A Type System for a Lambda Calculus with Assignments

Kung Chen and Martin Odersky
Research Report YALEU/DCS/RR-963
May, 1993

This work is supported by DARPA grant N00014-91-J-4043.

A Type System for a Lambda Calculus with Assignments

Kung Chen and Martin Odersky

Department of Computer Science
Yale University
Box 2158 Yale Station
New Haven, CT 06520

May 12, 1993

Abstract

We present a Hindley/Milner-style polymorphic type system for A,q4r, an extension of the call-
by-name A-calculus with mutable variables and assignments. To match A,4,’s explicit distinction
between functional and imperative worlds, the type universe is stratified into two layers: One
for applicative expressions and one for imperative state transformers. In inferring types for
Avar-terms, the type system perform a simple effect analysis to statically verify the safety of
coercing a state transformer to a pure value. We prove the soundness of the type system with
respect to Ayqr’s untyped reduction semantics so that any well-typed program will evaluate to
an answer if the evaluation halts. We also discuss some practical aspects of the type system and
present a type checker based on the well-known W algorithm.

1 Introduction

We study a type system for A4, an imperative extension of A-calculus. Unlike other such extensions
[Rey88, WF93, SRI92], which are monomorphically typed, we have studied the theory of A,
initially in an untyped setting [ORH93]. In this paper, we propose a polymorphic type system in
the Hindley/Milner style, give a soundness result, and discuss type reconstruction.

Polymorphic type systems for functional/imperative language combinations usually treat the types
of mutable variables specially: unlike the types of immutable variables they can be instantiated
only once. Languages such as ML, in which every expression can have side effects, make finding
the types of mutable variables non-trivial. Several type systems with various degrees of accuracy
and complexity have been proposed for imperative ML [Dam85, Tof90, LW91, Wri92]. The more
recent proposals have many things in common with effect-systems [TJ93].

In Ayer, we face a different situation. Side effects can be caused only by terms that occur in a state
transformer and the results of those terms are always A-bound. The evaluation of a let-bound value,
on the other hand, never involves side effects. This makes the purely functional Hindley/Milner
system, which generalizes only the types of let-bound variables a good match for A,.,. As a
consequence, typing the let-construct is considerably simpler in A4 than in imperative versions
of ML. Like Mairson [Mai93] for functional ML we can type a program with let’s by expanding all
let’s and typing the resulting program in a monomorphic type system.

On the other hand, the type system for A4, has to solve a problem not present in either functional
languages or ML: It has to guarantee statically that a state transformer enclosed in a pure construct
is referentially transparent. We present here a simple method to verify this fact. The resulting
type system is sound with respect to the untyped reduction semantics of A,q.. Similar to the
approach of [WF92], this is shown by a syntactic method, based on a subject reduction theorem
and a characterization of the types of irreducible terms. We also discuss some practical aspects of
an implementation scheme derived from our type system.

2 Preliminaries

In this section, we briefly review the syntax and semantics of A,4, and refer the readers to [ORH93]
for a more detailed description.

2.1 Term Syntax of A,

The syntax of A4, is given in Figure 1. On the first line are productions for primitive function
symbols f, data constructors c”, identifiers z, function abstractions z.M!, function applications
M; M; and a let construct. The second line adds constructs for modelling state transformers. A
state transformer is a function that maps an initial state to some result value and a final state.
States are composed of mutable variables (or: tags) v which are bound in terms varv.M. Tags
(denoted by the letters u, v, w) are different from immutable variables (denoted here by z, y, z),
but are like them subject to a-renaming. Primitive operations on tags v are assignments M =: v
and reads v?. These operations can be combined into larger state transformers using the “bind”

!Note the absence of a leading A; this is done to make reduction rules simpler to read.

M 2= flc"|z|2zM|MM|lety=NinM
v| varv.M | M? | My =: M, | Mybz. M,
return M | pure M

Figure 1: Syntax of A,

B (z.M) N - [N/z]M
) fv = 4f, V) (6(f, V) defined)
le¢ lety=NinM — [N/ylM
> (Mioz.My)p y.M; - Moz.(Myp>y.Ms)
r> (return N)oz.M - (z.M)N
v> (var v.M)oz.N — var v.(Mb>z.N)
= (My=:M)vz.M; = M = M;;(2.Ms) () (z € fv M3)
f N=:v;vivz. M - N=v;(z.M)N
b N=v;uw?vz. M - wlpz.N=:v; M (v # w)
b, varv.w?cz. M — w?pz.varv.M (v # w)
1L varv.v?’vz. M — varv.vlpz. M
pc pure (S[return c® M, ... My]) — c" (pure (S[return M;])) ... (pure (S[return My])) (k < n)
p» pure (S[return z.M]) — z .pure (S[return M])
pr pure (S[return f]) - f

Figure 2: Reduction rules for A,,,.

expression M; > z.M; [Wad90]. We take (>) to be right-associative and often employ the following
abbreviation:

NiM Y NozM (z¢foM). @-

The productions on the last line mediate between values and state transformers. return M is the
state transformer that yields M without modifying the state. pure M reduces to the final result
of state transformer M, provided M has no global side effects.

The type system for A-var turns state transformers into a Kleisli monad with (>) as the bind
operator and with return as unit. Untyped A-var on the other hand, satisfies only two of the three
laws of a Kleisli monad (b is associative and return is a left-unit).

2.2 Operational Semantics of \,,,

The reduction rules given in Figure 2 define an operational semantics for A,q;,.

We use bv M (fv M) to denote the bound (free) variables and tags in a term M. A term is closed
if fr M = 0. We use M = N for syntactic equality of terms (modulo a-renaming) and reserve
M = N for convertibility. We assume everywhere the “hygiene” convention of Barendregt [Bar84]
that bound and free variables and tags in a term are distinct.

A value V is a A-abstraction, a primitive function, or a (possibly applied) constructor. An observable
value (or answer) A is an element of some nonempty subset of the basic constants. A contezt is a
term with a hole [] in it. A prefiz P is a context of one of the forms

P == [] | varv.P | Mpz.P.
A pre-state prefiz R is a “normalized” prefix
R == [] | varv.R | M=:v;R,

and a state prefiz S is a pre-state prefix that satisfies in addition the requirement that wr S C bv S.
The set of variables written in S, wr S, is defined as follows:

wr [] =0
wr (var v.5) wr S
wr (M =:v;S) = {vjUuwrS.

Rules (), (6), and (let) are the standard rules for reducing terms in an applied A-calculus. Rules
6>) and (r>) represent two of the three laws of a Kleisli monad. Rule (vb) extends the scope of a
tag over a (p) to the right. Rule (=:>) passes (), the result value of an assignment, to the term
that follows the assignment. Rules (f), (b1) and (b;) deal with assignments. The fusion rule (f)
reduces a pair of an assignment and a dereference with the same tag. The bubble rules (4;) and (b;)
allow variable-readers to “bubble” to the left past assignments and introductions involving other
tags. Rule (1) is not present in [ORH93]; it is added here to force the evaluation of a term with
uninitialized variables to diverge. This is necessary, since we do not attempt to detect unititialized
variables statically.

The final three rules implement “effect masking”, by which local state manipulation can be isolated
for use in a purely functional context. The context condition for state prefixes S that assigned
variables must be locally bound ensures that evaluation of the argument to pure neither affects
nor observes global storage.

In [ORH93] it was shown that this notion of reduction generates a confluent equational theory
which admits a standard reduction order, derived using the evaluation contezts E:

E == []| EM | fE | pure E | pure S[return E]
| varv.E | E? | M=F | Ebz.M | M=:v>z.E

Such a left-to-right reduction, denoted by s, defines a deterministic evaluator, eval,q,, for Ayar
in the standard manner.

3 The Type System for),

3.1 Types

Let o and o range over two disjoint denumerable sets of type variables. The syntax of A,q, types
is as follows:

| R N s
T|0—>0|k"6,...6, | Cmdb | Var @

Applicative types T a |
Command types 0 = a |
The type system is stratified into two layers. The applicative layer T contains the types of state-
independent terms. These applicative types include applicative type variables o, the unit type
() and are closed under the function space and algebraic data type constructions. The command
layer 6 extends the applicative layer to type state transformers. The type Var is used to type
store tags, while Cmd 6 types state transformers with type 8. The command layer includes type
variables a, all applicative types and is closed under the type constructors —, k®, Var and Cmd.

Note that applicative type variables a serve a different purpose than either imperative type variables
[Tof90] or weak type variables [AM87)] used in Standard ML. They are used to type polymorphic
pure terms, not to solve the problem with polymorphic references.

3.2 Typing Rules

Rules for inferring types for Ay, -terms are given in Figure 3. A type judgement I' + M : 0
states that term M has type 7 in type environment I'. A type environment is a finite set of type
assumptions of the forms z : 8 and v : Var 6, with no variable (tag) occurring twice. We write
dom(T") for the set of variables and tags occur in T', and I'(a) for the unique @ with a:6 in T, if it
exists. Assuming a ¢ dom(I'), we write I'.a:0 for T'U{a : 6}.

Basically, each rule corresponds to one syntactic construct in the term language. Primitive functions
and data constructors are collectively called constants ¢. Rule (const) uses the function TypeOf :
Const — Set of applicative types to assign types to constants. We assume that the types associated
with a constant are the set of substitution instances a single, polymorphic type. Furthermore, we
impose the usual é-typability condition to ensure type soundness for an unspecified set of constants:

"= 1€ TypeOf(f) and + V : 7' = §(f, V) is defined and + §(f, V) : 7

The rules for the purely functional part are standard. let-expressions are typed through term
substitution (in Section 5, we will modify this to gain better average case efficiency of the type
checker). All the state transformers have type Cmd 6, where # is the type inferred from their
constituent(s). For tag reader v?, 6 is derived from v’s type, and, for assignments, # becomes the
unit type (). The rules for introducing new tags (block) and binding state transformers (bind) bear
structures similar to those of function introduction (abs) and function application (app).

The most complex part of the type system has to do with typing the pure construct. This is not
surprising, since the type system has to ensure that the dynamic side conditions on the reduction
of a term pure M are always satisfied, which requires some amount of effect analysis. We adopt
the following conservative conditions: First, we require that M = P[return N] to ensure that

5

(const) '+ c:1 7€ TypeOf(c)
(var) '+z:0 =z:60€T
(tag) 't v:Varé v:Varf el
Fz:0 - M:0
b
(abs) TFoM:0—0
(app) - M:0—90 '+ N:¢
a
PP TFMN:6
(i) THN:0 TF[N/yM:6
e
F'Flety=NinM:0
'+ M:Varé
(reader) v
' - M?:Cmd 6
. '+ M :6 ' - My: Var @
(assign)
' My=M; :Cmd ()
Fw:Var¢ + M :Cmd 6
(block) v: Var 'm
' varv.M: Cmd 6
. 'zM:0/ >Cmdé T F M :Cmdé¢
(bind)
' - Mivz.M; : Cmd @
. r+-M:#0
(unit)
' - return M : Cmd 6
(pure) I, FM: Cmdr M = P[return N]
I' + pureM :7

Figure 3: Typing Rules for A,,.-terms

something is returned from the state transformer M. Second, to ensure that the evaluation of
M neither affects nor observes global storage we require that the type environment for M be
applicative, i.e., Vz € fu(M), I'(z) is applicative. This condition is expressed by writing I'; in the
premise and conclusion of the rule. Third, to ensure that the state prefix can be stripped from the
result, we require that the result type is applicative.

4 Type Soundness

In the section, we prove the soundess of our type system with respect to A,.,’s operational semantics.
We show that every A,q--program, if not diverging, will be evaluated to an answer value.

First, we show that all the reduction rules are type-preserving, i.e., subject reduction holds in our

system. The following auxiliary lemmas help to establish the subject reduction property.

Lemma 4.1 (Assumption Weaking) If I'(a) = I''(a) for all a € fu(M), then T + M : 6 iff
I+ M:6.

Lemma 4.2 (Term Substitution) f 'z : § + M : 6 and z € dom(l') and T + N : @ then
'+ [N/z]M :¢'.

Lemma 4.3 (Subject Reduction) If ' + M; : 8 and M; — My then T + M, : 4.

Proof: The proof proceeds by case analysis on M; — M,. We show some typical cases here; the
remainder of them follow similarly.

Case (z.M)N — [N/z]M. FromT F (z.M)N :0 wehavel'’ + z.M : ¢ -0 andT - N : ¢ by
(app). From the former, I'.z:6’ - M : 6 follows by (abs). Hence T' + [N/z]M : 0 by Lemma 4.2.

Case N =:v;v?’pzM = N =:v; (zM)N. FromT + N =:v; v?pz.M : Cmd 6
we have I' + 2.(v?pz.M) : () » Cmd 63 for some fresh variable z and ' + N =: v
Cmd () by (assign) and (bind).

From the former, I'.z:() F .M : 0, - Cmd 63 and T'.z:() F v? : Cmd 6, by (abs) and (bind).
Hence I'.z:() F v: Var 6; by (reader).

From the latter, ' - N : 6, and T + v : Var 6; by (assign). Hence T.z: () F v :
Var 6, by Lemma 4.1. ‘

So
6, = 6,
Fz:z) - N :6 by Lemma 4.1
F.z:() F (z.M)N : Cmd 63 by (app)

't z(z.M)N : () > Cmd 65 by (abs)
' - N=tvbz.(z.M)N :Cmd 63 by (bind).

Case pure (S[return z.M]) — z . pure (S[return M]). From I' + pure (S[return z.M]) :
7, we have I'; F S[return z.M] : Cmd 7 by (pure). It is obvious from the definition of state
prefix and rules (block) and (bind) that 7 = 1y — 7.

By a straightforward induction on pre-state prefix R’s structure, we can show that
If I' + R[returnz.M]: Cmd (1, = 73) then I.z:7; + R[return M]: Cmd 7,.

Hence I'.z:m; F S[return M] : Cmd 7,. Now since fv(S[return M]) C fv(S[return z.M])U{z},
we must have I'.z:7, + pure (S[return M]) : 7, by (pure). Hence I' I z.pure(S[return M]) :
T by (abs).

Next, we examine the “positive” effects the typing rules have on the evaluation of a program. We
assume that there is a nullary type constructor Out that represents exactly the set of all answers.
Programs in A4, are, therefore, closed terms of type Out. The goal is to show that the evaluation
of a program will never get stuck without producing an answer value.

7

Lemma 4.4 If + M : Out and M is irreducible (with respect to —) then M = A for some
answer A.

This lemma is actually a corollary of the following more general one:

Lemma 4.5 Let I'be {v;:Var 6y, ... ,v,:Var60,},n>0. If T M :6 and M is irreducible
then M € A, the language described by the following grammar:

A o= flzM|c"M ... M, 0<k<n)|v]|vibzM| O

© = v?| M=:v |returnM | varv.© | M =:v;0

Proof: By induction on the possible structure of the term M:
Case M=f,c"orz.M. M € A.

Case M = M; M, . Apply the induction hypothesis to M;. Since M; is of — type, we need to
consider only the following possibilities:

e M; = f . Impossible. Since M, is of some applicative type, we must have M; = V for some
value V by applying the induction hypothesis to M;. Then M would be reducible by rule (4)
according to the é— typability assumption.

e My=(c"M; ... M), 0< k < n. Since M = M; M; is well-typed under I', we must have
0< k < n. Hence M € A.

e M; =z.N . Impossible, since M would be reducible by rule (5).

Case M =let y = M; in M, . Impossible, since M would be reducible by rule (let).
Case M =v. SinceI' - M : 6, we must have v = v;, for some i. Hence M € A.

Case M = N7 . Apply the induction hypothesis to N, which is of Var type. We must have
N = v;, for some ¢. Hence M € A.

Case M = M; =: M; . Apply the induction hypothesis to M3, which is of Var type. We must
have M = v;, for some i. Hence M € A.

Case M =return N. M € A.

Case M =varv.N. From I' M : 60, we have'.v: Var # + N :6. Now apply the induction
hypothesis to N, which is of Cmd type. Either N € © and hence M € A,or N = u?p>z.M'
rendering M reducible by rule (b;) or (L).

Case M = M, b z.M;. Apply the induction hypothesis to M;, which is of Cmd type. We need to
consider the following possibilities:

e M; = v?py.N . Impossible, since M would be reducible by rule {b).
e M; =return N . Impossible, since M would be reducible by rule (rp).
e M, = var v.N . Impossible, since M would be reducible by rule (vp).

® MIEU?MGA

e My = N =: v. Since M is irreducible, we must have z ¢ fu(M3), for otherwise rule =:
would have been applicable before M; became N =: v. Moreover, from I' - M : 8, we have
I' v z.M, : () = 6 by (bind). Hence I' - M, : § by Lemma 4.1. Now apply the induction
hypothesis to M2, which is of Cmd type. Either M; € © and hence M € A, or M> = u?>y.M;
rendering M reducible by rule (f) or (b).

Case M = pure P[return N] . Impossible, since M would not be irreducible as we will ar-
gue. Suppose otherwise, then P[return N] must be irreducible, too. Moreover, from I' F
pure P[return N] : 7, we have + P[return N] : Cmd 7 by (pure) and Lemma 4.1. Ap-
ply the induction hypothesis to P[return N], which is a closed term of Cmd type. We must
have P = S for some state prefix S. Hence N must be irreducible, and I + N : 7 for some
I" = {u: Var vy,..., u: Var i}, u; € bv(S). Now apply the induction hypothesis to N, which is
of some applicative type. We must have N = V for some value V, rendering M reducible by p.,
P, Or py.

B

With Lemma 4.3 and Lemma 4.4, the soundness theorem follows:

Theorem 4.6 (Type Soundness) If + M : Out then either M 1 or evaly,(M) = A for some
answer A.

5 Type Checking

In this section, we sketch an implementation scheme of our type system. Basically, a syntactic-
directed type checker along the lines of [DM82] can be employed (see appendix). The major concern
here is how to type let-expressions without explicit term substitution.

As usual, we introduce type schemes to avoid such term substitution. In doing so, the major change
is to modify the rule (pure) for typing pure terms. We first extend our type system with type
schemes in the standard manner:

Type Schemes ¢ = 0 | Va.o | Va.o

In addition to the standard rules for generalizing type variables, we need the following two rules to
instantiate type variables.

I' - M :Va.o . I' - M :Va.o
(inst,)
' M:[6/a]o '+ M:[r/ao

(insty)
All typing rules other than (let) and (pure) remain unchanged. Rule (let) is replaced by rule (let,).

I''+N:o lyiobke:r
F'lety=NinM:71

(letp)

The new, polymorphic formulation of (let,) requires some changes in rule (pure). Recall that, in
typing pure M, we demand the type environment for M be applicative. In other words, only free

9

variables of applicative type are allowed in M. Now since we will extend the type environment with
the polymorphic typescheme assumption (y : o) in (and only in) typing let-expressions, it seems
that we need to extend our stratification of types to type schemes. However, it is conceivable that
any such extension would make rule (pure) overly restrictive by rejecting many harmless procedures
introduced by let. For instance:

let swap=z.y.2?7 2. y? b w.z=ty;w=:2
in pure (varu.varv. 0=:u;5=:v; swap u v; u?p>z.returnz)

would be rejected because of the reference to the non-local swap, whose most general type is
Va.Var a = Var o = Cmd (), in the body of the pure. However, this term is perfectly safe, since
swap affects only its arguments z, y. If we use the old rule, (let), the problem does not arise since
then the body of swap is expanded within the scope of the pure. To correct this deficiency, we
keep track of all possible non-applicative types as if all let’s in a term had been expanded.

Definition. Let LB(M) be the set of let-bound identifiers in a term M and for any let-bound y
let defn(y) be the defining term of y. Then the closure set of free variables and tags of a term M
is given by:

fo () € fo(a) U i (defn() | i € LB(M)).

Furthermore, fut(M), the A-var-closure set, denotes the subset of all A and var bound identifiers
in fo*(M).

In other words, the A-var-closure set of a term is the union of its free variables and tags with all the
variables and tags that will be introduced through the reduction of let-expressions at outer levels.
Since all these variables and tags are A or var bound and hence are monomorphically typed in the
type environment, we can adapt rule (pure) as follows:

'-M: Cmdr
(purey) T F pure M 17 M = Preturn N] and Safe I'|;,+(p)
where T' |y is the restriction of I' to the variables in V, and SafeI” iff Vz € dom(I”), I'(z) is

applicative.

According to the modified side condition, for a pure term to be well-typed it is necessary to perform
the applicative type check over its present free variables and tags as well as the ones that will be
introduced in reducing outer let-expressions. Hence the preceding example program is well-typed
in the new system with rules (let,) and (pure,), since neither swap nor the pure-body contains
any unsafe free variables and tags.

Clearly, this modified side condition is derived from the substitution semantics of let-expressions
and corresponds to the one we have for rule (pure). Furthermore, such A-var-closure sets of variables
and tags can be easily collected as we traverse and type check the source term. One possible
scheme is to have, in type checking, an extra variables/tags environment, which maps each let-
bound identifier to the A-var-closure set associated with its defining term, yet map X and var bound
identifiers to a singleton set consisting of themselves. Thus, as we traverse the source term to any
of its pure subterms, we can easily obtain its A-var-closure set to perform the required safe type
check.

10

Figure 4 contains a type checker for A,,-. The algorithm is called W, because of its structural
similarity to the algorithm W [DM82]. However, there are two major differences between W, and
W: First, W, takes an extra variables/tags environment V to facilitate computing the A-var-closure
sets for pure subterms as we have just described. Second, since the type system has been stratified
into two layers, we need to use a different unification algorithm. Indeed, the stratified type system
corresponds naturally to an order-sorted signature of two sorts, app and cmd, with app < emd.
Hence any order-sorted unification algorithm will serve our purpose.

6 Conclusion

We have presented a Hindley/Milner-style type system for A4, an imperative extension of the A-
calculus. In our type system the distinction between state-dependent and state-independent terms
are manifest in their types, clearly reflecting their intended meanings in A,... The conversion
between state transformers and pure expressions is moderated by the type system. We have proved
the soundness of our type system with respect to A,,,’s operational semantics. Hence any invalid
coercion from a state-dependent term to a pure value will be a static error along with other common
type errors. In addition, we have presented a type checker based on a straightforward extension of
the W algorithm.

An interesting and usefule sequel to the current system is to improve its precision in typing pure-
terms. For example, the following term is ill-typed because of the reference of the non-local tag
reader, rdr, in the body of pure, though no run-time error would arise in its evaluation.

return (z.z7) o rdr.
let res = pure (var v.5 =: v ; rdr v> 2. return z)
in return res

Apparently, as long as no global storage is accessed in evaluating the argument term to pure, the
coercion should be safe. Therefore, to better type pure-terms, we plan to investigate the feasibility
of incorporating a region analysis similar to that of [TJ94] to our system.

Acknowledgements

The use of a stratified type system of applicative types and command types was suggested by Uday
Reddy. Thanks also to Vincent Dornic for his comments on an earlier draft of this paper.

References

[AM87] Andrew W. Appel and David B. MacQueen. A standard ML compiler. In Functional Programming
and Computer Architecture, pages 301-324, August 1987. LNCS 274.

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, volume 103 of Studies in Logic
and the Foundations of Mathematics. North-Holland, 1984.

11

[Dam85] Luis Damas. Type assignment in programming languages. PhD thesis, Department of Computer

[DM82]

Lwol]

[Mai93]

Science, Edinburgh University, April 1985.

L. Damas and Robin Milner. Principal type schemes for functional programs. In Proceedings of the
Ninth ACM Symposium on Principles of Programming Languages, pages 207-212, January 1982.

Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In Proc. of the 18th
ACM Symp. on Principles of Programming Languages, pages 291-302, January 1991.

Harry G. Mairson. Quantifier elimination and parametric polymorphism in programming lan-
guages. To appear in the J. of Functional Programming, 1993.

[ORH93] Martin Odersky, Dan Rabin, and Paul Hudak. Call by name, assignment, and the lambda calculus.

[Rey88]

[SRI92]

[T393]

[TJ94]

[Tof90}

[Wad90]

[WF92]

[WF93]

[Wri92]

In Proc. of 20th ACM Symp. on Principles of Programming Languages, January 1993.

John C. Reynolds. Preliminary design of the programming language forsythe. Technical Report
CMU-CS-88-159, Carnegie Mellon University, June 1988.

V. Swarup, U. Reddy, and E. Ireland. Assignments for applicative languages. In J. Hughes, editor,
Proc. §th ACM Conf. on Functional Programming and Computer Architecture, pages 192-214,
August 1992. LNCS 582.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference. To appear
in the J. of Functional Programming, 1993.

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. To appear in the J. of
Information and Computation, 1994.

Mads Tofte. Type inference for polymorphic references. Information and Computation, 89(1):1-34,
November 1990.

Philip Wadler. Comprehending monads. In Proc. ACM Conf. on Lisp and Functional Program-
ming, pages 61-78, June 1990.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Technical
Report TR91-160, Department of Computer Science, Rice University, March 1992.

Stephen Weeks and Matthias Felleisen. On the orthogonality of assignments and procedures in
Algol. In Proc. of 20th ACM Symp. on Principles of Programming Languages, January 1993.

Andrew K. Wright. Typing references. by effect inferences. In B. Krieg-Briickner, editor, Prod.
European Sympostum on Programming, pages 473-491, February 1992. LNCS 582.

12

W, (M,T,V) = case M of
z = inst (S(Tz),id)

z.N =
let « a fresh type variable
61,8) = W, (N,T.z:a,V.2:{z})
in (Sia—60;,5)

M M =
let (61,5) = W, (M, T,V)
(62,82) = W, (M, 51T, V)
« a fresh type variable
Ss = mgu S20; (02 = a)
in (Ssa, S35251)

lety=Min M, =
let (61,51) = W, (M,L,V)
o = Clos(61,5:T)
in W, (M, SiT.z:0, V.y: fve(fo Mz, V))

pure M; =

let M; = Plreturn N]

(61,51) = W, (P[return N)],T,V)

a a fresh applicative type variable

Sa = mgu 8, (Cmd a)

(Y15---39n) = Ui{Vai | zi € fo M1}
in if \; (($25:T)y; be applicative)

then (S2a, 5251)

else fail

where inst (Va::T'.0,5) =

var v.N =
let a, B fresh type variables
(01,51) = W, (N,T.v:Var a,V.v:{v})
S2 = mgu 6, (Cmd B)
in (Cmd S20, S251)

Mivz.M;, =
let a, B fresh type variables
(61,51) = W, (M, T,V)
(02,82) = W, (z.Mp, 5T, V)
S3 = mgu S20; (Cmd a)
Sy = mgu S30; (Sza = Cmd ()
in (Cmd S4f3,54535251)

N? =
let (6,,5) = W, (N,I,V)

a a fresh type variable

S = mgu 510, (Var o)

in (Cmd Sza, 5251)

M =M =
let (61,5) = W, (M,T,V)
(02,52) = W, (M, 51T, V)
S3 = mgu 0, (Var Sq260;)
in (Cmd (), S35:51)
return N =

let (01,51) = Wu (N,F,V)
in (Cmd 6y, 51)

let B afresh applicative type variable

in inst ([8/a] 0, 5)

inst (Va::T.0,5) =

let [a fresh type variable

in inst ([3/a] 0, 5)

inst (0, S) =

fve {z}UL, V)

(6,5)

foe ({1,V) = {}
Vz U fue (L,V)

Figure 4: A type checker for A,

13

