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Abstract

The topological properties of metal-oxide semiconductor (MOS) tfansist.ors and the interconnections
thereof are captured in a graph model. A sép of algorithms is devised for the enumeration of layout
topologies of a circuit from its graph model. Layout topologies are presented in stick diagrams. The
algorithms select a set of embedded layout topologies with the *fewest* numﬁer of jumpers for layout
generation and compaction. Layouts for circuits with up to 36 transistors have been generated
successfully. The layouts corrwponcﬁng to the topologies generated and selected by the algorithms are, in
most cases, smaller than compacted hand layouts. ‘The worst case computational complexity is O(nz),
where n is the number of transistors in the circuit.

I. Introduction

The transformation of designs specified as circuit schematics into the “"best® physical layout is a
problem of great importance and unfortunately, great computational complexity. Computer generated
layout topologies can lead to circuits that require less area, and that are faster than hand designs.
Designs using transistors and wires as the primitive components in circuit schematics and their
implementation usually yield circuits that are faster and that have fewer transistors than functionally
equivalent designs using higher function primitives.

The computational complexity of layout generation from a ‘given circuit description can be reduced by
restricting either the functional domain or the layout domain or both. Many programmable logic array
(PLA) generators achieve a low computational complexity by restricting the layout domain. A standard

cells approach has low computational complexity due to restrictions on the layout and functional

1The research described in this report was carried out while the authors were with the Computer Science Department of the
California Institute of Technology




domains. The approach we propose achieves an acceptable computational complexity for a large class of
circuits by reducing the dimensionality of the layout generation problem. The reduction in
dimensionality is obtained through the identification of equivalence classes. No constraint is imposed on
the functional or layout domains.

"Figure 1 illustrates our approach to the circuit embedding problem. A logic design is specified as circuit

schematics. The circuit schematics are then transformed into a circuit graph.
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Figure 1: Our Approach to the Circuit Embedding Problem.

The circuit graph is analyzed by our analysis algorithms. They generate a set of data graphs and
constraint graphs for each circuit graph. The embedding problem is converted to the problem of coloring
the vertices of two constraint graphs. A coloring defines an embedding topology. The number of
vertices of the constraint graphs is equaJ. to the number of edge-disjoint paths in the circuit graph. One
of the constraint graphs, the total 4compensation graph is used for plane assignment of paths. The
other constraint graph, the orientation constraint graph, is used for the assignment of orientations of
paths relative to each other for all the planes. For a planar circuit graph the total compensation graph
has no edges, and the coloring is trivial. However, even for large classes of non-planar graphs the number
of edges in the total compensation graph is few and the coloring is computationally feasible. The

orientation constraint graph is always 2-colored. The computational complexity of enumerating all




embedding topologies of a given circuit graph is acceptable for large classes of circuits. A heuristic
selection mechanism is included in the enumeration algorithm in order to generate an embedding topology
with the "fewest" number of jumpers. A circuit graph embedding topology is expanded into a layout

topology graph. A stick diagram is generated for each layout topology graph. An ideal compactor
produces the final layout.

An ideal compactor transforms different stick diagram representations of a given layout topology into
identical blayouts. The compactor needs information about the minimum bounding box, and the cyclic
order of the ports around the perimeter of the layout. Hence, for a given set of boundary conditions, only
different layout topologies lead to different layouts. By choosing layout topologies as the intermediate
representations of circuits, the circuit layout problem becomes managable. Our embedding algorithm can

efficiently generate and evaluate many different topologies for a given circuit schematic.

The use of transistors and wires as the primitive components for circuit schematics and general layout
generators is not new. DUMBO [11] is another general layout generator using these primitives. Layouts
generated by DUMBO on the average are 120% larger than hand designs. Wolf has identified two
poésible reasons for the inefficiencies: 1) the placer is insufficiently attentive to the planarity of the wiring
implied by the placement; 2) and the wirer sometimes chooses very bad locations for the contacts it adds
to the cells.

A graph tﬁeoretic approach to circuit embedding was applied by Rose and Oldfield [8] for the
embedding of bipolar analog circuits in single layer circuit boards. Engl, Mlynski, and Pernards [2] used
a graph theoretic approach to embed bipolar analog circuits into integrated circuits, and Van Lier and

Otten [10] used a similar approach to solve the problem of embedding bipolar analog circuits in a
monolithic technology.

Goldstein and Schweikert [3] have proposed a model for testing the planarity of electrical circuits.
VanCleemput [9] extended Goldstein and Schweikert’s model with the capability of specifying the cyclic
order of terminals of components. Phyéically or logically equivalent terminals can also be specified.

The graph models mentioned previously do not capture the topological properties of gate terminals of
MOS transistors. The two physical gate terminals of a transistor, besides being physically equivalent,
create a “free" crossover that can be exploited. The connections to the gate can be partitioned into two
subsets, one subset connects to each terminal. With our proposed model, there is only one graph for each
circuit schematic, independent of whether there are connections to one or both gate terminals. An

exponential growth in the number of graphs for a circuit is prevented thereby.

Our graph model is discussed in section II, and the analysis algorithms are described in section ITI.




Examples of layouts generated by our approach, and some run-time data, are given in section IV. The

conclusions and the recommendations for future research appear in section V.

II. The Graph Model

Our primary interest is in MOS circuits. The graph model must capture the essential characteristics of
the physical layout. The layout consists of transistors, wires, and contacts. A MOS transistor is logically
a three terminals device. It physically has four terminals: the drain terminal; the source terminal; and
the two gate terminals. The model for a MOS transistor should be independent of the number of physical
gate terminals used. Otherwise, the number of graph models for a circuit grows exponentially. The
transistor type is irrelevant in deriving the layout topology, except in presenting a layout topology as a
stick diagram. The transistor type is defined by a separate mask, and need not be considered in the
layout optimization. All MOS transistors are topologically identical. Wires can be assigned to any of

three layers: di ffusion, poly, or metal. Contacts serve to connect wires on different layers.

A net is a set of terminals and/or ports, connected at all times, by wires and contacts. The appropriate
model for a net is a vertex as proposed by Goldstein and Schwejkert. Net vertices are of two types, gate
and nogate. A gate net vertex, or gate vertex for short, is a vertex that corresponds to a net with at
least one terminal being a gate terminal of a transistor. If none of the terminals in a net is a gate
terminal, then the corresponding vertex in the graph representation is of type nogate, or nogate vertex
for short.

A transistor in our graph model is defined tmplicitly by a pair of directed edges terminating on the net
vertex to which the gate terminal of the transistor belongs. The two edges are named the drain edge
and the source edge, respectively. The drain edge emanates from the vertex representing the net to
which the drain terminal belongs. The source edge emanates from the vertex representing the net to
which the source terminal belongs.

In the current two dimensional MOS technology, circuit layouts can be adjacent to each other, but not
on top of each other. Ports provide connection points between circuit layouts. The cyclic order of ports
at the perimeter may be prescribed. The graph model must have provisions for identification of ports
and the speciﬁcat.ion' of the prescribed cyclic order.

The perimetei' of a layout has properties similar to a vertex in a graph. A vertex of an embedded graph
is accessible from all its adjacent regions. This property is also true for the perimeter of a layout. In our
model the perimeter of the layout is represented by the exterior vertex.

Ports are represented by undirected edges in our graph model. A port edge has one end incident on
the exterior vertex, and one end on a net veriex. A prescribed order of ports at the perimeter of a circuit

schematic is represented by a constraint on the cyclic order of the exterior vertex.




An exclusive OR circuit and its graph model is shown in Figures 2 and 3. A detailed description of the
circuit to graph transformation algorithm can be found in [7]. The computational complexity of the

transformation algorithm is linear in the number of transistors and the number of ports, i.e., linear in the
number of edges of the circuit graph.
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Figure 2: Circuit Specification of an XOR.

s b

~ & 7
B 9
1. 11
12 13
14 15
16 17
18 1s

Figure 3: A Circuit Graph Model of an XOR.

II. The Embedding Algorithm

By modeling a circuit as a graph the problem of embedding a circuit in a set of physical layers is
converted into the problem of embedding a graph in a set of planes. The general graph embedding
problem, i.e., the embedding of a graph in the fewest number of planes, is NP-complete. ‘The planar
graph embedding problem is the least complex embedding problem. It is also a hard problem, but there
exists a linear time algorithm for planarity testing [4]. For non-planar graphs it is desirable with respect
to computational complexity that the embedding algorithm is capable of enumerating many embedding
topologies without processing the graph repeatedly. We capture all the information required for the
enumeration in three types of graphs, the path tree, the orientation constraint graph, and the set of
compensation graphs, during one traversal of the circuit graph.



The first stage of the embedding of the circuit graph is to find a partitioning of this graph into
mazimal biconnected components. A biconnected component is a connected component which stays
connected under the removal of any single vertex and the edges incident thereupon [1]. A maximal
biconnected component is a biconnected component which cannot be enlarged with additional nodes and
associated edges of the connected component of which it is a subgraph, without losing the property of
being biconnected. The different biconnected components can be embedded independently. In the
following we assume that the circuit graphs are biconnected.

Our algorithm that analyzes the biconnected components creates a data structure such that the
enumeration of embedding topologies can be carried out efficiently. The analysis algorithm is a modified
PATHFINDER procedure of Hopcroft and Tarjan's (HT) planarity testing algorithm. The
PATHFINDER procedure adds paths to a subgraph already tested for planarity. Our analysis algorithm
uses the same set of paths as those genérated by HT's algorithm. The analysis algorithm is embedded in
HT’s path-finding algorithm. HT’s algorithm is modified such that it halts only after all edges are
processed. This is accomplished by deleting the 'ﬁo to non-planar® clauses from the procedure EMBED.
The terminology for the description of the graph analysis algorithms is defined in [7].

HT’s algorithm is also modified to capture enough data to enumerate embedding topologies and to
efficiently draw the embeddings. The procedure PATHFINDER is invoked recursively. It decomposes the
graph into a set of edge-disjoint paths. This defines a hierarchy of paths. The hi'erarchy"is captured in a -
path tree where a vertex corresponds to0 a path in the circuit graph. The initial cyéle selected by HT's
algorithm js represented by the root of the path tree. The algorithm selects a sequence of edge-disjoint
paths such that each new path forms a cycle with either the preceeding path alone, or the preceeding path
and any of the previously selected paths.

The algorithm treats the paths as directed in the direction of increasing index of the vertices of the
path, except for the last edge of the path. It is directed to a vertex of a preceeding path or for the initial
cycle the first vertex of the path itself. Let P1 and P2 be two edge-disjoint paths of a biconnected
component, and the corresponding vertices in the path tree be V1, and V2. Then V1 is the parent of V2
if and only if the first vertex of P2 is one of the vertices, but not the first or last vertex, of P1. Pl is

. referred to as the parent path of P2. The parent cycle of a path is a cycle formed by the parent path,
4a.nd sections of some other paths, with the obvious exception for tﬁe few paths where the parent path is
the initial cycle.

Each subtree of the path tree is a bridge. The number of bridges is equal to the number of nodes in the
path tree. The parent path of a bridge is the parent path of the path forming the root of the subtree
defining the bridge. Similarly, the parent cycle of a bridge is the parent cycle of the path forming the




root of the subtree defining the bridge. The parent bridge of a bridge is the smallest subtree of the path
tree that has the bridge as a proper subtree. In the graph embedding bridges with the same parent path
must be assigned either to the left or to the right with respect to their parent cycle for each plane. We
refer to the left/right assignment of a bridge as its ortentation. For each plane the orientation of bridges
must be made such that bridges do not cross. For a planar graph there exists an orientation (not unique)

such that no crossing occurs. We separate the orientation assignment from the plane assignment.

A pair of incompatible bridges are two bridges with the same parent cycle that will cross when both are
given the same orientation. The incompatibility is detected by comparing the end vertices of the paths
constituting the bridge with the attachments of other bridges having the same parent cycle. The
incompatibility in the orientation of bridges with the same parent cycle is captured in the orientation
constraint graph. Each bridge is represented by a vertex in this graph. The number of nodes in the
orientation constraint graph is the same as in the path tree. Each incompatibility is represented by an
o-edge. An o-edge implies that the bridges represented by its end vertices are required to have opposite
orientations as they would cross each other otherwise. The orientation constraint graph with all o-edges
inserted is a disconnected graph. The number of connected components, o-components, is at least equal
to the height of the path tree. The maximum number of nodes in an o-component is bounded by the
largest fanout in the path tree, since o-edges only exist between bridges with the same parent bridge.

There also may exist a constraint on the orientation of a bridge relative to the orientation of its parelit.
Bridge. If a bridge and its parent are given opposite orientations the bridge may cross either its ﬁmmt
cycle or the parent cycle of its parent path. This type of constraint is represented by an s-edge in the
orientation constraint graph. S-edges connect distinct o-components. The orientation constraint graph
with both o-edges and s-edges inserted may be connected.

Finally, the analysis algorithm also records the paths that would cross each other when a constraint
represented by an edge in the orientation constraint graph is not met. The constraints represented in the
orientation constraint graph are between bridges, but in general, only a few of the constituent paths will
cross each other if the constraint is not satisifed. The information regarding which paths will cross is
recorded in the éet. of coxilpensation graphs. There is one compensation graph for each edge in the
orientation constraint graph. Each disjoint path of the circuit graph (i.e., each vertex of the path tree) is
represented b& a vertex in this graph. Two paths represented by adjacent vertices would cross each other
if the orientation assignment conflicts with the orientation constraint (edge) represented by the

compensation graph.

The path tree, the orientation constraint graph, and the compensation graphs are the main results of

the analysis algorithm. A 2-coloring of the orientation constraint graph is a coloring using two colors,




left and right. The orientation constraint graph is 2-colorable if there exists a 2-coloring such that the
end vertices of every s-edge haire the same color, and the end vertices of every o-edge have different

colors. A graph is planar when its orientation constraint graph is 2-colorable.

An orientation constraint is not satisfied for a given 2-coloring of the orientation constraint graph, if
the end vertices of an o-edge are assigned the same color, or the end vertices of an s-edge are assigned
different colors. A total compensation graph is defined for each 2-coloring of the orientation
constraint graph. The vertex set of a total compensation graph is the vertex set of the path tree. The
edge set is defined as the union of the individual compens#tion graphs of the unsatisfied orientation
constraints.

A valid coloring of a total compensation graph is a coloring for which adjacent vertices are colored
differently. The colors of the total compensation graph correspond to the plane assignment of paths. A
2-coloring of the orientation constraint graph, and a valid coloring of the total compensation graph
specify an embedding topology of a graph. Different embedding topologies are generated by different
2-colorings of the orientation constraint graph and with a Yalid coloring of the corresponding total

compensation graph.

The coloring of the orientation constraint graph and the corresponding t.dtal compensation graph can be
carried out in many ways. The following heuristic selection mechanism is used to generate one particular
embedding topology (for each biconnected component). First, orientations aré assigned to bridges such
that the s-edge constraints are satisfied. Then, orientations are assigned to the unassigned bridges such
that the number of unsatisfied o-edge constraints is small, if possible. The coloring of the total
compensation graph is performed with the objective of assigning as many paths as possible to one plane
(the first). This procedure tends to minimize the number of contacts.

For a circuit graph, the exterior vertex is always selected as the starting vertex of the path-finding
procedure. This choice guarantees that the exterior vertex is adjacent to the exterior face of an

embedding. Additionally, accepted 2-colorings must also have the following properties.

1. The resulting cyclic order of the exterior vertex is the reverse of the cyclic order of the ports
on the perimeter of the layout, and :

2. The cyclic order of every gate vertex must correspond to a valid expansion into individual
transistors.

Condition 2 is justified because the transistor or transistors defined implicitly by the directed edges
terminating on a gate vertex are implemented within a bounded area. The drains and the sources of the
transistors are accessed from the perimeter of the area. The drain and source of a transistor are, in MOS
technology, ends of a diffusion silicon wire. Each such wire divides the bounded area into one more

region. The diffusion wire of one transistor must not cross the diffusion wire of another transistor.



MOS transistors are formed by crossing a poly-crystalline silicon (poly) wire and a diffused silicon wire.
The ends of the poly wire are the gate terminals. Since the gate is accessible from either region, the gate
is accessible from iny position around the perimeter. Hence, there is no constraint in the cyclic positions

of the gate connections.

The cyclic order of each gate vertex can be checked by considering only the edges representing the
drains and sources of the transistors implicitly defined by the edges terminating on this vertex. These
edges must not be interleaved. The details of the validity checking algorithm are described in [71.

After an empedding topology is found, the next step is to expand the gate vertices of the circuit graph
to obtain a layout topology graph. The expansion creates a vertex of degree four for each transistor
implicitly defined by the edges terminating on the gate vertex. The expansion step also defines the
decomposition of each gate net. The expansion is coded in rules rather than templates. The details of the
expansion algorithm are described in [7]. The layout topology graph is drawn in sticks by the drawing
algorithm.

The drawing algorithm uses the orientations of the bridges and the layers of paths. The drawing is
done on a uniform rectangular grid. All edges are initially of length 1. They may be stretched as the
situation requires. The drawing procedure is invoked recursively, once for each cycle. The drawing
procedure establishes the directions and positions of the segments of the edges, and the constraints on the
positions of the end vertices. These constraints are kept in two constraint grai)hs, one for the vertical
direction, and one for the horizontal direction. These constraint graphs are similar to the graphs used by
Lao and Wong [6]. The main purpose of these vertical and horizontal constraint graphs is to compute the
positions of every transistor and every corner of wires, such that they do not overlap. The drawing does
not need to be compact. A compact layout is produced by the ideal compactor. A detailed description of
the dlgorithm is contained in [7].

IV. Experience

We have tested our algorithms on a few circuits with up to 36 transistors. It is our experience that
interconnects are localized. The degree of net vertices is fairly independent of the number of transistors.

Hence, a small circuit can serve as 2 macroscopic view of larger circuits.

Our algorithms are coded in Mainsail? and executed on a DEC/20603 computer (= 1.5 MIPS). The
algorithms are cbded for simplicity rather than efficiency. The 32 transistor circuit, a pulse synchronizer,
[5] required a total execution time of less than one second. Knowing the time complexity of the

algorithms, the computation cost for a hundred transistors circuit will be less than 10 seconds.

2Trademark, Xidac Corp.

3Tradema:k, Digital Equipment Corp.




Figures 4, 5, 6, and 7 illustrate the large variety of topologies for a simple XOR circuit. The layout
areas vary from 1060 units to 1559 units. As a somewhat larger test case for our approach, Johannsen's
pulse synchronizer circuit was analyzed and laid out. The original layout and the layout corresponding to
the “best* topology generated by our algorithm are shown in Figures 8 and 9.

Area = 1060 A2

Figure 4: Compacted Layout of the XOR (Graph Approach.)

Area = 1559 A2

Figure 5: Compacted Layout of the XOR (Manual Approach.)

The layout generated by our algorithms and Johannsen’s layout have different topologies. Johannsen
implements the power net and most signal nets as metal wires across the layout. The vertical dimension
is bounded by the space for embedding the metal wires. The positional order of the transistors are fixed
by the horizontal power and clocks wires. A layout based on this topology is less *compactable.*

The topology generated by our algorithm uses metal wires as jumpers. Most of the interconnects are
assigned to the poly/diffusion layer. Transistors are relatively free to be positioned anywhere in the

layout. A layout based on this topology is more "couipacta.ble." .
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Area = 1402 2?

Figure 8: Compacted Layout of the XOR (G. S. Model)

Area = 1408 A2

Figure 7: Compacted Layout of the XOR with “Pbor" Topology.
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Figure 8: Johannsen's Layout of the Pulse Synchronizer.

‘We have also observed that, for a small circuit, minimizing the number of contacts in the layout would
reduce the final layout area significantly. The area penalty of a contact is largely due to the fact that

other features must be separated to make room for it.
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Figure 9: New Layout of the Pulse Synchronizer Circuit.

For a large circuit, “long distance® wires should be assigned to the metal layer to improve performance
and most likely packing density. Long distance wires connect terminals that are several logic stages

apart, or many terminals. In practice, the number of long distance nets is only a small portion of the
total number of nets.

Our original embedding algorithm does not distinguish long distance nets from other nets. The cost of
a jumper to a long distance net is the same as the cost of other jumpers. If long distance nets are
assigned to the metal layer, the area penalty for connecting to these wires via jumpers is small. The
topology generated by our algorithm was initially poor. We resolved this problem by not assessing any

- penalty for wires crossing long distance nets.

V. Conclusions

‘We have applied a graph theoretic approach to the circuit embedding prdblem. With our graph model,
there is only one graph for each circuit schematic. There is no need to decompose gate nets prior to the
embedding of the circuit. We achieve this property by being less explicit, i.e., transistors are not
represented explicitly. We have assumed that the *quality® of the embedding topology is independent of

the valid nesting structure of the transistors with common gate signal.

We have also assumed the existence of an “ideal® layout compactor. Subject to the same boundary
constraints, only different layout topologies will result in different compacted layouts. It remains to
establish a computable measurement of the quality of layout topologies. Wolf [11] has observed that
jumpers have an adverse effect on the overall layout area of small circuits. We have programmed a
heuristic selection mechanism to limit the generation of layout topologies to the ones that result in the
*fewest® number of crossovers. Different measurements of quality can be accommodated by modifying

the heuristic selection mechanism.

Our experience, although limited, suggests that layouts corresponding to a machine generated topology
may be more compact than hand layouts. It is a direct result of our graph model and the strategy of
considering different topologies. A designer, without any computing aid to generate different topologies,

usually considers only a few before focusing on one. It is likely that a superior topology may escape the
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designer’s vision, but it is considered by our algorithm. Our experience also suggest that the number of

crossovers is a first order measurement of the quality of a topology, if area is of primary concern.

Our embedding afgorithm, with a fixed starting vertex, does not enumerate all topologies even when the
selection heuristic is removed. It will, in general, generate a different hierarchy of paths with a different
starting vertex. A different hierarchy of paths will lead to additional topologies. It has not been proven
that it is possible to enumerate all topologies with our algorithms.

An important aspect of the layout topology problem that !s not fully addressed is the optimal
assignment of orientation and planes. If the domain of the optimizing metric is the set of regions and
exterior cycles of each plane, then the optimizing metric is easy to compute. It is reasonable to expect
that the computation for the optimal topology can be based on the branch-and-bound technique in which
the validity test can be incorporated as a criterion for pruning the decision tree. The on-line validity

verification has constant computational complexity.
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