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Jeffery Westbrook, * Dicky C. K. Yan,

Abstract

The on-line Steiner Tree problem on a general metric space is studied. It is shown
that the greedy on-line algorithm is 0(log(§-s))—competitive, where s is the number of
regular nodes, d the maximum metric distance between any two revealed nodes and
z the optimal off-line cost. Our results tighten the previous known bound [8] and
show that Algorithm SB of Bartal et. al. [6] for the on-line File Allocation problem is
O(loglog N)-competitive on an N-node hypercube or butterfly network. A lower bound
of Q(log(£s5)) is shown to hold.

We further consider the on-line generalized Steiner problem on a general metric
space. We show that a class of lazy and greedy deterministic on-line algorithms are
O(Vk -log k)-competitive and no on-line algorithms is better than Q(log k)-competitive,
where k is the number of distinct nodes that appear in the request sequence.

For the on-line Steiner problem on a directed graph, it is shown that no deterministic
on-line algorithm is better than s-competitive and the greedy on-line algorithm is s-

competitive.

1 Introduction

A well-known optimization problem is to find a Steiner tree of a given set of points. One
is given a metric space M(M, p) with point set M and metric p, and a subset of points,

o C M, called the regular points (or terminals). It is required to find a tree of minimum
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weight that contains all the regular points and any number of other points, where the weight
of an edge (z,y) is p(z,y) and the weight of a tree is the sum of the weights of the edges in
the tree. The above described problem, the Steiner Tree (ST) problem, is NP-hard. Winter
[14] and Maculan [11] gave surveys of research results on the ST problem on different metric
spaces, including the Euclidean space, the rectilinear metric space and the case when M is

a weighted undirected graph.

1.1 The On-line Steiner Tree Problem

In [8] Imase and Waxman studied the on-line Steiner tree (ST) problem on graphs. Let
G(V, E) be a connected graph. An adversary reveals on-line a sequence o of s distinct nodes
to a server. The server must maintain a connected Steiner subgraph S5 of G. Each time
a node v is revealed, the server is required to expand 55, if necessary, so that it remains
connected and contains v. It may do this by adding any nodes and edges to §S. Once
an edge or node is added to S5, the server cannot subsequently remove it. The cost of
a Steiner subgraph is the sum of the weights of the edges in the subgraph. The goal of
the on-line server is to minimize the cost of the final S5 obtained, after all nodes in o are

revealed.

Given G and a request sequence o, let OPT(G,0) be the cost of the optimal Steiner
tree on the set of nodes in 0. In general the on-line server cannot achieve O PT(G,0).
Consider the simple example of a triangle abc with ac = 5, ab = 3, and bc = 3 and the
sequences o1 = (a,c) and o3 = (a,c,b). After seeing only the common prefix (a,c) no
on-line algorithm can determine whether it should connect a to b with the optimal solution
for oy or 0. Let A(G,0) be the cost incurred by the on-line server using (deterministic)
on-line algorithm A for deciding how to include a newly revealed node in the current Steiner
tree, and let R4(G,0) = A(G,0)/OPT(G,0). Then A is said to be a-competitive if, for
any given instance G and request sequence o, R4(G,0) < a holds. Notice that a may be

dependent on G and o.

(Notation: Throughout this paper, o will be used to represent both the requests for the
off-line problem and a request sequence for the on-line problem under consideration and it
has length s. To simplify notation, O PT(G,c) and A(G, o) will be written as O PT (o) and
A(o) respectively. Given p, a metric, we shall use p(H) to represent Y p(a,b) where H is a

graph, a tree or a path and the summation is taken over all the edges (a,b) in H.)

In [8], the motivation for studying the on-line ST problem is for applications in the




routing of multipoint connection in communication networks. In [6], Bartal et. al. studied
the on-line problem of File Allocation on a network of processors, where file copies‘ can be
replicated and discarded in response to read and write requests at the processors. They
devised a randomized on-line algorithm that is (2 +4/3) - c-competitive against an adaptive
on-line adversary, where ¢ is the competitive ratio of any existing on-line algorithm for
on-line Steiner tree, agaﬁnst the same adversary. So good algorithms for the on-line ST

problem lead immediately to good algorithms for the on-line File Allocation problem.

The greedy algorithm, GREEDY, connects a newly revealed node by the least weight

path to a node in the current SS. Imase and Waxman [8] have shown that:

e There exists graphs and request sequences on which no deterministic on-line algorithm
can be better than (1 + 3 |logy(s — 1)])-competitive.

¢ GREEDY is [log, s]-competitive.

In this paper we tighten the analysis of GREEDY and extend the problem to that on
a general metric space. Let OPT(o) be the cost of the off-line optimal Steiner tree for
a given sequence of vertices 0. Let d(o) be the diameter of the vertex set o, i.e., the
maximum over all pairs of vertices {u,v} € o X o of the metric distance p(u,v). Note that
d(0) < OPT(o) and when M is an undirected graph G with the shortest path distance
over G as the metric, d(o) is less than or equal to the diameter of G. We shall show that
GREEDY is O(log(a%l—‘f%;js))-competitive on any metric space.

In addition, we show that for any value of the ratio d(¢)/OPT (o), there exists a graph
on which no on-line algorithm can be better than ( log(o—;i%s))—competitive.

Alon and Azar [1] studied the on-line ST problem on the Euclidean space and showed
that no on-line algorithm can be better than (log s/loglog s)-competitive. The study of
on-line ST in the Euclidean space is important, for example, for facilities planning (e.g.

building of roads) on plane surfaces.

1.2 The Generalized Steiner Problem

The generalized Steiner (GS) problem was formulated by Krarup (see [14]). One is given
an undirected graph G(V, E), with nodes which represent possible communication sites,
and m edges representing links that can be made between the sites. Each edge has a

positive weight. A list ¢ of node pairs is given. They represent pairs of sites for which




a communication link is required. For each such pair of nodes {a,b} € V x V, a positive
integer 74 is given. The problem is to find a minimum cost subgraph S5, so that for
each {a,b} pair there exists at least 74, edge-disjoint paths in SS between nodes a and b.
The subgraph 55 need not be connected, as long as each revealed node pair lies in some
common component. In general, the optimal solution consists of a forest of Steiner trees.
If ro5 = 1 for all the node pairs {a,b} € o and all the node pairs contain a particular
node, the problem is equivalent to the Steiner Tree problem on a graph; so the off-line GS
problem is NP-complete. Agrawal et. al. [2] found an approximation algorithm for the
cases with general 744’s. Their algorithm finds, in O(mlogmlogr,,.,) time, a network of
cost at most (2 — 2/k) [logy(Tmaz + 1)] times that of the optimal network, where k > 2 is

the total number of distinct nodes contained in o, and 7,,,, is the maximum of the 743’s.

We consider the on-line version of the above problem, with r,, = 1, V {a,b} € 0 on a
metric space M(M, p), where point pairs arrive on-line. The on-line algorithm must connect
each pair as it arrives by adding edges as necessary to §S. The pair can be connected directly
or it can be connected via any number of intermediate connected components that have been
previously constructed. Once a link is made, however, it cannot be changed. Again, the goal
is to minimize the final cost to the server. As in on-line ST, the on-line server has no prior
knowledge of 0. Since the on-line ST problem is a special case of the on-line GS problem,
the lower bound of Q(logk) on competitiveness holds for on-line GS on any undirected
graph. We shall show that a class of greedy algorithms are O(v/k log k)-competitive for the
on-line GS problem.

1.3 The Steiner Tree Problem on a Directed Graph

In the directed Steiner tree problem on a directed graph (SPDG), a weighted directed graph
G(V,A) is presented with a set of regular nodes 0 C V and a particular node called the
root node, r. It is required to find a directed ST of minimum weight such that there exists
a path from 7 to each of regular nodes on the tree. The ST problem is a special case of
the SPDG, so SPDG is NP-hard. Reference [11] contains a review of different methods and
formulations for solving the SPDG. This problem was first introduced by Nastansky et. al.
[12] for the case when G is acyclic. This occurs in practical applications. For example, r may
represent a sewer that collects waste from the drainage system. Finding an optimal directed
Steiner tree corresponds to designing an optimal drainage system, where the presence of
gravity implies acyclicity in G. See [12] for a discussion of other applications which include

snow removal in a city and the design of information flow in a hierarchial structure of a
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company. We look at the on-line version of SPDG, which is similar to on-line ST, with the
added requirement that at any time, S5 must contain a directed path from r to each of
the revealed regular nodes. We shall show that no deterministic on-line algorithm is better

than s-competitive, and the greedy on-line algorithm is s-competitive.

Uncapacitated Facility Location Problem

The uncapacitated facility (or plant) location problem (UFLP) is a much studied and im-
portant problem in operations research. It concerns the location of facilities at p possible
sites 41, - -,1, to serve g clients jy,---, j;. Having a facility at location ¢ will incur a fixed
cost of f; while using facility < to serve client j will incur a cost of ¢;;. The problem is to
decide how to choose the sites to place the plants and to assign the clients to the plants
to minimize the overall costs. Each plant can serve as many clients as it is needed. This

optimization problem is NP-hard.

Facility location problems have received much attention because of its wide applications
in areas such as financial planning, network planning, and machine schedule etc. (See

Krarup and Pruzan [9] for a detailed survey and Wong [16] for an annotated bibliography.)

In [15], Wong showed how to formulate UFLP as an SPDG. Consider the on-line version
of UFLP where J = {j1,-+,j,} are potential clients and a sequence o of s clients in J
appear. Each time a client v € J appears, it needs to be served by a facility. The on-line
server has to decide which facility to assign to v, without any knowledge of the unrevealed
part of o. The building of plants and their assignment to clients are irreversible. Using
Wong’s formulation, we see that on-line UFLP is equivalent to on-line SPDG on a special
type of directed graphs and it will be shown that no deterministic on-line algorithm is better

than s-competitive for on-line UFLP.

This paper is organized as follows: in section 2, we shall restate the on-line ST problem
and give our proof for the new results; in section 3, we shall discuss the on-line minimum
spanning tree (MST) problem; section 4 gives the lower bound on the competitiveness of
on-line algorithms for the on-line ST and MST problems; section 5 discusses the implication
of our results on the on-line File Allocation problem; in section 6 we shall show that a class
of greedy algorithms are O(\/E log k)-competitive for on-line GS; in section 7 we shall show
that no algorithm is better than s-competitive for the on-line SPDG and UFLP problems.




2 On-Line ST Problem on a General Metric Space

Given a metric space M(M, p) with point set M, metric p and an initial point v; € M, the
adversary is going to reveal a sequence, o = (vy,--+,vs), called the regular points, in M.
Each time a point v; (¢ > 2) is revealed, the on-line server is required to extend the on-line
Steiner subgraph (.5.5), if necessary, so that that the new 5.5 will contain v;. The server is

allowed to include Steiner points, points that are not in o, in S5 and will be charged a cost
of p(SS) after o has been revealed.

We consider the performance of the following class, C, of on-line algorithms to which
GREEDY belongs:

When node 2 < ¢ < s is revealed, any on-line algorithm from C will not incur a

cost greater than A; = min{p(v;,v;)|]1 < j < ¢}

Another on-line algorithm that belongs to C is one that connects v; to the nearest previously
revealed node. Let C(o) = Yi_, A;; any algorithm from C will not incur a cost greater
than C(o). We shall use T’ to denote the optimal Steiner tree and z = p(T) = OPT(o)
the optimal cost. It follows from Theorem 2 that any algorithm in C is 0(log(ﬂ2ﬂs))—

competitive,

We restate the proof of Imase and Waxman for the convenience in proving our other

results.
Theorem 1 For all instances M(M, p) and o, C(0) < z-log,s, V s > 2.
Proof: We define trees 7; (¢ = 1,-- -, s), as follows:

o Initially, T is defined to be T, with root v, and other trees are not defined.

e When node v; (1 > 2) is revealed, it is contained in exactly one of T, - - -, T;_1. Suppose
it is contained in T} (1 < j < 7). We find the edge e that contains the mid-point of the
unique path P on tree T} that runs from its root v; to v;. If the mid-point happens to
fall on a node, we choose e to be one of the two edges incident to the node arbitrarily.
We remove e from T; and two trees are formed. The one containing v; (v;) will be
called T; (T;) with v; (v;) as its root.

At any time, after 7 nodes have been revealed, we have i trees T3, - - -, T}, with roots vy, - - -, v;,

respectively. The root is the only revealed node in a tree.




Given any tree 7', with s regular nodes, p(T') = z and only its root revealed, let J(s, 2)
be the maximum possible value of C(o) over all sequences, o, of revealing the nodes. Define
J(1,2) = 0 for all 2. We shall show by induction on s that J(s,2) < z-log, s. J(2,2) = 2
for any o. It can be easily shown that J(3,2) < 3-2/2 < z-log, 3. Assume the claim holds
for s =2,---,(k — 1), where (k — 1) > 3. We show that it holds for s = k.

When the next node is revealed, T is split into two trees, say T, and T, with weights
p(Ty) = 2 < y = p(Ty), and t and (k — t) regular nodes respectively. Let w be the weight
of the edge (e) removed. So z=w+ 2z +y and z < (2 — w)/2.

When node v; (¢ > 2) is revealed, we have A; < p(v;,v;) < p(P). The last inequality
follows from the triangular inequality. It can be shown that p(P) < 2-(w + ) and hence,

J(k,z) < J(t,2)+ J(k—t,y)+2: (w+2)

Using the induction hypothesis, it can be shown that J(k,2) < z-log, k holds and hence
the theorem. O

We now use the above analysis to prove our main theorem. We abbreviate
d(o) = max{p(v;, vj)|vi, v; are distinct nodes in o}

by d.

Given T and o, the sequence of nodes to be revealed, we can construct the binary tree
T(T,o0) =T to represent the recursive decomposition of T into {73, - --,Ts}. The recursion

tree 7 has the following characteristics:

1. It is a full binary tree where each node has either 2 children or none.

2. Each node in 7 corresponds to a subtree T;, with root v;.

A node ¢ in 7 is called heavy if the tree it represents, T3, has p(T;) > d, otherwise it is
called light. Let 73, be the subtree of 7 consisting only of heavy nodes. A leaf of 73 is a

heavy node of 7 with two light children or no children. An internal node of 7; may have
one heavy child and one light child.

Lemma 1 There are no more than (|2/d| — 1) heavy nodes with two heavy children.

Proof: Let £ be the number of heavy leaves and let p be the depth of 7. Each of the trees
represented by the heavy leafs in 7 are of weight at least d and they are all disjoint. Hence




¢ < |z/d]. Let n; denote the number of heavy nodes at depth ¢ and let I; the number of
heavy leaves at depth less than i. (The top of the tree 7}, is at level 0 and the bottom of it
is at level p). Consider the sum m; = n; + ;. We have mg = 1, mq = £ and m; < m;4, for
all 0 < ¢ < p—1. Let h; be the number of nodes at level i with two heavy children. Then

m; = m;y1 — h;. We have

p—1 p—1
S = Yom -
=0 1=0

= Mmg— Mg

Thus the number of heavy nodes with two children is equal to £ —1. O
Theorem 2 C(o) < z-(3 + max{log, e, log, ﬁ})

Proof: The weight of the on-line tree is given by summing up the costs associated with
each node in 7. By Lemma 1 there are not more than [(z/d) — 1] nodes with two heavy
children. Each of them has an associated cost at most d since in the tree represented by a
heavy node, no two nodes are more than d apart. Hence the total cost from these nodes is

not more than z.

Consider the set {z1,z3,...,zr} of light nodes with heavy parents. Each z; represents
a subtree T; of T of weight p(T;) < d. The subtrees are mutually disjoint. Each tree is
charged at most [2 - p(T;) + 2 - p(e;)] for the split that created it, where e; is the edge
associated with the splitting up of its parent tree. (It is the cost associated with the light
node’s heavy parent, and corresponds to the sum 2 - (z + w) in Theorem 1.) Hence, the
total cost associated with these splits are not more than 2 - Y5, [p(T;) + p(e;)] < 2+ 2.

Let z; = p(T;). By Theorem 1, the cost associated with revealing the s; nodes in the

trees T; is bounded above by:

k
Z* = ma,xz z; - logy s;

=1

k
s.t. Zsi < s
=1

k
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where 2z > 0, 1 < k < s and the 2;’s and s;’s are variables.
Case 1: k < |z/d]
We have Z* < d-YF  log,s; < d -k -log,(s/k). After differentiation, it was found that
if s/e < |z/d], the last expression is maximized at k = s/e, otherwise, it is maximized at
k = |z/d|. In the first case, since k-d < z, Z* < z-log, e; in the latter case, Z* < z-log, Iﬁgj—.
Hence, we have, Z* < z - max{log, e, log, Tﬁﬂ}

Case 2: k> |z/d]
Let s1,---, sk be the s; values of any optimal solution, indexed such that s; > s;41. Since
log, s; > log, sit+1, a solution with

d 1<i<|2/d]

di=4 6 i=|z/d]+1

0 otherwise

where § = z— d - |z/d], is optimal. Hence,

Lz/d]
zZr < d- E logy s; + 6 - logy 827441

=1

IA

d-|z/d]log, ﬁ + 6 -logy(s — )

=1

where z = Z-Lz/ vl s;. The last expression is maximized with z = F/%J[%&/Ld -5 = J-%l - 8,

giving
s d/d
L . —_— . 4
z* < d I_z/djlogzz/d+6 logz(z/ds)
< z-logy—— +6-log, >
S z-log, Z/d Og2d
s
S Z°10g2;'/—3

Hence, Z* < z -log, ;73.

Combining the two cases, the theorem follows. O

3 On-Line Minimum Spanning Tree (MST) Problem

The MST problem is a special case of the Steiner tree problem in which Steiner points are
not allowed. We consider the on-line version of the MST problem, which can be described

in two ways:




o The adversary reveals a sequence of s points in a known metric space M(M, p), with
the first point revealed in advance. Each time a point is revealed, the on-line server
has to connect the point to one of the previously revealed points and he is charged the

metric distance between the two points. One example of M is the Euclidean space.

o The adversary reveals a complete graph with s nodes, with the first node revealed
in advance. Each node v is revealed in turn with the edges connecting it and the
previously revealed nodes; the edge weights follow the triangular inequality. The
server has to connect v to the current on-line spanning subgraph and he is charged
the total weight of the edges used.

Notice that the problem is trivial in a space where the distance measure does not follow the
triangular inequality, for the adversary can reveal a last node at zero distance from all the

other nodes, thus forcing an infinite competitive ratio for any on-line algorithm.

Algorithm GREEDY(MST):“When a new node is revealed, connect it to the

nearest previously revealed node”.

Theorem 3

(1) GREEDY(MST) is an optimal on-line algorithm. .

(2) GREEDY(MST) is (3 + max{log, e,log, L—ijJ})-competitive, where z is the cost of the
optimal MST. In the first version of on-line MST, d is the mazimum metric distance between
pairs of points in o; d represents the mazimum edge weight in the complete graph in the

second version of the problem.

Proof: Let B be any on-line algorithm, deterministic or randomized. By the greediness of
GREEDY(MST), each time a node is revealed, GREEDY(MST) cannot incur a cost more
than the (expected) cost incurred by B. Hence, GREEDY(MST) cannot incur a bigger total
cost than B.

The second claim follows because the proofs we have used for Theorems 1 and 2 can be
used for proving the competitiveness of GREEDY(MST) for on-line MST, by redefining the
variables s and s;’s to be the number of nodes in the corresponding trees (rather than the

number of regular nodes) and z to be the weight of the optimal MST. O
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4 Lower Bounds on Competitiveness

In [8], Imase and Waxman construct a class of graphs and corresponding request sequences,
so that any deterministic on-line algorithm will incur a cost of at least 1 + 3 [logy(s — 1)]
for the on-line ST problem. We assume the reader is familiar with their lower bound proof.

These graphs, G,’s, have the following characteristics
grap g

e Each edge has weight 1/(s — 1), where s = 2" 4 1, for some non-negative integer n.

o The optimal Steiner tree T consists of a chain of (s — 1) edges, running from a node

vg to node v;.
e All the nodes in T are revealed.

e dlo)=2=1.

Corollary 1 For any given z > d(o) > 0, no deterministic on-line algorithm can be better
than (%—{'%— llogz é/sd;(?ﬂj )-competitive for the on-line ST or the on-line MST problem, where

z is the weight of the corresponding optimal tree and d(o) is defined as before.

Proof: We first consider the lower bound for the on-line ST problem. Given any z > d > 0,
letk=[2-z/d|-1landd=2—-k- %. Given any s’ = 2" + 1, for some non-negative integer
n, we construct graph H,, as follows: 4

Construct k copies of G,,’s and scale their edge weights so that the chain of (s’ — 1) edges
described above, running from v to vy, has weight d/2. Construct an extra copy of G, and
scale its edge weights so that the (s’ — 1)-chain from vg to v; has weight é. Identify node

vg of all the copies of G,,’s to be one node.

For each copy of G,, in H,, the request sequence chosen as in [8] is applied. The optimal
Steiner tree consists of (k + 1) chains meeting at node vg and has weight z; we also have

d(c) = d. Our request sequence has length s = (k+1)-s' — k.

It follows from the analysis in [8] that any on-line algorithm will incur a cost of at least
[1+ 2 [logy(s' — 1)]] that of the optimal cost. So no on-line algorithm can be better than
n+1 [logz T%%}TJ ]-competitive and the lower bound follows.

For the on-line MST problem, we construct the distance graph of H, and the request
sequence described above. The same request sequence is used in revealing the cdmplete

graph. It can be shown similarly that the same lower bound holds. O
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5 On-Line File Allocation Problem

The on-line File Allocation problem concerns the distribution of file copies in a network of
processors. Requests arrive at the processors for reading or writing the files. The on-line
server has to decide on-line, whether to discard a second copy of a file or to duplicate a file at
a cost. In [6], Bartal et. al. described Algorithm SB, a (24 /3) - c-competitive randomized
on-line algorithm, against an on-line adaptive adversary, where c is the competitiveness of
a on-line algorithm for on-line ST against the same adversary. It follows from the results of
Imase and Waxman that their algorithm is O(log N )-competitive on a graph with N nodes
if GREEDY is used.

Corollary 2 Algorithm SB(6] is O(loglog N )-competitive when it is applied to any N -node
graph with uniform edges and a diameter of O(log N), and if GREEDY is used as the on-line

Steiner tree algorithm.

Graphs that fall into this category include hypercubes, butterflies, the Benes network, cube-
connected-cycles, pyramids and shuffle-exchange graphs. (See [10, 13] for a discussion of

these networks.) Notice that the above corollary applies to any on-line Steiner tree algorithm

in C.

6 The Generalized Steiner Problem

In the on-line GS problem, a metric space M(M, p) with point set M and metric p is given.
The adversary reveals a sequence of point pairs. Underlined letters will be used to represent
point pairs and we let ¢ = (vy,---,2,). Each time a point pair {a,b} is revealed to the
on-line server, S5 has to be extended, if necessary, so that the resultant 5SS contains a path-
from a to b. As in on-line ST, the on-line server has no prior knowledge of ¢, and points and
edges added to §5 cannot be removed. Since the on-line ST problem is a special case of
the on-line GS problem, the lower bound of (1 + 1 [logy(k — 1)]) on competitiveness holds

for on-line GS on a graph, where k is the number of distinct points that appear in o.

Using results from the performance of greedy algorithms for the on-line ST problem, we
shall show that a class of greedy algorithms are O(v/k log k)-competitive for the on-line GS

problem.

Definition: An on-line algorithm A is called lazy if it satisfies the following property: if

12




when the request point pair {z,y} arrives, points z and y are already connected by some
path in §S, then A will not change SS.

It is natural to select on-line algorithms that are lazy. The following lemma shows that

being lazy cannot hurt.

Lemma 2 Given any deterministic on-line algorithm A, there ezists a deterministic on-line
algorithm A’ that is lazy and A'(0) < A(o) for all o.

Proof: A’ simulates A but at any time includes only those edges used by A that are
necessary to keep the current Steiner sites connected. The Steiner subgraph of A’ is always

a subgraph of that of A and the lemma follows. O

The definition of laziness and the above lemma can be extended similarly to the on-line ST
and on-line SPDG.

In general, the number of request point pairs is s = O(k?) and s > [k/2]. However, for
lazy on-line algorithms, some of the requests may be redundant. Consider the case when
s = k = 3 and points a,b and ¢ appear in 0. Let v; = {a,b}, v, = {b,c}, and v3 = {a,c}.
When w5 is revealed, points a and ¢ are already connected by some path in S and the
presence of the request does not make any difference to any lazy on-line algorithm. Request

pairs can be classed as redundant using the following algorithm.

(1) Let U = {u1,---,ur} be the set of k points that appear in ¢ and let graph
G = (U, ¢).
(2)fori=1,---,sdo

(2.1) Reveal the point pair v; = {u;,w;} and let edge e = (u;, w).
(2.2) if adding edge e to G creates a cycle then
v; is a redundant request
else v, is non-redundant and let G = G + {e}.

It can be easily verified by induction that at any time, points that belong to the same
component in G are connected by some path in 5.5, independent of the on-line algorithm

being used.
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We observe that the number of non-redundant requests is not more than (k — 1), since
each time we add in an edge, which corresponds to a non-redundant request, the number

of components in G decreases by one.

Lemma 3 Given any request sequence o, let s be its length and k the number of distinct
points that appear in o. Let a : X x R—R*t be a non-decreasing function®. If a lazy
on-line algorithm, A, is (s, k)-competitive for any request sequence that consists of only

non-redundant requests, then A is a(k — 1, k)-competitive for any general request sequence.

Proof: Let o be a request sequence that may contain redundant requests. We use the algo-
rithm above to obtain a subsequence of o, called o', that consists of all the non-redundant
requests in 0. Let s’ be its length and k' the number of distinct points in o'. Hence, k' = k
and s’ < k' — 1. We have,

Il

A(o) A(d') < a(s', k') - OPT(0") < a(s', k') - OPT (o)

IA

a(k' = 1,k")-OPT (o) = a(k — 1,k) - OPT(0)
where the last inequality follows from the assumption that a(:,-) is a non-decreasing func-
tion. O

The above lemma allows us, in considering the competitiveness of any lazy on-line algorithm,
assume that o consists of non-redundant requests and has length s < k — 1. We shall show
that a class of lazy on-line algorithms are O(+/slog s)-competitive for any request sequence

and it follows from the above lemma that they are O(vk log k)-competitive.
We define the metric f: {V X V} x {V x V}—R as follows:

Given point pairs v = {a,b} and u = {z,y},

ﬂ(ﬂa .'Q) = min{[p(a, :I:) + p(ba y)]’ [p(a, :l/) + p(b’ :I))]}

One can easily verify that 3 satisfies the triangular inequality and it forms a metric.

Let Cgs be the class of deterministic on-line algorithms that satisfy the following prop-

erties:

1. All algorithms in Cgg are lazy.

IR+ and R are the sets of non-negative real numbers and positive integers respectively.
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2. Let v; = {z,y},

min{p(z, y), mini<j<; B(y;, )} 1<i<s
Algorithms in Cgs incur a cost of not more than A; when point pair v; is revealed
(1<i<s).

The metric B({z,y}, {a,b}) measures the shortest distance in connecting point pair
{z,y} to point pair {a,b} in the original metric p, with = and y connected to different
points. Each time a request {z,y} is revealed, an algorithm in Cgs will not incur a cost
more than the smaller of the cost of directly connecting z and y and that of connecting
{z,y} to the nearest previously revealed point pair, where nearness between point pairs is
as measured by 3. The class Cgs includes the greedy algorithm that connects a point pair
with the smallest possible additional cost. It also includes the point pair greedy algorithm
that connects a revealed point pair either directly or to the nearest previously revealed pair,

whichever is less expensive.

Let C(0) = 9_; A;; the total cost incurred by any algorithm in Cgs is not more than
C(o0), for any o.

Lemma 4 Suppose C(c) < f(k) - OPT (o) for all o such that the optimal off-line solution
is a single Steiner tree, where f(k) is some non-decreasing function of k, then C(o) <

f(k)-OPT(o) for all general request sequences.

Proof: Suppose the optimal off-line solution for o consists of a forest of p Steiner trees,
Ti,-++,Tp. Let 01,---,0, be a partition of o into subsequences such that o; contains all
the requested points in T;. Then we have: C(d) < 3°7_; C(0y), since, for each point pair
revealed as part of request subsequence o4, A; will be greater than if the point pair is
revealed as part of 0. Let k, be the number of points in T, that are contained in o, then

C(0) < 3" F(ke)-OPT(07) < f(k)- 33 OPT(a) = f(k) - OPT(0)

g=1 g=1

6.1 Single Steiner Tree Optimal Off-line Solution

We first look at the case when the optimal off-line solution consists of a single Steiner tree
T, with weight p(T). Furthermore, we assume that it is a single chain of (k — 1) edges; the

end points of the edges are the k revealed points in 0. We define
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¢ pr(z,y)= the distance between nodes z and y on T,

b ﬂT({w-) y}s {(l, b}) = min {[PT(a, .’13) + pT(b9 y)]? {pT(a, y) + pT(b’ (I})]}

o For request 1,

A p1(,9) i=1
Ti = , , .
min{pr(z,y), minm <;<; Br(v;, )} 1> 1

o Cr(0) =371 Ari

Thus we have redefined p and S in terms of distances on 7. Clearly Ar; > A; (1 << s)
and C7(0) > C(o) for all o.

We construct an undirected complete graph G with (I;) + k nodes, each representing a

different pair of the k£ nodes on 7. Each point pair in ¢ corresponds to a single node in G.
We shall use the same symbol for a node pair in 7 and for the corresponding single node

in G. Each edge (u,v) has weight fr(u,v).

We perform the following on-line game on G: The point pairs in o are revealed one
by one, with v; revealed in advance. Each time a v; (i > 2) is revealed, we charge the
on-line server for this game a cost equal to the distance between v; and its nearest revealed
neighbor in G. Let Cyy_jipe(0) be the total on-line cost charged, and C g jine(o) be the

cost of the optimal off-line solution, which is a spanning tree.
Lemma 5 C7(0) < p(T) + Cyftine(o) - 10g; s

Proof: Applying the bound in Section 2 for the on-line ST problem we have C;,_jine(0) <
Coff-line(o)logz s. The lemma follows from Cr(o) < p(T) + Cyp.line(0), where the p(T)

term accounts for the cost for revealing node pairs v; on 7. O

Next we place an upper bound on the value of the optimal solution on G.
Lemma 6 Cg jjne(0) < p(T)- (2+ /)

Proof: To simplify notation, let U = {1,---,k} be the set of k points on 7. Given a
(k — 1)-chain T, we form a grid graph Gt as follows:

Put T horizontally and let the k nodes along it be numbered from left to right, 1,---, k.
Construct an identical copy of T, T, by turning T' by ninety degrees clockwise about node

1. Draw a vertical line at each node on T and a horizontal line at each node on 77. Call
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the node at the intersection of the vertical line drawn at node ¢ on 7" and the horizontal
- line drawn at node j on T (4,5). The grid graph Gr is formed by all the segments of
the lines within the square with corners (1,1),(1,k),(k,1) and (k,k) and it has vertex set
Vr =U X U. (See figure 1 .)

Thus each node (%,) on G corresponds to a node {7, j}, called its image in G; each
node v = {4,j} in G corresponds to two different nodes, (¢,5) and (7,7), in Gr. If i < j, we
call (4,7) and (7,7) the upper and lower images of v in G, since they lie above and below
the 45° degree line at (1,1) respectively. It can be easily verified that Sr(v,u) is equal to
the shortest distance on G, between the corresponding lower (or upper) images of v and u
and it is not more than the shortest grid distance on G between an image of v, upper or
lower, and an image of u, upper or lower. (In fact, the distance, over G, between an image
of v in G and each of the two images of u corresponds to the two sums in the definition of
Br.) As a consequence, if we represent each node pair in o by its lower image in Gt and
then find their minimum Steiner tree, we can identify the images of the the nodes in the
Steiner tree as nodes in G, and construct a corresponding Steiner tree in G, and this Steiner
tree cannot have a greater cost than that of the Steiner tree in Gr. To prove Lemma 6, we
only need to show the above described Steiner tree in the grid graph G does not have cost
more than p(T) - (v/s + 2), where p(T') is the length of the side of the square grid.

In [7], Hannan gave an important theorem reducing the off-line minimum ST problem

on the rectilinear metric space to that on a grid graph. Suppose we want to find the off-line
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minimum ST for a give set of regular points o in the rectilinear metric space. We form a
grid graph G, by drawing vertical and horizontal lines along each of the nodes in o and
let the points where these lines intersect be nodes of the graph. Hannan showed that G,
contains a minimum ST of the original problem. Using Hannan’s result, to prove Lemma 6,
we need only bound the weight of the longest minimum Steiner tree in a unit square in the
rectilinear metric space, where all the regular nodes lie on one side of the diagonal of the

square.

In [3], Chung and Graham extended Few [5]’s results for finding the size of the largest

possible minimum Steiner tree in a unit square with s regular points on the Euclidean space.

Theorem 4 (Chung and Graham[3]) Let size(s) be the greatest length of a minimum
Steiner tree for a set of s regqular points contained in a unit square in the rectilinear metric

space. Then /s +1 < size(s) < /s+1+0(1).

(Using the above theorem, Chung and Hwang [4] later showed that size(s) = 4/s+ 1 when
/s is an integer.) In our case, all the regular points lie below one of the diagonals. Using
similar ideas as in [5], the proportionality constant for the /s term in the upper bound
above can be reduced from 1 to about 0.9. We shall leave the proof to the interested reader.

Lemma 6 follows from the above theorem. 0O

Lemma 7 If the optimal off-line solution is a single Steiner tree,
C(e)<2-1+(2+Vk—1)- logy(k—1)]-OPT(o)

Proof: If the optimal off-line solution is a single chain 7', then Lemmas 3, 5 and 6, and the
fact that C(o) < Cr(0), imply

Clo) < [1+ (2 + VE=T)-logy(k — 1)] - p(T).

Suppose the off-line solution is a single Steiner tree T, that is not a chain. Starting
from an arbitrary leaf node, we can perform a depth-first search on 7),, marking the order
in which the regular nodes are encountered on the tree. Let the nodes be encountered in
the order uy,---,u;. Construct the chain {(u1,u2),- -, (uk—1,ur)}, where edge (u;, uit1)
has weight p1,(u;, u;4+1). The chain constructed, T, will not have weight more than twice
that of T, and p(T) < 2 - OPT(c). Using the same lemmas and C(o) < Cr(0o) as before,

the lemma follows. O
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Theorem 5 The algorithms in Cgs are 2-[1 + (2 + vk — 1) - logy(k — 1)]-competitive for

the on-line generalized Steiner problem.

Proof: This follows from Lemmas 4 and 7. O

7 The On-line Steiner Problem on a Directed Graph (SPDG)
and The On-Line Uncapacitated Facility Location Prob-
lem (UFLP)

In the on-line SPDG, a directed graph is given and the on-line server has to maintain a
Steiner subgraph 5SS so that there always exists a directed path running from the root
node 7 to each of the revealed nodes. The aim is to minimize the total edge weights in
S5S5. We shall give an example in the setting of UFLP that proves a linear lower bound on
the competitiveness of any deterministic on-line algorithm for both the on-line SPDG and
UFLP problems.

Let Z = {iy,- -, 1,} be the set of sites available for locating facilities and J = {j1, -+, Jq}
be potential customers. Let f; be the cost of establishing a facility at ¢ € Z and ¢;; be the
cost of assigning a facility at ¢ to client 5 € J. Each assigned facility must be established
and a facility can be assigned to any number of clients. Wong [15] showed that UFLP is
equivalent to the SPDG problem on the directed graph G with regular node set, 0 = J. G
has p+ ¢+ 1 nodes: a source node r, one node for each ¢ € Z and one node for each j € J.
For each ¢ € Z, there is an arc (r,%) with weight f; and for each j € J that can be assigned

to ¢, there is an arc (7, 7) with weight ¢;;. See figure 2(a).

Thus UFLP is a special case of SPDG with 7 as the set of regular nodes; assfgning a
facility ¢ € Z to a node j € J is the same as adding the path from » to j via ¢ to SS.

We are interested in the on-line version of UFLP where J represents the set of potential
clients and a subset of s clients in J arrive in a sequence o. Each time a client arrives, it
has to be assigned to a facility , incurring a cost ¢;;. If facility ¢ is not already established,
it has to be done at a cost of f;. So on-line UFLP is equivalent to on-line SPDG on the
type of directed graphs shown in figure 2(a), with o C J.

Theorem 6 No deterministic on-line algorithm is better than s-competitive for on-line

UFLP, where s is the number of revealed clients.
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Figure 2: (a) UFLP as a SPDP, (b) Graph H for the case s = 3.

Proof: We shall construct a graph H withZ = {1,---, s} and J consisting of 2° — 1 nodes,
each corresponding to a distinct non-empty subset of Z. We shall call the nodes in J by
the subset of 7 they correspond to. There is an arc (7,5), where 7+ € Z and j € J if and

only if ¢ € j. Arcs (r,17), (¢ € T), have unit weight and all other arcs have weight zero. An
example for s = 3 is shown in figure 2(b).

Let A be any deterministic on-line algorithm. The adversary is going to reveal s nodes,
each time forcing A to set up a different facility; A will incur a total cost of at least s.

The optimal solution will only need to set up one single facility, giving OPT (o) = 1. The
adversary performs the following:

for L=1,---,s do

(1) Place a request at node v € J that corresponds to the current set Z in H.

(2) Suppose A assigns facility ¢ € Z to v. Remove from H the node 7 and all the
arcs incident to or from it.

(3) Call the new graph H and let Z = 7 — {3}.

It can be shown by induction that at the beginning of each loop, a request is placed at a

facility that can only be served by the Z nodes present in H at that time. This forces A
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to set up a new facility in each new loop. Also, in any loop L, all the revealed J nodes
can be served by any one of the Z nodes present in H at the beginning of the loop. At the
beginning of loop L = s, only one Z node will be left. It will be connected to all s revealed
J nodes. The optimal off-line solution is to set up this facility and use it to serve all the s
revealed customers. So A(g) > s-OPT(c). O |

Corollary 3 No deterministic on-line algorithm is better than s-competitive for the on-line

Steiner problem on directed graphs, even if the graphs are acyclic.

It can be easily seen that the greedy algorithm that always connects the revealed node to

SS via the least expensive feasible directed path is s-competitive for both problems.

8 Conclusion and Further Research

A number of interesting open problems remain.

We have shown that a class of algorithms are O(log(ﬂzﬂs))-competitive for the on-line
Steiner tree problem and a similar bound holds for the greedy algorithm for the on-line
minimum spanning tree problem. For both on-line problems it will be interesting to con-
sider a situation in which requests can arrive in blocks of B € X. A lower bound on the
competitiveness of Q(log(s/B)) can be obtained for both problems. Let G be the graph
used for the lower bound proof for the original problem (with B = 1). For each node v in G,
we can duplicate (B — 1) copies, each connecting to v by an edge of zero length. Each time
a node v is supposed to be revealed in the original request sequence for the lower bound
proof, we reveal all B copies. The on-line server does not have any gain in seeing B copies
of v at the same time and will incur the same cost as before. However, in the case, the
adversary will have to use B times as many nodes as before and hence we replace s by s/B

in the lower bound.

We have shown that a class of lazy and greedy on-line algorithms are O(v/k - log k)-
competitive for the on-line generalized Steiner problem. There is an obvious gap between
the upper bound and the lower bound of Q(log k). Furthermore, we have not given a solution

for arbitrary connectivity.

For all the on-line Steiner problems mentioned or studied in this paper, competitiveness
is measure in terms of s, the size of the request sequence or the number of regular nodes.

When the size, N, of the metric space is finite, measuring competitiveness in terms of
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N shows how effective an on-line algorithm is when faced with N possible choices in the
space, choices for both the server and the adversary. In terms of N, the results of Imase
and Waxman imply that no deterministic on-line algorithm can be better than Q(log N)-
competitive and GREEDY is O(log N )-competitive for the on-line ST problem. For the
on-line Steiner problem on a directed graph, we have shown that no deterministic on-line
algorithm can be better than s-competitive and the greedy algorithm is s-competitive. In
terms of N, our example implies that no deterministic on-line algorithm is better than
Q(log N )-competitive. It can be shown that the greedy on-line algorithm for this problem
is not better than N-competitive. So there exists a gap between the upper and lower bounds
in terms of N for on-line SPDG.

Other interesting open problems include closing the gap between the lower and upper
bounds in the on-line Steiner tree problem on the Euclidean space, and the same problem

on the rectilinear metric space.
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