A Set-Theoretic Characterization of Function Strictness
in the Lambda Calculus

Paul Hudak and Jonathan Young

Research Report YALEU/DCS/RR-391
January 1985 (revised April 1985)

Yale University
Department of Computer Science
Box 2158 Yale Station
New Haven, CT 08520
Arpanet: hudak@yale, young@yale

This research was supported in part by NSF Grant MCS-8302018,
and a Faculty Development Award from IBM.

Table of Contents
1. Introduction
2. Preliminaries
2.1. Syntax
2.2. Standard Semantics
2.2.1. Standard Semantic Categories
2.2.2. Auxiliary Semantic Functions
2.2.3. Standard Semantic Functions
3. Introduction to Strictness Analysis
3.1. A Naive Approach
3.2. An Effective First-Order Solution
3.2.1. Non-standard Semantic Categories (First-Order Strictness)
3.2.2. Non-standard Semantic Functions (First-Order Strictness)
3.3. Computing the Least Fixpoint
3.4. A Boolean Characterization
3.5. Correctness
4. An Extension to Handle High-Order Functions
4.1. Preliminaries
4.2. Strictness Ladders
4.2.1. Non-standard Semantic Categories (High-Order Strictness)
4.2.2. Non-standard Semantic Functions (High-Order Strictness)
4.3. Computing the Least Fixpoint of Strictness Ladders
4.4. Other Interpretations
4.5. Comparison to First-Order Analysis
4.6. A Final Example
5. Acknowledgements
I. NP-completeness of Inequivalence of Monotone Boolean Formulae (MF-INEQ)
II. Correctness Proofs for First-Order Strictness

ok W W W Y

i B e B e, I ¢

o e e I R R S R e
W 1T O UV b W= O O © © W

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

A Set-Theoretic Characterization of Function Strictness
in the Lambda Calculus

Paul Hudak
Jonathan Young

Research Report YALEU/DCS/RR-391
January 1985 (revised April 1985)

Yale University
Department of Computer Science

Abstract

A function f is said to be strict in one of its formal parameters if it always evaluates the corresponding
actual parameter whenever the function call returns a value (i.e., does not diverge). Detecting which
arguments a function will surely evaluate is a problem that arises often in program transformation and
compiler optimization. We present a strategy that allows one to effectively infer strictness properties of
functions expressed in the lambda calculus. It Is similar to work done by Myecroft [10], but with the
following improvements: (1) a denotational semantics notation is used for abstract interpretation, (2) an
intultive set-theoretic characterization of the strict variables is used instead of boolean values, and (most
importantly) (3) we extend the analysis to include high-order functions, using a unique inferencing
strategy based on infinite sequences of functions. We also show that the most obvious strategy for
computing the least fixpoint of the functional characterizing strictness is NP-complete, but that in

practice, because the number of arguments to most functions is small, the complexity seems to be
tractable.

This research was supported in part by NSF Grant MCS-8302018,
and a Faculty Development Award from IBM.

1. Introduction

A function f is said to be strict in one of its formal parameters if it always evaluates the corresponding
actual parameter whenever the function call returns a value (i.e., does not diverge). More formally, a
function f(xl,xz,...,xn) is strict in x, if f(xl""’xl-l’-l-’xi-i-1"”’xn) = | for all values of x;, J# 1
Detecting which arguments a function will surely evaluate is a problem that arises often in program
transformation and compiler optimization. It is especially important in language implementations
supporting normal-order evaluation (such as ALFL [4], SASL [11], and FEL [9]), where knowing that a
function will evaluate a certain argument allows one to compute its value ahead of time, thus avoiding
the overhead of a “closure,” “self-modifying thunk"* [5], *future,“ or some similar object. One can think
of this as converting from a “call-by-name* or “call-by-need" evaluation strategy to one of *call-by-
value.® Another advantage of such an effort is that on parallel architectures it allows one to “"eagerly"

compute several arguments in parallel, with a potentially large reduction in overall execution time [6, 7].

w

In this paper we present a strategy that allows one to effectively infer strictness properties of functions
in the lambda calculus. It is similar to earlier work by Mycroft [10], but with the following differences:
(1) a denotational semantics notation is used for abstract interpretation, (2) an intuitive set-theoretic
characterization of the strict variables is used instead of boolean values, and (most importantly) (3) we
extend the analysis to include high-order functions, an extension that is crucial for any implementation of
a programming language that treats functions as *first-class citizens.® The inferencing strategy used for
high-order functions is unique, and we believe it can be generalized to other domains. We also show that
the most obvious strategy for computing the least fixpoint of the functional characterizing strictness is
NP-complete, but that in practice. because the number of arguments to most functions is small, the

complexity seems to be tractable.

2. Preliminaries

2.1. Syntax

Instead of adhering to the conventional syntax for the lambda calculus, we use a “syntactic sugaring"
that has become quite popular in the functional programming community. This notation allows one to
give names to functions by expressing them as a set of mutually recursive equations (and also, at least
notationally, avoids the need for the Y operator). We write f(xl,xz,...,xn) = body to define the n-ary
function f (equivalently, in unnamed form, X(xl,xz,...,xn).body). We assume that the language has been
extended to include some standard set of primitive constants (including functions) such as those to
support arithmetic. Generally function application is written as f(el,e2,...,en), where f may be either a
user-defined function or primitive operator (informally we sometimes use infix notation for primitive
functions, as in el-}--e2 — the context should make the meaning clear). We also take as primitive a
conditional operator, which permits expressions of the form pred — con,alt, and is equivalent to the
more traditional if pred then con else alt. Finally, we consider our program to be a set of mutually
recursive function definitions (observing standard lexical scoping conventions as in the lambda calculus).

We formalize all this in the following abstract syntax:

¢ € Con is the set of constants (such as integers and booleans).
x € Bv is the set of bound variables.
fEFn is the set of function variables.
p €Pf is the set of primitive functions.
e € Exp is the set of expressions defined by:
eun=c|x| e, —eye, | f(el,...,en) | p(el,...,en)
pr € Prog is the set of equation groups (programs) defined by:
pr = { fl(xl’“"xm) =e,
fz(xl,...,xm) = e,

£ (x pmex) =e }

Note that without loss of generality we assume that each function has m arguments. Presumably the
result of the program is the value of one of the functions being defined, such as the first or the last — this
issue does not concern us here. Similarly, we assume that “nested” sets of equations can be handled

through the obvious extensions, but for clarity we leave out the details.

Note also that an important restriction at this point is that function names may appear only in function
application position; i.e., they may not be passed as arguments to functions nor returned as values from

expressions. We relax this restriction completely in Section 4.

2.2. Standard Semantics

2.2.1. Standard Semantic Categories

Int the standard flat domain of integers.

Bool the standard flat domain of boolean values.
Bas = Int + Bool the domain of basic values.

Fun = Bas” — Bas the domain of first-order functions.

D = Bas + Fun + {error} the domain of denoteable values.
Env=(Bv + Fn) - D the domain of environments.

2.2.2. Auxiliary Semantic Functions

Domain predicates: Int?, Bool?, Bas?, Env?, and D?.

Conditional:
e, —e,e, = . if e1=_]_
error, if not Bool?(el)
e, il e, =true

e3, otherwise.

Primitive functions:

X+y=_].ifx=_] ory=_|
the sum of x and y, otherwise.

x ANDy = | ifx=_] ory=_
the logical AND of x and y, otherwise.

and so on for other primitive functions.

2.2.3. Standard Semantic Functions

We adopt the convention of using double brackets [...]] around syntactic arguments.

K: Con — Bas, mapping syntactic constants to semantic values.
P: Pf — Fun, mapping primitive functions to semantic values.
E: Exp — Env — D, giving a meaning to expressions.

Ep: Prog — Env, giving a meaning to whole programs.

K(In] == n, if n is an integer
K [[true] = true
K [false] = false

PI+1 = \(x,y). (Int? x and Int? y) — x + y, error
Pland] = A\(x,y). (Bool? x and Bool? y) — x AND y, error
P([cons] = \(x,y). <x,y>

and so on for other primitive functions.

Elclenv = K[c]
E[xJenv = env[x]
E IIe1 —_ ez,esll env = E [[ell] env — E [Ie2I] env, E lIe3]] env

E [[f(el,...,ez)ll env = env [f](E [e,Jenv, .., E [[enIl env)
E Ep(el,...,ez)]] env = P[p](E e, Jenv, ..., E[e,Jenv)

Ep u:{ fl(xl,...,xm) = el,
»fz(xl,...,xm) =e,,
fn(xl,...,xm) =-e, }1 = env’
whererec env’ = [X(v,,...,v). E[e, T env’[v /x ,eeev /x| /£,

oo

A peev) EQe T env'[v, /% peeegv /x| /£]

Note that the "meaning® of a program is an enwvironment containing values for all of the top-level

functions f1 through fn'

3. Introduction to Strictness Analysis

3.1. A Naive Approach
A naive approach to inferring function strictness can be described in the following way: The function f
defined by f(xl,...,xn) = body is strict in x, whenever the expression body is guaranteed to evaluate x;,

according to the following (recursive) set of rules:
1. The evaluation of a parameter x always evaluates X.

2. The evaluation of p(el, ceey en) depends on p. For example, if it is a strict binary operator
such as <4, then both e1 and e, are always evaluated; if it is a “sequential" operator such as

and, then only e, is always evaluated.

3. The evaluation of e, — e,,e, always results in the evaluation of e,, and also all variables that

1
are evaluated in both e, and e,.
4. The evaluation of f(el,...,en) always results in the evaluation of e whenever f is strict in its

ith formal parameter.

Formalizing the above analysis for a set of function definitions results in a set of mutually recursive
(because of the last rule) equations that can be solved in any number of ways. This is essentially the
analysis carried out by Johnsson (8], except that he uses a boolean system that indicates whether or not a
particular variable will be evaluated or not (his analysis thus requires solving a set of mutually recursive

boolean equations instead of set equations).

Unfortunately, the above analysis has a fundamental difficulty, which becomes apparent when one

considers the following simple program:

{ f(x,y,2) = x=0—y,z2
8(3)b) = f(a,b,(b+1)) }

Note that g is strict in both a and b, yet the simple analysis described earlier only detects that g is strict
in a. This problem arises because even though we take into account the interactions between the
consequent and alternate expressions in the conditional, we fail to propagate that information across
function boundaries. Correcting this situation requires a nontrivial shift in the methodology, for now we
must compute a function that characterizes the strictness property of each defined function in terms of
in formation describing what is evaluated in the arguments to the function. The work by Mycroft
[10] does exactly that, but using a boolean system similar to Johnsson’s. In the next section we present a

solution based on the more intuitive idea of functions on sets.

3.2. An Effective First-Order Solution

By reconsidering the problem from a set-theoretic standpoint, we can formalize our solution as follows:
Intuitively, for any expression e, we let N [e]l denote the set of free variables which are “needed" to
compute the value of e. Applying this notion intuitively to the above example means that N [f(x,y,z)]
= N[Ix—y,z] = N[IxI] U (NIyJ n N[z]). Note carefully how the conditional is treated — the
intersection of the consequent and alternate comes from the fact that something evaluated in both
subexpressions will be evaluated regardless of the value of the predicate (unless the predicate diverges, in
which case the entire expression diverges). Continuing with the example, N[Ig(a,b)] =
N [f(a,b,(b+1))] = N{Ial U (NIbI Nn N[Ib+1]). Clearly, N[b+1] = N[b], so N[Ig(a,b)l
= N[al U NTb], as intuitively inferred.

We can formalize the above analysis by using abstract interpretation {1] of the original functions to
derive a new set of mutually recursive equations that capture the properties of interest. Rather than give
an "informal* abstract interpretation as suggested above, we simply provide an alternative, or “non-
standard,” semantics that captures the properties that we desire. Such a treatment requires that the
function N have type Exp — Senv — Sv, where Senv is an environment containing strictness properties

of free variables, and Sv is the domain of sets of strict variables. More formally:

3.2.1. Non-standard Semantic Categories (First-Order Strictness)

Sv, domain of sets of strict variables.

Sfun = Sv® — Sv. the function space mapping sets of strict
variables to other sets of strict variables.
Senv = (Bv+Fn) — (Sv+Sfun), the “strictness* environment.

3.2.2. Non-standard Semantic Functions (First-Order Strictness)
Ps: Pf — Sfun, mapping primitive functions to a function
that captures the strictness properties.
N: Exp — Senv — Sv, as intuitively described earlier.
S: Prog — Senv, giving a meaning to whole programs.

PsI+] = MR,¥). X U ¥ (since + evaluates both of its arguments)

Ps[and] = A\ %,9). % (since "sequential and" always evaluates its first argument)
Ps{cons] = A(%,9). 0. (since “lazy cons" evaluates neither argument)

and so on for other primitive functions.

NlIc]senv = @

NIx]senv = senv [x]

N ﬂ:e1 —eye;lsenv = N[e Isenv U (N[e,Isenv N Ne,lsenv)
N [[f(el,...,en)]] senv = senv [f(N[e, Isenv, ..., N[e I senv)

N [[p(el,...,en)]] senv = Ps[pl(N ﬂ:el:[] senv, ..., N [[en]] senv)

S [{ fl(xl,...,xm) =e,

fz(xl,...,xm) =e,,

-

£ (x)peex) = e }] = senv’
whererec senv’ = | A& peee®). Ne T senv’[il/xl,...,im/xm] /fl’
A& yeeek). NDe T senv’[% /x oo /x]/ £]
Thus the meaning of a program is still an environment, but now one that binds the top-level functions
to elements of Sfun. In general we say that senv’ [f] is the strictness function of f, which we write in
shorthand as t: . This corresponds to our use of X for bound variables in the "strictness domain," as a

way of emphasizing that we are using a non-standard semantics.

Note that the environment senv’ establishes the property that when f is applied to the sets
corresponding to the strictness behavior of s arguments, it returns the set of variables *needed" by the
application of f to those arguments. Note further that expressions like +(x,y) get mapped to X U ¥, not
{%,9}. This emphasizes the fact that £ and ¥ are sets, and that f is a function on sets and is an abstract

interpretation of f that describes its strictness properties.

3.3. Computing the Least Fixpoint

Consider the following recursive runct,ion:l
f(x,y,s,p,q) = p>0 — (p=1— x+z,
1(2,2,0,p-1,x)),
f(oyoyz)I:Y)

It follows from the above definitions that:

£(2,:9:8:58) = pU (R U £) N ‘

(b U (f(2,2,0,0,%) N £(9,0,2,0,9))))
=puU ((i Ug)n)
f(z,%,0,0,%) N £(0,0,2,0,9))

From this a functional G can easily be defined such that:

£(2,9,2,5,3) = G(f)(%,9,2,8,3). or:

f = G(f) :
so that f is a fixpoint of the functional G. One standard way of computing such a fixpoint is by
constructing Kleene’s ascending chain of “approximations,* starting with the bottom element in the
lattice of functions, and taking the least upper bound as the fixpoint. In our case the lattice of functions
is formed based on the superset relation; that is:

ilg i2 iff il 2 iz

and fL Ef, 1r f(%)E f,(%) for all %
which generalizes in the obvious way to n-ary functions. The superset relation is used because we wish to
find as many strict variables as possible. The least defined element in Sv we denote by -LSv’ and it is
simply the set of all strict variables of interest. Thus t;he least defined function Un in each n-ary function
space simply returns -LSv' but for convenience can be thought of as returning the union of its n
arguments. Note that by construction, all of our functions are monotonic and continuous (because they

are all constructed solely from set union and intersection), thus guaranteeing a unique least fixpoint.

Continuing with our example, we get the following ascending chain of refined estimates for the desired

function (elements in the chain are identified by superscripting):

0078 o 2 a o soa A A A

£7(%,9,2,0,8) = Ug(%,,2,8,3)
=XUFJUEZUDUQG

elis o a a a a a a a a a a

f (x,y,z,p,q) =pu ((x U z) N (z U x) n (z U Y))
=pUiuUuENY)

-o A A A A A -~ A A - A

f-(x’y’z’p1Q) =puU ((x U z) n (z n z))

1’l‘his interesting example is due to Simon Peyton Jones.

£3(2,9,8,5,4) U(xuUE)Nnoni)

oo

£3(2,9,2,0,4) = pU (R U E) N0 N D)

o o

Clearly fi == i.'s for all i>3, so 123 must be the least fixpoint.

In this example it was obvious when the least upper bound in the sequence was reached, but how is this
done in general? In other words, how do we determine when } - £‘1+1? This problem is the same as
determining the equivalence of two monotone boolean formulae, since membership of an element in i: (+e0)
depends only on the “"signature® of the parameters X, ..., q (not, say, on the size of the sets, etc.). The
boolean formulae are obtained by substituting logical-and for set-union, and logical-or for set-intersection.
Unfortunately, determining such equivalence is NP-complete, as the analysis in Appendix I demonstrates.
Note that this does not mean that determining these fixpoints in general is NP-complete, just that the

iterative strategy described above is.

The obvious exponential algorithm to test for equality is to try all 2% combinations of true
(corresponding to non-empty) and false (corresponding to @) arguments in the derived boolean formulae.
Because the functions in the chain are increasing in definedness, the 2" combinations need to be tried only
once. In most applications user-defined functions do not have a large number of arguments, and generally
the number of arguments to individual functions does not increase with program size, so this method may

be practical despite its exponential nature.

It would be convenient if we could look for a fixpoint when applying f‘i to some given arguments, rather
than finding a fixpoint in the functional itself. However, the above example shows that this is not the
case: even though the sequence of functions <£’i> is strictly increasing until the fixpoint is reached, the
sequence of sets < f.‘ i(i,y,i ,P,@)> may not be. The example above was specifically designed to
demonstrate this, using actual parameters X = {x}, § = {y}, ¢ = {2z}, p = {p}. and § = {q}; i.e.
for an *ordinary* application of f. For here we find that the sequence of approximacions to the sets is

{x,¥,2,p,a}, {P>z}, {P»2z}, {P}s {P}, .- — nOte the “false summit™ reached at {p,z}.

3.4. A Boolean Characterization
It should be noted that it is easy to convert our analysis to a boolean characterization similar to
Mycroft’s (10]. To do this, we would write N’ [exp,x] senv as a predicate that returns true when x is a

free variable that is *needed” in exp. In other words, we define N’ by:
N’ [exp,x]senv iff x € N[explsenv

Alternatively, the construction can be created directly by replacing set-union and set-intersection with
logical-and and logical-or, respectively, changing the rule N[x]senv = senv([x] to N’[var,x]senv
= var ¢ (senv Ix]T), and making similar minor changes to the other rules. The details are left to the

reader.

Rather than use this boolean approach, we feel that it is intuitively more appealing to determine for an
arbitrary expression e the set of all things that will be evaluated if e is. Indeed, by giving a unique name
to each node in a parse-tree, we can use this same strategy to determine all subexpressions that will be

evaluated. This may be very useful for compiler optimizations.

3.5. Correctness

In what sense is our algorithm correct? At a minimum, it should possess the following safety property:
the analysis must never falsely declare that a function is strict in its ith argument. This is important,
since presumably one of the primary reasons for doing the analysis is to allow compiler optimizations that
might change the program semantics if the analysis were wrong. However, we cannot expect the converse
to hold, since that would constitute a direct solution to the halting problem. That is, we cannot always
expect the analysis to determine that a function is indeed strict in its ith argument. Our analysis is thus

only an approzimation, but that is the best that we can hope for.
Appendix II contains detailed correctness proofs for the following theorems:

Theorem 1: (Safety). Let env’ = Ep[p] and senv’' = S[pJ for some program p:
p={ fl(xl’“"xm) =e,

£,(x)peeex) = e,

fn(xl,...,xm) =-e }
Then x € senv’ [[fi] (il,...,im) => env’ [[fiI] (dl,...,dm)=_1_, i=1,...,n

where dj=_j_ whenever x Eij, j=1,...,m.

Although the proof of Theorem 1 is tedious, the reader is urged to read through it, since it demonstrates

a classical combination of structural and fixpoint induction.

Theorem 2: (Termination). If -LSv is finite, then the standard iterative technique of determining

S[[pJ] always terminates in a finite number of steps, for all p.

4. An Extension to Handle High-Order Functions

Despite the simplicity and intuitive appeal of the analysis given so far, it is only applicable to first-order
systems - note that we have not considered functions passed as parameters in function calls or returned

as values from expressions (including function calls). For example, consider this simple program:

{ f(x) = x
g(x) = x+1
h(a,b) = (a=0—1f,g) b }

Our simple set theoretic construction is unable to detect the fact that h is strict in b, even though it is
obvious to the reader that it is. Ihdeed, we have avoided this situation entirely by disallowing functions

from appearing in other than function application position, which would rule out the way f and g are

10

used here (i.e., as the result of the conditional). We now remove that restriction entirely and present a

new analysis that effectively deals with high-order functions of this sort.

4.1. Preliminaries
We now consider all functions to be *curried* (including primitive ones) and thus our function

definitions look like: f X) Xy eee X = body. However, we use the more verbose lambda calculus

notation f =)‘xl. AX, . e)‘xn. body (or, equivalenty, f = Xxl Xg oo X body), because it simplifies

2
the inferencing rules. The one other change to the syntax is that we now allow nested groups of

equations. and we take the value of the right-hand-side of the first equation as the value of the equation

group. The new abstract syntax is thus:

¢ € Con is the set of constants, including primitive functions.
x,f € V is the set of bound and function variables.

p € Pf is the set of primitive functions.

e € Exp is the set of expressions defined by:

u=c|x|f] e, —e, e, | e e, | \x.e | pr
prec Prog is the set of equation groups (programs) defined by:
pra= {f =e,

f2=e‘2,
f =e
n D}

4.2. Strictness Ladders

The important observation to be made is that an expression not only has a “direct strictness* (the set
of variables which are evaluated when it is), but it also has a “delayed strictness* (the set of variables
which are evaluated when the expression is applied). In fact, an expression has a doubly, triply, indeed
"n-ly* delayed strictness, corresponding to the variables which will be evaluated when the expression is
applied twice, three times, and n times, respectively. Thus, the single functions given by our previous
analysis no longer suffice — we now denote the strictness of an arbitrary expression as a sequence of

functions called its strictness ladder.

More formally, with every expression exp in “strictness” environment s we associate a strictness ladder
L[Iexp]]s that provides strictness properties of exp both as an isolated value and as a function to be
applied. L [expls is a sequence of functions of increasing arity -- we write Li [explls to denote the ith
function in the sequence (starting with 0). Intuitively, Lo fexpls is a nullary function (i.e., a set of
strict variables) that is the same as N [expIs in our previous analysis. But in addition we now have
information that captures exp’s behavior as a function. In particular, N[[exp ells = L0 [expls U
((Ll [expIlls) (L{Iels)), since when evaluating a function call using normal-order reduction, one
evaluates the function, then applies it to its argument. Similar results are obtained for repeated (i.e.,

curried) applications. Note that the entire strictness ladder L [e]s is passed to L1 [expls, since we do

11

not know how e will be used within the body of exp; i.e., it could be used as a base value, applied to one
argument, applied to two, etc. Similarly, the ith element in a strictness ladder is a curried function of i
other strictness ladders. We formalize all this below (which the reader should compare to that given for

the first-order case).

4.2.1. Non-standard Semantic Categories (High-Order Strictness)

Sv, domain of sets of strict variables.
Sfun = Sv + (Sv — Sfun) + {serr}, the function space mapping sets of strict
variables to other sets of strict variables.
Slad = Sv X (Slad — Sv) X (Slad — Slad — Sv) X ..., the domain of strictness ladders.
Senv = V — Slad. the “strictness” environment.

For clarity we write e, N, e, to mean A\x, X, .. X;. (e1 X Xp e X)) N (e, x; X, «e X;). That is, N,

distributes intersection over function application. By convention, e

1

1 ﬁo e2 is the same as e1 N e2.

Finally, define -LO == serr, and _]_i =)‘x'li-l' for i>0. L is used in this way as an “error element,"

so we define Ne = eN = . Note by induction that this implies | .N.e = eN = | ..
0 0 i i=i i

4.2.2. Non-standard Semantic Functions (High-Order Strictness)

Kl: Con — Sfun. mapping constants (including functions) to Sfun.
L: Exp — Senv — Slad, mapping expressions to strictness ladders.
S1: Prog — Senv, giving a meaning to a whole program.
Ki[e] = <9, 1,» Lys e >.if cis an integer or boolean value.
KIT+] = <0, \&.0, \& $.%,U5 0, Lgr Lo e >
Ki[=] = KI[+1.
KITAND] = <, \%.0, \%)“'.:‘co, _J_3, 1
and so on for other primitive functions.
L{cls = Kli[c]
LIx]s = sIx]
LIf]s = s[f]
Lle —e,e,ls = <L le Isu (L, Ce,Is N Lyle,Is), L [e,IJs N, L, [e,Ts,
L2 [Iez_'ﬂs Ny L2 [[esIl Sy e >

L[Ie1 e, s = <L, [IeI]]s U ((L1 [[elIJs) (L [[ez,'ﬂs)), (L,‘2 ﬂ:el]]s) (L [[e2]]s),

(L3 e, I s) (L Te,D 8)y e >

g >

LI x.els = <9, A%.L Cels(x/x],
AL, [els(x/x], ... >

I
o

LI{f,

-
!
o

f,=e s = LlIeII]s'
whererec s’ = s[Le Is’ / f,

Lle Is /£]

SIT{ f,=e¢,
fy=reyn

f=e }1=¢
whererec s’ = [L{e Is' / f,
3
Lle Is' /£]
Thus the abstract "meaning® of a program is again a “strictness environment,* but that now binds the

top-level functions to strictness ladders. Similar to our earlier analysis, we refer to the strictness ladder

of one of these functions as f, and its ith element is fi‘

As an example, consider the program given earlier, rewritten below in curried form:
{fx=x
gx=+x1
hab=(=a0)—fg)b}

From this we derive the following (in which. for clarity, we omit the environment argument to L in all
cases):
f = LDxx] = <49, ARX gy ARy eee >

g = LDx.+ x1] = <,)\i.LOE-}- x 17,)\i.Ll I+ x 1], .. >
<@, AR, x:‘c._i_l, e >

LI(= a 0)—f,g] = <3 U(f "), £ N, &, N0y oo >
LI((=a0)—f,g)bl = <:§0U(f0ﬂ§0)u((flﬁl§1)b), (fzn:zgz)b’ (fanaés)b, e >
which, after substituting for f and g, yields:
LI((= a 0) = f,g)b] = <&,Uby, b N L, byl oo >
= <éjuby, L, Ly - >

so finally:
h= L[I\a b.((=a 0)—f,g)bl

= <@, \a.0, \a b.é.oubo, A\ b._Ll, Mbl, .>

= <@, \d.p, \a b.ﬁoubo, _]_3, _3__‘, e >

Note that h_ indicates that the function h is strict in both of its arguments, as was intuitively inferred

earlier.

4.3. Computing the Least Fixpoint of Strictness Ladders

Given the resulting set of equations defining the strictness ladders, the next question is how to find an
appropriate solution; i.e., a least fixpoint. This would be a trivial task if the set of equations were finite,
since then the standard iterative technique used in Section 3.2 would suffice. However, each equation in

our new analysis represents an entire strictness ladder, which is an infinite sequence of functions.

13

Fortunately the elements of a ladder usually degenerate at some point to error functions of the form -l-i'

Suppose in such a situation the maximum length of the “relevant® part of each ladder is less than n.

Then each equation f = exp can be replaced by n equations of the form { fo = exp, fl = eXP,; «
f n-1 = ®XP, }. In addition, occurrences of non-subscripted variables such as f can be replaced by the

n-tuple <f0, fl, veey fn-1>‘ If we then define the set of least defined functions as U, =)\xl Xy see X
x1Ux2U...Uxi, we can form an ascending chain of approximations as before, stopping when the least

upper bound is reached.

Unfortunately, not all strictness ladders degenerate in the way described above. For example, consider
the strictness ladder for the function f = M\x.f x x:
f= <O, ML UF RUT, %% ARF, %%, 0 >F
Note that each element in the ladder after the first is defined in terms of the nezt element! Clearly we
cannot evaluate this by the methods described so far. This problem arises because f does not have a

well-defined “depth* or "order® for its type. which appearstobe D= D =D —

We feel that functions such as the above have little utility (except as counterexamples!), and our
approach to solving the problem is to disallow them from our domain of programs by a suitable typing
discipline. In particular, most versions of the typed lambda calculus provides the necessary constraints,
and schemata of this kind have been studied extensively elewhere ([2, 3]). In general it is convenient to
disallow functions that have “infinite" types, such as f defined earlier and f = Ax. f* which also has
type D — D — D —2 However, this restriction does not seem to always be necessary, because even
though the ladder for f* does not degenerate to error elements as described earlier, there is no dependence
of early elements on later elements as was the case for f. Thus the ladder may be computed *lazily® by

demand.

After restricting our function space as described above, it is easy to show that all functions have a
strictness ladder whose "relevant part" is finite. For, since the type of f is finite (say 1), we can consider
this to be the length of the ladder (an overestimate), since no element fi, 0<1i<, can depend on fk,

k>1. With such a restriction we can now compute the least fixpoint as described earlier.

4.4. Other Interpretations
It should be noted that L [f x] = <i:0U(i:1 %), f'2 X, t:3 %, ... > and thus:
LD x] = <8, AL U(E, %), A1, %, o >
= <40, Xi.fou(fl %), £, fq0 000 >

However, by Eta-conversion Ax.f x = f, yet:

o - - A - - - .
“Since LIf x] = <f0 U (fl %), f2 X, ...>and LO(f x) xI = <f0 U (f1) U (f2 % %), f3 X, ..>.

3lt is interesting to note that f and f” are equivalent in the Beta-theory of the lambda calculus - their Bohm trees are identical.

14

LIf] =f=<f,f,f,f,.. >
So strictness is not preserved under Eta-conversion by our analysis. This reflects our interpretation of a
lambda expression as a “thunk," whose body is not evaluated until it is called, and is manifested more
seriously in examples such as g x y = <+ x y, which yields:

LIgl = g = <@, \%.0, Az ?.iOU}"o, -Ls’ _L4, e >
For here note that L [g e,] = <9, Ay.L, [[elﬂ U¥g Lgs e >, and thus g e does not evaluate e
(since L0 183 eII] = @), even though g e, e, does.

Although this interpretation of strictness is reasonable, it is easy to imagine situations where one would
want g e, to evaluate e whenever g e e, does. Indeed, the only time one would normally evaluate g
e1 is when it is about to be applied. so evaluating e1
only exception to this is in the use of predicates such as function? which might be expected to return

“early* would seem to be a safe thing to do. The

true whenever its argument is a function. But since Eta-conversion is preserved in only limited and often
differing ways in a given implementation, it might also be reasonable to define function? (g |) = |

instead of true. We can alter our analysis to conform to this new interpretation by simply changing the
definition of L when applied to lambda expressions, from:

L x.e] = <@, \x. L, [el ,)‘i'Ll Tel, ... >
to:

LDix.e] = <(A.L,Tel)d, \&.L Cel, \x.LLeD , ... >

where @ is the *null ladder* defined by <@, kxl.(b, Ax, X, 0 e >

With this new interpretation, we arrive at the following for the function g defined above:
LIgl] = <4,)\:‘:.SEO, AR ?.iou?o, _La, _[_4, e >

so that L0 g el].'] =L, [[elﬂ, which means that e

1 18 evaluated when g e is. This result highlights

the generality of the strictness ladder approach.

Note that a similar change (to preserve consistency in the way partial applications are treated) could be

made to the primitive definition of + as given by KI:
Ki[+]1 = <09, ARy AR FRUT oy Lay Ly e >

4.5. Comparison to First-Order Analysis

It should be obvious that our new analysis provides additional information that the old analysis does
not. It is also the cése that the new analysis does not lose any of the power of the old. In particular,
suppose we have an uncurried function f of n arguments defined by f(xl,xz,...,xn) = exp and subject to
the restrictions given in Section 3.2 (i.e., functions only appear in application position). We would like
the strictness properties computed for it to be the same as for the curried function f* defined by f* X X,
. X = exp’, where exp’ corresponds to exp except that all function applications are curried. In other

words, we would like the set of “things* needed to evaluate an application of the uncurried function to be

the same as those needed to evaluate the application of the corresponding curried function.

15

We can state this more precisely by first creating an induction hypothesis in which se and se’ are two
“strictness® environments whose bindings preserve the property in question for the first-order and high-

order cases, respectively. Then what we wish to prove is:
Theorem 3: N[exp]se = L0 fexp’lse’

That is, the first element of the strictness ladder provides all of the information that the first-order
analysis provided. A review of the definitions for N and L should convince the reader of this, although

the details of the proof are tedious, and are omitted here.

4.8. A Final Example
The observant reader will have noted that we did not provide a strictness ladder for cons in the
definition of K1. It turns out that one can define cons. car, and cdr as high-order functions in the pure
lambda calculus, and get the “lazy* behavior that we desire. Furthermore, it is an ideal test of our
strictness analysis, since high-order functions get used in several ways. For example, we show below that
our analysis is able to determine that the function f:
fpxy=(p— car, cdr) (cons x (+ x y))

is strict in p and x!

First define cons, car, and edr by:

consxXyg=gXxy
car a = a (Ax y. x)
cedra =a (\xy.y)

Continuing to permit ourselves to be slightly "loose* with the notation, let:
Ix = L[\ y. x] = <@, z&.0, \x §. io, AX ¥.)‘io, >
ly =LDxy. y] = <0, \&.0, A& §. §, \& 3. For o>

Then the stricvness ladders for cons, car, and cdr are:
L{Tcons] = c¢béns = <P, \z.0, \% 7.0,

M ¥ & g U(&, R, % 9),

NET BB R T, >
L{Tcar] = ciar = <@, \a. iou(él Ix), \a. 3._2 Ix, «..>
LIcdr] = cdr = <@,)\a. ﬁou(il ly), Xa. a,ly, ..>

Returning now to the original program, it should be clear that:
Lcons x (+ x)] = <8, Ag. 8,U(&, R)U(&, % xdy),
Ag. §3 X xiy, «..>
where xlty = <i0U?0, >

and furthermore:

16

LIp — caryedr] = <P, U (czir0 n caro), car N cdr,
cér, N, cdr_, ...>
= <p0, car, nl c&rl,
car, N, cdr,, ...>
= <P, M-.&U((&, Ix) N (& Iy)), ...>
Combining the two using the rule for function application finally yields:
<P, U ((Ix,u(lx, K)u(lx, & xay)) N

= <p, U (%, Nxby,), .>
0 (o] 0

== <f>0 U io, >

(Whew!)

5. Acknowledgements

We wish to thank Professor Michael Fischer for the details of the proof of NP-Completeness contained
in the Appendix. Also many thanks to Simon Peyton Jones, whose enlightening visit inspired us to
pursue this topic further. Finally, the National Science Foundation provided partial support for this

research under grant MCS-8302018.

I. NP-completeness of Inequivalence of Monotone Boolean Formulae
(MF-INEQ)
Proof by reducing SAT to MF-INEQ. (Credited to Mike Fischer)

Let F be a CNF formula over variables Xpo e X Construct a monotone formula F' over 2n variables
by replacing each literal X, in F by a new variable ;e Then a, .. 3, is a satisfying assignment for F iff
a, - a3, Ta, .., -a, is a satisfying asssignment for F'. (Note that F' may have other satisfying
assignments not of this form.) Now let:

A= (xll\yl) V..V (xn/\yn)

B = (xIVyl) A A (xn\/yn)

Gl=AV(BAF)

G2=A

We claim that G1 is inequivalent to G2 if{ F is satisfiable, completing the reduction of SAT to MF-INEQ.
To see this, define three properties of assignments:

1. Low. For some Kk, X, =y, =0

2. High. For some k, X, =y, =1L

8. Good. Forallk, x, 5 y,.
4

Clearly every assignment that is neither low nor high is good. The remarks above show that if F’ is

satisfied by a good assignment, then F is satisfiable.

Now, for any assignment, B=0 iff the assignment is low, and A=1 iff the assignmem is high. Hence,
G1 agrees with G2 on any low or high assignment. For any good assignment, A=0 and B=1, so G1 =
F’ and G2 = 0. Hence, G1 agrees with G2 on all assignments iff they agree on all good assignments iff F’

is not satisfiable.

18

II. Correctness Proofs for First-Order Strictness
To aid the proofs that follow, we need to more precisely define the environments env’ and senv’ as
fixpoints of the whererec clauses. These environments should be viewed as vectors of functions that
satisfy the respective systems of mutually recursive equations. Therefore we can talk about solutions to
the system as instances of these environments. Considering the system as a whole, let <env,senv>> be
one such solution. Then starting with the program:
{ fl(xl,...,xm) =e,
fz(xl,...,xm) =,
fn(xl’“"xm) =e }

we define the functional Tau by:

Tau <env ,senv > = <env,,senv, >, where:

b

env, = [\(v;eeyv). E[e T env [V /X v /x]/ £,

AV sV). Ele 1 env [V /X v /x]/ £]
senv, = [)\(il,...,im). Nle, 1 senva[il/xl,...,im/xm] / £,
A& ek). NLe T senv [/% 0% /x]/ f]
The desired solution can then be found iteratively in the standard way; i.e., by creating Kleene'’s

ascending chain of approximations, starting with the “least,” or bottom element:

<env,senv > where

envy = [A(v v) Lp /£,

)\(vl,...,vm). 1p / £]
senv, = [A& ,eeesX) L, /)
X(il,...,:‘cm). -I-Sv / fn]
where -LD and J—Sv are the bottom elements in the domains D and Sv, respectively (thus _]_SV is simply

the universal set containing all identifiers of interest). The next solution is:
<env1,senv1> = Tau <env,senv,>

and generally:
< env,,senv, > = Tau < env, ,senv, >, i>0

Note that <envi,senvi> is less defined than <envj,senvj> whenever i<<j. We then define
<env’,;senv’> (defined earlier using whererec) as the least upper bound of this ascending chain, and it

is thus the least fixpoint of the system.

Theorem 1: (Safety). Let env’ = Ep{Ip] and senv’ = S[p] for some program p:

19

P={fi(xpx) =c¢,
fz(xl,...,xm) =e,,
£ (x peex) =€ }
Then x € senv’ lIfiB (il,...,im) => env’ ﬂ:fi:ﬂ (dl""’dm)=-L’ i=1,...,n

where dj=_]_ whenever x€ %, j=1,...,m.
Proof: (using fixpoint induction)

Let Psi be the predicate:
Psi <env,senv> =
x Esenv [fi (X,) =>
env [Ifi]] (dl”"’dm)=~L’ i=1,..,n
where dj=_}_ whenever x € ij, j=1,...,m.

Consider first the least element:
Psi <env senv > = (xely=> 1=1)

which is trivially true.

Now suppose Psi is true for some element <envk_1,senvk-1> in the ascending chain.

< env, ,senv, > = Tau < env, ,senv, A >:

Psi < env, ,senv, >

= x Esenv, [[fil] (il,...,im) => env, [[fi]] (dl""’dm)=-l-’ i=1,...,n

where dj=_|_ whenever x € ij

= xEN[eTsenv, | [%, /x)0 /x | =>
E [Iei]] envk_l[dl/xl,...,dm/xm] = |, i=1,.,n (1)
where dj=-l- whenever x €)“cj

the proof of which requires structural induction on e First let a = envk_l[dl/xl,...,dm/xm} and b =

senvk_l[il/xl,...,xm/xm], where dj=_L whenever x € %;. Then either:

Then consider

1. e is a constant. Then the lhs of (1) must be false. and so the implication is trivially true.

2.eisa bound variable. Then there is some | such that (1) becomes: x € il = dl=-L' which

is true because of the qualification that dj=_1_ whenever x € ij, j=1,...,.m.

3.e. = e —e, e . For thelhs of (1) to be true. either:

i 1 3

a. xEN[[el]] b. Then by the (structural) induction hypothesis, Eﬂ:ell]a = | and by

definition of the conditional. E [Iei]] a = _| . Thus the implication (1) holds.

b. (x€N[e,Ib) AND (x € N[e,Ib). Then by a similar application of the (structural)
induction hypothesis, E IIei]]a = (pred—],|) = _ and thus implication (1)

follows.

1. = f(el,...,en). Then (1) becomes:

x €bIfI(N e, Ib,...,.N le Ib) =>
alfI1(E ﬂ:elll a,.,Ele Ta)=_|
But a[[f] = env, , If] and bIf] = senv, | If], since f ¢ Bv, leading to:
x € senv [fI(N[e Ib,..,Nle Ib) =>
env [fI(E [e,Ta,...,.E [e Ja)=_1
Note now that by the (structural) induction hypothesis, E [[ei]] a= _| whenever x€EN [[ei]] b.

But then the (fixpoint) induction hypothesis immediately applies, and the implication (1)
holds.

5.¢ = p(el,...,en). This depends on the correctness of Ps, which we take as given.

Thus implication (1) holds, and the theorem follows. O
The following corollary immediately follows from the above case analysis:

Corollary 1:
Psi <env,senv> =>

(x€N[elsenv => E[elenv[] /x] =])

Note that if our analysis was perfect we could prove that:
x € senv’ ﬂ:fi]] (il,...,im) iff env’ [[fi]] (dl""’dm)=-L’ i=1,...,n
where dj-——-—_[_ whenever x €)‘(j, j=1,...m
i.e., that the implication goes both ways. But we know that there does not exist such a perfect analysis,

because if there did it would constitute a direct solution to the halting problem.

Theorem 2: (Termination). If L g, is finite. then the standard iterative technique of determining

S{Ipl always terminates in a finite number of steps. for all p.

Proof: Rather obvious: The strategy terminates when one iteration yields the same solution as the
previous one. Since "LSV is finite, and the approximations are monotonically decreasing, a fixpoint must

be reached in a finite number of steps. O

References

1. Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. 4th ACM Sym. on Prin. of Prog. Lang., ACM.
1977, pp. 238-252.

T2, Damas, L. and Milner, R. Principle type schemes for functional languages. 9th ACM Sym. on Prin.
of Prog. Lang., ACM, Aug., 1982.

3. Gordon, J.C.. The Denotational Description of Programming Languages. Springer-Verlag, New
York, 1979.

4. Hudak, P. ALFL Reference Manual and Programmers Guide. Research Report
YALEU/DCS/RR-322, Second Edition. Yale University, Oct., 1984.

5. Hudak, P. and Kranz, D. A combinator-based compiler for a functional language. 11th ACM Sym.
on Prin. of Prog. Lang., ACM, Jan., 1984, pp. 121-132.

8. Hudak, P. and Goldberg, B. Distributed execution of functional programs using serial combinators.
To appear in Proceedings of 1985 Int'l Conf. on Parallel Proc. and IEEE Trans. on Computers (October
1985), Aug., 1985.

7. Hudak, P. and Goldberg, B. Serial combinators: "optimal" grains of parallelism. To appear in IFIP
Int’l Conference on Functional Programming Languages and Computer Architecture, Sept, 1985.

8. Johnsson, T. Detecting when call-by-value can be used instead of call-by-need. Laboratory for
Programming Methodology Memo 14, Chalmers University of Technology, Dept. of Computer Science,
Oct., 1981.

9. Keller, RM. FEL programmer’s guide. ANPS TR 7. University of Utah, March, 1982.

10. Mycroft, A. The theory and practice of transforming call-by-need into call-by-value. Proc. of Int.
Sym. on Programming, Springer-Verlag LNCS Vol. 83, 1980, pp. 269-281.

11. Turner, D.A. SASL language manual. University of St. Andrews, 1976.

