Yale University
Department of Computer Science

Stable Dimension Permutations on Boolean Cubes

Ching-Tien Ho and S. Lennart Johnsson

YALEU/DCS/TR—617
October 1988

This work has in part been supported by the Office of Naval Research under
contract N00014-86-K-0310. Approved for public release: distribution is unlim-
ited.

ta preliminary version of this paper was presented at the Third Conference on Hypercube

Concurrent Computers and Applications, January, 1988, Pasadena, CA. A revised edition of
TR620.




Stable Dimension Permutations on Boolean Cubes

Ching-Tien Ho and S. Lennart Johnsson?
Department of Computer Science
Yale University
New Haven, CT 06520
Ho@cs.yale.edu, Johnsson@think.com

Abstract. In this paper we present lower bounds and algorithms optimal within a small
constant factor for stable dimension permutations on Boolean cubes. A stable dimension per-
mutation is a permutation where a global address (aq—1a4—2 . ..ag) receives its new content from
a global address (ag(q_l)as(q_g) .. -a5(o)), where § is a permutation function on {0,1,...,¢— 1}.
With communication restricted to one port at a time for each processor, the lower bound has a
term proportional to the number of processor dimensions being part of the dimension permuta-
tion for the number of communications in sequence, and a term for the data transfer time that is
proportional to the same number of dimensions and the size of the data set per processor. With
concurrent communication on all ports of every processor, the bound for the data transfer time
is reduced to become proportional only to the size of the data set per processor. We also show
that for an optimal algorithm the time for a dimension permutation cannot be reduced by using
the cube dimensions not being part of the dimension permutation, if data is allocated to the
entire cube. However, if data is only allocated to a subcube, then the dimensions not being part
of the subcube can be used to reduce the time complexity of the dimension permutation. The
bandwidth of the Boolean cube is fully explored by dividing the data set to be communicated
between a pair of processors into subsets, one for each path between the pair of processors. The
k-shuffle permutation, the bit-reversal permutation, and matrix transposition, are special cases
of stable dimension permutations. Depending on communication capability, message size, cube
size, data transfer rate, and communication start-up time, different algorithms must be chosen
for a communication time optimal within a small constant factor.

1 Introduction

A dimension permutation is a permutation defined on the bits of the address field, while an arbi-
trary permutation is a permutation on the address field. There are (log, M)! possible dimension
permutations compared to M! arbitrary permutations for an address space of size M. Examples
of stable dimension permutations are k-shuffle/unshuffle permutations, matrix transposition [5],
[8], bit-reversal [11], and conversion between various data structures, such as consecutive and
cyclic storage [5], [8]. Shuffle operations can be used to reconfigure a two dimensional partition-
ing to a three dimensional partitioning of a matrix for multiplication with maximum concurrency
[7]. They may also be used for data (re)alignment for certain Fast Fourier Transform algorithms
(6], [11].
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The main focus of this paper is on lower bounds for stable dimension permutations for com-
munication restricted to one port at a time for each processor, one-port communication, and
concurrent communication on all ports of every processor, n-port communication, and several
optimal algorithms for n-port communication. (Algorithms for one-port communication are
trivially derived from algorithms for GSH with one-port communication.) The presentation of
the algorithms also illustrates a general methodology for devising communication algorithms
for n-port communication. A stable dimension permutation is a permutation within (sub)cubes
such that every node holds data both before and after the permutation. Unstable dimension
permutations are treated in [12]. Stable generalized shuffle permutations, a subclass of dimen-
sion permutations have also been studied by Flanders [1] on mesh-connected array processors,
and by Swarztrauber [15] on Boolean cubes. Flanders and Swarztrauber give almost identical
algorithms for communication restricted to one port at a time for each processor, one-port com-
munication. Lower bounds and optimal algorithms for concurrent communication on all ports of
every processor, n-port communication, as well as some improved one-port communication algo-
rithms are given in [9]. The notation and definitions used throughout the paper are introduced
in Section 2. In Section 3, we discuss lower bounds. Stable dimension permutation algorithms
are described in Section 4. The algorithms are labeled A1 - A6. Algorithm A1 is described in [9].
Algorithms A2 and A3 are based on algorithms of all-to-all personalized communication [10], [14]
and matrix transposition with two-dimensional partitioning [8], [14], respectively. Algorithms
A4 - A6 are new. We conclude with a few remarks in Section 5.

2 Preliminaries

2.1 Address spaces and Boolean cubes

The nodes in a Boolean n-cube can be given addresses such that adjacent nodes differ in precisely
one bit. The number of nodes is N = 27",

Definition 1 The Hamming distance between two numbers a and a’ with binary encodings

a = (ag-104-2...a0) and o' = (aj_,a}_,...ap) is Hamming(a,a') = Y0 (a; @ al).

The distance between two nodes = and y in a Boolean n-cube is Hamming(z,y). The number
of nodes at distance j from any node is (’;) The number of disjoint paths between any pair of
nodes z and y is n. Hamming(z,y) paths are of length Hamming(z,y) and n — Hamming(z,y)
paths are of length Hamming(z,y) + 2 [13]. ||a|| denotes the number of 1-bits in the binary
representation of a, i.e., ||a|| = Hamming(a,0). |S| is the cardinality of set S.

The machine address space is A and the logic address space is £. The machine address space
A = {(ag-184-2...a0)| a; = 0,1; 0 < i < ¢} is the Cartesian product of the processor address
space and local storage address space. The processor address space requires n bits, or dimensions.
The storage per node is 297" elements. Of the machine address space the n low-order dimensions

are used for processor addresses, and the ¢ — n high-order dimensions are used for local storage
addresses:
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Figure 1: The relationship between the sets of address dimensions.

The set of machine dimensions is @ = {0,1,...,q — 1}, the set of processor dimensions is
9, =10,1,...,n — 1}, and the set of local storage dimensionsis Qs = {n,n+1,...,q— 1}.

The logic address space L = {(wpm—1Wm-2...wo)|w; = 0,1; 0 < i < m} encodes a set of
|£] = 2™ elements. The set of logic dimensionsis M = {0,1,...,m — 1}. The relationship
between the number of processor dimensions, the local storage dimensions, and the number of
logic dimensions is arbitrary. For instance, if m < ¢ — n and m < n, then the entire data set
can be allocated to the local storage of a single processor, or across processors with one element
per processor using 2™ processors.

Definition 2 A dimension allocation function, 7, is a one-to-one mapping from the set of logic
dimensions, M, to the set of machine dimensions, Q; 7 : M — Q.

Let R = {rmp_l,rmp_z,...,ro} be the set of logic dimensions mapped to processor di-
mensions, i.e., (i) € Q,, Vi € R and V = {vpm,~1,Vm,—2,-..,0} be the set of logic dimen-
sions mapped to local storage dimensions, i.e., 7(¢) € Q;, Vi € V. Then, |R| = m, < n,
V|l=m; <g—n, RUV = M, RNV = ¢, mp + mg = m. T, = {r(?)|Vi € R} and
I's = {7(i)|Vi € V}, are the sets of processor and local storage dimensions used for the allo-
cation of elements: I' = I', UT,. The inverse of the dimension allocation function 7! is a
mapping: I' — M, such that =1 o 7 = I, where I is the identity function. Figure 1 illustrates
the relationships between the different sets and the allocation function. We will refer to the
dimensions in Q, (processor dimensions) as real dimensions and the dimensions in Q, (local
storage dimensions) as virtual dimensions.

Definition 3 The real distance between two locations with addresses a and @/, a,a’ € A, is
Hamming,(a,a’) = Y725 (a;®a}) and the virtual distance between a and a’ is Hamming,(a,a') =

(e @ af).




Lemma 1 Hamming(a,a’) = Hamming,(a,a’) + Hamming,(a,a’).

If the m, lowest-order logic dimensions are mapped to processor dimensions, then the allo-
cation is cyclic; if the m,, highest-order logic dimensions are mapped to processor dimensions,
then the allocation is consecutive [5]. We use the notation (vm,—1%m,—2 - - -%0|"my—~1Tmp—2 - - - T0)
for w when we want to stress the separation of logic dimensions mapped to real and virtual
dimensions. Element w is allocated to location a, where a; = w -1 @ ifi €T, and a; =0,
otherwise. We arbitrary define the unassigned address fields to be 0.

2.2 Classification of dimension permutations

A dimension permutation implies a change in allocation from 7%(M), before the permutation,
to m%(M), after it. Let R® be the set of logic dimensions mapped to processor dimensions
before the permutation. Let R* be the set of logic dimensions mapped to processor dimensions
after it. V® and V* are defined similarly. The sets of machine dimensions used before and
after the permutation are denoted I'* = I‘g U I‘g and I'* = T} U TS, where I‘Z,I‘; C @, and
I, T2 C Q,. Clearly |T®| = |T'?|, since the number of elements is conserved. If I’ = I'* (i.e.,
I‘i’, =TIy and I'® =T%) then the dimension permutation is stable. Otherwise, it is unstable. Note
that we classify the case where I‘g = I and I # I' as an unstable dimension permutation.
The restriction of stable dimension permutations to use the same local address space before and
after the permutation is made for notational convenience. The algorithms for stable dimension
permutations as defined here also work for the case I‘g = I'; and I% # T'* with the same
complexity as in the stable case, if the time for local data rearrangement is ignored.

In the following we only consider stable dimension permutations. For convenience, let T' =
I*=T9T,= I‘g =T and I = I'® = T'?. Unstable permutations are treated in [4].

Definition 4 A stable dimension permutation (SDP), §, on a subset of the machine address
space I' is a one-to-one mapping I' — T with § = 7% o 7% (7~ denotes (7°)~1). The indez set
J of the dimension permutation is the subset of I' such that {z|6(¢) # i} = J. The order of the
dimension permutation is o = |J|. Alternatively, one can define a dimension permutation, §',
on the set of logic dimensions, i.e., §' : M — M (for the stable case) with §' = 7% o 7.

Definition 5 The identity permutation I is defined by §o(:) = ¢,Vi € T or J = ¢.

The order of the identity permutation is 0. A subscript o on §, é,, is used to denote the order
of the SDP being 0. The permutation function é applies to the subset of machine dimensions.
For convenience, we use §(a), a € A, to denote (@5(g-1)as(q—2) - - - @s(0)) Where § is extended to a
function of @ — Q with 6(i) =4,1€ Q- J.

Throughout the paper we define the SDP on the machine dimensions (§), but an SDP can
also be defined on the logic dimensions (¢’). In an SDP a logic dimension k assigned to machine
dimension ¢ = w®(k) is reassigned to machine dimension () = 7%(k). Clearly, § = 7% o =% and
is consistent with Definition 4. Following the definition, we have the corollary below.




machine dim.

Before, 7b:

e — W
W s N —> N
N —
—_e— O —3 O
o
o

4
logic dim. 4
0

After, %: 3 3
machine dim. 4 4
6 =m%o (r)! 6 = (r*)"torb
on machine dim. on logic dim.

Figure 2: The definition of § and §’, and cycles formed by traversing § and §’.

Corollary 1 In an SDP, a global address a = (aq—1a4—2 ...a0) receives its content from the
global address 6(a) = (as(q—1)@s5(¢—2) - - - @5(0)) and sends its contents to the global address § ~1(a) =
(@5-1(g-1)85-1(g—2) - - -@5-1(0)), if it contains an element originally.

Proof: Assume g = m first. Before an SDP, element w = (Wpm—1Wm—2...wp) is allocated to
global address @ = (@&m-1am-2 .. .a0). Then, w; = ays(;) or a; = wy—s(;). After an SDP, element
w is relocated to global address a' = (ay,_1a7,_5...ap). Then, wi = a;,(;) or a; = Wr—a).
Since,

a:' = Wr—a(j) = Wr—bogbor—a(s) = Arbox—a(;) = A6—1(s)>
global address (@m—1@m—2 . . . @) sends its element to global address (aé‘—l(m_l)aé‘—l(m_z) .. .a5_1(0)).
For ¢ > m, we consider the subset of global address with a; =0foralli € Q —T.

Figure 2 shows a shuffle permutation in which machine dimension ¢ becomes §(¢) =
(#* + 1)mod 5. So, global address (asaszazaiag) sends its contents to global address
(a5-1(4)a5-1(3)a5_1(2)a5_1(1)a5_1(0)) = (asaz2a1a0a4). Note that § = (5')_1, if ﬂ'b(i) =1i,Vie M,
i.e., if 7® = I is the identity function.

Definition 6 A full-cube permutation (FCP) is an SDP for which the data set is allocated to all
real processors (but not necessarily the entire memory): ', = Q,. An eztended-cube permutation
(ECP) is an SDP for which the data set only occupies a fraction of the cube: T, C Q,.

Definition 7 A generalized shuffle permutation (GSH) of order o, gsh,, is an SDP such that
0s(a0) = a1,05(01) = ag,...,00(00-1) = g, @; # aj, 1 # j, aj,aj € J,0 < 4,j < 0, and
6,(1)=1,YVieT - J.

For convenience, we let J = {ag,01,...,0,-1} be an ordered index set with the order
implied. An SDP consists of a number of independent GSH’s (or cycles). The number of
indepelrgldent GSH’s for a given SDP is denoted 3, and the order of the ith GSH by 05,0 < i < §;

-1




Definition 8 A real GSH is a GSH such that J C I', and J # ¢. A wirtual GSH is a GSH
such that J C I'y; and J # ¢. A GSH that is neither real nor virtual and J # ¢ is a mized
GSH.

Definition 9 An SDP is separable, if it can be decomposed into independent GSH’s (i.e., with
their index sets disjoint) that are either real or virtual; it is non-separable, otherwise. A real
SDP is an SDP consisting only of all real GSH’s.

Definition 10 The real order o, of an SDP on a machine address space is |{j|j # 6(j),j €
T} = |J NnT,|, and its virtual order o, is |{j|j # 6(§),7 € Ts}| = |T N T,

For an SDP where R®NR® = ¢, the permutation is an all-to-all personalized communication
[10,8]. Moreover, some SDP’s are their own inverse. For instance, for a bit-reversal permutation,
or the transposition of a matrix partitioned into /N X /N blocks, §2(¢) = §(6(3)) =i, Vi € T
(8]

3 The complexity of stable dimension permutations

For each internode communication, there is an associated transmission time t. for each element,
and a start-up time, or overhead, 7 for each communication of a packet of B elements. The
packet size that minimizes the communication complexity is Bop:. We consider both one-port
communication and n-port communication. In the first case communication is restricted to one
port at a time for each processor. In the second case communication can take place on all ports
concurrently. The links are assumed to be bidirectional.

The time complexity for the different SDP’s are denoted T%, ,.(ports, 0, my, K), where type is
the type of SDP, such as gsh for a generalized shuffle permutation, or sdp for a stable dimension
permutation. The superscript * is either /b for a lower bound, or an algorithm identifier for an
upper bound. The first argument for T, is the number of ports per processor used concurrently,
the second argument the real order of the SDP, the third argument the number of processor

dimensions being used, and the last argument the data volume per “allocated” processor, i.e.,
K =2ms,

3.1 Some properties of stable dimension permutations

In [9] we show that for a GSH of order o, 2™~ elements are subject to the same permutation.
We also show that a GSH of real order o, consists of 2™»~?» permutations in subcubes of size
292, Furthermore, we show the following lemma.

Lemma 2 A GSH of real order o, < m, cannot be improved by communication in the m, — o,
processor dimensions that are not included in the GSH, if the original algorithm fully utilizes
the bandwidth.




These lemmas also apply to stable dimension permutations. The arguments in the proofs
still hold. We now give lower bounds for different instances of SDP’s. The index sets for each
GSH out of which the SDP is composed are disjoint. Each GSH defines a cycle on its index
set. For convenience, we assume that a separable SDP consists of only real GSH’s, and a non-
separable SDP consists of real and mized GSH’s in the following. Let the SDP consist of 3 real
or mized GSH’s, and let the corresponding index sets be Jp, J1,.. ., Jg-1, where 7; N J; = ¢,

i # J, J = Uizpop,..s-13%, and J; = {ag0, @i+, Qi(o;—1)} and 65(0j) = Qi((j+1)modos)s
v(i,7) € {0,1,...,86—1}x{0,1,...,0;—1}. Let oJ be the number of sets such that o; is odd and
J; C Tp. Also, let o, be the real order of the GSH defined by J;. Clearly, 6,(¢) =4,Vie ' -7,

and o, = Ef:ol op; < 2?____01 o; = 0. We also let 0y, = max;{0p,} and omin = min;{oy,} for all
0<i<p.

Lemma 3 [9] The lower bound for a full-cube, real GSH of order o,, 0, > 0, on an n-cube is

K .
max(7B~t., 0,7), op is even,

b (1,0 n,K)=
gsh( s Ops ) {max(g”zﬁtc,(dp—l)T), op is odd,

for one-port communication, and

max(&t,,0,7), op is even,

lb —
Tgsh("”ap’n’K) ) max Ste,(0p— 1)T), 0, is Odd,
2 p P

for n-port communication.

Lemma 4 [9] The lower bound for a full-cube, mized GSH of real order op, 0 < 0, < 0, on an
n-cube is X
o
Tglfh(l, Op, 1, K) = max (———2 te, crpr)
for one-port communication, and

K
T;;’h(n, op,n, K) = max (?tc, apr)

for n-port communication.

Theorem 1 The lower bound for the communication complexity for a full-cube SDP of real
order o, on an n-cube is

K
Tsltsp(l, Ops 10y I() = max (Uthc, (0'p - 0])1‘)
for one-port communication, and
15 K
Tsdp(na Op, 10, K) = max ?tc, (Up - OJ)T

for n-port communication. (Recall that oJ is the number of sets such that o; is odd and J; C T',.)




Proof: The data transfer time is bounded from below by the total bandwidth requirement
divided by the maximum number of links available per routing cycle. By Lemmas 3 and 4, the
total bandwidth required for each permutation in subcubes of dimension o, (identified by J) is
0,2°?71 K. The number of available links per routing step for each subcube is 277 for one-port
and 0,27 for n-port communication.

The minimum number of start-ups is max{Hamming,(a,6(a))}, Va € A, which is obtained
by maximizing the real distance for each index set J;. By Lemmas 3 and 4, the maximum real
distance is o, — oJ. 1

Corollary 2 The minimum number of start-ups for a full-cube, separable SDP of real order oy,
is at least 2%2 for any SDP and at most o, for some SDP’s (as a tight bound).

_ Corollary 3 With one-port communication, an SDP can be performed as a sequence of GSH’s
with disjoint index sets without loss of efficiency, assuming the algorithm chosen for the GSH is
optimum.

Proof: The minimum data transfer time (start-up time) of an SDP is the sum of the minimum
data transfer time (start-up time) for each of the GSH’s of which the SDP consists. il

The lower bound in Theorem 1 can be improved for some combinations of K, 7, t. and o;,
by considering the sum of the lower bounds of each GSH of which the SDP consists. For the
algorithm analysis, we use Theorem 1, which is simpler to evaluate, and for most cases the same
as the tighter bound.

An extended cube permutation of real order o, can be improved by communication in the
n — my, processor dimensions not used for the allocation of the data array. A possible algorithm
is a composition of a subcube expansion, full cube permutation, and subcube compression al-
gorithms. The permutation is then performed on a data set reduced by a factor of 2*~™». The
subcube expansion permutation is of type one-to-all personalized communication [3].

Corollary 4 The lower bound for the communication complexity for an extended-cube SDP
(mp < n) of real order o, on an n-cube is

o, - K
Tslgp(l, Op, Mp, K) = max ((K + 0, —oJ — 1)t,, En—i—n:ﬁtc’ (op — OJ)T)

for one-port communication, and

K

b
Tsdp(n, 0p, mp, K) = max ((m

K
+ Op — oJ — 1) tc, Wtc, (0'p - OJ)T)

for n-port communication.

Proof: By Lemma 2, the lower bound for an SDP of real order o,, on a data set of 27s+m»
elements on an n-cube, is the same as the lower bound of the same SDP of real order op on

8




a data set of 2™+t elements on an (n — m, + 0,)-cube. We now prove the lower bound
for the latter problem. The first argument of the maz function is derived by considering the
minimum time required to send out the K elements for any processor that needs to send data,
and the propagation delay for the last element sent out. From the proof of Theorem 1, the
bandwidth required is 0,2°p"'K. The “effective” bandwidth available is ¢,2"~™»*% for n-
port communication and 2"~™»1 for one-port communication. The former can be shown by
collapsing the (n — m, + op)-cube into a op-cube identified by the o, dimensions in the set 7,
and the bandwidth of each link increased by a factor of 27%~™». |

4 Algorithms for separable dimension permutations

4.1 Overview

In this section we present algorithms for separable and non-separable stable dimension permuta-
tions (SDP’s). We assume that a separable SDP counsists of only real GSH’s, and a non-separable
SDP consists of only real and mired GSH’s. We consider full-cube permutations (FCP) and
extended-cube permutations (ECP). Algorithms of the ECP will utilize algorithms for the FCP
as primitives.

The SDP algorithms presented here are all based on the GSH algorithms in [9]. If an optimal
algorithm for a GSH is known for the one-port communication case, then an optimal algorithm
for an SDP with one-port communication is obtained by simply executing the algorithms for the
different GSH’s making up the SDP one after the other, Corollary 3. In the n-port communication
case an optimal algorithm for an SDP is obtained by using an optimal algorithm for each GSH
independently, if either there is no start-up time, or all the GSH’s have the same real order. The
data set is split into B equal parts, one for each GSH. The sth part participates in the GSH’s
specified by the sequence of index sets: Ji, J(i+1)modg> - - -s J(i-1)moag- For each partition the
data is further subdivided into o, parts for maximum bandwidth utilization. Hence, in every
step o, dimensions are used, which is optimum for full-cube permutations.

In most systems the start-up time cannot be ignored, and the orders of the GSH’s of the SDP
are, in general, not the same. Moreover, the GSH algorithms we present are of optimal order,
but not strictly optimal. For a real GSH Algorithm A1 [9] based on a sequence of exchanges
with a fixed virtual dimension requires one start-up and a data transfer time of %tc in excess of
the lower bound. We use this algorithm as a base algorithm for the SDP algorithms we present
for the n-port communication case. A discussion of the consequences of using Algorithm A1’ [9]
in which the data transfer time is approximately doubled, but one less start-up required is given
at the end of this section. By performing the SDP by Algorithm A1 for each GSH in sequence,
B start-ups in excess of the lower bound are required, which is minimal using Algorithm A1,
but the communication bandwidth of the Boolean cube is not used effectively. By applying
the algorithm concurrently to all GSH’s of the SDP the communication bandwidth is fully
utilized, but the number of start-ups is B(0mas + 1). Algorithm A4 requires o, + 3 start-ups
and performs o, + 3 4+ Opmin — 1 permutations concurrently. Algorithms A5 and A6 apply two
different strategies for reducing the number of start-ups compared to using Algorithm A1 for all
GSH’s of the SDP concurrently. In Algorithm A5 the value of gy, is reduced by partitioning
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a GSH into several GSH’s that are performed concurrently followed by one GSH that couples
the parts. In Algorithm A6 the GSH’s are grouped into sets such that the number of start-ups
is proportional to the number of sets, and the maximum number of start-ups required for any
set. The grouping of GSH’s is performed recursively.

4.2 Algorithms
4.2.1 The base algorithm.

By performing the dimension permutation as a sequence of exchange operations between a fixed
dimension not part of the index set, say dimension vx_1, n + 1 exchange steps are required for
a GSH of real order n [9]. By using a dimension used for local storage addresses as the virtual
dimension, the communication in each cycle becomes bidirectional, i.e., exchange operations.
During each step, all communications occur in the same dimension of the cube. Processors in
subcube 0 exchange the second half of the data with the first half of the data of the processors
in subcube 1. This is Algorithm A1 (A1’) [9].2

The sequence of exchange steps for a shuffle permutation can be illustrated as follows:
(Vk=1Vk—2 « . . V100|Tn_1Tn—32 .. .T170) = (TQUk—2 . . . V1V0|Tp=1Tpn—2...T2T1Vk—1)

— (T1Vk—2 . . . V100|Tn1Tn—2 . . . T2TQVk—1) — * -+ — (Tp_2Vk—2 - . . V1V0|T—1Tn—3 - . . T1TOVk—1)
— (Th=1Vk—2 . . . V100|Tn—2Tn—3 . . . "170Vk—1) — (Vk—1Vk—2 - ..V1V0|Tn—2Tn—3...T1T0Tn—1)-

Figure 3 shows the 4 exchange steps in a 3-cube that realizes the shuffle permutation. Figure 4
shows the data allocation as a function of the exchange step in a 4-cube.

Note that after n exchange steps, half of the data (for each processor) have been permuted
to the right processor. The other half of the data need one more exchange step. Hence, if the
data that need the final exchange step were dummy data, then n exchange steps would suffice.
If instead of choosing v € T, v is selected such that v € @, — T',, then n steps suffice. Consider
subcubes 00, 01, 10 and 11 with respect to dimensions n — 1 and 0. During the first step, data
in subcubes 01 and 10 are sent to subcubes 00 and 11, respectively. During the next n —2 steps,
data are exchanged within subcubes 00 and 11 while subcubes 01 and 10 are idle. During the
last step, half of the data (for each processor) in subcubes 00 and 11 are sent to subcubes 10
and 01, respectively. The amount of data communicated during every step is K, instead of %

Note that all data are sent through some shortest path in A1/, since each dimension is only
routed once (unlike A1). The total bandwidth required is the same as the lower bound. With
one-port communication, the data transfer time nKt, is exactly twice the lower bound.

The n-port version the data is partitioned into n equal sized subsets for a permutation

of order n. Assume log,n = 7 is an integer, then exchange sequence i, 0 < i < m, can be
represented as

(V=1 -+« VkeVkmyp=1Vk—gp—2 - - - V0| Pp1Tr_z . - - Ti42Ti41TiTi1 - . . T0)

*It is called Algorithm A2 (A2') in [9].
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Figure 3: The 4 exchange steps in a 3-cube. The shaded areas are the parts of data subject to
exchange during the next step.

initial step 0 step 1
proc. vV az az ay ag vV ag a ay ag vV ag az aj ag
s
data W4 W3 We W1 Wo W4 W3 Wo Wy Wo W4 W3 Wo W1 Wo

step 2 step 3 step 4

Hg ag ay Qg vV as ag ay ag v ag as ai g
W4 W3 Wo W1 Wo W4 W3 We W1 Wo W4 W3 Wo W1 Wo

Figure 4: The changes of data allocations along time.
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— (k=1 .+ VkonTiVk—n—2 - - - V0| Tn1Tn—2 - . - Ti42Ti41Vk—n—1Ti=1- - - T0)

— (Vk—1+ . VkonPig1Vk—n—2 - - -V0|Tn=1Tn—2 - - - Ti42TiVk—y—1Ti=1 - - - T0) —> ***

= (Vk=1 .+ VkonTi=2Vk—n—2 - - V0|Tr_2Tn_3 .. .T§Vk—p-1Ti=1Ti=3 - - - TOTn—1)

g (Uk—-l o ’l)k_n!'i__];’vk._n_g . .’Uol’l'n._.zrn_g, e oo TVg—p—-1Ti-2 - -« 7'07',7,_1)

— (Vk=1 .+ Vk—yVkoym1Vk—ryj—=2 « + - V0|Tn—2Tn—=3 « - . TiT§—1Ti=2 - . . TOTr—1),
where (Vg—1Vk—2...Vk—y) = ¢. Note that the assumption of log, n being an integer is only
required for notational convenience.

Formally, let J = ag, a1,...,0,_1 be a sequence obtained from the order set J. Let L be
the left rotation operator, i.e., L(J) = a1,...,0s—1,00, and L' = L*"1 o L. The o exchange
sequences are defined by Seq;, 0 < i < 0.

Seq; = LI(J), o.
Note that o; is also the first dimension of Seq;. For o = 3,
Seqq = ap, a1, ag, ap.
Seq; = oy, ag, ag, ay.

Seqy = a3, ap, a1, as.

During any routing cycle, different sequences use edges in different dimensions.

The one-port version of Algorithm A1’ uses a single dimension during each exchange step.
An n-port version of the algorithm can be created by defining the exchange sequences Seq;,
0<i<m, ‘

Seq; = L'(J).
Node a is active (during the intermediate steps) for Seq; if @; = a(;_1)modn- During routing cycle
J, 1< 7 < n—2,node a exchanges data along dimension ¢ if a(;_j)modn = @(i—j—1)modn-

4.3 Full-cube, separable dimension permutation algorithms
4.3.1 Using generalized shuffle permutation algorithms

Lemma 5 With one-port communication, a full-cube, separable SDP of real order o, on an
n-cube can be performed in a time of at most

B-1

Tap(1,0p,n, K) < > To(1,04,m, K).
=0

The SDP is simply obtained by performing # GSH’s in sequence. The ith GSH consists of
2"~% jndependent permutations in subcubes of dimension o¢;, concurrently. If the algorithms
chosen for the GSH’s are optimum, then the resulting algorithm for the SDP remains optimum.

With n-port communication, o; ports can be used concurrently for each GSH, and all GSH’s
can be performed concurrently. The lemma below is independent of the algorithm chosen for
the GSH.

12




Lemma 6 With n-port communication, a full-cube, separable SDP of real order o, on an n-cube
can be performed in a time of at most

B-1
T:dp(amaz, op,m, K) < Z T;sh(ai7 oi,n, K)
=0

by ezploiting concurrency within each GSH, and in time
* -1 * K
Tsdp(ap’ Opy My K) <Bx I?:bx{Tgsh(aia O35 04y F)}

by exploiting the concurrency fully.

4.3.2 Algorithms not using generalized shuffle permutations.

Algorithm A2. If the number of local storage dimensions ¢ — n is at least equal to the order
op of a separable SDP, then an arbitrary permutation can be performed as two successive all-
to-all personalized communications in subcubes of dimension o, [14]. In all-to-all personalized
communication [10] every processor has a unique piece of data for every other processor. For each
dimension j € J there exists a unique dimension k; € T's, such that the SDP can be performed
in two steps E(kj,j),Vj € J followed by E(6(5),k;),Vj € J. Assume for simplicity that the Op
lowest order storage dimensions are used in the permutations, and that the SDP involves the op
lowest order processor dimensions. Then, the two all-to-all personalized communications can be
illustrated by

(’Us_.l’vs_z . -'Uap'”ap—l e ’Uol’l'n_l’l'n_z SN To-p’l‘ap..l’l'o-p_z cee ’I’o)

= (Vs=1Vs—2 -+ Vo, Tgp—1 - - - T0|T—1Tn—2 . . -TopVop—1Vop—2 - + - U0),

and
(Vs—1V5—2 - - - VopTop—1++-T0|Tn-1Tn—2 . . TopVop—1Vop—2 + + - V0)

— (Vs—1V5-32 . . VopVop—1 + + - V0|Tr—1Tn—2 - . TopT5=1(0p—1)T6~2(0p—2) - - - 1"5_1(0)).

With one-port communication, an optimum routing algorithm (within a factor of two) is
described in [13] and [10]. With n-port communication, optimum algorithms (within a factor of
two) are given in [10], [14].

Algorithm A3. An SDP can also be implemented by exchanging subsets of dimensions re-
cursively in [log, 0, steps for a GSH of order 0,, and [log, Oymaz | steps for an SDP. Each step
is of the same complexity as that of matrix transposition with two dimensional partitioning [8].
With one-port communication, the Single Path recursive Transpose (SPT) algorithm without
pipelining [8] can be used. The complexity of the SPT algorithm is

opKt. + op [%.I T, or 3apKt 3o, [ K 'I .

4 "2 |2B|"
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The latter is based on the fact that in a 2-cube, node (01) and node (10) can exchange K
elements in a time of %Ktc + 37 by employing one virtual dimension, i.e., a special case of
Algorithm Al. With n-port communication, the best known algorithm for matrix transposition
with two-dimensional partitioning is described in [2], [8] and [14]. The complexity of Algorithm
A3 is given in Table 3. The complexity of Algorithm A3 is in general an order of log 0y,q, higher
than the lower bound. But for the special case where o; = 2 for all ¢’s, the SDP degenerates to
matrix transposition, and an optimal transpose algorithm should be used.

4.3.3 Combining generalized shuffle permutations

Algorithm A4. Algorithm A4 is designed for n-port communication, and hence uses multiple
paths for each source destination pair to make good use of the available communication band-
width. Algorithm A1 is used for each path. Thereby, one dimension is used twice for each GSH
and each path. The paths are defined by the ordered set of dimensions

Seqp = Jo, 00, J1, 010, - - = jﬁ—la & (-1)0-
Seqk = do,dy,..., dop+ﬁ—17
Seqk+1 = di,dy,..., ddp-!-ﬁ—l’ 6(d0)’ Vo< k< op + B+ omin — 2.

Note that é(dp) is not necessary dy, Table 1. The first dimension of every GSH in every
sequence is subject to two communications. The number of paths that can be generated by the
left shift and appending the first exchange dimension subject to the constraint of at most two
communications in any dimension during any routing cycle is o, + 8 + Opin, — 1.

Sequence 0 is the dimension exchange sequence for Algorithm A1 for a real SDP and one-port
communication. Sequence k + 1 is defined in terms of sequence k by a left cyclic shift of Seqy,
followed by the application of the § function to the last entry. In most cases, the last entry is
the same as the first entry, but it is different when the first GSH in the sequence is completed.
Table 1 shows an example of 13 sequences of processor dimensions, which are used to perform
the real SDP: Jp = 0, 1,2,3, i = 4,5,6,and J, = 7,8. Each sequence represents an SDP for
one data partition and all 13 SDP’s are performed concurrently. Row ¢ applies to the ith SDP,
and column j to cycle j. The table entry is the processor dimension subject to communication.

Lemma 7 The SDP’s defined by the sequences Seq;, 0 < i < 0+ B+ Omin — 1, have the property
that any processor dimension is used by at most two SDP’s during any routing cycle.

Proof: We consider three cases: (1) dimensions g, (2) dimension ¢;1, and (3) other dimensions.
Let a0 occur in Seqo at cycles j and j + o; (with cycle 0 being the starting cycle). Then, from
the construction of Seqry1 out of Seqx, ajp also occurs in Segy at the cycle(s) defined below:

j—k,j+oi—k, 0<k<j;
.. j+0; — k it1<k<ito —1:
Position(ayp) = (J),a'pf{—ﬂ-,- 1 ‘chijq-ai;_]+ i— L

op+B—1—k+j+o0;, j+oi+1<k<o,+0+0;—2.
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[Cycle [0[1]2[3[4[5]6]7][8]9[10]11]

Seqo [0|1[2|3|0[4][5][6[4]7[8] 7
Seq [1[2[3|0f4|5[6[4a]7[8] 71 |
Seqz [2[3[0[4[5[6[4[7[8[7][1]2
Seqs |3 |0 |4|5|6(4|7[8|7[|1]2]3
Sequ |04 [5|6|4]7[8[7]1[2]3]0
Seqs |4 [5[6[4[7[8|7[1][2]3]0]1
Seq¢ |56 |4|7[8][7[1]2]3]0]1]5
Seqz (647 [8[7|1|2[3]0[1][5]6
Seqs |4 |7 |8 |7|1[2[3]0|1]5]6]4
Seqp |78 [7|1]2[3]0|1]5]6] 4] 5
Seqio (8 [7|1]|2]3[0|1]|5]6]4] 5] 8
Sequu |71 [2|3]o[1[5]6[4]5]8 |7
Seqi2 |112|3|0|1]|5]|6|4|5|8| 71 8

Table 1: Combining different GSH’s by Algorithm A1l with n-port communication.

Let a;; occur in Segg at cycle j, then it also occurs as follows:

j—k, 0Sk<],
.. N — O’UP'I':B_I’ k=‘-j;
Position(o) = op+B—1—k+7, J+1<k<j+o0;-1;

opt+B—-1—k+j,0p+B-1-k+j+o;, jto,<k<o,+B+0; -2

Let a;1, 2 < I < 0y, occur in Seqp at cycle j, then it also occurs as follows:

J—k, 0<k<y;
Oyap"’ﬂ"l’ k=7,

Position(oy) = op+B—-1-k+j, j+1<k<o,+B+0;-2. i

Figure 5 illustrates the positions for a;p and «;; with their positions interconnected by solid
and dashed lines. Each row represents a sequence and each column represents the dimensions
used by all sequences during the same routing cycle.

Each sequence performs the SDP for E—ﬁ%n:: elements. The complexity is

Tﬁ;(crp, op,m, K)

op+ B K
Op +IB+0'min - 1Ktc * [-(UP +ﬁ+0'min - 1)B-I(o.p +ﬂ)T
op+ 8 . 3 K
ap+ﬂ+amin_1Ktc+(ap+ﬂ)T with Bopt— O'p+16+0'min—1
op+ B

3
m.[{tc + 50’1,7'.
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Figure 5: The cycles during which dimensions a;o (1) is used.

Note that the number of start-ups is minimal using Algorithm A1l. The data transfer time
is also of optimum order, and higher than minimum by at most a factor of two. This is mostly
due to the fact that two communications are needed for some dimensions in every cycle. Note
further, that this fact is used to generate a number of exchange sequences that exceed the number
of dimensions that need to be routed, thereby improving somewhat on the use of the available
communication bandwidth. Algorithm A4 degenerates to the n-port version of Algorithm A1
when the SDP degenerates to a GSH, i.e., § = 1.

Algorithm A5. As in Algorithm A4, Algorithm A5 is designed for n-port communication.
In Algorithm A5 the number of start-ups is reduced by partitioning each GSH of order greater
than v < opmaz, to be chosen optimally, into multiple GSH’s of order 4. An interpartition GSH
is required to realize the original GSH.

As an example, consider the shuffle operation
(agarasasasazazaiag) — (a7asasa4a3a2a1a0as)-
It can be realized as
(agarasasaqazagayag) — (agaraeasa403a1a0a2) — (A307060403a501A0a2)
— (a7060804a305010082) — (a706050403a2010as8)-
The index set J = {0,1,2,3,4,5,6,7,8} in the example is partitioned into three sets Jp =
{0,1,2}, 71 = {3,4,5}, and J, = {6, 7,8} with a combining set J3 = {3,6,0}.
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Lemma 8 A GSH with index set J of order o can be performed as p independent GSH’s on
indezx sets Jj, 0 < j < p, where T = {@s(;), @f(j)41> A5 (j)+2> - - -» @5 (j+1)—1} and 0 = f(0) <
f(1) <+ < f(n) = o, followed by a GSH on the indezx set J, = {ag(1)s- -, Xf(u-1)> ¥(0)}-

Proof: Define GSH;, 0 < j < u, to be a GSH with index set J;. Also, let o; be the order of
GSH;. Then by definition, GSH;, 0 < j < p, realizes ay(jy4i — Qf(j)+(i+1)modo;» 0 < 2 < 0y,
which is equal to

{ai"’a(i+1)moda’ ifi#f(j+1)_1,0Sj<u,
o; = af(j-{-l)—l — af(])’ ifi= f(] + 1) - 1,0 S j < U.

But, GSH,, realizes ay(;) — @f((j4+1)modu)>0 < J < K, and the proof is complete. |

If each GSH is performed according to Algorithm A1, then a direct application would yield
Y0 (0i4+1)+p+1 = o+2u+1. But, it is unnecessary to perform the last restoring dimension
exchange for any of the index sets, as illustrated next.

(v2v1v0|rar7rersTarareriTe) — (V2V1T0|TaTTTET5TATaT2T1V0) — (V2T3T0|T8T7TE 5 T4VIT2T1V0)

- (7'67‘31‘g|7"87“71?27'57‘41?17‘21‘_1_170) - (7’6237‘1|7‘87‘7vz"'57'_4”17’27'ovo) e (1"§7’47‘1|T8ﬁv27‘57'3v17‘27'000)
— (r7r4T1|r8TevaTsT3VITITOV) — (T7TaT|TeTEV2TsT3VITITOV0) — (T2T5T2|T8T6V2T4T3VIT1ToV0)
— (rersTa|r7revaraTaVITITOV0) — (T8rsV1|TTTevaTaTaTeTITOV0) — (T |PrTeTsTATaT2T1T0V0)
— (Vo201 |r7TeT5TaT3T2TITOTS)-
Note that a local shuffle is required to restore the original local storage map.

For Algorithm A5, we partition GSH; of the SDP into shuffles on subsets according to Lemma
8 such that |J;;| = 7,0 <4< 3,0 < j < p; where p; = [%ﬂ is the number of subsets for the
tth GSH. If o; is not a multiple of v, then “dummy” dimensions ¢ are added to J; such that
|7i| is a multiple of 4. The total number of GSH’s after the partitioning is u = Z?;Ol i, each
of order v. For example, for an SDP with 8 = 2, Jp = {0,1,2,3,4,5,6,7}, J; = {8,9,10} and v
chosen to be 3, then Jy becomes {0,1,2,3,4,5,6,7,¢}, 71 is still {8,9,10}, uo = 3, u3 = 1 and
= o+ p1 = 4. ~700 = {07 172}7 «701 = {3,475}1 jOg = {67 7, ¢}’ s7lo = {8797 10}

We will now construct yu sequences that can be performed concurrently. Each sequence
requires (7y + 1)p routing cycles, if the GSH permutations are performed sequentially, using u
different virtual dimensions. During routing cycle ¢ virtual dimension v;mod, is used. For the
first 1 sequences of real dimensions, we first define sequences Sk(()) of length y which will serve
as a basis.

0 0 0 0 0 0
ao k,ao ,y+k,...,a0 (“0_1),Y+k,a1 k,al Nk .,al (“1_1)7+k,' ‘e

0 0 0 .
6’: 0) = aﬁ—l k’aﬂ—l y+ko °7aﬂ_1 (Bp—1—1)v+k> if 0 < k< v,
k( ) V1 .af a0 o a a? a? 0
0 270 299 °* "2 70 (po—1)y> 0 00 %1 4> &1 2950+ 2 &y (M1—-1)’y’a1 01+
0 0 0 L —
AB—1 7> ¥B-1 29>+ 1 %B_1 (ug_y 1)y ¥B-1 0 itk=7,

where o? j = @; j. The sequence 81(0), 0 < k < v simply consists of the kth dimension of each
of the ordered sets Ji;- The sequence 3,7(0) consists of the first dimension of every subset Ti
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taken in order for each i, left rotated one step, and then concatenated in order of increasing :.
This sequence performs the coupling between the partitions within each GSH;. For the same
SDP example, So(0) = 0,3,6,8,8,(0) = 1,4,7,9, $,(0) = 2,5, 6,10 and S3(0) = 3,6,0,8.

The exchange sequences Seq;,0 < j < pu is defined by

Seq; = L#(80(0)), L(81(0)), - .-, I(85(0)), 0<j < .

See the first four sequences in Table 2 for an example. Additional sequences are formed by
forming new sets Si(£) by partitioning the ordered sets obtained through an £ step left rotation
of each set J;, 0 < i< 3. So,

£ £ £ £ £ £
ao k,ao ,y+k,...,a0 (MO“I)’Y"I"C’al k,al ,Y_I_k,...,al (I"l"‘l)’Y’*‘k’...,
£ £ :
- 051 ky OBt ko> UGt (pp_y —~1)r4k? ifo<k<y,
k( )— al al al al a-e af af al
0 4250 292270 (po—1)v? 00°™1 42=1 29771 (pp~1)y? 1 07

0[%__1 ,_/, 0[%_1 27, v ey Oﬁﬁ_l (”’ﬁ—l_l)’y’ Ollb_l 0, if k = 7,
where of ; = Qi (j+f)modpus- 1D general,
Seq,er; = L7(50(€)), LI($1(8)), ..., I(84(8)), 0<j<p0<L<y.

For the same SDP example, So(1) = 1,4,7,9, $1(1) = 2,5, 4,10, S3(1) = 3,6,0,8 and Ss(1) =
4,7,1,9. Note that Sg(£) = Sg4+;(£ — j) for £ < j < p— k. Table 2 shows the 12 sequences for
the same SDP example.

Note that p virtual dimensions are required for each sequence. With a data set of size at least
2# per processor, the permutation corresponding to exchange sequences Si({) are equivalent to
one-port all-to-all personalized communication in a p-dimensional subcube.

Lemma 9 Fach sequence of exchange operations defined above realizes the desired SDP.

Proof: Since the original § GSH’s have disjoint index sets, we only need to consider the
relative order for each GSH. By construction, the virtual dimensions for each of the 8 GSH’s
are disjoint. The lemma applied to sequence Seqq follows directly from Lemma 8. But, since
the starting index is immaterial, and all other sequences have the prescribed exchange order for
the dimensions within each GSH, the proof is complete. Il

Lemma 10 The yu exchange sequences defined by different Seqe; can be executed concurrently
without edge contention in the case of n-port communication.

The lemma is easily proved from the construction of the sequences.

Figures 6 and 7 show the first four sequences of exchange operations (Seqq to Seqs) with
SDP of Jo = {0,1,2,3,4,5,6,7,8}, 1 = {9,10,11} and SDP of J, = {0,1,2,3,4,5,6,7},
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Table 2: The 12 sequences for an SDP with 8 = 2, Jp = {0,1,2,3,4,5,6,7}, 71 = {8,9,10} and
v =3.
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Figure 6: The first four sequences of exchange operations (Seqg to Seqs) with SDP of Jp =
{0,1,2,3,4,5,6,7,8}, Jy = {9,10,11}, 3 = 2 and 7 = 3.
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Figure 7: The first four sequences of exchange operations (Seqp to Seqs) with SDP of Jp =
{07 1,2,3,4,5,6, 7}7 J= {8, 9, 10}’ B=2andy=3.

J1 = {8,9,10}, respectively, and both with 3 = 2 and ¥ = 3. For simplicity, each step in the
figures combine four sequential communication steps.

For a given 7, the communication complexity with n-port communication is

,.y_l_ A1 Oy, 7+
> [L] r=Ktet(y+lpur  with B = Bop.

K
T Kt (41 |55
1=0 7

2vB ]

For example, for 8 = 2, 09 = 9, 01 = 4, the number of start-ups are 21, 20, 20, 18, and 20 for
v =2,3,4,5,and 9, respectively. For 8 = 2, g = 6, 01 = 4, the number of start-ups are 15, 16,
15, and 14 for v = 2, 3,4 and 6, respectively.

For v = 2 and optimum packet size, the complexity becomes

!
§Ktc+ 3(op + 0J')

3
1 2 T < ZKtc + 20,7,

where oJ' is the number of GSH’s with an odd real order. It is at most 332 For v = 0,4z, the
number of start-ups is #(maz + 1). The start-up time is minimized for 2 < ¥ < yn4z. A loose
upper bound of the number of start-ups for any + in the range of [2, omaz] is 2(0p + (Omaz —1)B),
which is at most 4(0 — 0p).

Algorithm A6. As in Algorithm A4 we assume n-port communication. Since every data
element has to be permuted according to all GSH’s making up the SDP, performing all GSH’s
concurrently implies 3(0pmq,+1) start-ups, since the GSH of maximum order has to be performed
B times. By organizing the GSH’s into groups it may be possible to reduce the number of start-
ups, and the total communication time. Ideally, all groups require the same time. For instance,
if a real SDP cons1sts of three real GSH’s of order 7, 3, and 3, then the data set is partitioned
into two parts of elements each (assuming that Algonthm A1 is used for each real GSH). One
part is permuted through the GSH of real order 7. The other part is partitioned further into
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Time GSH 0 GSI 1 GSH 2

[ DO + D1 | | D2 || D3 ]
_____ d
| D3 || D2 |

__________ L__-_____________l___________J_____

D2 + D3 | | DO || D1 |
[ bt | [ Do ]
__________ S .

Figure 8: Hierarchical partitioning of the data set for Algorithm A6 and an SDP consisting of
three GSH’s of order 7, 3 and 3.

% elements each, one for each real GSH of order 3. All three GSH permutations are performed
concurrently, and for each GSH the data set is further subdivided for maximum concurrency
within the GSH. By using the n-port version of Algorithm A1 each part of % elements requires
the same number of start-ups. When the permutation for all sets is complete, the data is
repartitioned for a new set of permutations by applying the permutation defined by the next
set of GSH’s, modulo the number of sets, to the data. Hence, the data permuted for the real
GSH of order 7 is then permuted according to the two GSH’s of order 3 each, and conversely the
data already permuted according to these two GSH’s will be permuted according to the GSH of
order 7. For non-separable SDP’s it may not be necessary to extend the set of dimensions for
Algorithm Al. Figure 8 illustrates the data movement for this example, where DO to D3 are the
four equal partitions of the data set.

Specifically, let SDPq, SDPy, ..., SDP,_1 be some p-partitioning of the given SDP, i.e., the
B GSH’s are distributed in the p partitioned SDP’s and p < 8. Then, the given SDP can be
solved recursively in time

T(SDP, K) = p + max{T(SDP;, fuﬁ),vo <i<u}

where T(SDP, K) is the time for an SDP with data volume K. This is derived simply by
partitioning the data volume into u equal parts, leting different parts participate in different
sequences of SDP;’s while all sequences of SDP;’s are performed concurrently.

Recall that the complexity of Algorithm A1 for a GSH of order o; and data volume K is
o;i+1
(—}20_1_)}'(% + (03,' + 1)T
The data transfer time is almost independent of the real order of the SDP using Algorithms A1.
Hence, we focus on minimizing the total number of start-ups.
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The lemma below gives a bottom-up algorithm for binary grouping of the GSH’s. The total
number of start-ups is less than 2(o;, + ) for any SDP and may be as small as o, + 3 for some
SDP’s. Each element s; of set S below will be interpreted to o; + 1 in Theorem 2, which is the
number of start-ups required for the ith GSH. The minimum number of total start-ups, f(5), is
then defined recursively as the minimum of the largest start-ups per set (max; f(S;)) multiplies
the number of sets () for any p partitioning of S and any p.

Lemma 11 Let S = {so,$1,...,33-1} be a multi-set of positive integers, i.e., may contain the
same integer more than once. Denote Sum(S) = ngol s;. Define f(S) as follows:

2, if §= {3}7
f(8) = ¢ miny, partitioning of s{n x max; f(S;),
where S;’s, 0 < i < u, are the p partitioning sets of S}, otherwise.

Then, Sum(S) < f(S) < 25um(S).

Proof: Clearly, f(S) > Sum(S). Consider p = 2 for f(S) and assume |S| > 2 in the following,.
We will define a sequence of multi-sets S, 51, .. SU) inductively where z > 2¢, Vz € SG).
Let $ = $© and $¢+1) be derived from S, 0 < i< j, as follows. Let the number of integer
elements in S N [2¢,2¢11) be y and let them be ordered such that zo < z; < --- < Ty_1.
Then, let 2 - max(zs;,%2,41) be an element of SG+Y) for » = {0,1,..., %] — 1}. If there
is an element left unpaired, then simply increase its value to 2¢+! and include it in SCG+1),
Remaining elements of S() are included in S(+1). For example, if S®) = {8,9,11,13, 14, 17,21}
then S() = {18,26,16,17,21}. Notice that Sum(S¢+D) — Sum(S®) < 2. Furthermore,
F(SEHD) > £(SO), since for every u partitioning of S(G+1) there exists a corresponding u
partitioning of S() such that uxmax; f (Si(,i)) < pXmaxy f (Sz(,l +1)) where Sf," )’s are 4 partitioned
sets of S(). This procedure is iterated until a set $(9) is reached such that |SU)| = 2 and its two
elements are in the range [27,27%1). Let these two elements be  and &’ with 2’ > z. We now show
¢’ < Sum(S). By Sum(SE+1) — Sum(S®) < 2%, one can derive Sum(SW) — Sum(S) < 29 —1,
ie., z+e’ < Sum(S)+27. This means 2’ < Sum(S),since z > 2. So, f(SU)) = 22’ < 25um(S).
On the other hand, f(S) = f(S©@) < f(SW) < ... < f(SY)). Therefore, f(5) < 25um(S). I

Any SDP algorithm can be employed for each group of GSH’s. We only consider Algorithm
Al, if a group of GSH’s consists of a single GSH. Consequently, Algorithm A6 degenerates to
a concurrent application of Algorithm A1 to each GSH, if there is only one GSH per group for
every group.

Theorem 2 Let S = {oo+1,01+1,...,03_1+1} and min(S) = min{oo+1,01+1,...,05_1+1}.
Then, there ezists an algorithm based on the grouping of GSH’s of an SDP where the number of

start-ups is f(S) and the data transfer time is 5 ﬁ“ﬁﬁ(‘;)_l)tc.

Proof: We show the theorem by induction on the level of the tree inherited from the construc-
tion of f(S) starting from the last level. Each set S specifies an SDP by adding one to the
sequence of real orders in the index sets. Let T'(S, K) be the time required to realize the di-
mension permutation specified by the set S with data volume K by the hierarchical partitioning
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algorithm. By employing Algorithm A1, T({o; + 1}, K) = ﬁ%&tc + (0;+1) [2—5.—1;]1'. Assume
T(S;,K)= ﬁ%—%tc + f(S:)T with optimum packet size and S;’s, 0 < 7 < p, are the p dis-
joint subsets of the set S that minimize f(.5). To realize the dimension permutation specified by
the set S, first partition the data set of size K into u equal subsets, called subsets 0,1,...,u—1.
The data of subset ¢ participates in a sequence of SDP;, SDP (;11)mody> - - - s SDP (i—1)mod,, Where
SDP; is the SDP specified by the set S;. Furthermore, the data of different subsets of the set

K are permuted concurrently, one such subset for each partition of the set S. Since, all the p
subsets are of the same size, the time to realize the SDP with optimum packet size is at most

T(S,K) = pxm;:a»x{T(Si,%)}

— 4 x max{ min(S;) K
- AR 2p(min(S;) — 1

min()K ]
Smin(s) 1) T

)n+ﬂ&ﬁ}

Note that with arbitrary packet size, the number of start-ups is

K
lif .
max(2(a: + D[ e 1)

where /; is the level of o; in the binary tree defined in the proof of Lemma 11. 1

Corollary 5 With n-port communication and optimum packet size, the dimension permutation
can be realized by an algorithm based on a partitioning strategy with a complexity of at most

(amin + 1)K
20 min

3K
< th + (30'p - 1)7’.

Ts“ég(n, Op, 1, K)

IN

te+ (2(op+ B8)— )T

The optimum packet size is %;, if the SDP degenerates to a GSH. For 8 > 2, the optimum
packet size can be shown to be bounded from above by %. The worst case occurs when 8 = 2

and og = 2. So, the maximum packet size is ma,x(%, 5% .

4.4 Full cube, non-separable dimension permutation algorithms
With one-port communication, the dimension permutation is simply obtained by performing 8
GSH’s in sequence. Algorithm A1l should be used for the mixed cycles. For real cycles either

Algorithm A1l or A1’ should be used depending on K, t., 7 and op,. Let 8’ be the number of
real GSH’s. The communication complexity is

K K
Tyip(1, 09,1, K) = (05 + B) 5 te + (05 + )51,
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by using Algorithm A1.

With n-port communication, one can employ the same algorithm as if there is no virtual
dimension, for instance Algorithms A4, A5, or A6. The communication complexity is determined
by the number of real dimensions (since the time for local data movement is ignored). The
number of virtual dimensions introduced for the exchange sequences is o, — m}, where m}
is the number of virtual dimensions that have a succeeding real dimension in the index set.
The number of exchange sequences that can be run concurrently without any extra storage
requirement (extra virtual dimensions) is m/.

A non-separable SDP for which RPNR? = ¢ is an all-to-all personalized communication. In
such a case the complexity of Algorithm A2 in Table 3 should be halved, since the table entry
assumes R® = R®. The complexity of Algorithm A2 may be preferable for non-separable SDP’s.

4.5 Extended-cube permutation algorithms

For an extended-cube permutation, we adopt a three phase scheme: subcube expansion, full-
cube permutation, and subcube compression. The first phase each processor with data partitions
it into 2"~ ™r pieces and all processors concurrently perform a one-to-all personalized commu-
nication to each of the 2™ distinct subcubes of dimension n — m,. In the second phase, an
algorithm for a full-cube permutation is used concurrently in the 2"~™» subcubes, with the data
volume reduced by a factor of 2*~™». The third phase is the reverse of the first phase, i.e., data
are gathered (compressed) into the original active subcube. The complexities of the first phase
and the third phase are the same, and for the best known algorithm [3,10] the complexity of
each is

1
K (1 - 2n—m,,) te+ (n—my)T

for one-port communication, and

K 1
<1 — 2n_mp) te+ (n—my)T

n—myp

for n-port communication. With n-port communication, if the algorithm used in the second
phase is optimal, then the total data transferred is = 2,,_In‘;p+T nZ{(nP compared to %— for an
optimal algorithm using links of the active subcube only. The speed-up of the data transfer

time is about a factor of ﬁ_—;ﬁﬁ, but the start-ups compare as 2(n —m,) + o, to o,. For one-port

communication, the data transferred is =~ 5,;?;—,,1—[{1;;1— + 2K compared to g”zﬁ The speed-up of the
data transfer time is about a factor of Z2.

4.6 Algorithm comparison and summary

All presented algorithms have a communication complexity of the same order as the lower bound,
except in a few cases. The difference in the communication complexities of the algorithms
and the lower bound is generally a small constant factor. The control is distributed for all
algorithms. The communication complexities are summarized in Table 3. The second last
column contains the ratio of data transfer times and the lower bound. The last column contains
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[ Comm. | Alg. | Bopt [ Communication complexity | tcfactor/lb | rfactor/lb |
sep. | Al K 248 gt 4 (0p + B[ £ 7 @, 1.5] @, 1.5]
SDP Al K opKtc+ op[ £ 2 1

one-port | A2 £ opKtc+20,[ 55T 2 2
comm. A3 K Mlogy Omaz](0pKtc + o[ X7 7) [2,2[logy omaz]] | [1, [logy Omaz]]
: oot3)2
Al Ty Bmaxi{ CEUE L + (00 4+ 1)[ 55517} @, 1.5] (1, L2
P 2
Sep. Al' ;;.Lf;—ﬂ- Ktc-l- ,Bdma,;,; I-BT,::—{;FE:IT 2 [l, (—2:8’-—2-)—-]
SDP A2 P Kte+20p[55517 2 2
n-port A3 1/ fT: [log; Omas|(£5 + 1)(r + Bt.) (1,2[logy omas|]
+B8)Ktc
comm. | A4 ap+ﬁ+§m-,.—1 a,(:’b+a2,.e,.—1 + I-(ap+:3+rffm'n—1)13]("1’ +A)r (1, 2) (1, 1.5]
A5 £ Kt +(v+ )25 S0 [%0r (1, 1.5] (1, 2]
A6 | max(5%, ¥) (G + 5o ) Kte + (20 +26 = 1)7 @1, 1.5] 1,3)

Table 3: Summary of the communication complexities for various algorithms. Note that o; = op,.
The complexity for Algorithm A6 is with B = B,,;. The complexity with arbitrary B is shown
in the proof of Theorem 2. The factor of start-up times for A5 is for u = 2.

the ratio of the start-up times and the lower bound®. Algorithm A3 is not optimal if logy omas >
O(1). Also, Algorithms A1 and A1’ (in general) are not optimum for n-port communication,
and optimally chosen packet sizes. However, the complexities of Algorithms Al and A1’ are
comparable with those of Algorithms A4, A5 and A6 for a packet size that is very small compared
to the data volume. Furthermore, the complexity estimates for Algorithm A2 assume two all-to-
all personalized communications. For an SDP containing all mixed GSH’s of order 2, one such
communication may suffice and the estimates are pessimistic by a factor of two.

For one-port communication the number of start-ups of the algorithms is at most twice the
lower bound, except for Algorithm A3 that may have a factor of [log, o/n4,| more start-ups.
Algorithm A1’ has a number of start-ups equal to the lower bound. For n-port communication
Algorithms A2, A4, A5, and A6 all have a number of start-ups that are higher than the lower
bound by at most a factor of three, with Algorithm A4 potentially having the fewest start-ups.
The data transfer time for Algorithm A1 with one-port communication is at most 50% higher
than the lower bound, and that of Algorithms A1’ and A2 is twice the lower bound. For n-port
communication all algorithms (with the exception of Algorithm A3) have a data transfer time
that is at most a factor of two higher than the lower bound.

We conclude that the data transfer time of Algorithm A1l is a factor of %’*’;@ lower than

that of Algorithm A1’ for one-port communication and about a factor of %ma':’ﬂ"i';l lower for n-port
communication. The factor ranges from 0.5 - 0.75 for both one-port and n-port communications.

®For convenience, we use o, (instead of o, — 0J, Theorem 1) as the lower bound for comparison.
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| Algorithm |  ois={3,6} | os={2,2,5} | o/’s={2,5,11} |

A4 BKt.+ 117 DKt + 127 LKt + 217

A5 2Kt.+12r,7y=3 | §Kt. + 157,y =2 | 5Kt +287,7=6
SKt.+14r,7y=6 | 2Kt +167,v=3 | £ Kt + 367, =11

A6 2Kt. + 1471 3Kt. + 12r S3Kt.+ 24t

Table 4: Compleixty of Algorithms A4, A6 and A5 for some example SDP’s.

With optimum packet size the number of start- ups of Algorithm Al is a factor of 1+ ﬁ higher

than that of Algorithm A1’ for one
communication. The factor ranges from 1 to 1.5. For a small packet s1ze Telative to the data
set, the number of start-ups compares as the data transfer times. Algorithm A1’ is relatively
more competitive for n-port communication than for one-port communication with optimum
packet size. The break-even point between Algorithms Al and Al' is 7 = (%‘1 — 1)%4, for

one-port communication, and T = (1 — =2 )K—t“s for n-port communication and T > 20'15:01"‘”.
(Note that the complexity of Algonthm AT for n-port communication has a maximum value at

0; = Opmaz LT > —&te . and a maximum value at O; = Omin, Otherwise.)

20mazOmin’

With n-port communication Algorithms A4, A5, and A6 are the algorithms of choice, unless
the start-up time is negligible, or all cycles are of the same real order. The complexity of
Algorithm A5 is bounded from above by %K tc+20,7 by choosing v = 2. The number of start-ups
in the complexity estimate for Algorithm A6 is for the worst case, Lemma 11. It may be as small

as 0p + 3. The break-even point between Algorithms A4 and A5 is approximately 7 = 11(_5%—?)'
. . . . _ Kt
The break-even point between Algorithms A4 and A6 is approximately = = 61" From

the complexity estimates, Algorithm A5 is always better than Algorithm A6 due to the worst
case estimate of A6. In general, Algorithm A6 may be preferable to Algorithm A5.

Table 4 shows complexities of Algorithms A4, A5 and A6 for three examples. For the first
example, both A4 and A5 may be preferable. For the second example, both A5 and A6 may be
preferable. For the third example, any of A4, A5 and A6 may be preferable. The choice depends
on K, t., T and J etc. So does the choice of v in Algorithm A5. Since the coefficient of 7 in A5
(v+ 1) Z [—i] > 0p + B, A4 has a lowest start-up time. The start-up time of A6 is within a
factor two to that of A4. By choosing v = 2, the start-up time of A5 is within a factor of two
of that of A4. By choosing ¥ = 0., in A5, both A5 and A6 have the same data transfer time.
However, either of them may have lower start-ups (as shown by the two examples) depending
on the distribution of o;’s. The data transfer time of A4 is within a factor of two to that of A5
and A6. The data transfer time in A5 decreases as v increases and becomes the same as lower
bound, asymptotically. However, minimizing the start-up time yields 2 < v < omqz.

Algorithm A2 is inferior to Algorithms A4 and A5 for separable, stable SDP’s, but may be
preferable for non-separable SDP’s. The complexity of Algorithm A3 is, in general, an order
of O(logy Opmaz) higher than the lower bound, but has the lowest complexity of the considered
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Algorithm | A1 | Al | A2 | A3
Memory | K | 2K K 2K
min{K} | 2 | 1 |20ma= | 1

Table 5: The memory required and the minimum size of data volume required for maximum
concurrency for different algorithms with one-port communication.

Algorithm Al AY A2 A3 A4 A5 A6
Memory K 2K K 2K K K K

min{K} | 2B80maz | 0p | 8277 | 20mas | 2(0p+ B+ Omin — 1) | Yu2# | < 20,

Table 6: The memory required and the minimum size of data volume required for maximum
concurrency for different algorithms with n-port communication.

algorithms for o; < 2, V0 < ¢ < 3, and n-port communication.

Table 5 shows for different one-port algorithms, the memory required and the minimum size
of the data set K for which the complexity estimates are true. The corresponding estimates for n-
port algorithms are given in Table 6. All algorithms require a memory which is at most twice the
original data volume. Recall in Algorithm A2, we perform all-to-all personalized communication
for each o,-dimensional subcube. The minimum K for maximum concurrency is 2°7 for both one-
port and n-port communications. However, in the one-port communication case, one can perform
the all-to-all personalized communication within each o;-dimensional subcube in sequence for
different ’s and attains the same result with the same complexity. The minimum K required
becomes 27me= as shown in the table. In the n-port communication case, one can partition
the data into S parts such that the ith partition participates the two all-to-all personalized
communication in each o;-dimensional subcube defined by J; and all partitions participate
concurrently. Since the complexity of all-to-all personalized communication is independent of
size of a cube in n-port communication, all partitions take the same time. The procedure is
repeated B times in a rotated manner such that the ith partition participates in a subcube
defined by Ji, J(i41)modss - - > J(i-1)mods, Tespectively, in order. The resulting complexity
remains the same as the original algorithm, but the maximum K required is reduced to §2°ma=,
For Algorithm A6, the maximum K required is max;{2%0;}, where £; is the level of o; in the
binary tree defined in the proof of Lemma 2. It can be shown that 20, > 2%0;, so the maximum
K required is at most 20,.

We now discuss Algorithms A4, A5 and A6 based on one-port version of Algorithm A1’

Recall the complexity of A1’ for a GSH of order o;, one-port communication and with optimum
packet size is

o, Kt. + o;r.

Performing permutation for the next GSH before finishing permutation for the current GSH
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causes the data per active processor to be permuted for the next GSH doubled. A4 based
on Al increases the data volume by a factor of two, since there is an unfinished GSH. The
complexity is

2Kt. + opT.

A6 based on A1’ has a complexity of
Kt. + (20, - 1)T.

Note that the complexity of A6 based on Al’ is always higher than that of A4 (based on Al).
However, the (20, — 1)7 start-up time is the worst case for any SDP. The best case is 0,7
for some SDP’s for which all the partitioned groups have the same number of start-ups for all
levels of recursion. A5 based on A1’ has the problem that the number of active processors
halved for every unfinished GSH. Since there are y — 1 unfinished new GSH’s in general, the
data transfer time is at least an order of O(2#) higher than the lower bound. We conclude that
Algorithm A4 based on Algorithm A1’ has an optimal start-up time (in comparing to o;). The
data transfer time is a factor of four to the lower bound. A5 and A6 based on Algorithm A1’
are not competitive except for some special cases of SDP’s for A6.

5 Summary and conclusions

We have derived lower bounds for stable dimension permutations on Boolean cubes both for
one-port communication and n-port communication, and devised several optimal algorithms for
one-port communication and n-port communication. Optimal algorithms for one-port communi-
cation can be directly derived from optimal algorithms for generalized shuffle permutations [9].
However, devising optimal algorithms for the n-port communication case is non-obvious. A naive
generalization would lead to either non-optimal start-up time or poor bandwidth utilization. The
proposed three new algorithms, A4 - A6, use different strategies for creating concurrent exchange
sequences, such as rotation, permutation and recursive grouping of the index set. We have also
showed that for full-cube permutations on a subset of the processor dimensions no reduction in
complexity is possible for optimal algorithms by using processor dimensions not participating
in the permutation. The presentation of the algorithms also illustrates a general methodology
for devising communication algorithms for n-port communication. The minimum number of
start-ups in sequence is equal to the number of processor dimensions in the permutation both
for one-port communication and n-port communication. The optimum data transfer time in
the n-port communication case is proportional to the size of the data set per processor. For
one-port communication it increases by a factor approximately equal to the number of processor
dimensions in the permutation. Depending on communication capability, message size, cube
size, data transfer rate, and communication start-up time, different algorithms must be chosen
for a communication time optimal within a small constant factor.
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