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Abstract

Given a relaxation-based neural network and a desired partition of the neurons in the
network into modules with relatively slow communication between modules, we inves-
tigate relaxation dynamics for the resulting partitioned neural network. In particular,
we show how the slow inter-module communication channels can be modeled by means
of certain transformations of the original objective function which introduce new state
variables for the inter-module communication links. We report on a parallel implemen-
tation of the resulting relaxation dynamics, for a two-dimensional image segmentation
network, using a network of workstations. Experiments demonstrate a functional and
efficient parallelization of this neural network algorithm. We also discuss implications
for analog hardware implementations of relaxation networks.
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1 Introduction

Many practical problems in computer vision, pattern recognition, robotics and other areas
can be described by relatively simple objective functions in a form that permits the design
of neural networks which constitute highly parallel optimization algorithms. After the work
of Hopfield” and others,®? it has become a common practice to derive neural networks as
relaxation dynamics for such an objective function. Neural networks of this type show great
promise owing to their ability to solve difficult optimization problems with highly parallel
relaxation algorithms.

When we consider the implementation of such networks using parallel computers or special-
purpose hardware such as VLSI chips, however, a number of new problems arise. Chief
among them is that the neural network dynamics constitute a highly parallel algorithm,
but only for an implementation medium consisting of abstract neurons with exactly the
required connection topology. The network must in practice be mapped into some other,
readily available hardware without losing much computational efficiency. Furthermore, the
desired mapping may change substantially when we need to run the network on a larger
parallel computer or a different chip implementation, so it would be valuable to automate
the mapping process. Fortunately, we may study (and optimize) such mappings mathe-
matically by making simple models of the actual implementation medium, and asking how
abstract neural networks can be mapped efficiently into such models.

For example many parallel computers (including both multicomputers and networks of
workstations) can be modeled as sets of “modules” (the separate processors and their local
memory), within which a piece of a neural network can be simulated efficiently, connected
by relatively slow communication channels that limit the rate at which neurons assigned to
different modules can exchange information. A similar model may describe multiple-chip
implementations of neural networks, in which affordable inter-chip wires are slower to trans-
mit information than intra-chip wires, and perhaps even multiple-module implementations
on a single chip. The entire multi-module picture may of course be generalized to a hier-
archy of larger module types with slower interconnection technologies, though we will not
discuss this generalization further.

The problem of mapping a relaxation network to an implementation medium described by
such a model involves (a) assigning each neuron to some module, i.e. partitioning the neu-
rons among the modules, and (b) introducing special dynamics for neurons connected across
modules, or at least for the the inter-module connections themselves, so that the slow speed
of communication between modules does not destroy the computational efficiency of the
individual modules. Problem (a), partitioning the neurons, could perhaps be addressed by
considering the sparse graph of network connections and partitioning that graph by means
of relaxation networks with deterministic annealing dynamics;'%2! much further work re-
mains to be done to make such an approach practical. But in this paper we assume that
an acceptable partition of neurons into modules has been found, and we address problem
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(b): how to introduce dynamics for the slow inter-module connections, while still efficiently
using the computational capacity and fast connections inside each module.

Our basic solution to this problem will take the form of an algebraic transformation of the
objective function, along with suitable dynamics, which preserves the fixed points of the
network. This method is developed in section 2.1. Section 2.2 describes the image segmenta-
tion network that we use as a test problem. Section 2.3 applies the algebraic transformation
method to the image segmentation problem. Section 3.1 describes the methods and algo-
rithms used to test our partitioned dynamics, and section 3.2 exhibits experimental results
which confirm the efficient use of computational capacity for a physical computer which
satisfies the module model, namely a network of workstations. Good speed-up and effi-
ciency plots are shown. Section 3.2 also describes further experiments designed to probe
the probable efficiency of a hypothetical multi-chip implementation in which inter-module
wires have a relatively large RC time constant. Section 4 summarizes our results.

2 Theory
A standard form of neural network objective function is”
1 1
(1) Epv] = -5 > Tijkvivivp — 3 D Tijvivi — Y hivi+ Y ¢i(vs).
ijk ij i i

Here v; are the neural variables, T;; are pairwise connections between them, T, are optional
triple connections, h; are constant bias inputs to the neurons, and ¢;(v;) is a potential
function for neuron v; related to its transfer function (or gain function) g;(u;) by #:(v) =
97 1 (v)dv.” Many other objective functions may be put in the above form by suitable
fixed-point-preserving algebraic tranformations.!?

We assume a partition of the neural variables v; into a set of blocks, describable by a sparse
rectangular matrix {Bj,} with 0/1 entries for which 3", B, = 1, Vi. Our problem is to
introduce neural optimization dynamics for (1) which allow a reduced rate of communication
between all pairs of neurons v; and v; which happen to be in different blocks or “modules”
according to B, but which are connected in the network topology (directly by a nonzero
T:;j, or by means of some nonzero triple connection T3;;). The method we use is to isolate
all summands of (1) which cross module boundaries (these can only be T;;xv;v;vk or T;;v;v;
terms) and to replace them with new expressions which (a) leave the fixed points of E
unchanged, and (b) introduce new state variables for each cross-module connection or “wire”
which can be updated relatively slowly in our neural dynamics by comparison with all other
variables. In this way, we model the limited communication capacity of an inter-module
connection. Then it becomes purely an experimental question, taken up in section 3, to
measure the computational efficiency of the resulting network dynamics.
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2.1 Border Neurons

As an example of a fixed-point-preserving transformation, consider the transformation of
a summand of E which is a product, XY, of two expressions X and Y. X and Y could
be a pair of connected neurons, or more generally they could be any two functions of N
variables. In the latter case, such products are generally quite expensive to implement
in neural networks and can increase the space and time costs of any algorithm. These
considerations motivated? the fixed-point-preserving transformations

(2) XYy = -;—[(X+Y)2—X2—Y2]-—->X(cr—'r)+Y(a—w)—%az+11'2+1w2,

2
and
1 ) \ 1 1 1, 1,
XY:Z[(X+Y) —(X—Y)] —_— -2-(X+Y)0'—§(X—Y)T—?4-0' +ZT
= Yyl L2 15,
(3) = 2X(0‘ T)+2Y(O’+T) 20t

that introduce new state variables o, 7, and w which are linear neurons, of which o acts to
mazimize the objective rather than minimize it. The dynamics of the network is chosen to
seek saddle points.

Our use of these transformations is especially simple. We take X and Y to be individual
neurons, or products of two neurons, so that XY is a pairwise or triple interaction term
which crosses module boundaries. After the transformation is applied, the newly introduced
variables model the state of the inter-module connection which is to be updated slowly by
comparison with intra-module connections. For this purpose we arbitrarily chose transfor-
mation (3) rather than (2); this choice has the advantage of introducing fewer new neurons,
at the cost of introducing two slow neurons per wire rather than just one, since 7 and w of
equation (2) exchange information entirely within one module or the other.

After applying tranfromation (3) to all relevant inter-module connections, the Hopfield-
Grossberg descent dynamics of the network becomes a descent/ascent dynamics (v; is the
output of the regular neurons in the network, and w; is the corresponding input)

: oF 19X
(4) i = —nge=-nlpgee-n)+ ——(a +1),
and
X OF
wi; = +1‘w-aTdT (Tw > O)
(5) = w[ X.Q_(.i”_@_) + 3(61.7 + T’J) 1 6(0123 - Tizj)

3(.0,_, Ow;; J T4 3&){1' ]’
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Figure 1: Modeling a slow connection. We replace the XY link with two slow linear neurons
that reduce the required communication rate between neurons X and Y.

where w;; is either o;; or 3j, and E = E(v,w) is the transformed objective function.

The change in network connectivity achieved by this fixed-point-preserving transformation
is shown in Figure 1. Here, o is a reversed linear neuron,® and 7 is an ordinary linear
neuron. We generally take r, = r,, and a crucial parameter is the relative speed 4 /7, of
the border neurons ¢ and 7 compared to the original neurons v;. If we assume that the
border neurons are infinitely fast, then transformation (3) does not change the dynamics
of the rest of the neurons in the network. In case the linear neurons are not infinitely fast,
the basins of attraction of minima might change, but the network’s fixed-points remain as
before. In the limit in which the border neurons are much slower than the original neurons,
we have a circuit model incorporating large RC time constants on inter-module wires and
hence slow inter-module communications, as desired.

Several further points should be made about the use of transformation (3) or (2) for model-
ing inter-module connections. It is clear that if v; is any neuron from block a of the neuron
partition, and v; is any neuron from block b # a of the partition, then any connection
Tijviv; of E (where T;; # 0) can be transformed as above at the cost of introducing linear
border neurons such as 0;;. But we will also have occasion to consider triple interactions
T;jkvivjvr. The simplest case, which holds for the test objective of section 2.2 below and
for our computer experiments, obtains when v is a member of block a or of block b, that
is, when By, = 1 or By = 1. Then the same transformation rules can be used with e.g.
X = vjvp and Y = vj;. But if v; belongs to partition ¢ ¢ {a,b}, then these transformations
must be applied several times to separate v;, v;, vk into different summands of a final ob-
jective function, interacting only with slow border neurons.

The second observation is that a parallel computer implementation becomes considerably
easier, and even a VLSI circuit implementation may be easier to design, if the original neu-
rons and the border neurons are updated in alternating phases. Each set of neurons is held

¢ Due to their linear transfer functions with negative gain, in CMOS terminology linear reversed neurons
would simply be inverters.
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fixed during the other set’s update phase. Thus, an external clock signal or a synchroniza-
tion protocol is used to alternate phases of internal relaxation and border relaxation. Using
clocked objective function notation,>!® we have ascent/descent dynamics for an objective
function which depends on the update phase:

Elv,5,7]® E[v,0,7]
o (t)E{v, o, 7]+ "l’z(t)l:;’[\‘r, o,T].

FElocked [V, g, T]

(6)

where Z is a clamped version of variable z, and 1,(t) are non-overlapping clock signals with
Pa(t) € {0,1}.
With this algorithmic simplification, which we use in our computer experiments, the dy-

namics (5) of the border neurons becomes a simple exponential convergence to the current
optimal value by means of a passive RC circuit equation:

A

OF def 1,
do;; = gl — o) =

Gij = +7, (re >0) and

d0;;

(7) o = of(1-e ™),

where ¢7; is the current optimal value for the neuron o;;, being equal to X +Y for simulation

of the o;; or 7;; border neurons, respectively. The constant 7, = 27! (in sec) corresponds
to the RC time constant of the equivalent analog circuit for charging a capacitor, C, through
a resistor, R. Qur parallel computer implementation uses the analytic form (7) to further
decrease the cost of simulating the border neurons.

2.2 Test Problem: 2-D Image Estimation and Segmentation

The problems of image segmentation and estimation have been treated from a mazimum a
posteriori (MAP) viewpoint by the use of Gibbs distributions that are defined on the image
intensities and their discontinuities. By developing a probabilistic (Bayesian) framework
to model dense fields, it can be shown!? that posterior estimates obtained with Markov
Random Fields are equivalent to estimates obtained from regularization theory?® and sim-
ilar energy minimization methods. The regularized equations can be derived from a model
in which piecewise-smooth images are somehow corrupted by noise (e.g. white Gaussian
noise), resulting in a degraded model. The degradation is represented in the energy function
by a term measuring closeness to the data, and the piecewise-smooth assumption by terms
penalising discontinuities, multiple edges, broken contours, etc.® Such smoothness function-
als, imposed as weak contraints, may include the membrane and the thin plate models.1®

The regularized equations are then implemented on a discrete mesh using finite element
analysis and solved by some iterative relaxation method.

® The stabilizers that enforce smoothness on the model are thus interpreted as probabilistic prior models.




Partitioned Relazation Nets 7

The form of one objective function for the image segmentation problem is'®

3
205

(8)E(f,v,h) = a i (£G, 5) — 9, 5))?
o
+ 3 Z [Af2(5,5)(1 = v(3, 5)) + v(i, §) + e1v(3, §)v(i, § + 1) = €20(3, §)o(i + 1, )]
N
+ '211 D7 MG, = k(G 9)) + k(G ) + erh(E, )R + 1, 7) — e2h(i, 5)h(i, 5 + 1)
ij

N
+ 520 [ (i, )o6,) ~logll + exp(un(, )] +
ij
+  un(i, §)h(, 5) — log[l + exp(un (4, 5))] ] -

Here, f is the piecewise-smooth surface to be fit to the image data; g is the fixed set of
image intensities to be used as data points; and v and h are the discontinuity fields to be
used to model the region boundaries in the image, also known as line processes. The latter
are binary variables that serve to indicate a discontinuity in the intensity field, i.e., a place
where the gradient of the intensity has a non-zero value. o and b are constants carefully
tuned for different images or sets of images, A is a smoothing parameter, ¢; and ¢, control
edge linking and thinning respectively, u is a field related to v and h, and S is the mean
field annealing parameter that acts as the inverse temperature and guides the continuation
procedure.

The process u is updated as'®

Bb

©) w(@h) = F PREH-1-aii+1)+o(ii - D) +e@6+1,7) +oi-1,7)] ,
(10) wsir) = 5 DI = 1= b+ 1,5)+ hi— 1,7) + calhi, s+ 1)+ hGi g = D) |

and the horizontal and vertical discontinuity fields as

1 o 1
1+ exp(—un(s, §))’ v(i,g) = 1+ exp(—uy (3, 4))

(11) h(s,5) =

In the expressions above, f, and f, correspond to the horizontal and vertical intensity gra-

dients, i.e., fn = (£(i,5 + 1) = £(3,5)) and f, & (f(i + 1,5) - f(5,5)). (9), (10) and (11)
update u,v and h given f, so f is the only remaining quantity to be optimized.

The energy function (8) consists of disparate ‘forces’ that have to be balanced at a fixed
point: the mean squared difference between f and g (the a-term in (8)), and the calculation
of the number and nature of the line processes quantified by the v and h fields (the b-terms).
The last summand in (8) is imposed by the mean field annealing (M FA) equations; the weak
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membrane stabilizer that was formulated with digital line processes s € {0, 1}, was changed
with a monotonic transformation to use analog discontinuities s € [0,1]. The (1/8)-term
can be thought of as a barrier function that restricts the values of the line processes to be
in the interval (0,1) by raising infinite barriers at 0 and 1. A special point has to be made
here: the function we implement is not quite a region segmentation function, at least by
its classical meaning,!® that is, having piecewise-flat, closed regions in the original intensity
image. To make it such, we should set the A-parameter in (8) to high values.!6

Such energy functions are generally non-convex, and deterministic minimization methods
easily get stuck in local minima. Stochastic methods, on the other hand, are burdened by
their computational requirements. A method that enables energy minimization and which
combines the uphill movements of a stochastic algorithm with the speed of a deterministic
approach is mean field annealing (MFA), a deterministic continuation technique. MFA, like
simulated annealing, has its origins in statistical mechanics but has some additional advan-
tages: (7) the MFA equations are isomorphic to RC-equations for a circuit of analog ampli-
fiers, and (47) the MFA equations of motion are identical to those obtained when mapping
optimization problems to neural networks. Furthermore, M F A as a feedback algorithm is
inherently parallel and can be implemented on massively-parallel localy-connected computer
architectures. For our purposes, MFA amounts to repeated deterministic optimization with
slowly decreasing temperature. M F A has been used for many other applications.” 14,1522

2.3 Transformation of Image Segmentation Objective

Objective Function: For the energy function (8), the only inter-module communication
needed is due to the horizontal and vertical intensity gradients f, f,, which appear in the
objective as squared quantities leading to

1 1
3= 5(Figer — fi)?

N
2

= Y fi - fiifiin

i —_——

N
1 1 1 1
(12) = Y - G fui(omss =) + Shiin(ons + mai)] — [3ohs — 741}
i,j - -~ 7 . ~ 7
(quadratic potential) - (interaction terms) — (neuron potentials)

Here, oy, 7y are the neurons introduced for the horizontal discontinuity field. Similarly, for
the vertical intensity gradient

1 1
(13) §f3 = '2'(ﬁ+1,j-fi,j)2

1 1 1 1 1 1
= 3 Pyt §fi2,j = [5Huilovis — i) + Sfiri(oviy +1vi) — ;105,,-,- + ;17'3,;-,-]-
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Gradients of £: The gradient vectors are computed as usual, except for the terms involving
the new linear neurons which become (c.f. (13), (14))

J .1 1
(14) 517.—,[—(12',141 - i)l — fii- 58 = TH4)

0 1
m [ (fijer — fij)?] — Figar = 5(Om s+ TH4;)

and similarly for the vertical gradients

(15) af”[ (firrg — fig)?) — ﬁ,j—-;;(dv,ij—fv,ij)

0 1
m[g(fm,j = fidll = firni = 5lovi + 1vi)

Linear Neuron Dynamics: The ascent/descent dynamics given by (4), (5) are applied
to the objective function (8). The only contribution comes from the intensity gradients fj,
and f,, giving for the border neuron o(zv,;;) (which is a reversed linear neuron)

oF o 1
16 6' 27 = +1‘ —— = + P 2 v
1o Ev “Towvan Do 2

+7s

[f(z,;/) + f(z,J+1/z+1,_1) - U(H/sz)] ("‘a > 0)-
and for the 7(y/v,i;) (Which is a regular linear neuron)

OF
17 7.' 1" TT—.—____—
(17) (H/V.id) FEom—
+7r
= T[fh/v + T@yvip)  (r2>0).

3 Experiments

3.1 Methods

To test our methods experimentally, a network of IBM RS/6000 workstations connected by
an ethernet was used. The cluster was comprised of six 560 and ten 340 models. The code
was implemented in C++ and C-Linda. Linda adds shared-memory operations to many
languages and computing platforms.*

The energy function E(f, v, h) in (8) is non-convex in its parameters f, v and h. To optimize
such functions a continuation approach similar to the Graduated Non Convexity (GNC) was
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used.® The function’s optimum is tracked as the minimum of a sequence of functions that
asymptotically converge to the original objective when the continuation control parame-
ter, 8, approaches its limit values. At every stage, the current optimal point is used as a
starting position for the next iteration of the algorithm. Direct methods such as Gaussian
elimination or triangular decomposition are usually computationally restrictive; relaxation
techniques on the other hand are massively parallel. The Conjugate Gradient (CG) relax-
ation method® with the Polak-Ribitre step-size 'y}cD R was chosen to run on the intensities.©
The objective function (8) is quadratic in the intensities f, but non-quadratic in the line
processes. Thus, the Iterated Conditinal Modes (ICM) algorithm? was run on the latter.
ICM is a coordinate-wise descent method that minimizes (8) with respect to h;; or v;; while
keeping all other line processes fixed, until a full sweep of the lattice is performed.

This iterated scheme is®

1. Set B = Bo.

2. Run the CG on the intensities.

3. Update the line processes by ICM after each CG step.

4. Return to step 2 till convergence.

5. Increase the control parameter, e.g. 8 = 2¥8q, k= 0,1,2,...

6. Return to step 2 until the limit value of 8 = 8* has been reached.

A parallel implementation was obtained by partitioning the problem variables into rect-
angular blocks. Syncronization was achieved as in many Linda programs by using the
master-worker paradigm; the supervising process is responsible for scheduling slave pro-
cesses and for their synchronization. Each worker simultanously performs the optimization
algorithm just described on a different part of the original network, and when it is ready to
send and receive data, signals the master; when such information is available from all other
workers, the master enables the workers to send and receive. This scheme helps emulate
the clocked objective (6). Figure 2 shows the clocked network implementation: processors
P1 — P4 are assigned parts of the relaxation net and are allowed to optimize in parallel.
Then the master gathers the neuron values from the module boundaries and updates the
linear neurons in the border stripes M1, M2. It then transmits these values back to P1— P4
and a new cycle of the optmization procedure begins.

The performance of this method was quantified both by the total wall-clock time, T,
that the network took to converge to its fixed-points, and by the absolute error in final
energy, AE, between the parallel and the corresponding serial runs. Four algorithmic pa-
rameters emerged as critical: the linear neuron update parameter, r,, the number of partial
relaxation steps before communicating data, s, the network size, N, and the number of
procesors, p.

cafR = W, where gk, gk-1 are the current and previous gradients of the objective.
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Figure 2: Part of the relaxation net. By an orthogonal partitioning into blocks, each
processor F; has to communicate at most with 4 others to send and receive neuron values.

3.2 Results
3.2.1 Optimal parameter selection.

Several images of increasing size were tried, namely 64 x 64, 128 x 128, 256 x 256 and
512 X 512 pixels. The net was partitioned from 1 up to 10 blocks, and both the ten-
workstation (340's) and the six-workstation (560’s) networks were used. Due to differences
in peak performances between the two types of workstations, CPUs of the same type were
used to avoid any machine-dependent imbalances in performance. Thus, two networks were
set up, each comprised of workstations of the same type, and identical simulations were tried
on both; the results gathered were similar and, hence, only those from the ten-workstation
network are presented in the sequel.

Various different values for parameters s and r, were tried, and the performance criteria
Tt and AE were measured. The results are plotted in Figure 3. The simulations demon-
strate that there exist optimal values for s and 7,, and a careful choice results in reduced
convergence times and lower errors in energy. The measured T, as a function of s and
To is roughly a valley open at one end. Upper and lower bounds for s exist: Ty, is high
both for very frequent value communication (e.g. s < 5) and for very rare communication
(e-g. s > 100); moreover, AE(s,,) is high for rare communication (e.g. s > 100), whereas
trying to keep AE low with small s (e.g. s < 5) results in a relatively high T},. [Note that
s 2 5 indicates that the high cost of communication cannot simply be ignored by updating
border neurons as frequently as intra-module neurons, e.g. with s = 1.] Figure 3 also shows
that the acceptable range of r, is roughly r, > 0.1, and has no upper bound.
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Figure 3: (a) Total convergence time as a function of s, 7, for the 64 x 64 image. (b) Error
in final energy as a function of (s, r,) for the same image. (c) shows a contour plot of
surface-(a); the axes for s and r, are drawn in a log-scale to incorporate the wide range
of values tested. The network was partitioned in 4 blocks, each of which was assigned to a

different CPU.
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A specific range of 7, values resulted in the best simulation results (Figure 3). Good per-
formance was found for r, € [0.6,10.0] and s € [10,40]. Optimal results were obtained for
7o € [0.8,5.0]and s € [10,20]. An important point is that these parameter regions remained
roughly unchanged for the different image sizes. In all cases the convergence-time penalty
for an excessively small value of 7, (too slow a communication channel) was large, whereas
the convergence time penalty for a very large 7, was mild, at least if the number of steps s
was also adjusted correctly.

3.2.2 Tuning r, and analog circuits.

In section 2.1 it was argued that large RC time constants on inter-module wires can repre-
sent slow inter-module communication in a distributed or parallel computer which imple-
ments the network. The observation is stronger for an actual analog circuit implementation,
in which the RC time constants for wires between modeules may literally be relatively large
owing to the power dissipation cost of a relatively long wire (higher for smaller RC), and
to other engineering factors that prohibit r, — oo such as finite source impedances, signal
termination at the output, reflections, etc. In our simulations, linear-neurons dynamics (7)
with only partial convergence (to 80% of each neuron’s current optimal value) were ade-
quate in practice.? Furthermore, the large values of s mean that even 7, = 1.0 in our units
corresponds to a relatively low inter-module communication rate, since s intra-module CG
steps were performed for every partial RC relaxation step.

In an analog circuit implementation additional costs would enter to discourage the use of
very large 7,: the fixed hardware cost and recurring power costs of long, fast, dissipative
wires could dominate. So it is interesting to observe that very large values of r, were not
required (nor even advantageous) to obtain good convergence times in Figure 3, and that
intermediate values of r, were used to obtain the speed-up and efficiency results below.

3.2.2 Efficient parallelization.

In general, the efficiency of a parallel system decreases as the number of processors, p,
increases, provided the problem size N is held fixed, since the communication overhead
To(N, p) increases with p.* We now report our observations of parallel efficiency. A binary
partitioning was chosen for the domain decomposition: the domain was partitioned into two
parts recursively so that the number of neurons in each part was identical. This technique
ensures a good load balance: it optimizes the computational load and allows a trade-off
between locality of computation and maximization of the ratio of computation to commu-
nication (or equivalently, that area to perimeter ratio should be as large as possible).!

¢ The inter-module wires emulated by border neurons are equivalent to low-pass filters when brought to
the frequency domain, for which a breakpoint occurs at fiap = 1/27RC.

¢ Speedup S is defined as the ratio of the time needed by the best serial algorithm to converge, to the
time needed by a parallel algorithm (S = T./T;). (Numerical) efficiency, E, is defined as the ratio of S to
the number of processors (E = S/p).
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Figure 4: Speed-up and Efficiency curves for various image sizes, N. All simulations were
performed with r, = 1.0 and s = 20. Notice the improvement in efficiency with increased
values of N, and the good absolute efficiency for image sizes generally required in practice.

Our measured speed-up and efficiency curves for various image sizes and numbers of pro-
cessors are presented in Figure 4. For each run the same values for s and r, were used,
namely s = 20 and 7, = 1.0. It is clear that for increased number of processors and larger
image sizes, a substantial speed-up is obtained that is close to the optimal linear speed-up.
Furthermore, the measured efficiency is above 0.9 for the largest image and above 0.5 for
all but the smallest image, at all processor numbers.

These results are also somewhat burdened by a relatively slow ethernet communication and
other NFS network delays. Future simulations with a high-speed fiber-optic network could
improve the parallel convergence times for the smaller image sizes. But the larger image
sizes are the ones relevant for most practical applications of computer vision.

Figure 5 presents a segmentation (f field) and the line processes (fields v, h) for the 128 x 128
image and Figures 6, 7 the original and a segmented instance for the 512 x 512 image, re-
spectively.

4 Discussion and Conclusion

We have presented a general method for adapting an optimization-based neural network
to an implementation medium consisting of a set of modules with relatively high cost or
low capacity for each inter-module communication link. Examples of such implementa-
tion media include multiple special-purpose VLSI chips, large parallel computers, and the
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workstation networks used in our experiments. The method consists of applying algebraic
transformations which preserve the fixed-points of the objective function and which intro-
duce new neurons to model the state of the inter-module connections.

We applied the method in a favorable case, that of a nonconvex two-dimensional image
segmentation problem and its neural network, and observed good parallel speed-up and
computational efficiency on a network of workstations. The best parameter settings al-
lowed slow inter-module communication and did not change significantly with image size;
they are expected to be compatible with implementation by modular analog circuits as well
as by parallel or distributed computers.
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Figure 5: (a) Original 128 x 128 airport aerial photo, (b) Segmentated image, (c¢) Line
processes of the segmented image. 4 processors were used, with A = 0.022 and ¢4 = 11.2.
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