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Abstract

Standard algorithms for association rule mining are based on identification of frequent
itemsets. In this paper, we study how to maintain privacy in distributed mining of fre-
quent itemsets. That is, we study how two (or more) parties find frequent itemsets in a
distributed database without revealing each party’s portion of the data to the other. The
existing solution for vertically partitioned data leaks a significant amount of information,
while the existing solution for horizontally partitioned data only works for three parties or
more. In this paper, we design algorithms for vertically and horizontally partitioned data,
respectively. We give two algorithms for vertically partitioned data: one of them reveals
only the support count and the other reveals nothing. Both of them have computational
overheads linear in the number of transactions. Our algorithm for horizontally partitioned
data works for two parties and above and is more efficient than the existing solution.

Keywords: Data Mining; Association Rule; Frequent Itemset; Distributed Database; Pri-
vacy

1 Introduction

Data mining has been studied extensively and applied widely. Through the use of data mining
techniques, businesses can discover hidden patterns and rules from a database and then employ
them to predict about the future. An important scenario of data mining is distributed data
mining, in which a database is distributed between two (or more) parties and each party owns a
portion of the data. These parties need to collaborate with each other, so that they can jointly
mine the data and produce results that are interesting to both of them. Privacy concerns are of
great importance in this scenario, because each party does not want to reveal her own portion
of the data, although she would like to participate in the mining.

This paper is concerned with a major category of data mining, namely mining of association
rules. Look at the transaction database of a supermarket. We may find that most of those
who buy bread also buy milk. Therefore, “bread ⇒ milk,” which means “buying bread implies
buying milk,” is a candidate of association rule. Two metrics are defined to measure such a
candidate rule: confidence and support. Here confidence means the number of transactions
where both bread and milk are bought divided by the number of transactions where bread is
bought. Support means the number of transactions where bread and milk are bought divided
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by the overall number of transactions. A candidate is considered a valid association rule if
both its confidence and its support are sufficiently high.

Standard algorithms for association rule mining are based on identification of frequent item-
sets [3]. We say that bread and milk constitute a frequent itemset if, in a sufficiently large
percentage of transactions, both of them are bought. If all frequent itemsets can be computed,
then all association rules can be computed easily from the frequent itemsets.

In this paper, we study how to maintain privacy in distributed mining of frequent itemsets.
That is, we study how two (or more) parties find frequent itemsets in a distributed database
without revealing each party’s portion of the data to the other. We will formally specify what
we mean by “privacy.” We will also give solutions for two major types of data partition, namely
vertical partition and horizontal partition (to be defined rigorously in Section 2), respectively,
and show that our algorithms preserve privacy.

Related Work To the best of our knowledge, Clifton and his students were the first to study
privacy-preserving distributed mining of association rules/frequent itemsets. In [19], Vaidya
and Clifton gave a nice algebraic solution for vertically partitioned data. However, this solution
can leak many linear combinations of each party’s private data to the other. Furthermore, to
process one candidate of frequent itemset, its computational overhead is quadratic in the
number of transactions. In [13, 14], Kantarcioglu and Clifton gave a solution for horizontally
partitioned data, which uses Yao’s generic secure computation protocol as a subprotocol.
However, as Goldreich pointed out in [11], generic secure computation protocols are highly
expensive for practical purposes. (In data mining problems, because the input size is huge, they
can be even more expensive than in other applications.) Furthermore, the solution in [13, 14]
only works for three parties or more, not for two parties.

Privacy-preserving data mining has been a topic of active study (see, e.g., papers by Agrawal
and his collaborators [2, 1]). In particular, many papers have addressed the privacy issues in
mining of association rules/frequent itemsets. Some examples are [7, 9, 17, 16, 18]. However,
these papers are concerned with privacy of individual transactions and/or hiding of sensitive
rules, rather than privacy in distributed mining.

Privacy-preserving distributed mining was first addressed by Lindell and Pinkas [15]. But
their paper only discusses the classification problem (“classifying transactions into a discrete
set of categories”), not the association rule problem.

As pointed out in [8], the problems of privacy-preserving data mining can be viewed as
an application of generic secure computation. Existing protocols for generic secure compu-
tation [20, 4, 10, 6] can solve such problems in theory. However, these generic protocols are
highly expensive and therefore it is our goal to design special-purpose solutions that are much
more efficient for our problems.

Our Contributions In this paper, we rigorously specify the problems and security require-
ments of privacy-preserving mining of frequent itemsets. We give algorithms for vertically and
horizontally partitioned data, respectively.

For vertically partitioned data, we design algorithms with two levels of privacy, respectively.
The privacy guarantee of both levels is superior to the existing solution. Our algorithms are
very efficient in that their computational overheads are linear in the number of transactions.

For horizontally partitioned data, our algorithm is more efficient than the existing solution.
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In addition, our algorithm works not only for three parties and above, but also for two parties.

Paper Organization The rest of this paper is organized as follows. In Section 2, we present
the problem formulation and the definitions of privacy. In Sections 3 and 4, we describe
two-party algorithms for vertically partitioned data, with weak privacy and strong privacy,
respectively. In Section 5, we give a two-party algorithm for horizontally partitioned data.
In section 6, we show how to extend the algorithms to distributed mining of more than two
parties. We conclude in Section 7.

2 Technical Preliminaries

2.1 Problem Formulation

Association Rule and Frequent Itemset We adopt the following standard formulation
of association-rule mining: Assume that I = {I1, . . . , Im} is a set of literals, which are called
items. We call any subset of I an itemset. Assume that T = {T1, . . . , Tn} is a set of transac-
tions, where each transaction Ti is a set of items (i.e., Ti ⊆ I). We say that a transaction Ti

contains an itemset X if and only if X ⊆ Ti. An association rule is of the form X ⇒ Y , where
X and Y are non-empty itemsets such that X ∩ Y = Φ.

Such an association rule holds in the transaction set T with confidence α% if α% of the
transactions containing X also contain Y . Such an association rule has support β% if β% of
the transactions contain both X and Y .

The major technical problem in association rule mining is frequent itemset identification.
An itemset is frequent if and only if it is contained by β% of the transactions.

Matrix Representation Mathematically, the transaction set T can be represented by a
boolean matrix D. Each row of the matrix corresponds to a transaction, while each column
corresponds to an item. A matrix element D(i, j) is 1 if the ith transaction Ti contains the jth
item Ij; it is 0 otherwise. The following example illustrates how to convert the transaction set
T to the boolean matrix D.

Bread Milk Eggs

Transaction 1
√ √

Transaction 2
√

Transaction 3
√ √ √

Transaction 4
√ √

=⇒
1 0 1
1 0 0
1 1 1
0 1 1

We define the support count of an itemset as the number of transactions that contain this
itemset. Formally, let C be the set of columns corresponding to an itemset. The support count
of the itemset {Ij |j ∈ C} is S = |{i|∀j ∈ C, D(i, j) = 1}|. Therefore, to decide whether the
itemset {Ij |j ∈ C} is frequent, we actually need to decide whether S > β% ·n (recall that n is
the number of transactions).

As pointed out in [19], the support count S is essentially the inner product of all columns
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in set C. Because D is a boolean matrix,

S = |{i|∀j ∈ C, D(i, j) = 1}|
= |{i|

∏

j∈C

D(i, j) = 1}|

=
n∑

i=1

∏

j∈C

D(i, j)

( = InnerProductj∈C
~Dj),

where ~Dj = (D1,j , . . . , Dn,j) stands for the jth column of D. Therefore, the problem of frequent
itemset mining amounts to comparing this inner product with the threshold β% · n.

Vertical Partition and Horizontal Partition We consider our problem with respect to
two types of data partition, namely vertical partition and horizontal partition. Intuitively,
vertical partition means that each party owns some columns of the matrix D, while horizontal
partition means that each party owns some rows. For simplicity, at this point we only discuss
two-party distributed mining, and leave the extension to more parties to Section 6. Suppose
that the two parties are A and B.

Formally, if the data is vertically partitioned, then A (resp., B) owns a set CA (resp., CB)
of columns of the boolean matrix D, where CA ∪ CB = [1,m] and CA ∩ CB = Φ. Recall that
we are studying an itemset {Ij |j ∈ C}. The column set C of this itemset is partitioned into
two subsets — C ∩ CA which is owned by A, and C ∩ CB which is owned by B. It is easy to
see

S =

n∑

i=1

∏

j∈C

D(i, j) =

n∑

i=1

(
∏

j∈C∩CA

D(i, j) ·
∏

j∈C∩CB

D(i, j)).

Let xi =
∏

j∈C∩CA
D(i, j) and yi =

∏
j∈C∩CB

D(i, j). Note that A can privately compute all
xis and B can privately all yis. Let t = β% · n. Therefore, our problem can be formulated as
follows.

Problem 1 (Problem for Vertically Partitioned Data) A has a private input ~x = (x1, . . . , xn)
(xi ∈ {0, 1}), and B has a private input ~y = (y1, . . . , yn) (yi ∈ {0, 1}). A and B have a public
input t ∈ [0, n]. Design a two-party algorithm to decide whether

∑n
i=1 xiyi > t.

If the data is horizontally partitioned, then A (resp., B) owns a set RA (resp., RB) of rows,
where RA ∪ RB = [1, n] and RA ∩ RB = Φ. It is easy to see

S =

n∑

i=1

∏

j∈C

D(i, j) =
∑

i∈RA

∏

j∈C

D(i, j) +
∑

i∈RB

∏

j∈C

D(i, j).

Let x =
∑

i∈RA

∏
j∈C D(i, j) and y =

∑
i∈RB

∏
j∈C D(i, j). Note that A can privately compute

x and B can privately compute y. Therefore, our problem can be formulated as follows.

Problem 2 (Problem for Horizontally Partitioned Data) A has a private input x ∈ [0, n], and
B has a private input y ∈ [0, n]. A and B have a public input t ∈ [0, n]. Design a two-party
algorithm to decide whether x + y > t.
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2.2 Definitions of Privacy

As in existing works on privacy-preserving distributed mining [15, 19, 13, 14], we assume that
the participants are semi-honest (i.e., honest-but-curious).1 We specify our privacy require-
ments by adapting the standard definition of privacy for deterministic interactive protocols [11]
to our distributed frequent-itemset mining problems. Our definitions will apply to both the
problem for vertically partitioned data and the problem for horizontally partitioned data.

Let s be a security parameter. Recall that A has private input x, B has private input y,
and there is a public input t. Denote by V IEWA(x, y, t) (resp., V IEWB(x, y, t)) the view
of A (resp., B) — note that V IEWA (resp., V IEWB) is defined to include x (resp., y), t,

A’s coin flips (resp., B’s coin flips), and all messages A (resp., B) receives. Use
C≡ to denote

computational indistinguishability.

Definition 3 A two-party distributed algorithm for frequent itemset mining leaks only α to
each party if there exist probabilistic polynomial time simulators SA and SB for the views of
A and B, respectively, such that

{SA(x, t, α)}x,t
C≡ {V IEWA(x, y, t)}x,t,

{SB(y, t, α)}y,t
C≡ {V IEWB(x, y, t)}y,t.

In this definition, we use α to represent the information leaked by the algorithm. The
definition states that, for each party, there exists a simulator that can simulate her view, given
her own private input, the public input, and α. Therefore, everything learned by this party is
implied by α (and her own private input as well as the public input).

It is clear that, in the best possible case, we could have an algorithm that leaks nothing but
its output. For frequent itemset mining, it is often also acceptable for an algorithm to leak the
support count of a candidate. So we distinguish two levels of privacy, namely strong privacy
and weak privacy, respectively.

Definition 4 A two-party distributed algorithm for frequent itemset mining is strongly privacy-
preserving if it leaks only o, where o = 1 if the candidate itemset is frequent; o = 0 otherwise.

A two-party distributed algorithm for frequent itemset mining is weakly privacy-preserving
if it leaks only S, the support count of the candidate itemset.

3 Weakly Privacy-Preserving Algorithm for Vertically Parti-

tioned Data

3.1 Overview

Recall that, in the problem of vertically partitioned data, A has a private input (x1, . . . , xn)
and B has a private input (y1, . . . , yn). We need to design an algorithm to decide whether

1Zero-knowledge proofs can be used to force a malicious party to follow the protocol. However, they are
highly expensive in general. Since our goal is to develop efficient solutions to mining problems, we do not
consider a malicious adversary in this paper.
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∑n
i=1 xiyi > t, where t is a public input.

We build our weakly privacy-preserving algorithm based on probabilistic public-key encryp-
tion. Consider a probabilistic public-key encryption scheme whose cleartext space is {0, 1}.
Let Ekp

(xi, ri) stand for an encryption of cleartext xi using public key kp and random string
ri. Let D(Zi, ks) stand for the decryption of ciphertext Zi using private key ks. Assume that
we have a rerandomization algorithm that can compute another encryption of the same clear-
text from any ciphertext. One such encryption scheme is the well-known Goldwasser-Micali
encryption scheme [12], which is semantically secure under the standard Quadratic Residue
Assumption (QRA).

For weak privacy, we only need to compute S =
∑n

i=1 xiyi and compare it to the threshold
t. The main idea of our algorithm is that A counts the number of 1s in a random permutation
of (x1y1, . . . , xnyn) — this number equals to

∑n
i=1 xiyi. As to privacy, A cannot learn more

information because she only sees a random permutation.

More specifically, the algorithm has 3 steps. In Step 1, A encrypts (x1, . . . , xn) using her
own public key (so that B cannot decrypt them) and sends the encryptions to B. In Step 2,
B computes encryptions of (x1y1, . . . , xnyn) from these encryptions. Then B rerandomizes the
newly computed encryptions, repermutes them, and sends them to A. In Step 3, A decrypts
the encryptions she received and counts the number of 1s and compare it to the threshold.

The only thing left is how B computes encryptions of (x1y1, . . . , xnyn) from encryptions of
(x1, . . . , xn). Observe that xiyi = xi if yi = 1, and xiyi = 0 otherwise. Therefore, if yi = 1,
B simply takes the encryption of xi as an encryption of xiyi. Otherwise, B computes an
encryption of 0.

3.2 Algorithm

Mine1(A, B, ~x, ~y)

A’s Input: ~x = (x1, . . . , xn) (xi ∈ {0, 1}); (ks, kp);
B’s Input: ~y = (y1, . . . , yn) (yi ∈ {0, 1}); kp;
Public Input: t ∈ [0, n].

Step 1

(1.1) For i = 1, . . . , n, A encrypts xi using public key kp: Xi = Ekp
(xi, ri), where ri is picked

uniformly at random.

(1.2) A sends ~X = (X1, . . . , Xn) to B.

Step 2

(2.1) For i = 1, . . . , n, B computes Zi, an encryption of zi = xiyi as follows:

• If yi = 1, Zi = Xi; otherwise, Zi = Ekp
(0, 0).

(2.2) For i = 1, . . . , n, B rerandomizes Zi.

(2.3) B repermutes ~Z as follows:

• For i = 1, . . . , n, Zi = Zπ(i), where π is a random permutation on [1, n].

(2.4) B sends ~Z = (Z1, . . . , Zn) to A.
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Step 3

(3.1) For i = 1, . . . , n, A decrypts Zi to get cleartext zi: zi = D(Zi, ks).

(3.2) A counts the number of 1’s in {z1, . . . , zn}. If the the number is greater than t, then A

outputs “This is a frequent itemset;” otherwise, A outputs “This is not a frequent itemset.”

3.3 Security Analysis

Theorem 5 Mine1 is weakly privacy-preserving, if the encryption E is semantically secure.

Proof: We construct SA as follows. First, SA simulates the coin flips of A in the algorithm. To
simulate message ~Z, SA computes S encryptions of 1 and n−S encryptions of 0, rerandomizes
them at random and repermutes them at random.

We construct SB as follows. First, SB simulates the coin flips of B in the algorithm. SB

simulate message ~X by generating n random ciphertexts. If S > t, SB simulates the public
output using “This is a frequent itemset;” if S ≤ t, it simulates the public output using “This
is not a frequent itemset.”

�

3.4 Efficiency Analysis

Computational Overhead The algorithm Mine1 needs to compute at most 2n encryptions,
n rerandomizations, and n decryptions. Therefore, its computational overhead is linear in n,
while the existing solution [13, 14] has a computational overhead quadratic in n. This is a
significant improvement because n is very large in data mining problems — it is not unusual
for a transaction database to have millions of transactions.

Assume that we use the Goldwasser-Micali encryption scheme. Then each encryption
amounts to one modular multiplication, where the modulus is s-bit. Each rerandomization
is worth two modular multiplications. Decryption is more expensive — two modular exponen-
tiations, which are equivalent to no more than 2s modular multiplications. To summarize, the
overall computational overhead is no more than (2s + 4)n modular multiplications.

Communication Overhead The algorithm Mine1 needs to transfer 2n items, each of s bits.
Therefore, the overall communication overhead is 2sn bits.

4 Strongly Privacy-Preserving Algorithm for Vertically Parti-

tioned Data

4.1 Overview

Homomorphic Encryption We build our strongly privacy-preserving algorithm based on a
class of homomorphic encryption. We need a probabilistic public-key encryption algorithm F

that satisfies the following conditions:

• The cleartext space M is a large field of size Θ(2s). In particular, the size is greater than
2n + 1.

7



• It is not necessary to have an efficient decryption algorithm; however, there exists an
efficient algorithm that uses the private key to decide whether a ciphertext decrypts to
0.

• There is an efficient rerandomization algorithm.

• F is additively homomorphic. That is, for m1,m2 ∈ M,

F (m1, r1) ] F (m2, r2)

is an encryption of m1 + m2, where ] is an “addition” operation that can be performed
without decrypting F (m1, r1) or F (m2, r2).

• F allows homomorphic computing of constant multiplication. That is, for m1 ∈ M and
constant c1,

c1 ◦ F (m1, r1)

is an encryption of c1m1, where ◦ is a “constant multiplication” operation that can be
performed without decrypting F (m1, r1).

One example of F is a variant of ElGamal encryption: Fkp
(mi, ri) = (gmi(kp)

ri , gri), where g

is a generator of a group in which discrete logarithm is hard. Note that F is semantically secure
under the standard Decisional Diffie-Hellman (DDH) Assumption [5]. The second condition
above is satisfied because we can use the private key to compute gmi from a ciphertext and
compare it with g0, i.e., compare with 1. To satisfy the fourth condition, we define, for any
ciphertexts (M1, G1) and (M2, G2),

(M1, G1) ] (M2, G2) = (M1M2, G1G2).

To satisfy the fifth condition, we define, for any constant c1,

c1 ◦ (M1, G1) = (M c1
1 , Gc1

1 ).

The reader can easily verify that ] implements addition and ◦ implements constant multipli-
cation.

Algorithm Design Recall that the support count of the candidate itemset is S, i.e., S =∑n
i=1 xiyi. For strong privacy, our algorithm needs to decide whether S > t without revealing

S to either A or B. The main idea of our algorithm is that S > t if and only if there exists a 0
in (S− t−1, . . . , S − t−n).2 We would be able to solve this problem immediately if the vector
(S − t− 1, . . . , S − t−n) could be revealed to A or B. However, for strong privacy, this vector
cannot be revealed. Therefore, we reveal a masked vector (r1(S − t − 1), . . . , rn(S − t − n))
instead, where r1, . . . , rn are random non-zero elements of M. Note that this masked vector
has a 0 if and only if the original vector has a 0. On the other hand, all non-zero elements in
the original vector has been replaced by randomized elements in the masked vector, so that
no extra information is leaked. In this way, the algorithm can decide whether S > t without
revealing any extra information.

2We can prove this fact as follows. S > t ⇔ 0 < S − t (≤ n) ⇔ S − t ∈ [1, n] ⇔ there exists i ∈ [1, n] such
that S − t = i ⇔ there exists i ∈ [1, n] such that S − t − i = 0 ⇔ there exists a 0 in (S − t − 1, . . . , S − t − n).
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More specifically, the algorithm has 3 steps. In Step 1, A encrypts (x1, . . . , xn) using her
own public key (so that B cannot decrypt them) and sends the encryptions to B. In Step 2,
B computes encryptions of (r1(S − t − 1), . . . , rn(S − t − n)) from these encryptions. Then
B rerandomizes the newly computed encryptions, repermutes them, and sends them to A. In
Step 3, A checks these encryptions to see whether there is one that decrypts to 0.

The only thing left is how B computes encryptions of (r1(S − t − 1), . . . , rn(S − t − n))
from the encryptions of (x1, . . . , xn). Observe that, because xi, yi ∈ {0, 1}, we have S =∑n

i=1 xiyi =
∑

yi=1 xi. Therefore, B can sum up all encryptions of xi where yi = 1, to get an
encryption of S. Then, using the homomorphic property of F , B can compute encryptions of
(r1(S − t − 1), . . . , rn(S − t − n)), because t is public and ris are picked by herself.

4.2 Algorithm

Mine2(A, B, ~x, ~y)

A’s Input: ~x = (x1, . . . , xn) (xi ∈ {0, 1}); (ks, kp);
B’s Input: ~y = (y1, . . . , yn) (yi ∈ {0, 1}); kp;
Public Input: t ∈ [0, n].

Step 1

(1.1) For i = 1, . . . , n, A encrypts xi using public key kp: Xi = Fkp
(xi, ri), where ri is picked

uniformly at random.

(1.2) A sends ~X = (X1, . . . , Xn) to B.

Step 2

(2.1) B computes an encryption S of S =
∑n

i=1 xiyi as follows:

• S = Fkp
(0, 0);

• For i = 1, . . . , n, if yi = 1, S = S ] Xi.

(2.2) For i = 1, . . . , n, B picks ri ∈ M−{0} uniformly at random and computes an encryption
of ri(S − t − i):

Ui = ri ◦ (S ] F (−t − i, 0)).

(2.3) For i = 1, . . . , n, B rerandomizes Ui.

(2.4) B repermutes ~U = (U1, . . . , Un) as follows:

• For i = 1, . . . , n, Ui = Uπ(i), where π is a random permutation on [1, n].

(2.5) B sends ~U = (U1, . . . , Un) to A.

Step 3

If one of Uis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A outputs “This
is not a frequent itemset.”
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4.3 Security Analysis

Theorem 6 Mine2 is strongly privacy-preserving, if the encryption F is semantically secure.

Proof: We construct SA as follows. SA simulates the coin flips of A in the algorithm. If o = 1,
SA simulates message ~U using one random encryption of 0 and n − 1 random encryptions of
random elements of M − {0}, in a random order; otherwise, it simulates message ~U using n

random encryptions of random elements of M−{0}, in a random order.

We construct SB as follows. SB simulates the coin flips of B in the algorithm. SB simulates
message ~X using n random ciphertexts. If o = 1, SB simulates the public output using “This
is a frequent itemset;” if o = 0, it simulates the public output using “This is not a frequent
itemset.”

�

4.4 Efficiency Analysis

Computational Overhead The algorithm Mine2 needs to compute 2n+1 encryptions, and
n rerandomizations. It also needs to check n ciphertexts to see whether they decrypt to 0. In
addition, it needs to compute ] for 2n times and ◦ for n times. Therefore, its computational
overhead is still linear in n and much lower than the existing solution.

Assume that we use the variant of ElGamal encryption: Fkp
(mi, ri) = (gmi(kp)

ri , gri). Then
each encryption amounts to three modular exponentiations plus one modular multiplications,
where the modulus is s-bit. Each rerandomization is worth two modular exponentiations
plus two modular multiplications. It takes one modular exponentiation plus one modular
multiplication to check whether a ciphertext decrypts to 0. Computing ] is worth two modular
multiplications, while computing ◦ is worth two modular exponentiations. To summarize, the
overall computational overhead is no more than (11s+9)n+(3s+1) modular multiplications.

Communication Overhead The communication overhead of Mine2 is also 2sn bits.

5 Algorithm for Horizontally Partitioned Data

5.1 Overview

Recall that, in the problem for horizontally partitioned data, A has a private input x and B

has a private input y. We need to design an algorithm to decide whether x + y > t where t is
public.

We still build a strongly privacy-preserving algorithm based on homomorphic encryption.
We use the homomorphic encryption scheme F specified in Section 4.

For strong privacy, our algorithm needs to decide whether x + y > t without revealing x to
B or revealing y to A. The main idea of our algorithm is that x + y > t if and only if there
exists a 0 in (x+y−t−1, . . . , x+y−t−n) (see the footnote in Section 4.1 for why this is true).
However, for strong privacy, the vector (x + y − t − 1, . . . , x + y − t − n) cannot be revealed
to A or B. Therefore, we reveal a masked vector (r1(x + y − t − 1), . . . , rn(x + y − t − n))
instead, where r1, . . . , rn are random non-zero elements of M. Note that this masked vector
has a 0 if and only if the original vector has a 0. On the other hand, all non-zero elements in
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the original vector has been replaced by randomized elements in the masked vector. In this
way, the algorithm can decide whether x + y > t without revealing any extra information.

More specifically, the algorithm has 3 steps. In Step 1, A encrypts x using her own public
key (so that B cannot decrypt them) and sends the encryptions to B. In Step 2, B computes
encryptions of (r1(x + y − t − 1), . . . , rn(x + y − t − n)) from the encryption of x, using
the homomorphic property of F . Then B rerandomizes the newly computed encryptions,
repermutes them, and sends them to A. In Step 3, A checks these encryptions to see whether
there is one that decrypts to 0.

5.2 Algorithm

Mine3(A, B, x, y)

A’s Input: x ∈ [0, n]; (ks, kp);
B’s Input: y ∈ [0, n]; kp;
Public Input: t ∈ [0, n].

Step 1

(1.1) A encrypts x: X = Fkp
(x, r), where r is picked uniformly at random.

(1.2) A sends X to B.

Step 2

(2.1) For i = 1, . . . , n, B picks ri ∈ M− {0} and computes Ui, an encryption of ui = ri(x +
y − t − i):

Ui = ri ◦ (X ] Fkp
(y − t − i, 0)).

(2.2) For i = 1, . . . , n, B rerandomizes Ui.

(2.3) B repermutes ~U = (U1, . . . , Un) at random.

(2.4) B sends ~U = (U1, . . . , Un) to A.

Step 3

If one of Uis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A outputs “This
is not a frequent itemset.”

5.3 Security Analysis

Theorem 7 Mine3 is strongly privacy-preserving, if the encryption F is semantically secure.

Proof: We construct SA as follows. SA simulates the coin flips of A in the algorithm. If o = 1,
SA simulates message ~U using one random encryption of 0 and n − 1 random encryptions of
random elements of M− {0}, in a random order; otherwise, SA simulates ~U using n random
encryptions of random elements of M−{0}, in a random order.

We construct SB as follows. SB simulates the coin flips of B in the algorithm. SB simulates
message X using a random encryption. If o = 1, SB simulates the public output using “This
is a frequent itemset;” otherwise, it simulates the public output using “This is not a frequent
itemset.”

�
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5.4 Efficiency Analysis

Computational Overhead The algorithm Mine3 needs to compute n + 1 encryptions, and
n rerandomizations. It also needs to check n ciphertexts to see whether they decrypt to 0. In
addition, it needs to compute ] and ◦ for n times, respectively.

Assume that we use the variant of the ElGamal encryption scheme: Fkp
(mi, ri) = (gmi(kp)

ri , gri).
Then the overall computational overhead is (8s + 6)n + (3s + 1) modular multiplications.

The existing solution for horizontally partitioned data only works for three parties or more.
In Section 6, we will show how to extend our algorithm Mine3 to more parties. Our extended
algorithm is more efficient than the existing solution, because the latter uses Yao’s generic
secure computation protocol.

Communication Overhead The communication overhead of Mine3 is sn + s bits.

6 Extension to Multiparty Distributed Mining

In this section, we demonstrate how to extend our algorithms to multiparty distributed mining.
To avoid overly complicated notations, instead of presenting general algorithms for k parties,
we give three-party algorithms for vertically and horizontally partitioned data, respectively. It
is straightforward to further extend our algorithms to more parties in a similar way.

6.1 Algorithm for Vertically Partitioned Data

Now we extend our strongly privacy-preserving algorithm Mine2 to three-party distributed
mining.

Suppose that we have the third party C with private input (z1, . . . , zn). The extended
algorithm has 4 steps. In Step 1, A encrypts (x1, . . . , xn) using her own public key and sends
the encryptions to B. In Step 2, B computes encryptions of (x1y1, . . . , xnyn) and sends them
to C. In Step 3, C computes (r1(

∑n
i=1 xiyizi − t − 1), . . . , rn(

∑n
i=1 xiyizi − t − n)). Then C

rerandomizes these newly computed encryptions, repermutes them, and sends them to A. In
Step 4, A checks the encryptions she received to see whether there is one that decrypts to
0. Note that Steps 1, 3, and 4 of the extended algorithm correspond to Steps 1, 2, and 3 of
algorithm Mine2, respectively. The only new step is Step 2, which is based on the fact that
xiyi = xi if yi = 1, and xiyi = 0 otherwise.

Mine4(A, B, C, ~x, ~y, ~z)

A’s Input: ~x = (x1, . . . , xn) (xi ∈ {0, 1}); (ks, kp);
B’s Input: ~y = (y1, . . . , yn) (yi ∈ {0, 1}); kp;
C’s Input: ~z = (z1, . . . , zn) (zi ∈ {0, 1}); kp;
Public Input: t ∈ [0, n].

Step 1

(1.1) For i = 1, . . . , n, A encrypts xi using public key kp: Xi = Fkp
(xi, ri), where ri is picked

uniformly at random.

(1.2) A sends ~X = (X1, . . . , Xn) to B.

12



Step 2

(2.1) For i = 1, . . . , n, B computes Ui, an encryption of ui = xiyi as follows:

• If yi = 1, B sets Ui = Xi; otherwise, B sets Ui = Fkp
(0, 0);

• B rerandomizes Ui.

(2.2) B sends ~U = (U1, . . . , Un) to C.

Step 3

(3.1) C computes an encryption of v =
∑n

i=1 xiyizi as follows:

• V = Fkp
(0, 0);

• For i = 1, . . . , n, if zi = 1, V = V ] Ui.

(3.2) For i = 1, . . . , n, C picks ri ∈ M−{0} uniformly at random and computes an encryption
of ri(v − t − i):

Wi = ri ◦ (V ] Fkp
(−t − i, 0)).

(3.3) For i = 1, . . . , n, C rerandomizes Wi.

(3.4) C repermutes ~W = (W1, . . . ,Wn) at random.

(3.5) C sends ~W = (W1, . . . ,Wn) to A.

Step 4

If one of Wis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A outputs “This
is not a frequent itemset.”

6.2 Algorithm for Horizontally Partitioned Data

Now we extend our algorithm Mine3 to three-party distributed mining.

Suppose that we have the third party C with private input z. The extended algorithm has
4 steps. In Step 1, A encrypts x using her own public key and sends it to B. In Step 2, B

computes an encryption of x + y and sends it to C. In Step 3, C computes encryptions of
(r1(x + y + z − t − 1), . . . , rn(x + y + z − t − n)) using the homomorphic property of F . Then
C rerandomizes these newly computed encryptions, repermutes them, and sends them to A.
In Step 4, A checks the encryptions she received to see whether there is one that decrypts
to 0. Note that Steps 1, 3, and 4 of the extended algorithm correspond to Steps 1, 2, and
3 of algorithm Mine3, respectively. The only new step is Step 2, which is also based on the
homomorphic property of F .

Mine5(A, B, C, x, y, z)

A’s Input: x ∈ [0, n]; (ks, kp);
B’s Input: y ∈ [0, n]; kp;
C’s Input: z ∈ [0, n]; kp;
Public Input: t ∈ [0, n].

Step 1

13



(1.1) A encrypts x: X = Fkp
(x, r), where r is picked uniformly at random.

(1.2) A sends X to B.

Step 2

(2.1) B computes U , an encryption of u = x + y: U = X ] Fkp
(y, 0).

(2.2) B rerandomizes U .

(2.3) B sends U to C.

Step 3

(3.1) For i = 1, . . . , n, C picks ri ∈ M − {0} and computes Vi, an encryption of vi = ri(x +
y + z − t − i) = ri(u + z − t − i):

Vi = ri ◦ (U ] Fkp
(z − t − i, 0)).

(3.2) For i = 1, . . . , n, C rerandomizes Vi.

(3.3) C repermutes ~V = (V1, . . . , Vn) at random.

(3.4) C sends ~V = (V1, . . . , Vn) to A.

Step 4

If one of Vis decrypts to 0, A outputs “This is a frequent itemset;” otherwise, A outputs “This
is not a frequent itemset.”

7 Conclusion

In this paper, we study privacy preserving algorithms for distributed mining of frequent item-
sets. Our algorithms provide very strong privacy guarantee as defined in cryptography. They
have computational overheads linear in the number of transactions and therefore are very
efficient.
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