e ———

The Zip Calculus*

Mark Tullsen

Department of Computer Science
Yale University
New Haven CT 06520-8285
tullsen@cs.yale.edu

Research Report YALEU/DCS/RR-1191
February 2000

Abstract. Many have recognized the need for genericity in programming and in program transforma-
tion. Genericity over data types has been achieved with polymorphism. Genericity over type construc-
tors, often referred to as polytypism, is an area of active research. However, genericity over the length
of tuples has not been achieved in a typed language. This paper shows the usefulness of such genericity
and presents the zip calculus, an extension of a typed lambda calculus that gives genericity over the
length of tuples.

1 Introduction

The key to writing robust software is abstraction, but genericity is needed to use abstraction: to write a
generic sort routine, genericity over types is needed (i.e., polymorphism); to write a generic fold!, genericity
over type constructors (e.g., List and Tree where List a and Tree a are types) is needed—this is often
called polytypism.

In program transformation the need for genericity is amplified: for example, in a monomorphic language,
if we write sortInt and sortFloat we will have laws about sortInt and sortFloat instead of just one
law about a generic sort; also we have to transform sortInt and sortFloat separately, even if we can
“cut-and-paste” the program derivation. So, generic programs reduce not only the size of programs, but also
the number of laws and the length of program derivations.

For this reason, the program transformation community, notably the Bird-Meertens Formalism (or Squiggol)
community [BAM97,Mee86,MFP91], has been working to make programs more generic—not just polymor-
phic, but polytypic [Mal90b,Mal90a,JJ97,JBM98|. However, the genericity provided by polymorphism and
polytypism is still not adequate for certain programs: another form of genericity is often needed—genericity
over the length of tuples. This paper shows the usefulness of “n-tuples” (tuples whose lengths are unknown)
and proposes a method to extend a programming language with n-tuples.

Section 2 gives examples of the usefulness of n-tuples. Section 3 describes the zip calculus, its syntax,
semantics and type system. Section 4 returns to the examples and shows what programs, laws, and program
derivations look like using the zip calculus; other applications are also presented, including how to generalize
catamorphisms to mutually recursive data types. Finally, section 5 discusses some limitations and compares
this work to related work.

* This research was supported in part by NSF under Grant Number CCR-9706747.
! Otherwise known as a catamorphism, a function inductively defined over an inductive data structure.

2 Why Are N-Tuples Needed?

An n-tuple is a tuple whose length is unknown. Is such genericity useful? Definitely! Just like the genericity
provided by polymorphism and polytypism, n-tuples give (1) more general programs, (2) more general laws
about those programs, and (3) more general program derivations.

2;1 More General Programs
The following functions are defined in the Haskell [HIW92] Prelude

zip :: [al—=[b]l—[(a,b)]
zip3 :: [al—=[b]—=[c]—[(a,b,c)]
zip4 :: [a]l—=[bl—>[c]—[d]—[(a,b,c,d)]

whose functionality can be guessed from their types. Also, there are the family of functions unzip, unzip3,
unzip4, ... and the family of functions zipWith, zipWith3, zipWith4, ... To write the zip3, zip4, ...
functions is not hard but tedious. It is clearly desirable to abstract over these and write one generic zip, one
generic zipWith, and one generic unzip.

2.2 More General Laws
Note the free theorem [Wad89] for zip (an uncurried version)?:

map(cross(f,g)) - zip = =zip - cross(map f,map g)
where
cross (f,g) (x,y) = (£ x,g y)

The comparable theorem for zip3 is

map(cross3(f,g,h)) - zip3 = 2ip3 - cross3(map f,map g,map h)
where :
cross3 (f,g,h) (x,y,z) = (£ x, gy, h z)

To generate these laws is not hard but tedious (and error-prone). To formulate this family of laws yet
another family of functions is needed: cross, cross3, cross4, ... And note the following laws for 2-tuples
and 3-tuples®:

(fst x, snd x) = x
(fst3 x, snd3 x, thd3 x) = x

(For which one needs another set of families of functions: fst, fst3, fst4, ... and snd, snd3, snd4,) One
would wish to generalize over these families of laws. Having fewer, but more generic, laws is very desirable
in a program transformation system: one has fewer laws to learn, fewer laws to search, and more robust
program derivations (i.e., program derivations are more likely to remain valid when applied to a modified
input program).

2« is function composition; “map £’ applies £ to each element of a list.

% Ignoring the complication that these laws are not valid in Haskell, which has lifted tuples; these same laws are valid

in the Zip Calculus which has unlifted tuples.

2.3 More General Program Derivations

It is common to have program derivations of the following form:

fst e Prove the case for the
=... “Ist” of the tuple.
= el
Similarly, snd e = e2 Wave hands.
Thus, Make a conclusion about
e = (fst e,snd e) = (el,e2) the tuple as a whole.

When arguing informally, this works well and of course scales easily to 3-tuples and up. However, in a
practical program transformation system this “similarly” step must be done without “hand waving” and
hopefully without duplicating the derivation. One way to do this is to express the above law in some meta-
language or meta-logic where one could say something like Vn.Vi < n.P(#1i) (using ML syntax for projections
where #1 = fst, #2 = snd).

However, a meta-language is now needed to express program laws. A simpler approach to transformation, the
schematic approach, avoids the use of a meta-language: program laws are of the form “e; = e; < e3 = e4”
[HL78] (e1, ez, e3, e4 are programs in the language, all free variables are implicitly universally quantified, and
the premise is optional); program derivations are developed by successively applying program laws: the law
is instantiated, the premise is satisfied, then the conclusion is used to replace equals for equals. However,
using this approach for the above derivation requires one to duplicate the derivation for the fst and snd
cases. Is it possible to avoid this duplication of derivations? Note that, in general, the form of (e1,e2) is
(C[£st],Clsnd])* (or can be transformed into such a form). So, one would like to merge the two similar
derivations

fst e
snd e

Clfst]
Clsnd]

into a single derivation
#ie = ... = C[#i]

However, this still does not work because the “i” in #i must be an integer and cannot be a variable. But if “i”
could be a variable, then simple equational reasoning can be used—as in the schematic approach—without
the need to add a meta-language. The zip calculus allows one to do this.

3 The Zip Calculus

The zip calculus is a typed lambda calculus extended with n-tuples and sums. In particular, it starts as F,,
encoded as a Pure Type System (PTS) [Bar92,PM97], a construct for n-tuples is added, and then n-sums
are added (very simply using n-tuples). In a PTS, terms, types, and kinds are all written in the same syntax.

4 Where C[e] represents a program context C[] with its holes filled by expression e.

e u=uw variables

| Av:t.e abstraction
| eiez application
| Hv:t.t2 type of abstractions
| * type of types
| (e1,e2,..)t tuple (having type t)
| mn projection (1 <m <n)
| nd dimension
| D type of dimensions
| +at sum type
| Ing constructors for 4y ((Ing.1, Ing.2,...))
| caseq destructor for +4
i e projections (of type n%)

i

dimensions (of type D)

t types and kinds (of type * or OJ)

m,n = {natural numbers}

Fig. 1. Syntax

As the syntax of terms and types was becoming nearly identical (because tuples exist at the type level), the
choice of a PTS seemed natural. Also, the generality of a PTS makes for fewer typing rules. However, the
generality of a PTS can make a type system harder to understand: it is difficult to know what is a valid
term, type, and kind without understanding the type checking rules.

3.1 Syntax and Semantics

The syntax of the terms of the zip calculus is in Fig. 1. The pseudo syntactic classes i, d, and ¢ are used
to provide intuition for what is enforced by the type system (but not by the syntax). F,, encoded as a PTS
would have the first five terms in Fig. 1. The following are added: (1) Tuples which are no longer restricted
to the term level but exist at the type level. (2) Projection constants (m,, - get the m-th element of an
n-tuple), their types (nd - dimensions, where m,, : nd), and “D” the type of these n¢. And (8) n-sums made
via n-tuples: for n-sums (+(na)(t1, ..., tn)u) the constructor family, fn(,ay, is an n-tuple of constructors and
the destructor case(,q) takes an n-tuple of functions.

To get the second element of a 3-tuple, a projection is applied to it (e1,ez,e3)t 23 giving es; a 3-tuple is a
function whose range is {13, 23,33} (the projections with type 3%). In this example e, e, e3 can each have
a different type because ¢, the type of the tuple, can be a dependent type (a IT term): for instance, one can
write (eq, ez, e3)(I1i : 3% (B, Es, E3)(IT_:3%.%) 1)5. Genericity over tuple length is achieved because we can
write functions such as “Ad:D.Xi:d.e” in which d can be any dimension (1¢,2%,...).

® Using “_” for an unused variable. Also, a — b is used as syntactic sugar for II_:a.b)

Reduction Rules:

(M:ter)es = er{ez/v} (B reduce)

(e1,..,en)tin =€; (x reduce)
caseq e ((Ing).ie') =e; e (+ reduce)
Eta laws:
Azra.ex=e ife ::a—b x¢fv(e) (— eta)
(eln, ...,enn)(ITi:n% A) = e ife :: (ITi:n.A) (x eta)
caseg Inge =€ ife :: 44 A (+ eta)
Instantiation:
h-caseq f = caseq (" h- f;) if h strict (inst)

Cleaseq ("*Xv:t.e)z] = caseq ("“Mv:t.Cle])x if C[] strict (inst)

Fig. 2. Laws

Although tuples are another form of function, the following syntactic sugar is used to syntactically distinguish
tuple functions from standard functions:

(bde) = Mi:d.e
e; =etl
Xgt=1IIi:d.ti

Since one can write tuples of types, one must distinguish between (t1,2)(2d — %) (a tuple of types, having
kind 2d — x) and xa)(t1,12)(2d — %) (a product of types, having kind x).

The semantics is given operationally: the three reduction rules of Fig. 2 are applied left to right with a
leftmost outermost reduction strategy. Translating the (8 reduce) and (— eta) laws into the above syntactic
sugar gives these laws:

(Bde) ; = e{j/i} (n-tuple reduce)
te) =e ife:: x4, i¢fv(e) (n-tuple eta)

To give some intuition regarding the semantics of n-tuples, note this equivalence:

(72" (£, g) (2d—a—b) ; (x,¥)(2d—a) ;)
= {x eta}
(2" (£, g) (2d—a—b) ; (x,y)(2d—a) i) las
(#2'(£,g) (2d—a—b) ; (x,y)(2d—a) ;) 2,) (2d—b)
= {n-tuple reduce, 2x}
((f,g) (2d—a—b) 1, (x,y)(2d—a) 1,,
(f,g) (2d—a—b) 2, (x,y)(2d—a) 2,))(2d—b)
= {X reduce, 4x}
(f x, g y)(2d—b)

The tuples (f,g) and (x,y) are “zipped” together, this is why it is called the zip calculus.

I'a:A, TI'HFB:s, A= B c:s€A

I'Fa:B (conv) Fc:s (axiom)
I'HA:s (var) I'+b:B Pl—A:s(weak)
Ne:AkFx: A I''z:AFb: B
I'f:(IIz:AB), I'kta:A (app) Iz:AFb:B, I'(IIz:AB):t (lam)
T'F fa:Blajz} PP TF(Ox:Ab): (IIz: AB)
I'tA:s, Ic:AFr B :t, (s,t,u)GR(i)
I'F({z:AB) u P
Fig. 3. Type Judgments for a Pure Type System
Vie{l.n}. I'ta;: A{jn/i}, '+ (ITi:n%A):t (tuple)

'k (a1,...,an) (IIi : nd.A) : (ITi : nd.A)

Fig. 4. Additional Type Judgments for the Zip Calculus

3.2 The Type System

The terms of a PTS consist of the first four terms of Fig. 1 (variables, lambda abstractions, applications,
and II terms) plus a set of constants, C. The specification of a PTS is given by a triple (S,.4,R) where S is
a subset of C called the sorts, A is a set of axioms of the form “c: s” where c € C, s € S, and R is a set of
rules of the form (s1, 2, s3) where s1,52,s3 € S. The typing judgments for a PTS are given in Fig. 3. In a
PTS, the definition of =4 in the judgment (conv) is beta-equivalence (alpha-equivalent terms are identified).

In the case of the zip calculus, the set of sorts is S ={19,24,...} U {x,0, D}, the set of constants is C =
SU{my|l <m < n}, and the axioms A and rules R are as follows:

A axioms R rules
*:0 (%, %, %) Ave:t.e
My 2 nd (O, %, %) Mg T e
nd:D (O0,0,0) Avg:T .t
D: 0O (D,D,*) Avi:d. i
(D, %, %) Mv;:d.e
(D,0,0) Av:d.t

The R rules indicate what lambda abstractions are allowed (which is the same as saying which IT terms are
well-typed). Here there are six R rules which correspond to the six allowed forms of lambda abstraction. The
expression to the right of each rule is an intuitive representation of the type of lambda abstraction which
the rule represents (e - terms, ¢ - types, T - kinds, 4 - projections, d - dimensions, v, - variable in class x).

In the zip calculus there is an additional term, (e1,es,...)t, which cannot be treated as a constant in a PTS
(ignoring sums for the moment). The addition of this term requires two extensions to the PTS: one, an
additional typing judgment (Fig. 4) and two, the =g relation in the (conv) judgment must be extended to
include not just (8 reduce) but also (x reduce) and (x eta).

To get generic sums, one needs only add + as a constant and the following two primitives:

In :: IOI:D. Ha:x(-1%). x,(i“la.,'—-)-}-la)
case :: III:D. IHa :x(~7%).1Ib: x. x;("Ta; = b) = (+1a —b)

I'tfi>»(Iz:AB), TI'kFa:A, A=, A z:Ael

I't fa: B{a/z} (app) Fi—x:A(var)

I''c:AFb: B, F'—(Hx:A‘B):t(Iam) CzseA(aXiom)
I'-(Az:Ab): (IIz: A.B) Fe:s

I'FA:—»s, TIz:AF B:—»t, (s,t,u)eR(i) I'ka:A, A_»BB(red)
T'F(lz:AB): u P I'Fa.—B

Fig. 5. Syntax Directed Type Judgments for a Functional PTS

Vie{l.n}. I'ta;: A{jn/i}, T'F (ITi:n.A) ¢

T (ar, o an) (i -t A) - (I na) (tuple)
I'Fa:A, A-—»gs B ,
TFasB 0od)
I'tf:>»C, I'Fa:»A C=, IIz:AB ,
(app’)

I't fa:Bfa/z}

Fig. 6. Syntax Directed Type Judgments for the Zip Calculus

3.3 Type Checking

There are numerous properties, such as subject reduction, which are true of Pure Type Systems in general
[Bar92]. There are also known type checking algorithms for certain subclasses of PTSs. Although the zip
calculus is not a PTS, it is hoped that most results for PTSs will carry over to the “almost PTS” zip calculus.

A PTS is functional when the relations A and R are functions (c: s; € A and c: sy € A imply s; = s9;
(s,t,u1) € R and (s,t,us2) € R imply u1 = uy). In the case of the zip calculus, A and R are functions. If a
PTS is functional there is an efficient type-checking algorithm as given in Fig. 5 (cf. [PM97] and [VMP94]),
where the type judgments of Fig. 3 have been restructured to make them syntax-directed. The judgment
(red) just defines the shortcut “I" - z :— X and —»g is beta-reduction.

This algorithm can be modified as in Fig. 6. The rule (tuple) is as before (Fig. 4) but (app’) and (red’) replace
the (app) and (red) judgments of Fig. 5. Here —gs is 4 extended with (x reduce) and =, is equality up
to (x eta) convertibility. The intuition for the change of (app) is that f may evaluate to

Oz :a1.by, ..o, Iz : ay.bp)t i
and application should be valid when, for instance, this is equivalent to a type of the form
Hz:{a1,...;a,)(n* = %)i.(by,...,by)(n¢ — %) i

A proof of the soundness and completeness of this algorithm should be similar to that in [VMP94].

4 Examples

Writing programs in an explicitly typed calculus can be onerous; to alleviate this, a number of shortcuts
are often used in the following: the “:#” is dropped in lambdas (and in the n-tuple syntactic sugar); the ¢ is

dropped from (zi,...,z,)t; m is put for the projection m,; the dimension d is dropped from x4; and when
applying dimensions and types, “fa;, +,” is put for “f d t; t2”. Also, fz = e is syntactic sugar for f = z.e.
The following conventions are used for meta-variables: ¢,a,b,c, 4, B, C for types (terms of type %), i, j, k,1
for projections (terms of type n?), and d, I, J, K, L for dimension variables (terms of type D). (Distinguish
the variable d from a dimension written as 2¢ or nd.)

So, armed with the zip calculus, what kind of programs and laws can be written?

4.1 More General Programs
An uncurried zip3 is as follows in Haskell:
zip3 :: ([al,[bl,[c]) — [(a,b,c)]
zip3 (a:as,b:bs,c:cs) = (a,b,c) : zip3 (as,bs,cs)

zip3 _ = [

If Haskell had n-tuples, one could write a generic zip as follows:

zip ::4X(i[aj]) — [xal
zip (*x;:xs;) = x : zip xs
zip _ =0

Note that patterns are extended with n-tuples. Unfortunately, this zip cannot be written in the zip calculus
(extended with recursive data types and a fix point operator) unless a primitive such as seqTupleMaybe is
added:

seqTupleMaybe :: x(* a; —Maybe b;) — xa—»Maybe(xb)
However, once this primitive is added, n-tuple patterns can be defined. It is a trivial extension of the
transformation given in [Tul00]. Section 5.1 returns to this problem of functions that must be primitives.
4.2 More General Laws
The parametricity theorem for an uncurried zip3

map(cross3(f,g,h)) - zip3 = zip3 - cross3(map f,map g,map h)

where

cross3 (f,g,h) (x,y,z) = (f x, gy, h z)
can be generalized in the zip calculus to this:

map(crossy f) - zip = zip - crossy (““map f;)

where]

crossy f x = (“dfj X.4)
And this law

(x1, x2, x3) = x

can be generalized to the (n-tuple eta) law:

(Ux) = x

4.3 More General Derivations
Remember this example from section 2.37

fst e

i}

Clfst]
Similarly, snd e = C[snd]

Thus,
e = (fst e,snd e) = (C[fst],C[snd])

Now a generic transformation can be done handily:

(
=
(1

e;)
e)
cls])
The fst and snd cases are transformed simultaneously by transforming the body of the n-tuple, Thus, a
meta-language is no longer needed to express such generic transformations.

4.4 Nested N-Tuples

Typical informal notations for representing n-tuples are ambiguous: e.g., one writes fZ for the “vector”
(f21,..., fzn) but now g (f Z) could signify either (g(f z1), ..., g(f zn)) or g{f z1, ..., f £»). These notations
do not extend to nested n-tuples. But in the zip calculus, one can easily manipulate nested n-tuples (“ma-
trices”). For example, to apply a function to every element of a three-dimensional matrix is coded as follows
(note that (-'?e) is a tuple of identical elements):

map3Dmatrixep,r,0x :: (@ —b) — x(=Tx (= x (= Ka))) = x(=Tx (-7 x(-Kp)))
map3Dmatrixa,b,1,JyK = Af.)\m.(“I«:J(k:Kf m”k)))

The expression (*/ (77 (K¢)}) is a 3-dimensional matrix where e is the value of the elements; here the value
of the elements is “£” applied to the corresponding value of the original matrix “m ; j ;”. Matrix transposition
is straightforward:

transpose;s g :: X(i:le('j:Ja;i,j)) = x@Ix(a; ;)
transposey,jq =)\x.(J:J(“I Xij)

The transpose is done by “reversing” the subscripts of x. Note that the type variable a above is a matriz
of types and, for any n, transpose could be applied to a tuple of n-tuples. An application of transpose is
reduced as follows:

(transposegd g0 , {(x1,x2),(y1,52),(21,22))) 2.3
= (O ((x1,x2),(y1,y2),(21,22)).0;)23
= (" ((x1,x2),(y1,y2),(21,22)).i2) 3
- ((x1,%2),(y1,y2),(z1,22)) 32

— (z1,22) .2

- z2

Note the various ways one can transform a two dimensional matrix:

(*(Im;) m itself

((*m4.4)) the transpose of m

(f mij)) f applied to each element of m
(£ (Pm;) f applied to each “row” of m
(f (*m;4)) f applied to each “column” of m

It should be clear that this notation extends to matrices of higher dimensions.

4.5 Program Transformation

The original motivation for the zip calculus was to create a language adapted to program transformation.
This section shows how the zip calculus can simplify program transformation.

Here are two laws about the transpose function defined above:

m.;.j = (transpose; ; , m) ;.
m = transpose; 1 ,(transpose; ; , m)

Here is a proof of the second (a proof of the first is part of the derivation):

transpose;; (transposej, s, m)

= (4 (](’m”))kl » {unfold transpose twice}
=k (mag) 1) {n-tuple reduce}

= (I(k my.g ¥) {n-tuple reduce}

= my) {n-tuple eta}

= m {n-tuple eta}

A law, called Abides, is

case (Ax.(al,bl) , Ay.(a2,b2)) x

(case (Ax.al,\y.a2) x , case (\x.bl,A\y.b2) x)
and its derivation is

case (Ax.(al,bl) , Ay.(a2,b2)) x
= {x eta}
((case (Ax.{(al,bl) , Ay.(a2,b2)) x); ,
(case (Ax.(al,bl) , Ay.(a2,b2)))2)
= {inst, 2x}
((case (Ax.(al,bl)1, Ay.(a2,b2):) x) ,
(case (Ax.(al,bl).2, Ay.(a2,b2)s2) x))
= {X reduce, 4x}
(case (Ax.al, Ay.a2) x ,
case (Ax.bl, Ay.b2) x)

10

Here is a generic version of Abides
case (i)\y.(jm,i,j 7)) x = (fcase (i/\y.m,,gj y) x)
and its derivation is

case (i)\y.(jm,i,j y)) x
= {n-tuple etal}
((case (Ay.(mey 7)) ©).s)
= {inst}
(0 case (Ay.(miy 3)s) %)
= {n-tuple reduce}
(case (A\y. mi; y) x)

which corresponds directly to the non-generic derivation above. Note that instantiation is only applied once
(not twice) and reduction once (not four times), and this law is generic over sums of any length and products
of any length!

4.6 Generic Catamorphisms

It was obvious that Haskell’s zip family of functions could benefit from n-tuples, but it is interesting that
catamorphisms [MFP91] can benefit from n-tuples, resulting in catamorphisms over mutually recursive data
structures.

First, a fix point operator for terms, fix, and a fix point operator at the type level, u, must be added to the
calculus. Normally, the kind of p is (x = x) = « (i.e., it takes a functor of kind * — % and returns a type),
but here the kind of p(,qy is (x (-n"%) = x (—:"d*)) — x(=n" *) (i.e., it takes a functor transforming n-tuples
of types and returns an n-tuple of types). The subscript of p is dropped when clear from the context. The
primitives in and out now work on tuples of functions. Note how their types have been extended:

ing :: F(uF) = pF original
ingp 0 x(CH(F(uF)): = (uF) ;) generic
outp :: uF — F(uF) original
outyp :: x(*I(uF); = (F(uF)).) generic

From these a more generic cata can be defined®:

catap, ::(Fa—a) — (uF —a) original
catar g, i X(*(Fa); = a;) = x(CI(uF); = a;) generic
catap, ¢ =1fix Af.¢-F f-outp original
catarpo ¢ = fix M. (*1 ¢ ;- (F £) ;- (outy p) ;) generic

6 Of course, since the definition of cata is polytypic in the first place, this assumes that there is some form of
olytypism (note the application of the functor F to a term), though type classes would suffice here.
p g

11

So, cata(na) F,, takes and returns an n-tuple of functions. All laws (such as cata-fusion) can now be gener-
alized. Also, the standard functor laws for a functor F of kind * — «

id = F id
Ff -Fg=F (fg)

can be generalized to functors of kind x(-7x) — x(=*/%):

| (-7iq) =
@IEF £); - (F g)y)

1
b e |
3
oL
Hh
a
-~

The original cata and functor laws can be derived from these by instantiating the n-tuples to 1-tuples and
then making use of the isomorphism x(a) = a (the bijections being Az.z 1, and Az.(z)).

5 Conclusion

5.1 Limitations

The zip calculus does not give polytypism (nor does polytypism give n-tuples); these are orthogonal language
extensions:

~ Polytypism: generalizes zipList, zipMaybe, zipTree, ...
— N-tuples: generalizes zip, zip3, zip4, ...

An n-tuple is similar to a heterogeneous array (or heterogenous finite list); but although one can map over
n-tuples, zip n-tuples together, and transpose nested n-tuples, one cannot induct over n-tuples! So, n-tuples
are clearly limited in what they can express. As a result, one cannot define the following functions in the zip
calculus

tupleToList :r x(-%a) — list a

seqTupleL,seqTupleR :: Monad m => X(i a; —m b;) — Xa—m(xb)
However, if we provide seqTuplel and seqTupleR as primitives, then

— Each of these families of Haskell functions can be generalized to one generic function: zip. . ., zipWith...,
unzip..., and 1iftM1...

— The function seqTupleMaybe from section 4.1 can be defined.

— A number of Haskell’s list functions could also be defined for n-tuples: zip, zip3, ..., zipWith, zipWith3,
..., unzip, unzip3, ..., map, sequence, mapM, transpose, mapAccumL, mapAccumR. (These functions all
act “uniformly” on lists—they act on lists without permuting the elements or changing their length.)

Other functions cannot even be given a type in the zip calculus. For instance, there is the curry family of
functions

curry2 :: (a->b->c) -> (a,b)->c
curryd :: (a->b->c->d) -> (a,b,c)->d

but there is no way to give a type to a generic curry. Extending the zip calculus to type this generic curry
is an area for future research.

12

5.2 Relation to Other Work

Polytypic programming [Mal90b,Mal90a,MFP91] has similar goals to this work (e.g., PolyP [JJ97] and Func-
torial ML [JBM98]). However, as just noted, the genericity of polytypism and n-tuples appear orthogonal. As
seen in section 4.6, with both polytypism and n-tuples some very generic programs and laws can be written.

Two approaches that achieve the same genericity as n-tuples are the following: (1) One can forgo typed
languages and use an untyped language to achieve this level of genericity: e.g., in Lisp a list can be used as
an n-tuple. (2) A language with dependent types [Aug99] could encode n-tuples (and much more); though
the disadvantages are that type checking is undecidable (not to mention the lack of type inference) and the
types are more complex.

Related also is Hoogendijk’s thesis [Ho097| in which is developed a notation to generalize binary products
of categories to n-products of categories; his notation is variable free, categorical, and heavily overloaded.

5.3 Summary

Implementation has not been addressed. One method is to simply inline all n-tuples, although this could lead
to code explosion and does not support separate compilation. Another method is to implement n-tuples as
functions (as they are just another form of function); just as there are a range of implementation techniques
for polymorphic functions, there are analogous choices for implementing functions generic over dimensions.

Future work is (1) to extend the zip calculus to be polytypic, (2) to increase the expressiveness of the zip
calculus (so seqTuplelL, seqTupleR, and tupleToList can be defined in the language and curry could be
given a type), and (3) to implement a type inference algorithm for the zip calculus.

I hope to have shown that the genericity provided by n-tuples is useful in a programming language and
particularly useful in program transformation. Although there are other solutions, the calculus presented
here is a simple solution to getting n-tuples in a typed language. One of the notable benefits of n-tuples in
a transformation system is that they allow one to do many program transformations by simple equational
reasoning which otherwise would require a meta-language.

Acknowledgements. I would like to thank Valery Trifonov for many helpful discussions.

References

[Aug99] Lennart Augustsson. Cayenne — a language with dependent types. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP ’98), volume 34(1) of ACM SIGPLAN Notices,
pages 239-250. ACM, June 1999.

[Bar92] H. P. Barendregt. Lambda calculi with types. In D. M. Gabbai Samson Abramski and T. S. E. Maiboum,
editors, Handbook of Logic in Computer Science. Oxford University Press, Oxford, 1992.

[BdM97] Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.

[HJW92] P. Hudak, S. P. Jones, and P. Wadler. Report on the programming language Haskell. SIGPLAN Notices,
27(5), May 1992.

[HL78] Gérard Huet and Bernard Lang. Proving and applying program transformations expressed with second
order patterns. Acta Informatica, 11:31-55, 1978.

[Hoo97] Paul Ferenc Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Dept. of Math. and Computing
Science, Eindhoven Univ. of Technology, 1997.

[JBM98] C.B. Jay, G. Bell¢, and E. Moggi. Functorial ML. Journal of Functional Programming, 8(6):573-619, 1998.

13

[JJ97] P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension. In POPL ’97: The
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 470-482. ACM
Press, 1997.

[Mal90a] G. R. Malcolm. Data structures and program transformation. Science of Computer Programming, 14:255—
279, 1990.

[Mal90b] Grant Malcolm. Algebraic Types and Program Transformation. PhD thesis, University of Gronigen, 1990.

[Mee86] L. Meertens. Algorithmics - towards programming as a mathematical activity. In J. W. de Bakker, E. M.
Hazewinkel, and J. K. Lenstra, editors, Proceedings of the CWI Symposium on Mathematics and Computer
Science, pages 289-334. North-Holland, 1986. CWI Monographs, volume 1.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas, lenses, en-
velopes and barbed wire. In John Hughes, editor, Functional Programming Languages and Computer Ar-
chitecture, pages 124-144. Springer Verlag, June 1991. LNCS 523.

[PM97] Simon Peyton Jones and Erik Meijer. Henk: a typed intermediate language. In Proc. 1997 ACM SIGPLAN
Workshop on Types in Compilation (TIC’97), Amsterdam, The Netherlands, June 1997.

[Tul00] Mark Tullsen. First class patterns. In E. Pontelli and V. Santos Costa, editors, Second International Work-
shop on Practical Aspects of Declarative Languages (PADL’00), volume 1753 of Lecture Notes in Computer
Science. Springer-Verlag, 2000.

[VMP94] L. S. Van Benthem Jutting, J. McKinna, and R. Pollack. Checking algorithms for pure type systems.
Lecture Notes in Computer Science, 806:19-61, 1994.

[Wad89] P. Wadler. Theorems for free! In Functional Programming Languages and Computer Architecture. Springer
Verlag, 1989.

14

