On an Array Sorting Problem of Kosaraju
. T , * t
R. J. Lipton, R. E. Miller, and L. Snyder

Research Report #95

Department of Computer Science, Yale University, New Haven,
Connecticut 06520. Supported in part by ONR grant NO00l4-75-C-0752.

Mathematical Sciences Department, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York 10598.

ON AN ARRAY SORTING PROBLEM OF KOSARAJU

Richard J. Lipton

1- .

Department of Computer Science
Yale University
New Haven, Connecticut 06520

Raymond E. Miller
Mathematical Sciences Department
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Lawrence Suyderf
Department of Computer Science
Yale University
New Haven, Connecticut 06520

* Supported in part by ONR contract number N00014-75-C-0752

1. Imtroduction

S. Rao Kosaraju [2] in considering the
question of how one can sort on parallel ma-
chines was lead to consider parallel machines
that are organized into nxn arrays, i.e., con-
figurations where the (i,3j)t% machine can com—
municate only with the machines (i+1,j), (i-1,j),
(1,j+1), and (i,j-1). The question is, of
course, not whether such.arrays can sort but
rather how fast they can sort. In particular,
Kosaraju was lead to a specific simple set of
rules for the behavior of the machines and then
conjectured that for these rules sorting re-
quired at most O(n) time. Our principle result,
however, is the failure of this conjecture. In-
deed, we will demonstrate that Kosaraju's rules
require in worst case at least cn?(c>0 constant)
time.

The fact that Kosaraju's rules fail to sort
in 0(n) time leads us to consider the gemeral
question: are all '"local" rules (in a reason-

_able sense) unable to sort in 0(n) time; indeed,
do all such rules require at least cn? time in
worst case. The evidence that we have to sup-
port this conjecture is a series of rules simi-
lar to Kosaraju's that all have worst case sort-
ing times of cn?. On the other hand, it is
known (Thompson [3]) that there are arrays that
can sort in O(n) time. However, these arrays
use quite nonlocal rules; hence, they-do not con-
tradict our conjecture but instead serve to help
delimit the notion of local.

The motivation for studying Kosaraju's con-
jecture is twofold. First, the question of
whether or not a local set of rules can sort inm
0(n) time is an interesting problem. Second, if
there is a set of local rules that can sort in
0(n) time, then it may be possible to build hard-
ware that implements directly such an array.

Finally, a note about the organization of -
the rest of the paper. In section 2 we will pre-
sent Kosaraju rules and.then prove in section 3
that these rules require cn? time in worst case.
In section 4 we will sketch several other sys-
tems of rules with the same worst case behavior.

2

2. The Kosaraju Rules

We will now define the set of rules that
Kosaraju had considered. As in Knuth [1], we
consider arrays of 0's and 1's rather than ar-
rays of arbitrary numbers.

Kosaraju Rules:
(1) " Bubble: 1f a 0 appears directly above

a 1, interchange the 0 and 1.

(2) Snake: 1f a 0 appears directly in
~ front of a 1 in a "snake order" on the
array, and rule (1) does not apply to
this 0 or 1, then interchange the 0
and 1.

Letting (1,j) represent the row i, column j cell
of the array, the "snake order" is
(1,1)(1,2)...(1,n)(2,0) (2,n-1)...
(2,1)(3,1)(3,2)...(3,n)
ending in (n,n) for n odd and (n,l) for n even.
This is shown for n=4 and n=5 in Figure 1.

&—p2yl- 1+ F, 2453 K4

PN TR SR PR IR — -

4
4
LT Y = — | = =
-]
s L e St bt m 22 it
n=4
&1yl ~152== 1534 =154 = {155+ :
P G o s i e —+-!
R e e e S R SR B '
1
l-----—'_—_-;— + — +7
e R e e T I
n=35

Figure 1: Snake order on boards of n=4 and n=5.

A step in the sorting process is from the
current configuration of O's and 1l's to a new
configuration in which gl interchanges allowed
by the rules applied to the current configura-
tion actually occur. Thus, the process does

ﬁany simultaneous interchanges. The time re-
quired by these rules is then the number of

such parallel steps until no rules are applic-

able.

3. The Lower Bound for the Kosaraju Rules

Theorem: There exists an nxn binary array re-

quiring cn? (c>0) time to sort using the Kos-
araju sorting rule.
Proof:
Assume: n = 42+3 LeN
k= (n-1)/2
The array has the form

1's 0's

9‘“k+l"-€L-"k'*-§

Define the fields of the array as follows:

—] TARGET
1
A1l By
0
F’)
471 B,
SOURCE

Pact 1: The sizes and initial states of the
fields are as follows:

Source = all l's = 2xk
target = all 0's = 2xk
Al = all 1's = k-1x1

B, = all 0's = k-2x1

FF = <2,0> = 1x2 at coordinates
. (k+1,k+1) (k+1,k+2)
A, = all 1's = kxl

B, = all 0's = k-1x1
I=2alll's
0

= all 0's
Fact 2: The directionality of the fields is

+ + |+ -+« s 4
=] > + + >

“« |«

> | >

EN B

> | -

+| +

-] >

“l*

> > > o>l >

+ < +<—<—T

The structure of the computation may be divided
into the following pieces:

Steps
Steps #1 & #2 u1-2
Preamble ay
A-Iterations aq
Conclusions Q,

(the time analysis will be given later).

Overview of behavior: We will claim that the
source field emits 1l's at a uniform rate, that
they move up the A2 channel at the same rate to

the "1/2 way" point, F, cross over (smoothly) to

the Bl channel, procede up this channel and are

absorbed by the target in a smooth rate. When
the source is exhausted, then the two row field
above it will be the next source field and that
it enters the computation smoothly. When the
target fills, the next two row field beneath it
becomes the new target and that it does so
smoothly. Meanwhile, the I (0) field will re-
main constant l's (0's). . Finally, during the
iteration steps the Al field (B2 field) will be

constant 1's (0's).

Definition: A field is said to wniformly emit
ones (ueo) if it delivers a 1 to a fixed cell of
the field on alternating steps until it is ex-
hausted.

A field is said to wniformly absorb ones
(uao) if it accepts 1l's from a fixed cell of the
field on alternating steps until it is filled.

Remark: The stronger property will be used that
ueo's emit 1's only originally in the field and
uao's will store the 1's only within the field.

A field is said to wniformly transmit omes
if it moves 1l's from a fixed cell to a fixed
cell such that 1's are absorbed (emitted) on al-
ternating steps.

Fact 2: The first step of the computation is:

0 1
1[0
0|1

1 I
1o 0
01
1[0
o1
ol1

1 1

Note the configuration of TARGET is the basis
step in the following lemma.

Lemma 1: Target uniformly absorbs ones pro-
vided 1's are uniformly emitted from B,.

Proof: .
Using directionality (Fact 2), argue in
two steps each by inductionm.

fill top

7
0...101

\-I}t— alternating

wzZzE
10...10

Step 1:
hypoth

¥
zzz] 1
0 ... 01

A4

727 1|

1 ... 01

fiil bottom

=7
010

|
alternating

Step 2:

hypoth
from Step 1
completion

use Floyd
[1]

O
Denote the left and right halves of F as Fa and
F.. Call B the columm B.F. B

b 1'p7 2’

Lemma 2: During steps 2 through k, B ueo from
its top position.

Proof:

Since 1's in B have a 0 in them the Kosa-
raju move takes precedence. By Lemma 1, target
can absorb the 1's uniformly so the alternating
sequence isn't broken.

Remark: B actually emits all 1's currently in
B at step 1 by this argument, but we are only
concerned with the preamble moves.

Lemma 3: During steps 2 through k, A1 uao pro-
vided F_ ueo.
a
Proof:
Since the elements of Al alternate they
will £i11 A1 since the Késaraju move takes pre-

cedence provided they cannot escape. By direc-
tionality (Fact 2) and Lemma 2 this cannot hap-
a

' pen.

Lemma 4: 1In steps 2 through k, A2 emits ones

uniformly provided Fa is a uao.

Proof:

K rule takes precedence. 0)
Fact 4: The source is constant in steps 2 and 3.
Lemma §:

In steps 4 through k, SOURCE is ueo.

Proof:

By. Lemma 4, Az will be a uao. SOURCE emits
from upper right hand corner.]
Corollary 1: (of Lemmas 3 & 4) Fa is a uto,

through step k. .
Corollary 2: (of Lemma 2) B2 is a ueo, through

. step k.

Corollary 3: (of all lemmata) I and O are con-

stant through step k.

Lerma 6: . After k steps (preamble) the configur-
ation is:
[T]1
1{0
11
1jo
01
1{0
0|0
110
1
1{ 040
O_J
Proof:
Apply lemmas and corollaries. a

Remark: The computation is "stable" hereafter
until the interaction completes. The behavior
is as follows:

Source 1is ueo
A2 is uto

F is uto (by k moves)
B1 is a uto

target is a uao.

We now argue the behavior of F and then describe
iteration.

Lemma 7: As long as A2 is a ueo and Bl is a uao,
then F is a uto until k moves.
Proof:

By Lemma 6 and hypotheses of lemma, we may

consider only the local behavior which is initi-
ally:

1 1 0
1.§é]o EEJ]
1 0

with directionality

< -«

| F]

->

“

The transitions are (given Az is ueo and Bf
x

7
1%;! i E 1o
o1

ua0)

0| 1| = |17 =>
11{0 0 1
hypoth N
step (odd) (even) (odd)
Fact 5: At step k, target contains 2+1 ones

and source has emitted -1 omes.

. Definition: An iteration is completed when tar-

get is filled.

Remark: The results thus far demonstrate that
the 1's will stream uniformly into target until
it fills. We are seeking to show that once tar-
get is filled, a2 new one is started without
breaking cadence; and analogously for sources.-
Before the actual argument we first discuss the
timing in anticipation of the complexity argu-
ments later.

Lerma 8: Target requires 4k-2 steps to fill
from its initial configuration.

Proof:
The initial configuration is

A total of 2k 1's are required of which one is
present. It takes 2 steps to each 1.

2(2k-1) = 4k-2 0

Remark: Note, initially 1 step is required to
get in "phase."

Lemma 9: 1f Bl is uto, then on the step that

target is filled, a new target is defined and
in initial configuration.

Proof:
111... 1 111
011... 1f > 111" 1
1 0
0 1
initial
Step before fill £111 g

Lemma 10: - "A new target is smoothly defined"
1... 1{0 2 2
2... 22| > o| o
0 0 1
1 0 ‘ 41 1]
1l o o1
0

Finally, the final configuration is not reached
until en? steps (c¢>0 constant).
Proof:

The conclusion begins after 2 iteratioms,
where the first itération contains the preamble
steps. The state at conclusion is

. 2
targets filled

3
transition rows

O+

I e i

The three transition rows will be filled in the
conclusion.

Total steps to conclusion = £(4k-2)+1
by Lemma 7
= 822420+1
n = 16224+242+9 o

4. QOther Rules

In this section we present two further
rules and show (or rather sketch) that they both
require cn? time in the worst case to sort.

In the first set of rules we consider that
the array is organized as a cylinder (see Figure
2).

date line
Pigure 2: The cylinder array.

One column is distinguished and is called the
date line. The rules are then bubble if you can;-
otherwise, shift to the left i1f you can (just as
before). In addition, we add a new rule:

A 1 can wrap around (see Figure 3), i.e.,
cross the data line going to the left pro-
vided the position a is a 0.

#data line
1
¢ 1
011
1
Figure 3: New rule.

The rationale behind this rule is that it seemed
to allow the array to break up large blocks of
1's that are packed to the left as in the Kosa-
raju counterexample. However, this is not the
case:

Theorem: The cylinder scheme requires cn? (>0
constant) in worst case.

We will omit the proof of this theorem and
remark only that it is based on the example

0

"< data line

[N R SR

and shows that the time required is n2-n+l.

Our third set of rules is one based-on a
set of interchange rules due to Floyd [1]. We
assume that n is odd and we operate on the array
as follows: ‘

Step 1: Apply left (right) Floyd rules to odd
(even) rows. .

Step 2: Apply up Floyd rules to columms.

Step 3: Apply right (left) Floyd rules to odd
(even) rows.

Step 4: Repeat step 2.

The right (left) Floyd rule is: a 1 can inter-
change with a 0 that is to its left (right).
The up version is defined in a similar manner.
Thus, the left Floyd on

01010111
is
10101011
and the right Floyd is
' 0010111 1.

Although these rules are less local than our
previous ones, they suffer the same fate:

Theorem: The above set of rules sorts in time
en? (c>0 constant) in worst case.

Again we omit the proof and just remark
that it is based on the example

Ref?rénces
[1] D. E. Knuth.
Sorting and Searching.
The Art of Computer Programming, Vol. 3,
Addison Wesky, 1975.

[2] s. R. Kosaraju.
Private communication.

[3] C. D. Thompson and H. T. Kung.
Sorting on a Mesh-Connected Parallel
Computer.)
Proc. of the 8th Annual ACM Symposium on
Theory of Computing, pp 58-64, 1976.

