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Abstract

We introduce neural network architectures for solving certain point matching problems
that commonly arise in computer vision. The neural networks arise from a new application
of mean field theory (MFT) techniques, in which a hierarchical representation of continuous
variables is used to eliminate some of the spurious local minima which would remain in a more
conventional MFT neural net for the same problem. The resulting vernier network algorithm is
related to the more conventional generalized Hough transform (with fixed bins) for solving the
same problem. The vernier network can also be elaborated to a filtered vernier network which
is more efficient. All are improvements on the conventional MFT neural network. We compare
performance and cost of these four algorithms (conventional MFT, generalized Hough, vernier
network, and filtered vernier network) under various noise conditions.

1 Introduction

We consider the problem of matching or registering two sets of point features in which all of
the points in one set (the model) undergo a common geometric transformation made up of a
rotation and a translation, following which each transformed point is independently translated by
a small random vector, resulting exactly in the other set of points (the scene). The point matching
problem is to recover the actual transformation that relates the two sets of points.

Such problems arise naturally in computer vision, usually with further elaborations most of
which we will not consider in this paper. For example, more difficult versions of the problem
delete some of the model points randomly, introduce a global scale change, and/or add noisy
labels to the points. One complication we will explore is the addition of many spurious scene
points according to a background probability distribution, The point matching problem may also
be generalized to three dimensions in several ways that are important to computer vision. A
good algorithm for solving the such point matching problems is essential to object recognition
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Vernier Networks 2

and two-frame rigid motion estimation problems, assuming the relevant images have each been
preprocessed into a sparse set of significant features.

Each of these point matching problems have two components. One is to establish the correct
correspondence between scene and model points. The other is to estimate the position and
orientation of the scene points relative to the model points (which we refer as the “pose” of
the model in the scene) assuming a known correspondence. These two components are tightly
coupled. If the point correspondence is known, the pose can be determined easily by least squares
procedures. Similarly, for known pose, the problem reduces to an assignment problem.

In this paper we consider the simplest case of 2D-2D point matching, in which we are given
N 2D scene points extracted from the observed image: X = xi,...,Xy, and the corresponding
N 2D model points: Y =y;,...,ym. We can formulate the problem as minimizing the following
objective function (see e.g. [Mjo91])

Ematch(Mia, 0,t) = Y Mia||x; — Reya — t]* = 3 Mi,Cia(6, ), (1)

ta

where {M;.} = M is a permutation matrix (called the “match matrix”) representing the unknown
correspondence, {Ci,(0,t)} = C(6,t) is the parametric cost matrix, Ry is a rotation matrix with
rotation angle 6, and t is a translation vector. Minimizing (1) over permutations, rotations and
translations is a parametric assignment problem which differs from other assignment problems
in that the cost matrix is determined by continuous variables also subject to optimization. As
an optimization problem, (1) has enough spurious local minima that many descent methods are
prone to error.

Several approaches have been proposed to solve this optimization problem. They differ in
the ways they handle the point correspondence components of the problem. For example tree
pruning methods [Bai84, GLP87, AF86] make hypotheses concerning the point correspondence
by searching over a tree in which each node represents a partial match. Each partial match is
then evaluated through the pose that best fits it. The parametric linear programming approach
[2592] instead makes hypotheses concerning the pose parameters first. For each pose hypothesis
(6,t), we need to solve an assignment problem with the constant cost matrix {Cia(8,t)}. The
solutions to these assignment problems are then compared to choose the best pose hypothesis. In
the generalized Hough transform approach [Bal87, GLP87), a set of optimal poses is computed for
each possible pairing of a model point and a scene point, and all the selected optimal poses then
“vote” for the closest candidate among a set of discretized poses. An implicit hypothesis in this
approach is that each model point has an equal chance to be matched to each scene point.

By contrast with these relatively standard methods, we propose to optimize (1) directly by
using Mean Field Theory (MFT) techniques from statistical physics, adapted as necessary to
produce effective algorithms in the form of analog neural networks. One simplifying characteristic
of the resulting algorithms is that they are essentially described by objective functions rather than
by abstract computer programs [MM93]. For example the conventional MFT approach to point
matching would yield an effective objective function for continuous-valued M;, € [0, 1] elements
such as [KY91, Yui90]

Ewra(Mia,0,t) = ¥, Miallxi — Reya =t + (4/2) To(Ti Mig — 1)? @)
+(1/8) Tia MiaUia — (1/8) T log ( T, exp Uia)
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(which arises from recent progress in Mean Field Theory neural networks [PS89, Sim90, GY91])
or the low-noise approximation [Mjo91, MG90]

Ee(6,t) = -%logZe‘ﬁ“""R"y“‘t'P. 3)

ia

Unfortunately, even with continuation in 3, straightforward descent algorithms for both of these
objectives suffer from the presence of spurious local minima, particularly in the determination of
the rotation parameter 6.

We propose a new vernier network algorithm arising from a novel application of MFT to a
hierachical representation of the continuous geometric variables, which in effect can be though
of as a binning transformation that turns the original optimization problem over a single pose
space into several optimization problems over smaller Cartesian product sets (the bins). Initially,
the centers of each Cartesian product set are designated as principle poses, which are fine-tuned
by associated vernier variables. We show that in a certain approximation, the vernier network
algorithm reduces to the generalized Hough transform. Our experiments show that the vernier
network can use many fewer bins than the Hough transformation while achieving much better
performance. It is however quite expensive, so we also consider a further modification (the filtered
vernier network) which introduces a two-level multiscale search and is significantly more efficient.
We do not however explore true self-similar multiscale algorithms, either for the Hough transform
or for the vernier network.

2 The Theory
2.1 The MFT approach

To solve point matching problem by minimizing (1), we need to enforce some constraints on M,,,
otherwise the objective function can always be minimized with all M;, set to zero. The constraint
on M for standard assignment problems is 3°; M;, = 1,Va and ¥, M;, = 1,Vi, i.e. that M is
a permutation matrix. In more general cases where there are spurious scene points, we can use
the weaker multinomial constraint ~;, M;, = N, which implies that there are exactly N matches
among all possible matches. In the following, we designate the allowed set of matrices M that
satisify the given constraints (whatever they are) by M.
Assume a Gibbs distribution for the scene points x;,...,xx

1 ap
fs({xi}IM,0,t) = 7z BEq(M,6,t) @

where Zg = Y Mem e~PEea(M#Y) is the normalization factor known as partition function in
statistical physics, and f is the inverse temperature. The contribution of M to the partition
function can be exactly or approximately evaluated leaving an effective objective function Eg =
—% log Zg depending on the pose parameters only. The form of E.; depends on the constraints
M with which the partition function is evaluated. [Mjo91] provides a way to approximate the
summation over M subject to the multinomial constraint, and gives the effective objective function
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(3). The descent dynamics for finding the saddle point of this objective is

i = -—K E mia(xi - Reya - t)
ta
b = —nzmia(xi - Ryy. - t)t(R0+§ya)
ia
mis = exp—p|xi — Roya — t||>. (5)

The basic premises of the MFT approach are that at very high temperature (small 3), the effec-
tive objective function is convex, and as 8 — oo, the mean field (M)g will approach the optimal
M. Therefore, by tracking the saddle point of the effective objective function from high temper-
ature down to low temperature, we may be able to find the optimal pose as well as the optimal
correspondence that supports it.

2.2 The Vernier Network for Rotations

Given the constraints on match variables and the corresponding effective objective function, we
can focus on finding the optimal pose parameters. Though the effective objective is non-convex
over translation at low temperatures, its dependence on rotation is non-convex even at relatively
high temperature. We propose overcoming this problem by applying MFT to a hierachical repre-
sentation of rotation

J-1 J-1
0 = Y x(6;+6)), 6 €l-ene,  (and t=3 xjt;) (6)
j=0 3=0

where ¢g = 7/2J, é,- = (j + 1) are centers of each interval, and 6; are vernier variables. The X;s
are binary variables (so x; € {0,1}) that satisfy the winner-take-all constraint 3°; x; = 1. The
essential reason that this hierarchical representation of  has few spurious local minima than the
conventional analog represetation is that the change of variables also changes the connectivity of
the network’s state space: big jumps in 6 can be achieved by local variations of the 0/1 x variables.

The full Mean Field Theory for the resulting network will be worked out in the next section.
In this section we show informally how the MFT objective function and neural network for the
rotation parameters 6; arise.

Changing the representation for @ gives the new partition function (as detailed in the next
section)

z = ¥ IIJ  doetuBalians (7)
{x!zjx,:l}j [—€a.€0)

The contribution of each #; to the partition function can be evaluated as
J P
—Bx;Eeg (6;465,t5) _ =Bx;E e (8458,
fo;E[-ce,ca] dbje PxsBeg Cs405:ts) = f9,‘€(—co,co] db; [ dvje Bx;Beg (940, J)é(vj -6;)
= f0j€[-eo,ce] doi f dv.i fl duje—ﬁXjEeﬁ(§j+vj’tj)e—uj (25=6;)
= ij €[—ea,¢0) dfje™ g f dv; fI duje_ﬂXjEcﬂ (Gs+v; tide=uivs

= %e‘“ﬁéj sinh(ujeg) [ dv; [} duje"ﬁx"E’ﬂ'(éj+"”t’)e'“j"’- (8)
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Combining these results gives

z="Y[] [av, /1 dujePE (s uimi ts) (9)
X j

sinh(ujcg))

- 1
E;-(xj,uj,vj,t) = XjEeﬂ'(gj + vj,tj) + -E(Ujvj —log (10)

J

Finally, the MFT objective function (the free energy) is

- 1 sinh(u;eq

FOo ik Auih 451 = 2 X Eeg (0 + vist) + 5 32 (us0; — log ——z(t—’—)) +WTA(x). (11)
J J J

This gives us a hierachical optimization in which an opimal rotation éj + v} is found for each

interval [0} - €p, éj +e€),5=1,...,J, and these locally optimal rotation angles are then compared
to give a globally optimal one éj. + v}.. In other words, we transform a hard global optimization
problem into several small local ones, and the pick the one with smallest local energy. Each
bin-specific summand of F can be minimized (under the hopeful assumption that its Xx; = 1) by
the following fixed point equations

tj = Zmia(xi"Rqua)

u; = *ﬁzmia(xi - Ry, ¥a - tj)t(R"’“"%ya)
1
o= (Be= o~ ey = 9(): "

Note that, in the expression for g, the poles cancel at u; = 0 and g acts like a sigmoidal transfer
function that confines v; to the interval [—ep, €g)].

2.3 Complete MFT Derivation

We start with the partition function

z=2["as / * dte=BEeg (0:68)-t2 /203 (13)
27 Jon )
where
Eg = -%logze-ﬂuxa—va-tn?. (14)
Let
E(8,t) = Eeg(8,t,8) + t*/(2038) — hef — hy - t (15)
Then Z can be used to calculate averages, e.g.
_ _1dlegZ

@)=~ 550, (16)
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but we will drop the h source term in this calculation for convenience.
Now we introduce the hierachical representation of # by means of a change of variables:

=7 xi(4; +6;) (17)
G

where 6; is the center of bin j. Define

c=2 ¥ [dI i )62e(0 = 30 x50 +67) (18)
—e 1+ 2¢ -
XX, xi=1} J j
where ;2 is a periodic version of Dirac é function, which can be written as
[ ]
b2e(z) = > 6(z - 27n) (19)
n=-=—00

Note that C is equal to the number of bins which overlap with 6, which we take to be an integer
constant such as two. Now

z = 2%/" d02€ / (H 1)52«(0 Zx,(ﬁj + 6;)) /oo dte—PE®;.t)
- {XIZ X;—l} —¢ J —00
l - —
= e [ @) [ arem?BEs o000 o)
{XIZ xy=1} J

But
/°° dte-ﬁE(z,’ Xj(éj +6;),t) - /oo dt Z XJC-ﬁE(ZJ Xj(éj+9j),t)
—00 -—00 .

E Xj dt e‘ﬁEeﬂ (91 +6;,t5,8)— t2/200

27ra' )" 1/ ” (T dtayete/23
0

— ki

= (e [ ([Matw)e P ZoxiBen Crrtsto)T, 8120y
To,
T &k

X(

Finally,

VA

1 . 1 € (o] - . ] R - t2 02
27rC(41reaz v / (H d(z’j)/ (H dty) Z e P2 XiBegy (6,+05,85,0) =3, 43 /203
0 I ok xIX, x;=1}

~ Ke-ﬁF({o; rx, 1", 1w.}) (22)
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where K is a constant, and the conventional Mean Field Theory calculations are used to derive
F (as in the previous section and [PS89, Sim90, GY91]): )

- 1
F({6;,%5, x5, uj» wi}) = D xi Eep (05 + 65,1, 8) + 27352‘?
J J

1 sinh eu;
+E > (6juj —log — 1) + WTA({x;, w;},8) (23)
5 3
with
1 .
WIA({x5, w;},8) = 5( L xw; —log T e). (24)
J J
As 0g — o0,
Z x e"ﬁp({o;’x;:u;rw;})’ (25)
where |
sinh

. . 1 :
F({0;, xj,uj, w;}) = ZX:’Eeﬂ(‘%‘ +6;,t%(6;)) + 3 Z(f’juj — log ju’ ) + WTA({x;,w;}, B).(26)
J J

U

In our simulations, the optimal value t*(6;) is approximated by solving t = 0 in equation (5) for
t, holding {m;,} fixed. This is very easy to do, but at greater computational expense one could
iteratively solve for t*(6;) by updating {m,(t)} as well.

There is a fixed-point-preserving transformation of F:

F - clocked

to a clocked objective function [MM93]

N 1 sinh u;
Edocked = Y Ecg(b; +6;,7(6;)) + 3 ) (855 — log ——2)
7 7 i
@ -D xiEs(6; +6;,1°(8;)) + WTA({xj, w;}, B). (27)
7

In this notation, the clocked sum of the form E; @ E, is equal to its first summand during phase
one of an optimization cycle, and equal to its second summand during phase two. The cycle then
repeats with a lower temperature. Also barred variables like 0-_,~ are clamped to constant values
attained in the previous phase of the clocked ob jective, i.e. the previous summand of the clocked
sum denoted by @. The second term is a pure winner-take-all network with constant coefficients,
and as such can be implemented by digital logic rather than by an analog neural network. We
implemented it this way in the computer experiments reported in section 3.






