lemma 3.1.)

Now suppose that the number of twists in ¢ is greater than or equal to two. The above
observation lets us move the twists towards each other until they overlap and cancel each
other out. Thus if ¢ is even then X(G) is isomorphic to X (@), otherwise it is isomorphic to
x(@).

It remains to show that X (@) is not isomorphic to X(G) Assume for the sake of a
contradiction that ¢ is an isomorphism from X(G) to X (G). Consider the action of on
any pair {a(v,w),b(v,w)} € X(v), for (v, w) an edge of G. Because of the colorings in
the definition of X, ¢ must map the pair {a(v,w),b(v,w)} to some {a(v',w'),b(+',w")}
in X(G), and thus ¢ also maps {a(w, v),b(w,v)} to {a(w,v'),b(w',v')} Define ®p to be
the sum mod 2 over all such pairs in X(G) of the number of times ¢ maps an a to a b.
Clearly if we consider the two pairs corresponding to every edge (z,y) in G, the number of
such switches is either zero or two, except for the unique edge chosen in the construction
of X(G), when the number is one. Hence @y is one mod 2. Now let’s consider the mod
2 sum in another way, namely in terms of each copy of Xj in X(G). By Lemma 3.1, it is
immediate that @y is zero mod 2. This contradiction proves the lemma. |

A separator of a graph G = (V, E) is a subset S C V such that the induced subgraph
on V — S has no connected component with more than |V'|/2 vertices. We now prove our
main theorem:

Theorem 3.3 Let T be a graph such that every separator of T has at least s + 1 vertices.
Then

X(T) =¢, X(T) .

Proof By Fact 2.6, it suffices to give a winning strategy for Player II in the s pebble game
on X(T) and X(T). We know by Lemma 3.2 that if we add a twist to any edge of X(T),
then the resulting graph is isomorphic to X (T). After the k*® move of the game, let Ry
be the largest connected component in T — P; where Pj is the set of vertices v € T such
that just after the k*® move there is a pebble on a vertex of X(v) in X(T). Since T has
no s separator, we know that Rj contains over half the vertices of T'. Player II’s winning
strategy will be to maintain the following property:

(*¥) For each vertex v € Ry, let X(T) be X(T) with an edge adjacent to v twisted. Then
there exists an isomorphism aj, from X?(T) to X(T'), such that for all i < s, ok,
maps the vertex under pebble 7 in X(T) to the vertex under pebble ¢ in X (7).

Clearly if Player II can maintain (), then the map from the pebbled points in X(T) to
the corresponding pebbled points in X (T) is a partial isomorphism, and she wins. We show

by induction on k, that Player II can maintain (*). First let us make a remark about Player
I’s moves. As is shown in [13], it always suffices for Player I to restrict himself to choosing
a set of monochromatic points at each move. Furthermore, if Player I chooses a (magenta)
vertex in the middle of an X(u), then all the other vertices in that X(u) are determined.
Therefore, it suffices for Player I to play in a single M(u) per move. Furthermore, since one
point in M(u) determines all of M(u), it suffices for Player I to choose only a single point
at a time. (Thus counting does not help at all in distinguishing X(T') from X(T)!)

Player II’s inductive strategy can now be stated. Assume (*) holds, and suppose that
on move k + 1 Player I picks up pebble ¢ and puts it down on a vertex in M(w). Note that
a new largest component Ry, is determined. Let v be a vertex in Ry N Rg4,. Player II’s
response is to answer Player I's move according to the isomorphism aj . To maintain (%),
let g1,y = Q. Since there is a pebble-free path from v to every other vertex in Rg4;, the
proof of Lemma 3.2 shows us how to define all the other isomorphisms, Ok+1u, ¥ € Reqp.

Corollary 3.4 There exists a sequence of pairs of graphs {Gp,Hp}, n € N admitting a
linear time canonization algorithm and having the following additional properties:

1. G, and Hy, have O[n] vertices and color class size four.
2. There exists a constant k > 0 such that G, =¢ tn Hn-

8. G, i3 not isomorphic to Hy,.

Proof This follows immediately from Theorem 3.3 when we let G, = X(T}) and H, =
X (Tn) where the T},’s are a sequence of degree three graphs admitting only linear separators,
with each vertex of Ty, colored a unique color. These graphs are well known to exist, see for
example [1]. |

4 Corollaries

A long time ago, one of us showed that there is a polynomial-time property of graphs that

requires Q[2V1°8"] quantifiers to express in first-order logic without ordering. That proof
also used the graphs X(D,) and X (Dn), for a certain sequence of degree three graphs
{Dn} [7, Theorem 7]. Now, Corollary 3.4 improves that lower bound to Q[n] variables.*
It also shows graphically that if we exclude the ordering relation from inductive first-order
logic, then the addition of counting does not suffice to express all polynomial-time graph
properties. In particular, we have the following:

*This is a major improvement because n is much bigger than 2V'°8" and because a sentence Witll
g quantifiers can make use of at most ¢ variables, but a sentence with v variables can make use of 2"
quantifiers.

Corollary 4.1 Let T' be the set of all graphs of the form X(G), or X (G), for any G a
graph of degree at most three and color class size one. Then the isomorphism problems
for graphs in T' 13 expressible in first-order logic with ordering and sum mod 2, but it s
not ezpressible by any sequence of first-order sentences from C,(n), where r(n) = o[n]. In
particular, inductive logic with counting, but without ordering does not contain all the graph
properties in the low level complezity class AC® plus Parity gates, cf. [2].

Proof We have already seen the lower bound in Corollary 3.4. We must only show that
we can distinguish X(G) from X(Q) in first-order logic with ordering and sum mod 2. This
is easy. The ordering gives us a way to mark each of the pairs a(u,v) and b(u,v) in the
graphs. Let a(u,v) be the first of the pair, and b(u,v) the second. (Note that since the
vertices in M(u) and M(v) inherit unique colors from u and v, we are given as part of
the input which pair of vertices is a(u,v),b(u,v).) Now, given this assignment of a’s and
b’s, a simple first-order sentence asserts that X(u) is straight (i.e. isomorphic to X3) or
twisted (i.e. each vertex in M(u) is adjacent to an odd number of a’s). Now, the graph is
isomorphic to X(G) iff the sum mod 2 of the number of twisted vertices and edges is 0, and
it’s isomorphic to X(G) iff the sum mod 2 is 1. |

The next result proves a straight forward upper bound that nearly matches our lower
bound on the number of variables needed to identify a class of graphs A as a function of
the separator size of A.

Proposition 4.2 Let A be a set of graphs closed under induced subgraph, such that every
graph G € A has a separator of size at most s(n), where n is the number of vertices of G.
Then A is identified by Cy (n) where

|logn])
V(n)=3+ Z s([n27*%)) .

=0

(In particular, V(n) < s(n)logn, and if s(n) = n®, then V(n) = O[s(n)].)

Proof By induction on n, the number of vertices of G. Given G, we can first say that there
exist vertices Zy,...,Z,(n) such that every connected component of G — {z;|1 < i < s(n)}
has size at most [n/2]|. This is expressible in s(n) + 3 variables. Next we assert how
many connected components of each isomorphism type there are. This requires V'(|n/2])
variables, in addition to the s(n) that we leave on zi,..., Ts(n)- |

5 A Question of Poizat

In [14], Poizat asks whether a complete L, theory that has at least two non-isomorphic
finite models must have infinitely many. This question was answered in the negative by

Thomas [15]. His construction involved graphs with an additional relation of arity n. It is
interesting to note that a slight generalization of our construction above produces complete

Cp and L, theories of graphs with any desired number of non-isomorphic models (Theorem
5.3). .

First note that the graph X} defined above embeds the group (Z/2Z) into any vertex
of degree k. A similar construction can be carried out for any finite abelian group, G. For
simplicity we present the construction just for G = (Z/nZ) and k = 3. Define the directed
graph X" = (V", E") as follows:

Ve = 'M”UO(Z/nZ) x {i},

=1

where M™ = {m € (Z/nZ)? | z3:m,- = 0}
i=1

E* = {(my(mi,i)) | 1<9<3} U {({a,8),(a+1,i)) | a € (Z/nZ),1<i< 3}

Thus X™ consists of a set of n? vertices in the middle, each connected to one vertex from
each of the 3 copies of (Z/nZ). Furthermore, for each middle vertex m, the sum in (Z/nZ)
of the vertices that m is connected to is equal to 0. Of course, X? = X3. The following
generalization of Lemma 3.1 is immediate.

Lemma 5.1 Suppose that we color the vertices (Z/nZ) x {i} of graph X™ with the color 1.
(Thus all automorphisms of X™ must fiz the sets (Z/nZ) x {i}.) Then there are ezactly n?

automorphisms of X™. Each is determined by performing an m; step rotation of (Z/nZ)x {i}
for some m € M™. '

In particular, Let R be any finite, connected, regular graph of degree three and color class
size one. Define the graph X™(R) to be R with each vertex replaced by X™. Furthermore,
for 0 < ¢ < n, let XP(R) be the same graph, with one of the connections twisted by i
positions. The following generalization of Lemma 3.2 and Theorem 3.3 is immediate.

Lemma 5.2 Let R be as above. Let X™(R) be constructed like X"(R), but with the sum
mod n of all its edge twists equal to t. Then X"(R) is isomorphic to X(R) iff i = t.
Furthermore, if every separator of R has at least s+ 1 vertices then

X"(R) =¢, X"(R).
We thus get another solution to Poizat’s problem:

Theorem 5.3 Let n > 2, and s > 4. Let R be a color class one, connected, degree three
graph with no separator of less than or equal to s vertices. Then the L, theory and the C,
theory of X™(R) each admit ezactly n models, all of them finite.

10

Proof This follows from Lemma 5.2. In Ly we can say that every pair of vertices, each
from a different copy of (Z/nZ) in any fixed X™(r), is connected to a unique middle vertex,
which in turn is connected to a unique vertex in the third copy of (Z/nZ). Furthermore,
for any pair of vertices m, m' from the same middle component, the sum of the distances
from m’s neighbors to m'’s neighbors in the three copies of (Z/nZ) is a multiple of n. This
last fact is expressible in Ly because we can name the corresponding neighbors in any of
the copies of (Z/nZ), and then express the distance from one to the other. Thus, the Ly
theory determines that we have one of the X”(R)’s; and by Theorem 5.3 the C, theory can
say no more. | |

6 Conclusions and Open Questions

1. We redirect the reader’s attention to Questions 2.2 and 2.3. We have shown in Corol-
lary 3.4 that first-order logic plus counting and least fixed point, but without ordering,
fails badly. The question,“What besides counting must be added to FO + LFP to get
all polynomial-time graph problems?” is worthy of much study, cf. [13,6].

2. Planer graphs have separators of size O[\/n], and thus by Proposition 4.2 they can
be identified in C ,;. However, Theorem 3.3 does not give a matching lower bound
because even if G is planer, the graph X(G) need not be. We would like to know if
Q[y/n] variables are necessary to identify planer graphs.

Acknowledgements: Thanks to Sandeep Bhatt who improved our results by pointing
out that the essential property of the counterexample graphs we were using was that their
separators are large. Thanks to Alan Woods for pointing out that our construction solves
Poizat’s problem.

References

[1] M. Ajtai, “Recursive Construction for 3-Regular Expanders,” 28th IEEE FOCS Symp.
(1987), 295-304

[2] David Mix Barrington, Neil Immerman, and Howard Straubing, “On Uniformity
Within NC1,” Third Annual Structure in Complezity Theory Symp. (1988).

[3] A. Ehrenfeucht, “An Application of Games to the Completeness Problem for Formal-
ized Theories,” Fund. Math. 49 (1961), 129-141.

[4] R. Fraissé, “Sur les Classifications des Systems de Relations,” Publ. Sci. Univ. Alger 1
(1954).

11

[5] Martin Fiirer, “A Counterexample In Graph Isomorphism Testing — Extended Ab-
stract,” manuscript (October, 1987).

[6] Yuri Gurevich, “Logic and the Challenge of Computer Science,” in Current Trends in
Theoretical Computer Science, ed. Egon Borger, Computer Science Press.

[7] Neil Immerman, “Number of Quantifiers is Better than Number of Tape Cells,” JCSS
22, No. 3, June 1981, 65-72.

[8] Neil Immerman, “Upper and Lower Bounds for First Order Expressibility,” JCSS 25,
No. 1 (1982), 76-98.

[9] Neil Immerman, “Relational Queries Computable in Polynomial Time,” 14th ACM
STOC Symp., (1982), 147-152. Also appeared in revised form in Information and Con-
trol, 68 (1986), 86-104.

[10] Neil Inmerman, “Languages That Capture Complexity Classes,” SIAM J. Comput.
16, No. 4 (1987), 760-778. A preliminary version of this paper appeared in 15th ACM
STOC Symp., (1983) 347-354.

[11] Neil Immerman, “Expressibility as a Complexity Measure: Results and Directions,”
Second Structure in Complezity Theory Conf. (1987), 194-202.

[12] Neil Immerman and Dexter Kozen, “Definablitity with Bounded Number of Bound »
Variables,” Second LICS Symp. (1987).

[13] Neil Immerman and Eric S. Lander, “Describing Graphs: A First-Order Approach
to Graph Canonization,” Tech Report 605, Yale University Department of Computer
Science (1988).

[14] B. Poizat, ” Deux ou trois chose que je sais de Ln” JSL 47 (1982), 641-658.

[15] Simon Thomas, “Theories With Finitely Many Models,” J. Symbolic Logic, 51, No. 2
(1986), 374-376.

[16] M. Vardi, “Complexity of Relational Query Languages,” 14th Symposium on Theory
of Computation, 1982, (137-146).

12

