Neural Net Applications ‘04

Willard L. Miranker
TR-1315

Table of Contents

Colony Learning Under Duress
William Barley 1

Figure-Ground Segregation using a Neural Network
Timothy Brady 11

Learning Rates and Information Content in Hebbian Networks
Christopher Crick 23

Modeling Parent-Infant Smiling Interactions Using Neural Networks
Rachel Denison 33

A Generic Multilayer Perceptron for Customizable Digital
Neural Network Configuration in VLSI Sam Evers 57

NeuroEvolution of a Pole Balancing Vision and Control System
Reuben Grinberg 77

Image Classification Using a Self-Organizing Tree Algorithm
Neural Network David S. Hughes and Wesley C. Maness 89

Modeling Memory Consolidation to Study the Effects of Trauma-induced
Amnesia and to Simulate Categorical Learning Bhavna Kapoor 107

Learning the Distances Between Pairs of Sensors on the Retina
Edo Liberty 125

A Game Theoretic and Genetic Algorithmic Approach to Modeling
the Emergence of Mind in Early Child Development with Exposure
to Semi-Developed Parents James Logan 135

Performance Analysis of Different Neurogenetic Behaviors
Yihui Qian 151

An Enhanced ASLD Trading System for Traders and Portfolios
James Stewart and Bin Zhou 165

Colony Learning Under Duress

William Barley
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract

This project aims to study the effect of recurring noisy influences in locally informed colony
learning. Several characterizations of noisy, or “rogue,” data sources are used to skew the
observations of a group of neural networks during their learning process. While the networks
learn by attempting to emulate those around them, they cannot distinguish between good and

poor data sources. I conclude that little long-run disruption occurs in the learning process of
colony members. '

1. INTRODUCTION

Ant colonies function in ways completely oblique to those conventions and norms we are used
to as humans, operating in our own societies. This may be a reason their mere existence fasci-
nates us so much. Being accustomed to many types of government and social organization, we
might easily conclude that an ant colony has little to no apparent organization; yet, clearly the
colony achieves what appear to be organized tasks of complex nature: ants naturally solve NP-
Hard problems (Bonabeau, et al., Swarm Intelligence).

Not only are ant colonies superficially unorganized while extremely capable, but they are com-
prised of very simple individuals. Each ant, though well equipped in strength, is a simple crea-
ture with quite limited abilities.

Research has been conducted by students at Yale on the training of ants solely through the use
of local information (Lerner and Wallace, Distributed Colony Learning). That is, the model,
used here and in the Yale study, assumes that newborn ants know nothing of how to perform the
tasks that will be expected of them, but there are many experienced ants in the colony that do
have this knowledge; each young ant’s only instinct is to emulate the behavior he observes. The
hypothesis is that observation of other ants is sufficient for an ignorant ant to learn the knowl-
edge of the experienced. This has been demonstrated (Lérner and Wallace) and will be used in
this project .

While we might accept that new ants watching experienced ants will learn, we might wonder
what effect the presence of bad examples might have on their ability to learn the good example.
This project examines several types of recurring noisy, or “rogue,” influences on the ants learn-
ing process.

2. DEFINING THE METAPHOR

2.1 The Colony

For this experiment an ant colony has been modeled as a collection of neural networks, Each
ant is represented by a simple feed-forward network, accepting a binary vector of inputs and
giving a single output. The networks are adjusted using Back Propagation, with the observed
error for each ant based on the difference between his output and the output he observes. The
specific learning each network or ‘ant’ experiences is uniquely based upon his own observations
of other ants.

2.2 Three Types of Ants

There are three types of observable outputs, or “ants,” in the defined environment: there are the
new ants, or ‘students,” which are the only observers; there are the experienced ants, which we
call ‘teachers’; and there are ants that give outputs inconsistent with that of the teachers. We
will refer to this third type of ant as a ‘rogue.’

The students are born into the colony as networks with randomized weights. The randomization
models the lack of experience, since a trained network requires relationships between weights
in order to achieve proper output. To achieve proper output, an ant does not have to achieve the
exact same weights as another, but his network will be equivalent to that of another ant that has
also fully learned.

Under the arrangements of an ant colony, we suppose that there are no centralized systems of

- education, and that an ant learns through the use of local information. For this experiment, it has
_ been assumed that the student ants are unable to differentiate between other students, teachers,
and rogues; a student considers any ant it can observe to be a teacher. Learning, for these young
ants, means adjusting network weights through Back-Propagating a measure of error. Each ant
makes his own estimation of the error in his output by noting what the other ants in his vicinity
are doing. In sum, an ant strives to make his output more like the average output that he ob-
serves.

The teachers within the colony represent ants that have, by some means, acquired the knowl-
edge necessary to perform the tasks required of them. The teachers have no effective interac-
tion with the students; they simply go about their tasks within the vicinity of the learning ants.
Within the context of this study they take binary inputs, just as the new ants, and give a binary.
Many binary functions have been used in this experiment, but for all graphs show below, the
XOR function is used.

The rogue ants can be conceptualized in any number of instantiations. It could be that envi-
ronmental externalities have caused some ants to misbehave; it could also be that the ants are
enemies, from another colony. There are many forms they could take, and the present study has

focused on four. These four realizations of rogue output have been selected for their character-
istic behavior, not by their conceptual justification.

2.3 The Rogue Influence

The polymorphisms of rogue ants have two variable characteristics: the regularity with which
they appear in the colony and the consistency of their output. The rogues appear either on a
fixed interval or randomly with a fixed frequency. They output either randomly or by a rule to
be specified.

The number of rogues that occur at once; as well as the duration of their influence has been
varied in preliminary experiments, but in this analysis, they should be assumed to be fixed

and equal to the number of teachers present. Specifically, the rogues were set up to appear in
number equal to the number of teachers present. And, while the teachers were present in every
stage, the rogues were allowed to appear in a small fraction of stages. Since the ants have no
ability to discriminate between good and bad observations, it would be hard to define a rogue
influence that was completely persistent; a rogue influence that that was always present would
have to be considered a teacher. In such a case, the ants would have to use means other than
observatien to filter it from their learning,

2.4 Performance Measures

As a means of measuring the ability of the ants to learn, data were collected to detail at each
time step,each ants experience in terms of his observations, his output, and the difference be-
tween hisroutput and that of the teacher. Root-mean-squares (RMS error) were taken of the dif-
ference between the teachers average output and the average output of the student ants in order
to measure the students’ convergence toward the teachers. These data were not available to the
ants, however. The students simply observe the outputs of other ants, be they students, teachers,
Or rogues.

3. EXPERIMENT

3.1 The Student Network

During preliminary study, the students’ network composition was varied; for the experiment,
the network was chosen to be a feed forward network with two inputs, one hidden layer of four
neurons, and a single output node. While two and three neurons in the hidden layer produced
similar results, I chose four neurons which generally seemed to produce results with less train-
ing. As stated above the input was a binary vector.

3.2 Learning from Teachers without Rogues

It is important to first accept that untrained ants, by trying to emulate those around them, will
converge on the output of teachers. To that end, a group of six student ants were trained with
three teachers and no rogue influence. See figure 1 which depicts the ants’ CONVergence on
proper XOR output. The students have little trouble converging in relatively few epochs.

3.3 Final Parameters

The experiment consisted of students training under varying conditions of rogue influence. In
tests prior to the experiment, groups were sized around 3:2:2, students to teachers to rogues. In
all scenarios with teachers, the portion of teachers was raised to three as with the rogues. It was
reasoned that since the teachers are always present and the rogues appear intermittently, when
the rogues are present their influence should be at least as powerful as that of the teachers.

The rogues in all cases were allowed to appear about one percent of the time for a duration of
around five percent of the time. This means that in all, the rogues were present about 5 percent
of the time the students were learning. ‘

All simulations in the primary experiment were conducted with the teachers. outputting accord-
ing the to the XOR function. In each epoch all possible inputs binary inputs are given to the
ants. That is, since the ants are computing a two-input binary function, they are given four bina-
ry vectors of input in sequence. The students take note of the other ants’ outputs for each input.

3.4 Expectations

Going into this experiment, I had hopes of finding that certain types of rogue disturbances in the
learning process were beneficial. I thought that while converging to some functions might be
difficult to achieve it might be the case that disturbances help to shake up the network weights
in a way that resituates the network in a better approach toward convergence.

After some tests, I began to think that the rogue influences would rarely help the network to
converge. It seems intuitive that an undisturbed teacher-student group would converge fastest.

3.5 Results

In most all of the trials conducted, the rogues had a significant influence on the students’ out-
puts. The influence was not sustained though. While the ants were very sensitive to the added
presence of the rogues, they were just as sensitive to the departure of the bad influence. The ant
networks, relieved of rogue input quickly recovered.

See figure 2 for an example. In this scenario the rogues had a fixed interval of appearance and a
fixed output. While, the students output changes drastically during periods of rogue influence, it
quickly returns to its limiting form.

It can also be observed that the rogue influence was more disruptive when the rogues were us-
ing random outputs. See figures 3 and 4. In figure 3, the ants experience a random rogue oc-

currence, but fixed rogue output. They seem to deal better with the fixed output than with the
random output of the regularly appearing rogues in Figure 4.

Looking to the ants’ output in figure 5, it can be seen that the randomly occurring rogues had
the opportunity to disrupt the learning process early on. This appears to be more significant
than later disruptions. Though the ants are still able to converge quickly, their outputs had more
trouble converging initially than in other cases. See the contxast in Figure 2 in which the rogues
are regularly occurring.

4. CONCLUSION

Even with several different types of rogue influence, the ants remain very steady in their con-
vergence toward the teachers. After temporary shocks, they are able to get right back on track
with little overall effect. In fact, the rogue influence on the ants had little effect overall in rate
of convergence.

With greater sustained rogue presence the networks would have been more substantially jolted,
but without persistence, the teachers would definitely pull the ants into convergence.

I still think that the noisy influence of rogues might be helpful in some contexts. It is possible
that, lacking a good training function, the disruptions might prove helpful from time to time.
Certainly we know that in nature, diversity and mutation have always contributed to success in
the long run.

It is also possible that with more and more difficult solutions, there will appear more chances to
fall into local, but non-optimal solutions, in which case perturbations might allow networks to
escape from a local solution.

S. REFERENCES

Haykin, 8. (1999). Neural Networks: A Comprehensive Foundation. New Jersey: Prentice Hall.
Bonabeau, E., Doringo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to Arti-
ficial Systems. New York: Oxford University Press.

Benjamin Lemer, Benjamin Wallace. (2002) Distributed Colony Learning. Yale University.

Figure 2 - Students Recover from Rogue Influence

s ~ v

Y A V

i i | L

41}

€0

4 et W

S0

g0

nding anboy paxi4
-23uauna20 anbioy paxi4
sanbioy £ "sJayoea) ¢ 'Sy g “wu:&:.o Juy abelaay

Figure 3 - Ants’ Error with Random Rogue Occurrence

g e

G W

¥ e

€ e

z e

} e

inding anboy pexiy
83usLn3aQ enboy wopuey
sonboy ¢ 'asoydes) £ 'suy 9 uoLT SINY

-1200

¥00

800

10

[4A41]

¥10

90

8i0

z0

Figure 4 - Ants’ Error with Random Rogue Outputs

gue

G we

7 we

Eiue

z e

) e

i

¥00

800

(43

vic

910

10

ding anboy wopuey
-aJualinaaQ anfioy paxtj
sanboy ¢ 'suayoeay ¢ 'Sy 9 nw_..Ew Bay

4y

Figure 5 - Ants’ Output with Random Rogue Occurrence, Fixed Output

L}

01

10

(11]

20

80

60

wnding anboy paxi4
asuauna3p anboy wopuey

sanboyy g ‘sJoyoes] g ‘syuy g ;sinding juy abesany

10

Figure-Ground Segregation using a Neural Network

Timothy Brady
Yale University
Department of Cognitive Science
Abstract

A neural network was used to determine the reliability of two forms of figure-ground
segregation, and the practicality of the brain implementing one or both of them. One
model posits the existence of purely excitatory connections between neurons that respond
to the same type of feature, causing an object to “glow” out of the background when it
shares activations in many feature maps. The other posits the existence of lateral
inhibition between neurons that code for nearby regions of space as well as similar
features causing the edges between objects to become enhanced. The reliability of both
systems and the results produced suggest that the brain needs both types of connections in
order to engage in the accurate figure-ground segregation that is typical of our perceptual

experiences.

1. INTRODUCTION

1.1 Figure-ground segregation

Our brain is extremely adept at separating the visual field into objects and their
background, as we may note every time we look around a room. We find it quite easy to
focus our attention on one specific object, even if it is embedded in a collection of many
other objects very much like it. For example, on a chessboard we do not find it difficult to
see the pieces as separate entities from the squares beneath them, even if they share

colors and overlap shapes.

11

Many different cues are exploited to detect boundaries between objects and their
background, but in general regions that show abrupt changes are assigned to be
boundaries whereas felatively homogenpus regions are grouped together (Lamme, 1995).
This is especially clear in the areas of color and depth: when an area of the visual field
abruptly changes color or becomes farther or closer away than the adjacent area, we
almost always perceive the two areas as different objects (Wolfe, 1994). This allows us to
see objects as different from their backgrounds and as distinct from other nearby and
possibly overlapping objects, and have a perceptual experience that more closely mirrors

the actual existence of objects in the real world.

1.2 The Lateral Inhibition (LI) Model

It was originally posited by Stemmler, Usher & Neibur (1995) that this figure-
ground segregation was achieved in the striate cortex in much the same way that edge
detection is implemented in the connections of the retina. That is, it was éssumed that
lateral inhibition between nearby neurons was used to énhance the contrast at boundaries,
since the inhibitory input to boundary neurons would only be coming from the side of the
image that was similar to the current point and not from the opposite side. This would
result in a ring of less inhibition and thus greater activation in the areas that were the

boundaries in a given feature map', helping us to differentiate them as important borders.

! A feature map is an activation map representing the amount of a given feature at each
location. For example, we can consider a color feature map, an orientation feature map, a
depth feature map, etc. See Wolfe (1994) for a further explanation of the idea of feature
maps in vision.

12

This strategy of lateral inhibition would be repeated in each feature map, and the areas

that showed up as boundaries in multiple

feature maps would be considered to be the
borders between objects. Thus an area that
showed abrupt changes in color, depth, and

orientation would be marked as a clear object

boundary, whereas one that showed only a

change in color might be considered only a

output value

candidate for a boundary.

In general, this model seems to be a fairly

neuron

good explanation of how object boundaries

A diagram of how the LI model

might be parsed out, but it is not entirely

helps differentiate boundaries

satisfying as a full explanation of feature-ground segregation. In particular this model is

convincing from a phenomenological standpoint, because we believe we perceive objects,

not their boundaries. For example, when we look at a car on the road we like to believe

that what we perceive is a car with the road behind it, not the edge between the car and
the road. While it is possible to think of this as first perceiving the edge and extrapolating
it into objects based on topographical clues in some higher order process, the low level at

which object processing happens?

seems to indicate otherwise. Thus, while lateral
inhibition is clearly used in determining the edges of light in retinotopic space (Purves, et

al, 2004) and may be useful early on in the process of feature-ground segregation to help

2In particular, object representations are clearly available preattentively (Scholl, 2001),
and there are suggestions that differential activation based on the object an area of the
visual field is part of may be seen as early as V1 (Lamme, Zipser & Spekreijse 2002)

13

determine the boundaries of objects, it does not seem possible to perform all of the

processing relevant to our entire perceptual experience using lateral inhibition alone.

1.2 The “Glow” Model

The problems with the LI model led to the postulation of excitatory connections
between the neurons of each feature map by Roelfsema, Lamme & Spekreijse (2000).
They hypothesized that if all neurons that coded for a specific feature (eg, red) had
excitatory links to each other that allowed them to reciprocally excite each other, that
areas of space with like features would seem to ‘glow’ (i.e., stand out as a result of
having more activity) from their background in the given feature map (eg, a color map).
Thus, when we presented a vertically oriented red object on a different colored
background, the red object would appear to ‘glow’ in both the red color and vertical
orientation feature maps. This is because the neurons that coded for red would
reciprocally excite each other and would be more active than the neurons responding to
the black background, and the same for the vertical neurons in the orientation feature
map. This would help to differentiate the vertically oriented red object from its
background; leading to early figure-ground segregation.

This Glow model seems to succeed exactly where the LI model failed — by
grouping objects early in perception as combined regions sharing mutual activation, it
allows us to justify our phenomenological experience of what it is like to perceive the
world. This is because rather than emphasizing boundaries like the LI model does, it
segregates the entire object into one region, which is how we believe we see objects (e.g.,

the car on the road example above). However, it does not have other features of the LI

14

model, such as the ability to easily extract a border between objects that may be similar in
several feature maps. For such objects, the LI model’s approach of mapping boundaries
from multiple feature maps is likely to elucidate much more accurate figure-ground

segregation than the approach of the Glow model.

1.3 Two Contradictory Models

In general, there appear to be merits to both the LI and Glow models of figure-
ground segregation, particularly in how they fulfill our expectation of what a good model
of figure-ground segregation should look like. In such a model, we would like to see
strong segregation between objects, but also a general activation of entire objects rather
than an emphasis on the boundaries between objects. Thus, it seems like it would be nice
to combine the two models in order to get the best of both: an improved ability to
separate like-featured objects with boundary enhancement, and an overall activation of
the entire area of the object in order to satisfy our phenomenological expectations of
objects being grouped together properly.

However, these two views employ directly contradicting connections between
neurons: the LI model posits that neurons coding for a certain feature must inhibit nearby
neurons doing the same thing in order to enhance edge detection, whereas the Glow
médel posits that these like-featured neurons must excite each other in order to cause
regions with homologous features to differentiate themselves from their background in a
given feature map. This presents a clear dilemma: we cannot have a set of neurons both

inhibiting and exciting each other in order to derive our normal object-based perceptual

15

experience, as all inputs would just cancel out and result in no net gain of information
(and, consequently no perceptual experience at all!).

In order to get at the implications of this dilemma and to determine the extent to
which it is possible for the two models to work together, we used a neural network to
create a connectionist implementation of both models and to predict the ability to which

they can be combined to get a more satisfying model of figure-ground segregation.

2. METHODS

In order to make the models clearer we used only one feature map in their
implementation, color. We choose color because of the ease with which it can be
extracted from an image and its unambiguous nature. We used 64x64 pixel images with 3
color streams .(Red, Green, & Blue) for input. There was an input neuron for each
location in the image and each color value for that location, resulting in 64x64x3 input
neurons. These neurons were connected to each other and the output nodes according to
the predictions of the two models. That is, in order to implement the LI model each
neuron was connected only to neurons that coded for the same color it did (R, G, or B)

and these neurons were connected by a weight calculated using (1).
Wiy = -2 / V((xmxg) 2 + (Yi-y3) ?) (1)

where x; y;is the location in the image that neuron i codes for. This resulted in greater
inhibition between neurons that were close by each other and coded for the same color, as

per the LI model.

16

In the Glow model, all neurons that coded for the same color were connected to
each other with a weight of 2, and all neurons that coded for different colors were not
connected (see (2)).

2, if i, j both code for the same color (2)

Wiy - { 0, if i, j code for different colors

The output values for each location were derived by using (3), which resulted in a
number between 0 and 1 for each location in the image (64x64 output neurons), with the

number representing the location’s relative activation in each of the three color maps.

Vi = 2/ (6axe4) Ejj# i(1/255 X5 Wij) (3
) The job of the network was to differentiate between the figure and its background
by éssigning higher values in the output layer to the figure than to the background. We
ran‘ the network using only the LI model’s weights, only the Glow model’s weights, and
ther:a combination of the two models. The combination used the output values of the
other two models as inputs and derived a new output value based on them, using (4).

Yi = 01 Yeiow + 62 yir (4)

where the 6 values were both set to 1 for the outputs displayed below.

3. RESULTS

The results are presented in image form for clarity; red is considered a value of one,

and yellow a value of zero in the output node corresponding to a given spatial location.

17

The test images — The results of the The results of the A linear

just an object “Glow” model LI model combination of

against a processing the
background. two models
separately.

The results of the models are very much as predicted (Roelfsema, Lamme &
Spekreijse, 2000; Stemmler, Usher & Neibur, 1995). The LI 1ﬁodel produced an image
with the edge of the object clearly contrasted, to mark where the boundaries between
objects ought to be in this feature map. In the areas of homogenous color (the center of
the object and the background), the inhibition is strongest and so they show the least
activation. On the boundaries between objects we see the most activation, since they are

only being inhibited from the side with the same color as them.

18

Likewise, using the Glow model with excitation between common features caused the
object to ‘glow’ out of the image compared to its background, as per the model’s name.
In these images, we see no boundary enhancement but a clear delineation of the object as
a whole. In general, both models acted as predicted in isolating particular areas of the
images.

Although implementing both models on the same input is not possible because
inhibition from the LI model would cancel out the excitation from the Glow model, it is
possible if we first calculate their outputs and then combine them. In other words, if we
éreate two separate networks (with two different copies of the input) for the processing of
the models and only after their output is already determined combine them in a third
layer, we can combine the benefits of both models. Thus by doing a l_inéar combination of
their respective outputs, we can create a new model with the appealing properties of both.
As you can see from the third set of output images above, this method is indeed effective
—it .results in images that combine the beneficial boundary detection properties of the LI
model with the holistic object activation of the Glow model. These images have
enhanced boundaries on the edges of the objects, but also have significant activation of
the entire object as compared to the background.

Thus, while it is indeed not popular to combine the LI and Glow models intrinsically,
if we process them separately it is possible to combine their outputs to create a new
model of figure-ground segregation. This model allows for both a satisfying
phenomenological explanation of complete object activation and the benefit of easy

segregation of similar objects based on shared boundaries across feature maps.

19

4. DISCUSSION

The model presented above calls for the input to processed twice, once according to
the LI model and once according to the Glow model, and for these to be combined later.
Tiﬁs seems to be redundaﬁt processing, and could be seen as unlikely to exist in our
brains. However, most of the visual cortex is made up of fedundant processing of
information for each spatial location, organized into hypercolumns and stripes (Kandel,
Schwartz & Jessell, 2000), so the idea that figure-ground segregation might be another
way in which visual information is processed redundantly in order to get a better image
of the real world is not an unlikely hypothesis. The connections within each of the two
;ﬁodels may each be present in different layers of cortex, for example, processed
independently. They could later be combined to obtain a version of figure-ground
segregation with the useful properties of both, so long as both-were already fully
processed when they were combined -- as we showed above using a connectionist
architecture.

In conclusion, our connectionist modeling of the two major theories of figure-ground
segregation helps to show that their author’s predictions of their effects on image
processing were indeed accurate. The LI model is in fact effective at enhancing the
boundaries between an object and its background, and the Glow model is quite effective
at causing a holistic activation of an object. Our modeling also pointed to the idea that
while the LI and Glow models may seem mutually exclusive on the surface, it is in fact
possible to combine them and get many of the benefits of both. We have also attempted

to explain how this is plausible implementation of figure-ground segregation in the brain,

20

regardless of its redundancy, because of the inherent redundancy of much of the visual

processing in the brain.

REFERENCES
Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of Neural Science,

Fourth Edition. New York: McGraw-Hill Health Professions Division.

Lamme V. A. F., Zipser K, Spekreijse H. (2002). Masking interrupts figure-ground

signals in V1. Journal of Cognitive Neuroscience, Vol. 14, No. 7, pp. 1044-1053

Lamme, V. A. F. (1995). The Neurophysiology of Figure-Ground Segregation in Primary

Visual Cortex. Journal of Neuroscience, Vol. 15, No. 2, pp. 1605-1615
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., McNamara, J.

0., & Williams, S. M. (2004). Neuroscience, Third Edition. Massachusetts: Sinauer

Associates, Inc.

Pylyshyn, Z. W, & Storm, R. W. (1988). Tracking multiple independent targets: evidence

for a parallel tracking mechanism. Spatial Vision, Vol. 3, pp. 179-197

Roelfsema, P. R, Lamme, V. A. F, & Spekreijse, H. (2000). The implementation of visual

routines. Vision Research, Vol. 40, pp. 1385-1411

21

Scholl, B. J. (2001). Objects and attention: the state of the art. Cognition, Vol. 80, pp. 1-

46

Stemmler, M, Usher M, & Neibur, E. (1995). Lateral interactions in primary visual

cortex: A model bridging physiology and psychophysics. Science, Vol. 269, pp. 1877-

1880

22

Learning Rates and Information Content in Hebbian
Networks

Christopher Crick
Department of Computer Science, Yale University
New Haven, CT 06520

Abstract
We investigate the behavior of a neural network model of the hippocampus during the learn-
ing process, and demonstrate how differences in initial distribution of synaptic weights lead
to differences in the ease with which the network assimilates new information. Specifically,
we examine the rate at which a neural network learns, by means of unsupervised Hebbian
reinforcement, to recognize the letters of the Roman alphabet. We then examine how the
rate at which the network learns affects how well it later undertakes a similar task in learning
Greek, while incorporating a model of hippocampal apoptosis and neurogenesis and investi-
gating its effect on the learning rate. It turns out that networks that converge very quickly
on the Roman alphabet take much longer to handle the Greek, while networks which con-
verge over an extended timeframe can then adapt very quickly to the new language. We find
that the effect becomes more and more pronounced as the number of neurons in the den-
~ tate gyrus layer decreases, and identify a strong correlation between cases where the Roman
-.alphabet is quickly learned and cases where a few neurons saturate many of their weights
almost immediately, preventing other neurons from participating much at all. Cases where
the Roman alphabet requires more time result in many more neurons participating with a
larger diversity in weights. We present an information-theoretic argument about why this
implies a better, more flexible learning system and why it leads to faster Greek alphabet
learning, and propose that the reason that apoptosis and neurogenesis work is that they
promote this effect.

Keywords - neural networks, information theory, neurogenesis, Hebbian learning
1. INTRODUCTION

The hippocampus, a brain structure located in the medial temporal lobe, appears to be
responsible for establishing novel associations during the learning process. As the brain forms
new associative memories, hippocampal neurons change their stimulus-selective response
patterns [5]. This change in response patterns suggests similarities to the learning processes
of artificial neural networks. Since the detailed internal behavior of real neurons is difficult to
investigate, we can hope to gain insight by studying the behavior of their simulated parallels.

Evidence also suggests that the hippocampus is a lively site for adult neurogenesis, the
generation of new neurons throughout an individual’s lifetime [2]. Previous studies have

23

24

suggested, in computer models, that this process assists the hippocampus in assimilating
new information [1]. Selective replacement of neurons in hippocampus models seems to
improve the network’s plasticity, enabling faster learning.

These discoveries lead naturally to more questions. Why does this cycle of cell death
and rebirth increase learning plasticity? What is happening in the individual neurons during
the learning process? What are the circumstances and conditions that lead to successful
learning? Information is obviously stored within neurons, but how can we characterize that
information? How can we recognize it? ’

Using W. Miranker’s apoptosis model as a starting point [4], we investigated the be-
havior of a neural network intended to represent the hippocampus as it attempted to learn
first the Roman and then the Greek alphabets. We uncovered surprising behavior with
regards to the ease with which a network learned the two alphabets. In a nutshell, when
we present a randomly-weighted network with the Roman alphabet, sometimes convergence
occurs very swiftly, other times more slowly, and yet others not at all. We discovered that
quick-converging networks have a much more difficult time when presented subsequently
with the Greek alphabet than do those that were required to invest more time in learning
the Roman. To draw an analogy to human learning behavior, it is as if networks lucky
enough to be born with a knack for a particular topic are at a disadvantage when faced with
something new, as opposed to their peers which had to figure it all out the hard way.

This characterization is obviously a little glib, but the tendency is very evident. We
tried to understand why this might be so, and discovered patterns based on the neuron
participation rate and the level of saturated neurons. This paper presents these results. We
briefly summarize our experimental setup, which draws heavily on previous work. We then
present our new findings and provide some analysis of the neurons’ behavior, including a
brief look at neuron weights and firing patterns from an information-theoretic perspective.
We conclude with a discussion of the work’s contributions and potential extensions.

2. EXPERIMENTAL SETUP

We performed the experiments on a three-layer neural network using Hebbian learning
to update weights in an unsupervised fashion. The details of the setup are very similar to
the model described in [4], though the circumstances under which certain neurons undergo
apoptosis are somewhat different. We summarize the model and point out the differences; a
more detailed treatment can be found in the referenced paper.

Three layers comprise the human hippocampus — the endorhynal cortex, the dentate
gyrus (DG) and CA3. Our model, likewise, contains three layers of neurons. The input layer
consists of 35 neurons, each of which represents a single bit of a 7x5-bit vector portraying
a pixelated version of a Roman or Greek letter. Each of these neurons feeds its output to

neurons in the second layer (12 to 24 neurons), which connect in turn to the neurons of the
output (third) layer (11 to 13 neurons).

In addition, the second and third layers both contain lateral connections. While the
forward links between layers are excitatory, the intralayer connections inhibit neuron firing.
Inital weights were chosen randomly between 0 and 0.1 for the forward synapses, while the
weights of the intralayer connections were chosen randomly between -0.1 and 0.

We experimented with different levels of connectivity. In the simplest srrangement,
‘each node was completely connected — each neuron’s output connected to every neuron in
its own layer and every neuron in the succeeding layer. These connections could disappear
if the learning process drove their associated weights to zero, but every synapse began the
process with a nonzero value. In other tests, each weight had a certain chance of being set
to zero during the network’s initialization, representing a nonexistent connection, and we
furthermore prevented these weights from changing during the learning process. We used
values of 25%, 50% and 75% respectively for the proportion of these nonexistent connections.

.Motivated by the process of neurogenesis, we were trying to represent neurons that don’t
«-necessarily spring into being fully connected with all of their counterparts.
.~ Bach neuron used a simple McCulloch-Pitts threshold function, namely
v; = NjstaWij s + DWikyk
1, 26
0, <O ‘
Here, y; is the neuron’s output, neurons indexed by j are neurons that share the same

yi = {

Tayer, and those indexed by k belong to the previous layer. w;; and wy, are the weights
associated with the connection between each neuron pair. © is set to 0.1.

Hebb’s law specified the learning process. Each time a neuron has the opportunity to fire
(whether it actually fires or not), it updates its weights according to the following equations:

Awy = 7(1.5(yiyi) — 0.5(y:) — 0.5(yx)) (forward connections)

Awy = 7(—1.5(y:y;) + 0.5(y:) + 0.5(y;)) (lateral connections)

Weights were not permitted to grow indefinitely; maximum and minimum values were
capped at 0 and +0.125 for the excitatory and inhibitory connections, respectively.

7 is the learning rate constant. For these experiments we found that a fixed rate of
0.0001 worked best; we tried several strategies for updating the rate according to the elapsed
time or the Hamming distance between two successive epochs, but we found no strategy that
performed better than using a fixed constant.

To present an alphabet to the network, each input neuron outputs a 1 or a 0 corre-
sponding to whether a bit is black or white in a particular letter image. One by one, the
neurons of the input layer fire, then those of the DG layer, and finally the output neurons.
The firing order within a layer is fixed — at the beginning of each learning attempt, a random
ordering of the neurons is chosen, and this firing order is maintained from epoch to epoch.

25

26

Greek

20 40 60 80 100 120 140 160 180 200
Roman

Figure 1: Convergence performance with 16 DG nodes

The output corresponds to a vertex on the unit 2"-cube, where n is the number of neurons
in the output layer.

The learning process proceeded by presenting all of the letters of a given alphabet, in
order, until the output was perfectly consistent over three successive alphabet-presentation
cycles and every letter mapped to a different vertex on the output hypercube. Because
true convergence according to this definition rarely emerged, we loosened the requirement,
considering convergence to have occured when the network settled on a unique representation
for all but 10-15% of the letters.

Finally, we modeled cytotaxicity and neurogenesis by assuming that neurons with highly-
saturated weights were more likely to perish from overuse. Whenever we conducted a round
of apoptosis, we assigned to each node a probability of death. Each node added the absolute
values of all of its weights together, and the probability of cell death increased linearly from
zero, according to the distance by which the weight sum exceeded a threshold. This threshold
varied based on the total number of inputs leading into each neuron, from about 1.96 to 2.46.

3. RESULTS

‘We performed a large variety of experiments with this setup, some with very interesting
results and others with inconclusive ones. We will first dispense with the latter.

200 T Y T

180 | + -

140 | .
120 | .

100 | e

Greek

+ + +
+
+ TR

20 40 60 80 100 120 140 160
Roman

i 1

Figure 2: Convergence performance with 24 DG nodes

Our first set of experiments focused on determining performance parameters and con-
vergence criteria. We determined that a convergence criterion of 90% worked well enough
~ we did not consider a network to have converged until it consistently represented at least
this fraction of letters with a unique output encoding. Allowing the network to misclassify
more letters improved the number and speed of convergences, of course, but not enough to
be worth sacrificing accuracy. Besides, we wanted to investigate differences in convergence
timing, and reducing that effect would blunt the data.

_ We found that an 11-dimensional output vector is usually insufficient to converge on
a good encoding, while 13 dimensions seems adequate. With 11, the network converged
within 400 epochs only 4% of the time, while with 13 the number fraction was 46%. All of
the following experiments therefore use the larger output vector.

We began with tests that allowed a network 400 epochs to converge, but soon noticed
that only in 2% of cases did this convergence take place after the 200th iteration. Therefore
we changed the ceiling - any trial which failed to converge within 200 epochs was eliminated.

We note that the attempt to model partially-connected networks failed to produce any
useful results. With only 25% connectivity, we never managed to produce a network that
converged within the time limit. Performance improved at the 50% and 75% connectivity
levels, but the only noticeable difference between the results from a fully connected network

27

28

and those from the partially connected ones was that the latter produced them more rarely.

Figure 1 shows the first interesting result. Here we plot the number of epochs it took
for a network to learn the Roman alphabet against the number of iterations it subsequently
spent learning the Greek alphabet. The continuous plot (in this and all subsequent figures)
is a least-squares best-fit of the function f(z) = az®+c. In nearly every case, the Greek was
easier for a network to learn after having been exposed to the Roman. But the key result is
that a network which happened to converge very quickly with the Roman alphabet almost
always took a comparatively long time to do the same with Greek, while networks which had
to work for a long time before finally learning Roman letters took to Greek like lightning.

Figure 2 shows the same kind of data, but for a network with a larger dentate gyrus (24
as opposed to 16). Here, the effect is much less pronounced, and several outliers spoil the
picture. Disregarding those, the trend still exists.

45 T T T T T T T T

40

35

Naver Fire

15

10

20 40 60 80 100 120 140 160 180 200
Epochs to Convergence (Roman)

Figure 3: Percentage of DG neuron nonparticipation with 16 DG nodes

Figure 3 shows the fraction of neurons within the dentate gyrus which never fire after
converging on the Roman alphabet. In other words, these neurons fail to participate in letter
identification in any way. Not one of the 26 input patterns elicits any activity from them —

- they may as well not be there, as far as the letter-recognition task is concerned. Networks

that converge quickly have a far greater incidence of these useless neurons.

18

16 +

14}

12|

10 |

Saturated Neurons

0 50 100 150 200
Epochs to Convergence (Roman)

Figure 4: Number of saturated DG neurons after Roman alphabet learning (out of 24 total
DG nodes)

Figure 4 shows the number of neurons which are saturated after converging on the
Roman alphabet. A saturated neuron is one whose weights exceed the apoptosis threshold,
and are thus candidates for potential death. Once again, the same curve emerges. Quick
convergence leaves a large number of stressed, saturated neurons in its wake.

The final set of experiments involved allowing the networks to revisit the Roman alphabet
after they had mastered Greek. We were interested in the persistence of memory, and whether
apoptosis would adversely affect recall, just as it enhances learning new data. This does not
seem to be the case. There were no statistically significant differences in the relearning rate,
whether apoptosis occurred or didn’t, and whether Roman or Greek learning went quickly
or slowly.

4. ANALYSIS

What could be happening? It appears that rapidly converging networks happen to start
out with a few neurons that, by luck, have weights that help a great deal to differentiate
among letters of the Roman alphabet. These neurons tend to dominate the network, quickly
elbowing out the competition to the point of quiescence, as shown in figure 3.

29

30

Furthermore, the weights of the neurons that do participate become highly saturated
(figure 4). Thus, when the alphabet is learned quickly, the network consists of many neurons
that are effectively ignored and others which fire often and indiscriminately.

From an information-theoretic perspective, the poor capacity for learning additional
information exhibited by these idiot-savant network prodigies comes as no real surprise. A
network in which all neurons participate, and where each synapse is weighted differently, can
convey an enormous amount of information. A neuron with a well-distributed set of weights
has a huge number of possible internal states, and therefore potentially a large amount of
entropy (in the information-theoretic sense). The better-distributed the weights are, the
closer the entropy H will come to the theoretical maximum log(2K + 1), where K is the
number of internal states available to the neuron.

Entropy, of course, translates directly to information content. In the case of our Greco-
phobic networks, this content is quite low. Many neurons don’t participate at all, so their
potential to encode information is completely ignored. Furthermore, the neurons that do
participate have a very limited internal state space — many of their weights are saturated at
the maximum, and so the fact that they fire comes as no big surprise. Low surprise means
little information.

Thus networks that slowly converge on the Roman alphabet carefully refine their weights,
preserving a wide diversity of possible firing patterns and exploiting the capacity of many
more neurons. Such networks are simply smarter — they are able to encode and transmit
more information than their fast-acting counterparts, and the evidence suggests that this is
why they can learn new information much more quickly.

By preferentially replacing ill-behaved neurons which simultaneously browbeat others into
silence and carry little information themselves, apoptosis and neurogenesis help to maintain
a network information capacity that is closer to ideal. This might help to explain the puz-

zling result that apoptosis does not have a negative impact on relearning old information.

Whatever information encoded by the neurons destined for elimination, it was never very
much to begin with - just enough to provide a competitive advantage at the outset of the
convergence process. The absence of these heavyweights is more than made up for by the
increased responsiveness and activity of the other neurons in the network.

5. CONTRIBUTIONS

We have uncovered striking patterns in the learning behavior of unsupervised neural
networks, suggesting a relationship between the time and effort it takes to learn something
and the flexibility and adaptibility of that knowledge once learned. To express it in human
terms, it is asif a 'person who develops an unthinking “knack” for a particular process often
has a harder time adapting and applying the process to new circumstances than someone

who acquired the skill through dint of careful study. Whether human experience bears this
out is debatable.

These findings provide more support and justification for the idea that apoptosis and
neurogenesis in the hippocampus promote increased learning ability. We have accounted for
differences in learning ability by demonstrating the deleterious effects of both saturated and
silenced neurons, effects which can be mitigated through the mechanism of cell death and
replacement.

Finally, we have introduced some ideas about the theoretical information capacity of
neural networks, as illustrated by the alphabet learning experiments. Hopefully these find-

ings will help in developing procedures and rules of thumb for extracting good performance
out of a neural network setup in the future.

References

..[1] Chambers, R. A., Potenz, M. N., Hoffman, R. E., Miranker, W. L, (2004). Simulated
apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural
networks. Neuropsychopharmacology, vol. 29, pp. 747-758.

[2] Erikson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordburg, C., Peterson,
D. A, & Gage, F. H., (1998). Neurogenesis in the adult human hippocampus. Nature
. Medicine, vol. 4, pp. 1313-1317.

[3] Haykin, S., (1999).'Neural Networks: A Comprehensive Foundation. Upper Saddle River:
Prentice Hall.

[4] Miranker, W., (2004). Apoptosis/neurogenesis favorably informs memory development.
Yale University DCSTR 1234.

[5] Wirth, S., Yanike, M., Frank, L. M., Smith, A. C., Brown, E. N., & Suzuki, W. A,
(2003). Single neurons in the monkey hippocampus and learning of new associations.
Science, v. 300, pp. 1578-1581.

31

32

Modeling Parent-Infant Smiling Interactions
Using Neural Networks

Rachel Denison
Yale University, Department of Computer Science
New Haven, CT 06520

Abstract

Appropriate social interaction is a critical ability in everyday human life, and one that is
central for machines to have if they are to become fully integrated into human society.
The properties of normal human social interactions are investigated using a simple feed-
forward neural network trained with backpropagation within the specific social domain of
the parent-infant smiling interaction. This network was able to be successfully trained to
predict a partner’s smile level in several model social interactions, and several of the
networks trained in this way were able to perform significantly better in a social
interaction with a human partner than a network that was trained with random inputs.
These findings suggest that neural networks can be used to test models of the underlying
properties of successful social interactions and warrant further investigation in this area,
They also suggest new directions for exploring and improving human-machine
interactions.

Keywords — neural networks, human-machine interaction, social psychology, infant
smiling, affective computing

1. INTRODUCTION

Appropriate social interaction is a critical part of everyday human life, yetit is an
activity that is largely ignored in the design of both computer hardware and software.
Indeed, a substantial number of computer-users in a recent survey admit to feeling
frustrated with, swearing at, and even kicking their computers (MORI survey, 1999),
The motivation behind this project, therefore, is both to gain a better understanding of the
components of a successful social interaction, and to explore the possibility of designing
machines that can interact with humans in a socially appropriate fashion. In order to

investigate these questions, a neural network was devised to model a very specific social
phenomenon.

33

This phenomenon is that of the parent-infant smiling interaction, a well-
researched area in developmental psychology (Wolff, 1963). This type of early social
interaction occurs commonly between a pre-verbal infant and the infant’s parent, when
the infant and parent are looking at each other. The parent smiles at the infant, the infant
smiles back at the parent, the parent’s smile grows bigger, and the infant gives a bigger
smile in return. This type of interaction, which can be described as a sort of positive
smiling feedback loop between the parent and infant, has been shown to be an important
one for the development of an attachment between the parent and infant, making it a vital
early experience for the social, emotional, and cognitive development of the infant
(Bowlby, 1969). The nonverbal nature of this type of interaction makes it a good
candidate for an exploratory modeling project using neural networks. The goal of this
project, therefore, is to create a network that would model this type of parent-infant
smiling interaction.

We create a program that interacts with a human partner by smiling at the partner
and receiving smiles from the partner in the same way that an infant interacts with its
parent by smiling at its parent and responding when the parent smiles back. The smiling
behavior of the program is controlled by a neural network and depends on the smil ing
behavior of its partner. We train networks to respond to a partner using several
experimental models of a social interaction. We then test the trained networks by
allowing them.to interact with human partners, with the goal of determining which
training model best equips the network to interact socially with a human partner.

2. APPROACH AND NETWORK DESIGN

Any number of methods might be used by a human infant to solve the problem of
smiling appropriately to an adoring parent. The approach used here was to create a
neural net that, given its partner’s past smiles (be they big frowns, neutral expressions, or
huge grins), would predict the next smile of its partner, and respond to its partner with
that degree of smile. The initial thought here is that a network trained to predict, or
“expect,” a certain model pattern of interaction will make the fewest errors in predicting
the course of a real interaction if the course of the real interaction matches the course of
the model interaction used to train the network. In other words, if the social interaction
model used to train the network results in the network’s ability to accurately predict its
partner’s next smile level, then the model used to train the network may reflect the
pattern of human social interactions. We ask, then, which social interaction model tested
will best train the neural network to respond to a human partner in a socially appropriate
manner.

The neural network used is a simple feed-forward network consisting of an input
layer, a hidden layer, and an output layer. The input layer has N+1 neurons, where N is

34

the number of input neurons, which take the past N partner inputs. The final neuron in
the input layer represents a bias. The network is trained to output a prediction of the
partner’s next smile based on the partner’s past smiles. The smile level outputted by the
network also serves as the network’s own smile response to the partner’s most recent
input. Both the network and the partner are limited to five levels of smiling: big frown,
little frown, neutral, little smile, and big smile (Figure 1).

®® ®©® ®©® OXO) ®®
VR N o . ~—" /

Figure 1. Face pictures showing different levels of smiling used

These were represented in the network by the values [-1, -0.5, 0, 0.5, 1]. Smile levels,
then, are an algebraic quantity, in that they have a sign, and they are distributed
symmetrically about the neutral face, which has a smile level of 0. The output of the
network is transformed by a hyperbolic tangent function to a value between [-1, 1],
which, during an interaction, is then scaled to one of the five smile levels by rounding to
the nearest smile level, in order to produce a smile level output.

The fully-connected, feed-forward network is trained by backpropagation, as
described in Section 3.

3. TRAINING THE NETWORK

3.1 Training Inputs

We train the network using 11 experimental social interaction models. Each
model reflects a possible ebb and flow of a dyadic human social interaction, such as the
parent-infant smiling interaction, as it develops over time. For example, if a parent and
infant look at each other for a long period of time with unchanging neutral expressions,
the best model for that interaction would be a long series of neutral smiles. Each model
takes the form of a training vector of inputs that are fed to the network. Each training
input is one of the five possible smile levels, which are represented on a scale of [-1,1] by
the values {-1,-0.5,0, 0.5, 1}. So, for the unchanging neutral smile example, the model
input vector could be {0, 0, 0, 0, 0, 0}, which would repeat over the course of training.

The 11 models used can be divided into four categories. The first category can be
termed the Constant Smile interaction model. The unchanging neutral smile vector
belongs to this category, and this is one of the training input vectors we test. A training
vector with constant smile level 1 (big smile) and a training vector with constant smile
level -1 (big frown) were also tested. Each constant vector contained 24 Os, 1s, or -1s,

35

depending on whether the vector was designed to model a constantly neutral, constantly
smiling, or constantly frowning interaction model, respectively.

The second category can be termed the Even Wave interaction model. This
model is designed to better reflect the ebb and flow of human social interaction. Each
Even Wave model oscillates at an even pace between the values of -1 and 1. Five
different “wavelengths™ are tested in order to attempt to determine the optimum rate of
flow from one emotional level to the next (eg. big smile to little smile) in a social
interaction. The model with the shortest wavelength goes directly from one smile level to
the next with no repetition. We will say it has a “step-length” of 1. The Even Wave
training input vector with step-length 1 is:

evenWavel = {0.5, 1, 0.5, 0, -0.5, -1,.—0.5, 0, 0.5, 1, 0.5, o,
-0.5, -1, -0.5, 0, 0.5, 1, 0.5, 0, -0.5, -1, -0.5, O}

Likewise, the Even Wave training vector with step-length 3 is:

evenWave3 = {0.5, 0.5, 0.5, 1, i, 1, 0.5, 0.5, 0.5, 0, 0, 0,
-0.5, -0.5, -0.5, -1, -1, -1, -0.5, -0.5, -0.5, 0, 0O,
0} _ o o

Input vectors with step-length 5, 7, and 9 are also used in training.

The third category of training input vector used might be termed the Weighted
Wave interaction model. Two such vectors are used, either weighted toward 1 (big smile)
or weighted toward -1 (big frown). The Positive Weighted Wave training vector is:

posWeightedWave = {0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 0.5, 0.5,
0.5, 0.5,_0, o6, 0, -0.5, -0.5, -1, -0.5, -0.5
0, 0, 0} ’

14

The Negative Weighted Wave training vector is simply the opposite of its positive
counterpart — each element of the Positive Weighted Wave training vector is multiplied
by -1 to form the Negative Weighted Wave vector.

Each training vector is designed so that it can be repeated seamlessly during the
training process. For the purposes of training, this vector represents the smile level
responses of the network’s partner over time. When tfaining begins, the first N elements
of the vector become the N network inputs (the past five responses of the training
partner) and element number N+1 becomes the desired network output (the next response
of the training partner). Training continues by moving forward one element at a time.

In order to determine the effectiveness of training with a particular model vector,
a baseline must be established. So the network is also trained using a fourth category of
vectors, representing the Random interaction model. This consists simply of a vector of
inputs selected at random from [-1,1] — the Random Vector. This vector is generated at

36

the start of a training session and contains the same number of elements as the other
training vectors described above. Like the other vectors, the Random Vector cycles
through the training session. A sample Random Vector is:

randomVector = {0.127349643, -0.669787224, 0.174089899,
0.406058405, 0.96165467, =-0.599653321, -0.697442496,
-0.660331357, 0.069319089, -0.950013234, 0.754639832,
~0.960393098, 0.649264477, 0.983325533, 0.967563777, 0.328147145,
0.169444871, -0.577145958, -0.935369808, -0.250663787,
-0.844802401, 0.235151246, -0.843438751, -0.650324565})

3.2 Training Method

Training using all vector types consists of backpropagation. Let us recall that the
input layer consists of N+1 neurons, taking the past N partner inputs and a bias. In each
epoch of training, the network receives N inputs from the training input vector
(representing the past N model partner smiles) and a desired output (representing the next
model partner smile, partner smile N+1). Based on the current values of its weights, the
network calculates an output in response to the inputs. The output of the network can be
any real number between [-1,1]. The output of the network is then compared with the
desired output, and the error is backpropagated through the network, resulting in changes
to the values of the weights between neurons. In the next epoch, the training input vector
is cycled forward by one element, such that the eatliest smile input is “forgotten” (where
v is the vector, v is eliminated and v, _ v,.1) and the smile that in the previous epoch was
the desired output becomes the most recent past partner input (vys1 __VN).

It should be noted that there is a very clear critical error value that needs to be met
in order to say that the network has been successfully trained. That critical level of error
between desired and actual output from the network is 0.25. This is because, during an
interaction (but not during training), the output of the network, which can be any number
between [-1,1], is converted to a smile level by rounding to the nearest 0.5. This means
that for the network to accurately predict a smile level of 0.5, for example, its output can
be in the range [0.25,0.75]. Since the range of acceptable values extends 0.25 away from
the target output, the critical error value is thus 0.25. Such a relatively large acceptable
error is a difference between this and some other neural network applications, in which
the difference between the desired and actual output of the network must be miniscule to
achieve acceptable performance.

Based on this critical error value, a convergence criterion is set to determine at
what point the network is adequately trained. When the convergence criterion is met,
training stops, and the network is said to have been successfully trained. We used the
following criterion: the network may stop when, over the course of the past input cycle
(where the length of one cycle equals the length of the training input vector), 90% of the

37

network outputs have an error smaller than 0.25. In other words, the network may stop
when it is predicting the correct smile level at least 90% of the time. The number 90%
was chosen based on the observation that in the training of the Random and Weighted
Wave vectors, the output of the network generally converged to the desired output,
except for periodic etror spikes occurring every 24 epochs, the same number of elements
in the training input vectors. A convergence criterion of 90% accuracy allows for these
spikes while requiring that, 9 times out of 10, the network predict the correct smile level.
In addition to varying the model training vectors used, three different neural
network architectures are tested. Each architecture consists of one input layer, one
hidden layer, and one output neuron, but the number of input neurons, N+1, is varied: 3,
6, and 10 input neurons are tested. Since one of these neurons always represents a bias,
this corresponds to training the network to predict the next partner input based on N = 2,
5, and 9 past partner inputs. In each case, the number of hidden neurons is set to be
approximately 70% of the number of input neurons: 2, 4, and 7, respectively. In this
way, the network architecture was expanded or shrunk in a scaled fashion in order to test

the effectiveness of increasing or decreasing the network’s “memory” of past partner
inputs.

3.3 Training Results

The 11 training input vectors are tested on the 3 neural network architectures to
see if the network will converge to 90% accuracy within 2500 epochs of training. Every
training vector is tested on the 6-input architecture, and selected training vectors are
tested on the 2- and 10-input architectures. 22 test trainings are carried out in total, and

13 of the 22 trainings result in convergence. The results of training are shown in the table
below. '

Epochs taken to converge .

input vector 3 Inputs 6 Inputs 10 inputs
constant1 not tested 25 | not tested
constant0 not tested 26 | not tested
constant-1 not tested 25 | not tested
evenWave1 215 88 46
evenWave3 >2500 478 209
evenWaveb not tested >2500 486
evenWave7 not tested >2500 796
evenWave9 not tested >2500 >2600
posWeightedWave | >2500 " 968 630
negWeightedWave | not tested 974 | not tested
randomVector >2500 >2500 >2500

Table 1. Training summary showing the number of epochs each network architecture
took to converge when trained using the various experimental input vectors

38

3.3.1 Convergence variations in training with Even Wave vectors

One interesting finding from the training results is that, when trained with the
Even Wave vectors, the 3 neural architectures had different convergence results. The 3-
input architecture converge successfully only for the Even Wave with step-length 1, the
6-input architecture converge for step-lengths 1 and 3, and the 10-input architecture
converge for step-lengths 1, 3, 5, and 7, but not for step-length 9. The step-lengths on
which the networks fail to converge bear an interesting relationship to their architectures.
The networks only converge when the step-length of the training vector is less than the
number of past smiles available to the network. Since one input neuron is a bias, the
number of past smiles available is always one less than the number of input neurons. In
each case, a network with N+1 inputs (+1 being the bias) fails to converge because of a
regular error made when presented with an Even Wave vector with step-length greater
than or equal to N. The network is able to make the correct prediction most of the time,
but every Nth epoch the network makes an error. As can be seen in F igure 2, for
example, the pink series 2 line, which represents the error, spikes every 5% epoch,
indicating the occurrence of an error in the output of the network.

Training 18 - 5Wave - Blue diamond (series 1)=output, Pink square
(series 2)=error - Epoch 2451-2500

epoch

[—0— Series1 —=— Serles2]

Figure 2. Plot of progress of training with 6-input architecture using Even Wave training
vector with step-length 5, epochs 2451-2500. Shows error every 5% epoch

Additionally, the different architectures converge at different rates when trained with the
same vector. The difference can be seen clearly in the networks’ rates of convergence for
the Even Wave vectors. As shown in the following graph, the more inputs the network
has, the faster it converges. Additionally, the longer the step-length of the wave, the
longer the network takes to converge.

39

Epochs taken to converge

900

700
o 600
£ 500
400
® 300
200
100

1 3 5 : 7 9
wave step length

t«— 3 inputs, 2 hidden —=— 6 inputs, 4 hidden . 10inputs, 7 hiddeﬂ

Figure 3. Plot of the number of epochs each of three networks took to converge when
trained using Even Wave vectors of step-length 1, 3, 5,7, and 9

In Figure 3, no point is plotted if the network does not converge within 2500 epochs of
training. This occurs when step-length equals 3 for the 3-input architecture, 5 for the 6-
input architecture, and 9 for the 10-input architecture, as discussed above. Here we can
propose, based on the above graph, that this is not simply a case of too few iterations, but
is instead something of a breaking point in the network’s ability to learn to predict the
next input. If we were to extrapolate from the graph and predict how many epochs it
might take for the 10-input network to converge to a wave with stéjj-lcngth 9, we might
put the estimate somewhere between 1200 and 1500 epochs. However, in testing, the
network does not converge even after 2500 iterations, suggesting the possibility that the
network may not be able to learn to predict the next input when the step-length of the
wave is greater than or equal to the number of past inputs to which it has access.

3.3.2 Convergence failures in training with Random Vector

Training with the Random Vector does not result in convergence for any of the
networks. Since the network is designed to predict the next smile level given the five
previous smile levels, it is expected that an attempt to train the network to predict a
random number based on five other random numbers would be unsuccessful, and that
expectation is borne out here.

It is important to clarify that the random case is not akin to “real life.” Social
interactions are not random — just the opposite. We do not expect Alice to punch Bob in
the face after Bob gives Alice a present, for example. More in line with the paradigm
used here, we do not expect Alice to frown when Bob smiles at her. A goal in this study
is to try to uncover just what the underlying patterns of social interaction are. Training
the network with the Random Vector provides a good baseline against which to compare

40

performances of other training vectors because it presupposes no underlying form to
social interactions. We suggest that the better other training vectors perform compared to
the baseline, the better they represent the underlying pattern of the social interaction.

Training 3 - Random Training Vector

0 100 200 300 400 500 600 700 800 900 1000

Figure 4. Plot of progress of training using Random Vector as training inputs, 6-input
network

3.3.3 Patterns of error over the time-course of trainings that result in convergence

_ For those trainings that resulted in convergence, several different patterns of error
over the course of training were observed. In general, the error decreased to a point
where it was below 0.25 more than 90% of the time, but the error seen over the course of
tra_ihing varied. For a network trained with a Constant input vector, for example, the
error decreased quickly and steadily over the course of training, while for the Weighted
Wave vector, the error was more erratic. Plots of the absolute value of the error over the
time course of training for these three sample training runs are:

Training 7 - Constant Smile Level 0

1.3 8§ 7 9 11 13 18 17 19 21 28 25 27
Epoch

Figure 5. Plot of progress of training using Constant 0 vector as input, 6-input network

41

Tralning 10 - 1Wave

1 6 11 16 21 26 31 36 41 48 51 56 61 66 71 76 81 € o1
Epoch

Figure 6. Plot of progress of training using Even Wave vector with step-length 1 as
input, 6-input network

Training 4 - Posltive Weighted Wave

. 075

05 REE

AbsError

0.25

1 67 113 160 225 281 337 303 440 505 561-617 673 720 785 841 897 953
Epoch

Figure 7. Plot of progress of training using Positive Weighted Wave vector as input, 6-
input network

As can be seen in the above graph, periodic error spikes occur every 24 epochs when the
network is trained with the Positive Weighted Wave vector. That input vector has 24
elements, and the network spikes at the same position in each cycle of the input vector.
Interestingly, it does not spike at the beginning or end of the vector, but at vector position
14, a 0 following four Ss in the Weighted Wave. This is the case for the 3-input, 6-input,
and 10-input network when trained with the Positive Weighted Wave. The same pattern
is also seen when the 6-input vector is trained with the Negative Weighted Wave — the
error spike still occurs at the 14™ input vector position. In order to evaluate if there is

42

something “special” about the 14" position in general or only in the Weighted Wave, we
can look at the training errors for the Random Vectors, which also produce error spikes
every 24 epochs. When the 6-input network is trained with the Random Vector, the 14
position error is seen again. However, for the 10-input network, the error occurs at
position 3, and for the 3-input network, the error occurs at position 18, suggesting that
although the periodic spiking is seen, the error spike may appear at any position for a
network trained with a Random Vector, but seems to regularly appear in the 14% position
for all vectors trained on the Positive or Negative Weighted Wave. The reason why the
error appears periodically in the 14™ position in these Weighted Waves as opposed to in
some other position is not resolved here, but bears further investigation.

Training 4 - Positive Weighted Wave - Epochs 918-968

o
»

AbsError
o o
o an

1 3 68 7 9111315171921232527293133353739414345474951
Epoch

Figure 8. Plot showing the absolute value of the error of the 6-input network over the
final 50 epochs of training with the Positive Weighted Wave training vector

Training 20 - Positive Weighted Wave - Epochs 580-630

1 3 6 7 911’1315171921232527293133353739414345474951
Epoch

Figure 9. Plot showing the absolute value of the error of the 10-input network over the
final 50 epochs of training with the Positive Weighted Wave training vector. Although
the error between spikes is more stable for this 10-input network as compared with the 6-
input network above, the error still spikes periodically every 24 epochs at the 14™ input
vector position

As seen above (Figures 5 and 6), other types of input vectors do not show an error
spike with period 24. The error of the network trained with Even Wave with step-length

43

1 oscillates fairly regularly, peaking every four epochs (Figure 6) as a result of not quite
reaching the extreme values of -1 and 1 in its output. The error of the network trained
with Constant 0 is not at all periodic, but steadily decreases (Figure 5). This suggests the
possibility that the irregularity within both the Weighted Wave vectors and the Random
Vector forces the network to chunk the network into its smallest repeating segments — in
this case, the entire 24-element input vector — in order to learn to predict the next
element. How it might be doing this, if indeed it is, is an area requiring further
investigation.

4. TESTING THE TRAINED NETWORK

4.1 Method

Since this network is designed to interact with a human partner, its performance
must be evaluated by the way it interacts with a real person in real time. In order to test
the network trained on the model interaction vectors and compare it with the network
trained on the Random Vector, we develop an interface that enables the neural network to
interact with a human partner in real time. '

The human partner can “smile” at the network by selecting a face with one of five
“smile levels” on a graphical user interface. The network, in turn, responds back to its
partner’s selected smile by displaying a face with one of the same five smile levels. This
back-and-forth smiling continues between the program and its human partner just as it
might between an infant and its parent. Each testing session consists of 50 epochs of
alternating smiles, for 100 smiles total. The smile level that the program chooses is based
on its partner’s past smile levels. During the interaction, these past smile levels are fed
into a trained neural network. The output of the network is a number corresponding to
one of the five smile levels. The corresponding smile level is then dlsplayed to the
partner graphically.

Figure 10. Graphical user interface used to test performance of the neural network when
interacting with a human participant

44

Three human subjects, who did not know anything about the project, were tested
on 16 networks using this interface, which had been trained by the various experimental
training input vectors on the 3 experimental network architectures.

Properties of trained networks used in human testing

Number of Number of Epochs

Training | Input vector inputs hidden trained
3 | randomVector 6 4 2500
4 | posWeightedWave 6 4 968
5 | constant1 8 4 25
6 | constant-1 8 4 25
7 | constant0 6 4 26
8 | negWeightedWave 6 4 974
9 | evenWave3 6 4 478
10 | evenWave1 6 4 88
14 | evenWave$5 10 7 486
15 | evenWave7 10 7 796
16 | evenWave3 10 7 209
17 | evenWave1 10 7 46
20 | posWeightedWave 10 7 630
24 | evenWave1 3 2 215
26 | randomVector 3 2 2500
27 | randomVector 10 7 2500

Table 2. Networks trained with these 16 input vector-architecture combinations were
tested with human subjects.

The subjects were given instructions to interact with the program by trying to
make friends with the face on the screen and respond to it as they would to a baby. The
16 test networks were presented to each subject in random order. During the interaction,
the responses of the network and the person, and the errors between the network’s output
and the person’s actual subsequent response, were recorded. Following the interaction,
the subject was asked to rate his or her experience with the network on a scale of 1 to 10,
1 being “the worst social experience with a baby imaginable, completely unsatisfying”
and 10 being “the best social experience with a baby imaginable, incredibly satisfying.”

The performance of the network for each training condition was evaluated using
two measures: 1) the error of the network, that is, the difference between the output of the
network and the subsequent output of the human subject (measure used was root mean
square error (RMSE)) and 2) the subjective experience rating given by the subject.

4.2 Results _
The results of human testing are not as consistent as we might have hoped,
although some clear trends do emerge. The tables and graphs below show the RMSE for

45

three subjects and the subjective experience ratings for two subjects (one subject did not
give ratings) who interacted with all 16 test networks.

RMSE
Num

Training | Input vector inputs S1 s2 |83 Mean
26 | randomVector 3 5.4 5.1 6.9 5.3
24 | evenWave1 3 4,2 23 3.6 33
3 | randomVector 6 6.2 3.1 4.2 4.7
5 | constant1 6 4.1 4.0 3.0 4.1
7 | consant0 6 4.1 22 4.1 3.2
6 | constant-1 6 5.8 36 5.8 4.7
10 | evenWave1 6 2.9 24 2.9 2.7
9 | evenWave3 6 4.1 1.5 24 2.8
4 | posWeightedWave 6 4.2 1.9 3.1 3.1
8 | negWeightedWave 6 48 28 3.3 3.8
27 | randomVector 10 7.8 24 3.8 5.0
17 | evenWave1 10 4.4 4.8 6.5 4.6
16 | evenWave3 10 4.3 2.1 2.4 3.2
14 | evenWave5 10 4.1 3.2 3.2 3.7
15 | evenWave7 10 3.9 4.8 3.6 44
20 | posWeightedWave 10 4.8 47 3.2 4.8

Table 3. Summary of RMSE results for three subjects who interacted with the 16 test
networks. '

RMSE

8.0
7.0
6.0
5.0
40
30
20
1.0
0.0

u S3
o8S1
u S2

evenWave1 ‘
constant1 . G
consantl |l
evenWave1 i
evenWave3 (N —
evenWave1 ;
evenWave3 w
evenWave5 S :
evenWave?7 i

Cco
rAandoMVeECIor [o

randomVector B I

%

posWeightedWave CEESESRESSEEY

Figure 11. RMSE results for three subjects. Items grouped by training type (labeled) and
by network type, so that the first two clusters correspond to the 3-input network, the next
eight to the 6-input network, and the final six clusters to the 10-input network.

46

Subjective Experience Rating _

Num
Training | Input vector inputs | S1 S2 Mean
26 | randomVector 3 8 7.75 6.875
24 | evenWave1 3 5 6.75 5.875
3 | randomVector 6 7 4 5.5
5 | constant1 6 5 7.5 6.25
7 | consant0 6 3 8.5 5.75
8 | constant-1 6 5 9 7
10 | evenWave1 6 3 6 4.5
9 | evenWave3 6 7 5.5 6.25
4 | posWeightedWave 6 6 9.5 7.75
8 | negWelightedWave 6 6 8 7
27 | randomVector 10 5 8.5 6.75
17 | evenWave1 10 7 7.5 7.25
16 | evenWave3 10 6 6.75 6.375
14 | evenWave5 10 6 7 6.5
15 | evenWave7 10 7 7 7
20 | posWeightedWave 10 8 7.5 7.75

Table 4. Summary of RMSE results for three subjects who interacted with the 16 test
nétworks.

Subjective Experience Rating

10
g}
8 .
7
g m S1
4 u S2
3
2
1
0

@&"

& &

Figure 12. Subjective experience ratings given by two subjects after interacting with
each test network. Items grouped by training type (labeled) and by network type, so that
the first two clusters correspond to the 3-input network, the next eight to the 6-input
network, and the final six clusters to the 10-input network. '

Please see Appendix A for graphs showing the mean RMSE and subjective experience
rating results for each network.

47

4.2.1 Performance of model-trained compared to randomly trained networks

One clear finding is that for all three network architectures (3-, 6-, and 10-input)
every model interaction vector outperformed the Random Vector as measured by mean
RMSE (See Figures 15, 17, and 19), so that in every case, training the network with some
non-random interaction model enabled the network to better predict its partner’s next
smile level than training with a random vector. The subjective experience rating results
were less straightforward, with some test networks performing better than the randomly
trained network in this measure and some performing worse (See Figures 16, 18, and 20).

For the 3-input network, 0 of 1 model-trained networks outperformed the
randomly trained network in both measures. For the 6-input network, 5 of 7 model-
trained networks outperformed the randomly trained network in both measures. These
were: Constant 1, Constant 0, Even Wave step-length 3, Positive Weighted Wave, and
Negative Weighted Wave. For the 10-input network, 3 of 5 model-trained networks
outperformed the randomly trained network in both measures: Even Wave step-length 1,
Even Wave step-length 7, and Positive Weighted Wave. *Of the 3 models tested on
multiple networks (Even Wave step-length 1, Even Wave step-length 3, and Positive
Weighted Wave), only Positive Weighted Wave-trained networks outperformed the
randomly trained networks in all tests.

Mean RMSE

6

5

4 w 3-input
3 o 6-input
2 o 10-input
1

0

randomVector evenWavel evenWave3 posWeightedWave

Figure 13. Mean RMSE results comparing the performance of the three different
architectures (3-, 6-, and 10-input networks). Two trainings were given to all three
network types and four trainings were given to two of the network types

48

Mean Subjective Experience Rating

9

8

7

: w 3-input
4 | 6-input
3 0 10-input
2

1

0

randomVector evenWavel evenWave3 posWeightedWave

Figure 14. Mean subjective experience rating results comparing the performance of the
three different architectures.

4.2.2 Comparisons of network architectures

Both the 3-input and the 10-input architectures consistently perform worse than
the 6-input architecture for the trainings they have in common, as measured by mean
RMSE. This suggests that 2 past partner smiles may be too few to remember to make an
acsurate prediction about the partner’s next smile, while 9 may be too many, making the
optimum somewhere around 5. However, the 6-input architecture receives lower
subjective ratings from participants than the other two architectures for trainings with the
Random Vector and Even Wave step-length 1. However, the RMSE may be a more
reliable measure, as evaluated by the consistency of results for the random trainings. A
randomly trained network should be expected to show approximately consistent
performance regardless of its number of inputs: the range of mean RMSE values for the
three architectures is only 0.6, while the range of mean subjective rating values is 1.4,
suggesting greater baseline variability in the subjective experience ratings than in the
RMSE measures. More human subjects should be tested in order to reduce the variance
in both measures and achieve more reliable results.

In the mean RMSE measure, the two bést-performing networks for all three
network architectures were Even Wave-trained networks. Specifically, for the 6-input
network, the networks with the lowest mean RMSE were trained by Even Wave step-
length 1 and Even Wave step-length 3. Even Wave step-length 1 had one of the highest
mean RMSE:s for the 10-input network; Even Wave step-lengths 3 and 5 were the best
performers. (The 3-input network was only tested on one model vector, Even Wave step-
length 1, making that the obvious best-performer for that architecture.) The difference in
performance in Even Wave step-length 1 for the 10- and 6-input architectures highlights
once again that the number of past inputs the network takes into account when interacting
with a human participant is not irrelevant, but can result in dramatically different results
for different architectures. The overall high performance of the Even Wave vectors

49

suggests that an oscillating interaction pattern may be a natural one, and the consistently
good performance of the Even Wave step-length 3 suggests that the length of time
required for a participant to smile three times at the network may best approximate the
time a human interaction is most likely to stay at one emotional level. One way this
could begin to be tested by measuring the time-course of a parent-infant smiling
interaction,

4.2.3 Subjective experience ratings and comments

The subjective experience rating results are often at odds with the RMSE resuls.
In fact, the two measures frequently suggest opposite conclusions. The relationships
between the RMSE values for a given architecture are almost always very similar to the
relationships between the subjective experience values, meaning that, for example, Even

Wave step-length 3 has both a lower mean error and a.lower mean rating than Even
Wave step-length 5 for the 10-input architecture. The error measure in this example

suggests that the network trained with step-length 3 performs better than that trained with

step-length 5, while the rating measure (lower rating for 3) suggests that it performs
worse. These differences reinforce the idea that the RMSE and subjective experience

ratings are very different measures, and more subjects as well as further investigation will

be needed both to confirm and to explain these results.

The comments made by the human participants after each trial may be most
illuminating in this respect, and may help to guide further research.

- Training input,
Training architecture S1 S2
perverse at first, became .
3 randomVector, 6-input erratic, confused ::g &a,l:‘y, :g:g did not
__understanding of emotion y
. ; liked the baby, responsive,
4 :g:V&ughtedWave, g:(’d bzg‘:_i g?;’;:i?\ make did not smile unreasonably,
P PPy g seemed like nice real baby
Constant 1, 6-input {no comment] [no comment]
.] too happy, possibly brain
Constant -1, 6-input manic or self-absorbed damaged
felt could cheer it up,
7 Constant 0, 6-input wimpy, sad needed to be cheered up
from time to time
8 NegWeightedWave, [participant tried to confuse | fussy in an understandable
6-input the baby]) way, able to be comforted
- high maintenance, ended
9 EvenWave3, 6-input realistic and happy with big frown twicel
. figured it out, seemed
10 EvenWave1, 6-input programmed discontented, unstable
mimicked but no cycled quickly, but
14 EvenWave$, 10-input personality generally happy
15 EvenWave7, 10-Input _realistic average baby
liked but pitied it, as it
16 EvenWave3, 10-input lacked confidence, hesitant slightly fussy

50

17 EvenWave1, 10-input did exactly what | did happy baby
posWeightedWave, seemed to know that | was
20 10-input just joking around pretty good baby
its mood cycled quickly, so
; neutral or unpredictable, required more energy,
24 EvenWave1, 3-input possibly not fully engaged | exhausting, seldom stayed
the samel
26 randomVector, 3-input was sad [no comment]
randomVector, 10- impish, mean, perverse,
27 input delighted in my misery [no comment]

Table 5. Comments made by two human participants after interacting with each of the 16
test networks.

These comments show that the human participants readily viewed the network interface
as a baby while they were interacting with it. This can be seen by the way the
participants attribute very specific personalities to each network. The variability of the
responses, and, more significantly, the similarity between the responses the two
participants made for each network, suggests that each training produced a unique and
specific type of “baby.” For example, both participants commented that the training 3
network, trained with a random input vector was socially inappropriate in the way that it
responded to their smiles (S1: “perverse at first, became erratic, confused understanding
of emotion;” S2: “bad baby, affect did not match my affec ”). The strong emotional
valence of these comments suggest that the human participants are reacting to the
network as if it were a social being, indicating that this interactive tool may be an
appropriate one to use in further study.

5: CONCLUSIONS

The results of this study point to some intriguing directions for further research,
The smile interaction neural network is a novel tool that can be successfully trained to
predict a partner’s next input using model interaction training input vectors. Training on
the three experimental architectures (3-input, 6-input, 10-input) results in convergence for
10 of the 11 training vectors tested, with the Random Vector being the expected
exception. The ability of the network to be trained at all in this way shows that a neural
network can be trained to predict patterned time-dependent sequences, and the
convergence failures for the three network architectures when presented with an Even
Wave vector that had a step-length greater than or equal to the number of inputs to the
network shows that this predictive ability breaks down in a regular way, a property which
may warrant further investigation.

The preliminary results of human subject testing suggest that the 6-input
architecture outperforms both the 3- and 10-input architecture. This could point toward a
possible “memory” parameter for the natural pattern of human interactions, particularly

51

nonverbal ones, in which it might be optimal to keep in mind the past several seconds of
the interaction — where a shorter “memory” might cause disorientation, and a longer one,
distraction. This is a prediction that could be tested with human subjects in order to
further evaluate the usefulness of this neural network for modeling social interactions.
The best-performing training vectors overall are the Even Wave step-length 3 vector,
which gave low errors for both the 6-input and 10-input networks, and the Positive
Weighted Wave vector, which outperformed the Random Vector in both the error
measure and the rating measure on both the 6-input and 10-input networks. These
findings suggest that, of the models tested here, a social interaction model that oscillates
over a range of emotions over time, and that spends an average of 3 “units” (here,
epochs) at each emotional valence, best represents the time-course of the smiling
interaction. This is another prediction made by the network which can be tested on
human subjects.

The subjective experience ratings do not always agree with the error measures,
which could suggest that a human participant may not always find it agreeable to have a
“predictable” interaction. More human subjects are needed to substantiate and further
evaluate this finding, as well, perhaps, as more well-defined criteria for rating the
experience interacting with the network. Indeed, the comments made by the human
participants may prove more illuminating than their numerical ratings. They suggest
some level of consistency and agreement in the subjective view of the performance of
each trained network, which suggests that training the network using the prediction
method might indeed be an effective way to give a specific “character” to a social
interaction network.

It is important to note that this is not a proposal that infants actually predict the
parent’s next smile in order to respond appropriately to the parent. But however they do
accomplish the task, it is interesting that a model as simple as a 3-layer, 3-to10-input
neural net making predictions based on extremely simple models of a social interaction
over time can produce behavior that is significantly closer to being socially appropriate
than the behavior produced when a random vector is used to determine the behavior of
the network. Just as the early infant smiling interaction with a parent serves the baby as a
building block for learning more sophisticated social behavior (not least by making the
baby an attractive social partner, so it will gain more social experience from which to
learn), a simple implementation of the basic pattern of social-emotional interaction like
the network described here could serve as an initial building block when trying to create a
machine that can respond successfully in more complex and refined social situations.

52

REFERENCES

1. Employees get ‘it’ out of their systems. (1999). Retrieved electronically 7 Dec. 2004
from <http://www.mori.com/polls/1 999/rage.shtml>,

2. Wolff, P.H. (1963). Observations on the early development of smiling. In B. M. Foss
(Ed.), Determinants of infant behavior, Vol. 2. London: Methuen.

3. Bowlby, J. (1969). Attachment and loss, Vol. 1 Attachment. London: Hogarth Press
and the Institute of Psyého-Analysis.

4. Haykin, S. (1999). Neural networks: A comprehensive foundation, 2™ ed, New
Jersey: Prentice Hall.

APPENDICES

A. Results of testing with human participants

Mean RMSE - 3-Input Network

randomVector evenWave 1

Figure 15. Mean RMSE results for 3-input network

Mean Subjective Experience Rating - 3-Input Network

randomVector evenWave1

Figure 16. Mean subjective experience rating results for 3-input network

53

Mean RMSE - 6-input Network

Figure 17. Mean RMSE results for 6-input network

Mean Subjective Experience Rating - 6-Input Network

OCANWHNON®O

Figure 18. Mean subjective experience rating results for 6-input network

Mean RMSE - 10-Input Network

Figure 19. Mean RMSE results for 10-input network -

54

Mean Subjective Experlence‘ Rating - 10-Input Network

O =N N0

Figure 20. Mean subjective experience rating results for 10-input network

55

56

A Generic Multilayer Perceptron for Customizable Digital
Neural Network Configurations in VLSI

Sam Evers
Yale University
New Haven, CT 06510

Abstract

A digital multilayer perceptron neuron is proposed and taken through design and layout
using the Cadence CAD tool. The neuron is intended for use in a customizable hardware
neural network package. This represents the first step towards a toolkit which will allow
the end user to create a custom NN, comprised of multiple instances of the proposed
neuron along with a custom designed controller and clock scheme. Only the generic

neuron is designed; however, the other components are still discussed in detail.
L. INTRODUCTION

Attificial neural networks (ANN) used to exist primarily in the academic realm. Today,
they have applications in countless fields. Anheuser Busch uses neural networks to
predict the organic content in their competitors® beer vapors, financial institutions use
them in trading models, and businesses are performing job placement with the help of
neural network classifiers. Despite the relative proliferation of neural networks, small
businesses and individual users often lack the resources necessary to either hire an expert
or train themselves to implement them. In order to alleviate this problem I am exploring

the hardware implementation of a generic, customizable neural network that can adapt to

numerous uses.

Multilayer perceptron (MLP) networks have uses in classification, pattern
recognition, and feature recognition. By adding more layers to the network, higher orders

of information can be extracted from the input data. This means that MLPs are capable of

57

solving non-linear problems with high degrees of complexity. Networks are often trained
using the back-propagation algorithm, which updates the synaptic weights starting at the
output layer and progressively working its way back towards the inputs. Each neuron is
identical in its make up to all other neurons in the network. There is a slight difference,
however, in the training algorithm for hidden and output neurons. This level of
modularity lends itself to the design of a single generic neuron module. Multiple
instances of the neuron can be placed in a fully connected feed-forward configuration to

create a custom neural network of the user’s choosing.
2. NEURON BASICS

Layout and design of the neuron is done using the Cadence VLSI software package. The
layout is tailored to the AMI 0.5 um process and can be fabricated in standard CMOS
technology. This means that the transistors can be made with channel lengths as short as
0.5 pm. Each artificial neuron is implemented with four available inputs and acts as
either a hidden or an output node based on the binary status signal from an on-chip
control unit. The controller contains information describing the unique design of the
network and sends out control signals to the individual neurons, telling them whether
they are hidden or output nodes and whether they are in the forward or backward

computation phase for training.

Aside from the small control unit and its associated memory bank, each neuron is
self-contained. Since the back-propagation algorithm requires hidden nodes to have
access to some of the calculations made in the previous layer, the controller’s memory
bank serves as a repository for the data that must be shared between neurons. The three
major components of the neuron design are an arithmetic logic unit (ALU), a controller,
and memory; meaning that each module is essentially a small microprocessor. The
advantage of this design choice is that the size of each neuron can be kept relatively
small. The drawback is a decrease in computational speed. A single ALU can only
perform one computation at a time, which means that the inputs and synaptic weights

cannot be multiplied in parallel. This problem could be solved by the inclusion an ALU

58

for each of the neuron’s four inputs, but the size of each module would become
prohibitively large. The inherently parallel nature of neural networks is retained on a
larger level though. Every node of a given layer can perform its computations
simultaneously as long as conflicts are avoided when multiple modules attempt to access

the shared memory simultaneously.

The architecture of an individual artificial MLP node will now be examined in
more detail. Figure 1 contains a diagram of the neuron, with the equation for the sigmoid
activation function below it (1). Inputs are multiplied by their associated synaptic weights
and the products are added together to create an induced local field at the input to the
neuron’s processing element. The induced local field is evaluated by an activation
function (i.e. sigmoid) to produce the neuron’s output. Due to the nature of digital
circuits, computing exp(-v) is not a straightforward task. One way to compute exponents
1sto use Newton’s Method. For this project, a less complex second order approximation

is used (2), where v is the input.

Figure 1. (Inputs are multiplied by the synaptic weights and summed, along with a bias,

to create the input to a sigmoid function.)

Bias

Weights

Inputs Out

59

Out=m (1)
'1—2"(1-|2'2v|)2 O<v<4
-1 -2 K2 _
out = |27 A=27) dev<l g
1 v>4
0 v<-4

Before the network can perform its function, it must be trained using a training data set,
This is a set of input vectors already associated with the desired output values of the
network. The NN is stimulated with a set of inputs which propagate forward to the
output. The output of the network is then compared with the desired output value, which
the back-propagation algorithm uses to update the NN’s synaptic weights. The back-

propagation algorithm’s equations are shown below.

e,(n)=d,(n)-o0,(n) @)

500 - e} (e, (v () jeoupa
;= PP T O = hidden)
WP+ =wP () +18)y (n) o)

After the weights have been updated, a new training vector is applied and the process
repeats. Given enough cycles through the entire training set (epochs), the synaptic
weights will converge to their desired values and the NN will have ‘learned” how to solve

the desired problem.

60

3. ALU DESIGN

The ALU, which performs all of the neuron’s computations, primarily consists of an
adder and a multiplier. As in any digital design, decisions have to be made regarding how
numbers will be represented. Multipliers can grow very large when required to compute
numbers with long bit-lengths. In this case, inputs to the multiplier are restricted to nine
bits. Since synaptic weights can theoretically grow to o, a compromise is made that
restricts the weights to nine bits in length while still aliowing for high precision and
magnitude. Using nine-bit 2’s complement representations, the synaptic weights are
constrained to £15.9375 in size with a resolution of 0.0625. The use of 2’s complement
numbers allows for both positive and negative values to be represented without an
increase in bit-length. The 9x9 Baugh-Wooley multiplier (Figure 2) is an array of
'sbecially connected carry-save adders that have been modified with simple NAND and
AND logic gates.

61

Figure 2. (Top: A single instance of the carry-save adder. Bottom: Instances are tiled to

L create the 9x9 multiplier.)

1ne: 1oyt Hat

62

Mx N Multiplication is performed by forming N partial products of M bits each, and
then summing the appropriately shifted partial products to produce an M + N bit result,
When two nine bit numbers are multiplied together they often produce outputs of more
than nine bits. In a worst-case scenario the multiplier could produce an output as long as
17 bits (because only one of the sign bits is needed, ndt both). Because of this, the ALU
requires a 17 bit ripple carry adder (Figure 3) to perform addition.

Figure 3. (A single bit-slice of the adder)

63

The back-propagation algorithm and sigmoid approximation require the ALU to perform
subtraction and absolute value functions as well as addition and multiplication. These are
implemented using an arithmetic extender, which is made up of just a few logic gates
placed in front of the inputs to the ALU. Subtraction is done by adding the first number,
A, to the inverse of the second number, B. In 2’s complement, B is inverted by first
inverting every bit and then adding 1. Absolute value is just a special case of subtraction.
If the number is positive then nothing needs to happen. If it is negative, the number is just

subtracted from zero. The arithmetic extender is described in more detail in Table 1.

Table 1. (S1 and SO are select-bits determining the AE’s functionality. The C(in) input

allows for a carry bit during subtraction, and b(i) represents the i bit of the B
input.)

The AE operates on the B (the second input of the adder) based on the
equation
— b(i) =b(i)’*So+b(i)*So’

— C(in)=So
S180 Function Operation C(in)
00 Add A+B -0
01 Subtract A+B’+1 1
10 Multiply X X

64

4. CONTROLLER DESIGN

If the ALU is the computational heart of the neuron, then the controller is its brain. It tells
the ALU which memory cells contain its inputs, what computation to perform, and where
to store the output. Appendix 1 shows the controller described as a FSMD (finite state
machine with a datapath). The FSMD is a flow chart which breaks down the forward and
backward computation algorithms into individual steps. Each step represents a unique
state of the controller. The controller moves from one state to another each clock cycle
based on status signals from the main controller, as well as signals applied by the user to
the chip’s input pins and the satisfaction of conditional statements. In Appendix 2 the
FSMD has been converted to a next-state table. Each state is given a binary encoding,
and each of its possible next states is listed along with their associated status signals and

conditional statements.

A string of D latches, one for each encoding bit, change on every clock cycle to
produce the encoding for the next state. Control logic placed in front of the latches
determines how they will change on each clock cycle. Output logic, which is placed
behind the latches, uses the state encoding to produce status signals which control the
reading and writing to memory as well as the functionality of the ALU. The control and
output logic for a FSMD with 46 states is enormous, and is hardly ever calculated by
hand. The beauty of a next-state table is that it can be input to a hardware description
language such as Verilog or VHDL, which will generate a net list containing all of the
necessary information for the control and output logic. By definition, an FSMD and a
next-state table contain all of the information needed to synthesize the desired controller.

5. MEMORY DESIGN
The final element of interest in the neuron is memory. Two types of memory are used in
this design. Constants are stored in a 5 word, 9 bit ROM. The rest of the memory is made

up of single word, 9 bit SRAMs. The layout of a single 12 transistor SRAM is shown in
figure 4. Each word consists of 9 such SRAM components, one for each bit. Smaller

65

SRAM designs are possible using as few as 6 transistors, but they have other drawbacks.
The 6 transistor SRAM requires a pre-charger circuit placed on top and a sense amp on
the bottom in order to function properly. The pre-charger supplies the power necessary to
force the bit in memory to drop down towards the sense amp, which detects the arrival of
the bit in order to output it. The savings in transistor count with the 6 transistor SRAM
can actually lead to larger memory cells, especially when only a small amount of memory

is needed.

Figure 4. (A single bit-slice of the 12 transistor SRAM)

66

6. OTHER REQUIRED COMPONENTS

As mentioned before, a neural network designed using the proposed generic neuron
module requires a small controller to overlook the operation of the individual nodes. The
chip will also require circuitry to regulate power, generate the clock signal, and distribute
it across the chip with minimal clock skew. Problems can occur if clock skew, which
arises when the clock signal arrives to different parts of the chip at different times due to
delays caused by varying wire lengths, is not accounted for. Since every neuron is
identical, each one in a given layer should finish its work at the same time. Problems with
clock skew could potentially confuse the main controller, causing it to activate some

neurons before they are ready.

.. All that is needed now to turn the generic neuron into a viable product is the
des1gn of the main controller and clock circuitry. A controller could be designed for any
speclfic network configuration, but that would defeat the purpose of creating a
customizable neural network application. Instead, it would be desirable to generate some
so'r‘_t:of algorithm or computer application that could generate the controller design
automatically, based on the user’s input of the desired network configuration.
Unfortunately that is beyond the scope of this project, as well as my programming

abilities.

As for the clock, it too must be designed with regard to a specific neuron layout
on the chip. This is the only way to ensure that clock skew does not become an issue.
However, some of the clock’s basic properties will remain constant throughout any
choice of network design. Clock speed, which is not affected by the number of modules
used in any given design, determines how fast the chip will operate. It is determined by
the neuron’s critical path, which represents the longest possible amount of time the
neuron could take to perform an operation. The expected delays of the adder and
multiplier (Figures 5 and 6) were determined through simulation. In this case the
multiplier may exhibit a delay of up to 22 ns. Therefore, the critical path starts at the
output logic, then goes to the SRAM, and finally ends with the multiplier. The period of

67

the chip’s clock must equal or exceed the critical path delay. Taking into account a few
nanoseconds in the output logic and SRAM, as well as the 22 ns maximum delay for the
multiplier, a conservative estimate (padded to ensure stability) of the clock’s period
would be 35 ns. This choice of clock period enables about 28.57 million computations

per second, or a clock speed of about 28.57 MHz.

Figure 5. (Adder delay)

68

Figure 6. (Multiplier delay)

dances An

69

7. CONCLUSION

To put into perspective the capabilities of the proposed neuron its size, along with the
size of a possible network layout, is estimated. A process parameter, _, is used in the size
estimates. It represents half of the minimum channel length for a given process (0.25 pm
in this case), and is the distance reference used in Cadence as well as most other VILSI
CAD tools. The 9x9 multiplier is 1.4 M_? and the 17-bit adder is 147 K_2 The SRAM
will take up 466 K_2, and the control logic will represent about another 1 M_2, The total
estimated size of the neuron amounts to 3.013 M_2, or 0.43 x 0.43 mm. A neural network
consisting of 4 inputs, one hidden layer with 4 nodes, and a single output node would
result in a chip size of about 1.5 mm? (including clock, controller, and power). Networks

of increasing complexity would obviously result in larger chip sizes.

The final issue that must be addressed is the chip’s pin requirements. Pins are
required to apply input vectors to the network, as well as a few other user determined
signals. During training, the user must supply the chip with a desired output value for
each training vector. A single pin is also required for the binary status signal that tells the
chip whether or not it is in training mode. Finally, pins are required to access the
network’s output, and to supply power to the chip. To access the network’s output, 9 pins
are needed (one for each bit). The same holds true for the pins where the desired output
value is sent during training. The number of pins needed to apply the network’s inputs
can vary, depending on the size of the chip and the desires of the user. Inputs can be
restricted to certain ranges of values (forcing the user to normalize/scale their inputs) in
order to accommodate desired pin configurations. In total, pin requirements may range

from as low as 40 to 60 or more.

The implementation of a generic MLP has been described through the design and
layout of its functional parts, along with a discussion of the external components required
to implement a custom neural network. The digital nature of the design limits both the
speed of the neuron as well as the size. A mixed-signal (analog/digital) implementation,

though beyond the scope of my abilities, would bring significant improvements to both

70

issues. In analog VLSI design all calculations are done in current mode. Addition is
performed merely by summing the currents coming into a wire junction, while
multiplication requires only a few transistors. The weights and other stored values would
still be held in digital memory, but the size of an individual neuron could be scaled down
immensely. Thousands of mixed-signal neurons could fit on a chip capable of holding
only 10 or 20 of their digital counterparts. In the futuré, the proposed digital design could
be translated into the analog realm in order to accommodate increasingly larger and more

complex neural network designs.

71

Appendix 1: Controller FSMD Flow Chart

&
e

63
N & e e R B) ol sty

Mleraond VS bt 11, + W frasonts
b

et o s sornd

13 S = P

o

—— Rt o ~—.‘-~m T e
.

—

——

£ 3
y SN £ A0 L]

- l(
[C e x Sone s 7 -
L "%s X S

(Continued on next page)

72

R St i

R o B

o, ,

73

Appendix 2: Controller FSMD Next-State Table

Proear $late,

Nt fyate,

<
- Sov————

— e

RGO .3

LT,

. NP

-

2.0 2.0 ..

—_—] cody [acnn XN Sy [) Damezo.
s} 250 B 5-d SEE T £ N
JEVOPERPE It 1 Y T 1Y SN - W B ~SOF A
DU) i T X S | 5 cwmﬁ_m[&m-h 2.0 .
— s RO QD .‘q—-—a_..—«-———.«.—ig«—.— E.E.lﬂ&ﬁﬂ&j MM:
— e Dot a8} 55__....____.:_________,..__5_&..._ hd A
ERPRIE % T3 T W Srbtitin 'ﬁ“—' _..._.4__.._._' Teeant)l o
———OlPo s Gl . Sgf50, | B tak Wennagualumone)
S X TS - ol Seafdad . —
e 1K TN N WY P S padixby.
— Ai0c.0.2 . 2N L S TP - L
— OO S Sl Sl Pt i—
— . a5 N . ¢L..E;_‘-'_E*__,..
She ' WD | . %
c - P2t ____2,: T Y —&.:i,&@.;_
. . L.. SRR, PR B PL X3 1N -
v L JO - NI 1P KV, -i:.}_.ﬂutm:; -
dilee o o . sl ST JE I A I
NN TN Y | 119 . Sig. R hnps .
Bleoea) 3 L) SH_—&.I".LBLL:L)_:"-._{M%
—— B B A} Sra . Stef R 2loPy e
SUNISR 1 I TS W, W e | 34 oSt Pas@
il s dieam S S Wl SO T - Y ¥ N
s madl it e PR JF U SR SOOI 17 3F 3 Y
ROSSISNESNS 1 .- S5 [S RSO 1V | i omim s oms wotn | Reancdo . .
SRR < 1 W S 2 2 Y LEPE - . Sxge | oues) .
2RV g2) P e tba § Premzy i
el sl ot _saglewse
- - PN = 3 1N N T S — et + e, S coenmes S] Vo 8, SN
PRS- ¥ [U W -~ NNV, PP '!’r-ia.*_!hlnl.-...-_#m]h. SO e
S ST T W WS W PO | T 2 TEALY PV HE S 7V A RN S
TSRO .1 . 95 U KT V. YR U 1 YR & » YT 22 »
RS- R T w - ~0 DT N Pty
———llee O gyl £y] 8, ¢ Exbrt —
——etpoae Ao Sael L Sandfeticas
. LI LN SU 1.0 S-—ﬁpq—-snﬁﬁil‘.
‘(‘;‘9 o v €3¢ Sie Jp\‘ i-ron

(Continued on next page)

74

e (PSSRt R e i et — —

.ir_,...._, i9.2. 19" $ped s e G20, | Ra QAR
} Lol 3o e . Sy 4B S rpalar
b 1V oo I3 . ..5;4_ AT 'S PO —
Moe v Ly 1 JPPG WYY L. S
b Merano o Syet- hmi‘i‘zl_a'm.“ _é,,.\.'ls..r.. L 1D S
e e R NRD A S dedein o e Saga, JB 2 020 Ing
§ E— 1128 @ P ST | e — ;.._..__.sq_:,...mmw‘)___ﬁwh
DS oter d _syet i e —Suwe] Loy 2 lomdat ..
- Lodlon V02 Suul b lponr® b e e
N PP S X Y7/ --S«f; B A

R 1.1._\.::__ ..."_5..:,__ U - VP | _..wwyx.ww.,g«

e s v e r a1 Aeno pomeraoe § s 4 s S S S — . —
el mar s m——— B O — s ov— i @y et e bt eefue e reesbes e — -
- Ao vt sl oo oi—— b W ot VOO— Sorate 4 oIS S TR TS -}... T ——— - - -
—)..-... —dvie v Sa—— [PR L i - - A—— ca ——
S SO PR e - - a—— R - -
e s o o e ——— | —— o {i— (S ey it s o Vmbmron T Svmrmas e el SRSemsmm St s oo
o 1 b tt, ho+ St | M e ey Sy SN e wm—— W3 6 SEramam I G o p— r———r o
PR - m—a.

75

76

NeuroEvolution of a Pole Balancing Vision and Control System

Reuben Grinberg
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract

I attempt to use NeuroEvolution of Augmenting Topologies (NEAT), a genetic algorithm
that operates on neural networks, to evolve a solution to an augmented version of the
well-studied pole balén_cing problem. Instead of using state variables, the evolved
solution must use video from a camera that faces the cart and pole. I verify that NEAT
can solve the original pole balancing task. Memory constraints prevented evolution of a
network that takes visual input. Future work should try to reduce the memory

requirements of the problem by optimizing program code or by using a “roving eye” that

looks at small portions of the input at a time.

1. INTRODUCTION
1.1. Vision |
Hand-built solutions to vision problems often label the world and act on those labels. A
system that does edge detection using a Sobel matrix and then Hough transforms to find
circles is an example of such a system. These approaches may miss subtlety in the

domain that makes a simple and robust solution possible.

Evolution may be one way to take advantage of this subtlety. Evolutionary techniques
may one day be powerful enough to find robuist, accurate solutions to vision problems
more quickly than an engineer. Some examples of difficult problems that might benefit
from an evolutionary approach are general face recoghition, eye gaze tracking, and hand

gesture recognition.

77

To see if an evolutionary approach to these difficult problems is feasible, I attempt to use

evolution to solve a simpler vision problem: pole balancing.

1.2. Pole Balancing

Pole balancing or inverted pendulum balancing is a well-studied problem and is often
used to assess new learning algorithms. A rolling cart is attached to a one-dimensional
rail and a pole is attached to the cart so that it may fall only parallel to the rail. The task is
to move the cart in such a way that the pole stays balanced. The available variables are
the cart’s position, x, the cart’s velocity, x', the pole’s angle from the vertex, ¢, and the
angular velocity of the pole, ¢'. The output from a control system is the force to apply to
the cart. If the cart hits the barriers of the rail or if the pole falls past a certain angle, the
control system has failed. (see figure 1) '

X' «—X

Figure 1. A cart with wheels is attached to a rail and cannot roll past the barriers on the left and right. F is
the force applied to the cart by a program, x is the position of the cart, X' is the velocity of the cart, ¢isthe

pole’s angle, and ¢ is the pole’s angular velocity.

There exist many different solutions to the pole balancing problem; neural networks that

take the state variables as input solve it adequately (Stanley and Miikkulainen, 2002)

The new task is to balance the pole using video feed of the cart and pole instead of the
state variables. The video feed is from a camera that faces the cart perpendicular to the

rail (see figure 2).

78

A non-evolutionary approach to this new task is to do image transformations to separate
the foreground and background, find where the cart and the pole are in the image, and
then use an approach like a Hough transform to find the cart position and the pole angle.

After obtaining the state variables one of the proven methods can be used to balance the

pole.

Figure 2. The video feed is from a camera facing the cart and is perpendicular to the rail.

Here are two possible evolutionary approaches to the new task. One is to use evolution to
create a system that extracts the state variables from the video feed and then feeds these
variables to a proven balancing method. Another is to evolve the whole solution in one

comprehensive network.

1.3. NeuroEvolution

Using genetic algorithms to evolve neural network controllers has been shown in several
different papers to be a fast and efficient way to solve the pole balancing problem
(Moriarty, 1997; Moriarty and Miikkulainen, 1997).

There are two different approaches to evolving neural networks or NeuroEvolution (NE):
evolving only the network weights and evolving the topology along with the network
weights. The first approach is just like other algorithms that train network weights such
as Hebb’s rule or backprop. The second, however, is much more general. Evolved

topologies may include excitatory, inhibitory, and recurrent links. Since recurrent neural

79

networks are Turing complete (Hy&tyniemi, 1996) and NE of topologies has the potential
to evolve any recurrent network, it is probable that NE can solve any computable

problem.

1.3.1. NEAT

NEAT (NeuroEvolution of Augmenting Topologies; Stanley and Miikkulainen, 2002),
one of the methods shown to solve pole-balancing efficiently is a method that evolves
both weights and topologies of neural networks. Stanley and Miikkulainen (2002) has a
good discussion of the merits of the approach, comparisons to some other popular

NeuroEvolution techniques such as ESP and SANE, and examples of how it can be used.

Every time a NEAT neural network is activated, the inputs for every neuron are summed

and fed into the activation function, the sigmoidal transfer function ¢(x) = 7 and

49y 2
+ e—4.9x

the output is relayed to connected post-synaptic neurons. That is, for every time step,
information travels one layer. If there are 5 neurons in between the inputs and the
- outputs, the output will not be affected by a specific input value until the network has
been activated 5 times. Because of this, a network can encode memories in recurrent
links.

2. EXPERIMENTS

Practical considerations require us to simulate the cart and the camera. Using the
simulated state variables, a program creates a matrix representing the view from the
camera. Every pixel thaf is the cart or pole is set to one; the rest of the matrix is zero. For
this experiment, the length of the rail was arbitrarily set to 5.2; the barriers are at —2.4 and
2.4. The cart must keep the pole between -12 and 12 . See figure 3 for examples of these

matrices.

80

0000001 100
0000001 100
000000116000
0000001100
000000001 100
600000001100
000000001 100
©00000001100
000000001 100
000000001 100
00000000061 100
000000000011000000000000000000000000003000000000000000000000
100000000001 100
00000011 11111100
00000011 11111100

©0000000000000000000000001 1000000000000000000IA00000000000000
0000000000000000000000001 10000000000000000000000000000000000
10000000000000000000000001 10000000000000000000000000000000000
0000000000000000000000001 10000000000000000000000000000000000
<2+0000000000000000000000001 160000000000000000000000000KIN0000
.'00000000000m0000mm110000000m00000000m00000000000(m0
000000000000000000000000110000000000000000000000000000000000
;00000000000000000000001 1000000000000000000000000000000000000
00000000000000000000001 100G000000000000000000000000000000000
+00000000000000000000001 1000000000000000000000000000000000000
000000000000000000000011000000000000000000000000000000000000
+O0000000000000000000001 1000000000000000000000000000000000000
{30000000A00000000000001100000000000000000000000000000000000G
:443660000000000000001 11111 £10000000000000000000000000000000000
0000000000000000001 111 11110000000000000000000000000000000000

001 100000000000000
001100000000000000
°°°°°°°°°0000000000000000(70000(m00t)0000000011000000m000000
11m0000000000
1100000(1)00000
11000000000000
11000000000000
uuuuunluululu|nlunllnunullulll
000000000030000000000000000000000000000000000001 10000000000
001 10000000000
110000000000
001 100000000
1100000000
001 1111 111000000
00000000000003000000000000000000000000000000001 1 111111000000

000000000000000000000000000000000000111111110000000000000000
0000000000000000000000000000000000001 111 111 10000000000000000

Figure 3. These binary matrices were used to represent frames from a video camera facing the cart and
pole. The background is set to 0 and the pole and cart are 1.

2.1. Experiment 1
Because I was using Java ports' of the original NEAT software that do not include pole-

balancing experiments, I wanted to verify that these ports could solve the pole-balancing

problem as well as the original version of the software.

2.1.1. Results

'I ported Stanley’s single pole experiment in experiments.cpp from C++ to Java for use in JNeat, a Java
version of NEAT written by Ugo Vierucci
(http://www.cs.utexas.edu/users/nn/downloads/soﬁware/JNEAT.zip). I had to modify

gui Generation.evaluate to allow evaluation using my pole balancing code.

I verified Stanley’s and Miikkulainen’s (2002) result that NEAT successfully solves the
pole-balancing problem.

NEAT very quickly evolved a solution that could balance the pole for more than 100,000
time steps. (see figure 4).

INPUTS

Figure 4. On the left is a solution to the single-pole balancing problem evolved using NEAT. 1 is Bias, 2 is
x,3is X', 4is¢,and 5 is ¢'. Blue lines signify excitatory connections and red lines signify inhibitory
connections. Node 17 is a hidden node that was added by evolution. The recurrent links on nodes 7 and 17
are also products of evolution. As illustrated on the right, if the first output neuron is more excited than the

second then force is applied to the left. Similarly, if the second neuron is more excited than the first, then
force is applied to the cart to the right.

2.2. Experiment 2

Attempts to evolve a comprehensive solution that uses video feed as input failed because
of technical issues. Because of the high number of possible links, the two
implementations of NEAT that I used (ANJI and JNeat) both failed because of lack of

memory, even though I had assigned two gigabytes of memory to the java runtime’.

2 hitp://anji.sourceforge.net/
* I increased the memory available to java with the flag ~-Xmx2000m’

82

2.3. Experiment 3
Because of the memory problem, I had no hope of evolving a network that could handle

the image. I decided to use a backprop trained feedforward neural network to extract the

cart position and pole angle from the images of the cart and pole.

2.3.1. Methods

I'made two sets of 120 test matrices (like the ones in figure 2) with the cart position at {-
2.4,-1.88,-1.36, -0.84,-0.32, -0.01, 0.51, 1.03, 1.55, 2.07} and with the pole angle at {-
12,96 ,-72 ,-48 ,-24 ,0,24 ,48 ,72,9.6 }4. The first set had the dimensions
30 by 15 pixels, and the second set had the dimensions 100 by 50 pixels. Using Matlab’s
neural network toolbox, I created a neural network with one input layer and one output
layer using tansig as the evaluation function. The number of neurons in the input layer
was 15 x 30 = 450 for the first set and 100 x 50 = 5000 for the second set. The output
layer had two neurons — one for cart position and another for pole angle. To create the
targets for training, I normalized the position and angle variables so that they were
between 0 and 1. For example, the target for the network that looks at the image created
with the cart position equal to 2.4 and pole angle equal to -12 is (0,0); the target for
network that looks at an image created with cart position equal to —0.84 and pole angle
equal to 0 is (.5, .5).

2.3.2. Results

After training for 1000 epochs, the results were satisfactory; they are summarized in

figure 5.

4 Angles outside of [12 ,-12 J are not needed because the run is considered failed in that region.

83

Perbmance 15'0.0406390, Gosl ks 0

10°

‘10°

10!

Tmhinpéb.n

w0t}

[T O S SO AT TS SN S S ST 10°

OO R0 700 % o oo 00 200 300 406500 80 760 B 90 700
30 x 15 grid (450 inputs) Mean Min Max
x 0.09% ~0 1.6%
¢ 4.89% ~0 20.02%
100 x 50 grid (5000 inputs)
x 1.89% ~0 16.87%
¢ 3.20% ~0 27.14%

Figure S. The result of training a feedforward network on 121 (30 x 15) and (100 x 50) grids. On the top
left are the results of a petwork that has 15 x 30 = 450 input nodes, no hidden layers, and two output nodes.
On the top right are the results of a network that has (100 x 50) = 5000 input nodes, no hidden layers, and
two output nodes.

This neural network could serve as the first part of the first evolutionary approach
mentioned in the introduction. The second part requires a network that can balance the

pole using only the cart position and pole angle.

2.3. Experiment 4

2.3.1. Methods

To utilize the backprop network constructed in experiment 3 a network that can keep the
pole balanced using only the cart position and pole angle is required. It is impossible to

get velocities by looking at a single frame as the backprop net is doing.

84

2.3.2. Results

Unfortunately, evolving a network that could solve the pole-balancing task using only
cart position, pole angle, and bias did not work. For both of the approaches illustrated in
figure 6, the best results achieved were around 250 — 300 time steps (100,000 steps is a

successful balancing). These results were obtained around the 150% generation for both

networks and had not improved at generation 450.

Non-Markovian Markovian

FORCE on CART

[X)

Figure 6. The non-markovian network has three inputs and two outputs. The markovian version adds two
output nodes with fixed links to two input nodes. The markovian network is a reachable network from the
non-markovian via evolution, but reduces the search space. My reasoning was that the fixed recurrent links
could be used to derivate x' and ¢'.

3. CONCLUSION

I verified that NEAT could solve the simple pole-balancing task, but memory issues
prevented successful solution of the visual pole-balancing task. Since the goal was to
show the feasibility of using evolution techniques to solve vision problems, the
successful backprop training of a neural network to extract pole angle and cart position

from images is irrelevant. NEAT failure to evolve a network that can solve the pole-

"85

balancing problem without velocity information is troubling, Pethaps this task is much

more difficult than it seems.

It is possible that a bug in the code prevented proper evolution for these tasks. Poor
choices for the NEAT constants may have also prevented successful evolution of a pole-

balancer that does not use velocity input.

Evolutionary computation implementations often have numerous constants that strongly
affect the speed of search and whether a solution is found at all. Some of NEAT’s
constants are: mutation rate, survival threshold, age significance, mate only probability,
population size, dropoff age, and others for a total of 34 constants. Successful alchemy
with these constants may allow us to succeed where current efforts have not. It would be
useful to have an NE implementation that automatically and adaptively optimized its

constants during evolution.

A potential pole-balancing system using both of the components successfully created
here is illustrated in Figure 7. The plan proposed in Figure 7 requires a perfect image. If
we could obtain a perfectly segmented image from nature in a robust way we would

~ probably never need evolutionary computation. Furthermore, it is probable that
perturbing the “perfect image” slightly (by translating it by 1 pixel, for example) will
destroy the feed forward network’s ability to extract the pole angle and cart position. It is
not clear what is gained by implementing the hodge-podge and somewhat arbitrary plan
in figure 7.

Future work should fix the memory issue so that high dimensional input networks can be
evolved. There is already a suggestion on Ken Stanley’s homepage® where to look for

one memory hogging procedure.

One possible solution to the memory issue is to use a roving eye. Stanley (2002)
describes evolving a small network that can play the game GO on large boards. Instead of

using the whole board state as input to the network, Stanley constructed & roving eye that

* http://www.cs.utexas.edu/users/kstanley/neat.html

86

could “see” a limited part of the board and could move around the board. To solve the
visual version of the pole-balancing problem, a roving eye could be used that can look at

limited portions of the current frame and move itself about.

It may make sense to look at some problem domain that is even simpler than pole

balancing
4, ACKNOWLEDGEMENTS

Ken Stanley and members of the NEAT user’s group6 were very helpful in answering my
questions. Professor Willard Miranker provided useful criticisms and comments on drafts

of this work.

Perfect image

Angle, Position
Extractor NN
Evolved NN
Pole Balancer

Figure 7. A possible plan of action to control the cart uéing the modules constructed. The memory module

x(t)~x(t-1)
T

simply remembers x and ¢ for ¢-1 and returns to approximate X' (and the same for)

where T is the time period over which the simulation is discretized. This module, together with the angle

extractor, should give the NEAT-evolved pole-balancer the variables it needs to work successfully.

S. BIBLIOGRAPHY

6 vhttp://groups.yahoo.com/group/neat/

87

Hy6tyniemi, H. (1996) Turing Machines are Recurrent Neural Networks. Publications of
the Finnish Artificial Intelligence Society, pp. 13-24.
(http:/fwww.uwasa.fi/stes/step96/step96/hyotyniemil/)

Moriarty, D. E. (1997). Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. Ph.D. thesis, Department of Computer Sciences, The University of Texas at
Austin. Technical Report. UT-AI97-257.

Moriarty, D. E. and Miikkulainen, R. (1997). Forming neural networks through efficient
and adaptive co-evolution Evolutionary Computation, 5(4):373-399.

Stanley, K.O and Miikkulainen, R. (2002) Evolving Neural Networks Through

Augmenting Topologies. Evolutionary Computation 10(2):99-127.
(http ://www.cs.utexas.edu/users/nn/pub—view.php?RECORD_KEY(Pubs)'—'-PubID&PubID(Pubs)=1 16)

88

Image Classification Using A Self-Organizing Tree Algorithm Neural
Network

David S. Hughes and Wesley C. Maness
Department of Computer Science, Yale University, New Haven, CT 06511

Abstract

Self-Organizing Tree Algorithm (SOTA) Neural Networks were developed for topological distribution
analysis of protein sequences and other complex amino-acid structures, We present the application of
SOTA networks to image classification. By building a ‘genetic’ sequence for each image through image
processing, we can use a SOTA network to classify a series of i Images into arbitrarily detailed clusters.
These classifications can then be used in searching a set of images for similar images or in comparing
images based on color and textural features at different resolutions.

Keywords neural networks, feature extraction, self-organizing feature maps, image classification

1. INTRODUCTION

As the amount of image and multimedia content on the web as well as in private databases increases,
new methods are needed to search for salient needles in this haystack of content. While text-based filename
and metadata searching techniques have been traditionally used, it is still unclear how to search images
and other multimedia based on content, There are many applications in which it would be interesting to
find similar images to a given image, particularly in finding work that suits a user’s tastes with a minimal
amount of effort. 'Find me the paintings that are most similar to this one’ is a reasonable question that is
still difficult to answer with traditional search techniques. Neural networks provide a way of classifying
data in ways that will permit finding similar images based on a phylogenetic’ tree structure. This method
is explored in detail in Section 2.

To build sequences representing spatial and color characteristics of images, we use image processing
and image resampling to create sequences of values representing information about each pixel. These
values may be as simple as the amount of red color per pixel, or may be more complex values like the
magnitude of the gradient, discussed in Section 3.2.3, at each pixel. Once these sequences are created, we
can sort them and sample deterministically at a desired density, creating a sampled sequence that reflects
the distribution of the relevant values in the image. This process is discussed in detail in Section 3.2,

89

We will use unsupervised neural networks, and in particular self-organizing maps in our image classi-
fication system. These types of networks provide a robust framework for clustering of image data. Neural
networks are suitable for image classification since they work well with data sets in which there are
outliers and poorly defined clusters.

SOFM (Self-Organizing Feature Maps) have proven to be easily scalable to large data sets. The SOFM
is generally a two-dimensional grid with a rectangular or hexagonal topology, where the number of nodes
is fixed before execution. The weights of nodes are randomly initialized, and the training process changes
these weights to capture the distribution of the data set. At the end of the training process, clusters are
assigned to the nodes of the SOFM grid. The distance between trained nodes is representative of the
distance between cluster centers in N-dimensional space, where N is the size of the input. This reduction
of the input space is a salient property when dealing with large data sets. However, SOFM is a topology
preserving neural network, meaning that the number of clusters is arbitrarily fixed from the beginning.
Thus, the clustering that results may not be representative of the number of logical clusters in the analyzed
data. Another limitation of SOFM is the absence of a hierarchical structure, which makes it impossible
to detect higher order relationships between data clusters.

Hierarchical clustering allows higher order relationships between clusters to be detected. This is a simple
distance-based clustering method that has the desirable property of growing its topology dynamically. The
clustering procedure is as follows:

+ Assign a cluster to each item (so that if there are N items, there are N initial clusters).

« For the closest pair of clusters, merge them into one cluster, reducing the total number of clusters
by one. '

» Recompute distances between the new merged cluster and the other clusters.

+ Repeat steps 2 and 3 until all items are clustered into one cluster of size N.

This is an agglomerative clustering method, meaning that it starts with many clusters or elements and
joins them together. The neural network structure described in the next paragraph is divisive, meaning that
it starts with the entire input set and divides it into more and more clusters until its growth is complete.
Unfortunately, the height of the trees produced with hierarchical clustering cannot be controlled, leaving
us again with a method whose results may not be representative of the logical clustering in the input data.

Since SOFMs do not provide a distribution preserving output and are unable to detect higher order

relationships, and we cannot control the growth of clusters in hierarchical clustering, we will use the
Self-Organizing Tree Algorithm (SOTA), presented in [1]. SOTA is a self-organizing neural network with

90

an adaptive binary tree topology that provides divisive clustering to arbitrary depths. This network clusters
based on a level of variability allowed within each cluster, dividing a cluster when its heterogeneity reaches
a threshold. Although this is a divisive clustering method, its hierarchical structure preserves higher level
"phylogeny’, so we can also agglomerate results upward to find relationships between low-level clusters.
We propose here an application of the SOTA neural network to image classification.

In Section 2 we discuss in detail the SOTA neural network. In Section 3 we discuss how we implemented
our image classification application. Finally, our conclusions and a discussion of other possible applications
and future work are given in Section 4.

2. THE SELF-ORGANIZING TREE ALGORITHM (SOTA)

SOTA is based on the SOFM [2]. The SOFM algorithm proposed by Kohonen generates a mapping
from a complex input space to a simpler output space. The input space is defined by the experimental
input data, whereas the output space consists of a set of nodes arranged according to certain topologies,
usually two-dimensional grids. The application of the algorithm maps the input space onto the smaller
output space, producing a reduction in the complexity of the analyzed data set. In the case of SOTA, the
output is a binary tree. In this algorithm a series of nodes, arranged in a binary tree, is adapted to intrinsic
characteristics. of the input data set. Development of this tree can be stopped at any taxonomic level or
when all data is processed.

Distances, which are Euclidean, are obtained from the pair-wise comparison of image data for each

image. If we have two images with their corresponding image data: imagel(iyy, iyg, .. iy,) and image2(iy,
122, .. 195, the distance between the two image nodes is d; o where:

dig= Z(iu — 1g¢)? (Y
\] t=1

It is important to note that the imagel and image2 vectors do not represent actual image data (pixel
values), but a ’genetic sequence’ of features extracted from two images. Details of this feature extraction
are presented in Section 3.

The initial system, shown in Fig.1(a), is composed of two external elements, denoted as cells, connected
by an internal element, that we will call a node. Each cell (or node) is a vector with the same size as

91

sister

(a) Starting point of the network (b) Topological neighborhood for
different possible winning cells

Fig.‘ 1. Shown in Fig.1(a) is a system composed of two cells, B, and C, connected by a means of an ancestral node. Inputs are presented
to nodes B and C. Let’s assume B is chosen for a particular input, as shown by the arrow, B is updated accordingly. In the event of cell
D, as shown in Fig.1(b), being the winning cell, the neighborhiood extends to itself and their mother and sister cells B and E, respectively.
Nevertheless, in the case of cell C, the neighborhood includes only itself. The reason for this is that if cell A were updated through C but

not through B, it would receive an asymmetrical updating; and in this case cell A would not be a good representation of their descendants
B and C.

the image data. Each component in the vector corresponds to a column in the data set, that is, to one of
the conditions under which the image data has been measured. In the beginning, the entries of the two
cells and the node are initialized with the mean value of the corresponding column of the data set. The
algorithm proceeds by expanding the output topology, shown in Fig.1(b), starting from the cell having the
most heterogeneous population of associated input data. Two, new descendants are generated from this
heterogeneous cell, which then changes its state from cell to node. The series of operations performed until
a cell generates two descendants is called a cycle. During a cycle, all image genes are input sequentially
into the SOTA neural network and each is assigned to the closest cell. Thus, the network is trained only
through its terminal neurons. This process of successive cycles of generation of descendant cells can
last until each cell has one single input image data assigned (or several, identical profiles), producing a
complete classification of all the image data.

Adaptation in each cycle is carried out during a series of epochs. Each epoch consists of the presentation
of all the image data to the network. A presentation implies two steps: first, finding the best matching

cell (winning cell) for each image data profile, that is, the cell with the lowest distance cell-profile and
second, to update this cell and its neighborhood. Cells are updated by means of the following formula:

Ci(T +1) = C{7) + n(P; — C(7)) @

92

where 7 is a factor that accounts for the magnitude of the updating of the i** cell depending on its
proximity to the winning cell within the neighborhood, Ci(t) is the i® cell vector at the presentation ¢,
and P; is the j** image data profile vector. The topological neighborhood of the winning cell is very
restrictive. Two different types of neighborhood are used. If the sister cell of the winning cell has no
descendants (both sister cells are the only descendants of the ancestor node), the neighborhood includes
the winning cell, the ancestor node and the sister cell, otherwise it includes only the winning cell itself,

A heterogeneity value for each cell is computed by its resource, R. This value will be used to direct
the growth of the network by replicating, at the end of each cycle, the cell with the largest resource value.

The resource is defined as the mean value of the distances among a cell and the image data profiles
associated to it:

K
Ri:&:%ﬁ 3)

where the summation is over the K profiles associated to the cell 1.

The criterion used for monitoring the convergence of the network is the total error, €, which is a measure
of how close the image data profiles are to their corresponding winning cell after an epoch. The error is
defined as the summation of the resource values of all the cells that are being presented at the epoch t:

€ = ZR;) (4)

Thus, a cycle finishes when the relative increase of the error falls below a given threshold:

€ — €1

<E)]

€t-1

93

The network follows its growing process by replicating the cell with the highest resource value. This
cell gives rise to two new descendant cells and becomes a node. The values of the two new cells are
identical to the node that generated them. The growing process ends when the heterogeneity of the system

falls below a threshold. In our case we allow for the tree to fully expand by setting the threshold equal
to zero.

3. ARTISTIC STYLE CLASSIFICATION AND AUTHORSHIP IDENTIFICATION
3.1 Motivation

Artists typically produce art in a series of movements or periods. Indeed, a common linkage exists
not only between pieces in a specific artist’s catalogue, but between pieces from an entire artistic period.
Impressionism, cubism, and renaissance are examples of these periods, in which many works followed a
particular set of rules or cues. There may also be different periods within a single artist’s catalogue, like
Pablo Picasso’s Blue Period. Analysis of these catalogues can highlight themes in an artist’s work over
his or her lifetime, showing correlations between works that are produced decades apart.

Since art is subjective, the impressions that it induces often vary from person to person. This complicates
the question of classification, because it increases the importance of choosing the right attributes for
classification. We have chosen a set of simple and reasonable criteria for determining classification,
including textural and color-based attributes. While it is difficult or impossible to classify based on actual
painting subjects (since this would involve identifying what objects the image depicted), we can institute
criteria that capture an overall feel of a painting or image. We hope to make it easier for people to find
art that they like without sifting through thousands of paintings. Additionally, our classification system
will allow us to study correlations between artists and artistic periods.

Using SOTA, neural networks allow us to classify large sets of images (pieces of art) into groups based
on a set of extracted features or, roughly, themes. Each leaf node of the resulting output dendogram
represents a single piece of art or a group of pieces, and each junction in the dendogram represents a
common thematic ’ancestor’ for all the images descending from that junction.

3.2 Feature Extraction and Sequence Building

Since the SOTA neural network was originally built for processing genetic sequences, we’ve used a
genetic analogy in our image processing. The genetic sequences in this case are actually samplings of
features extracted from each image. The goal is to build sequences that represent a number of low-level

94

image features and then compare those sequences with the SOTA neural network to produce the overall
image classification. We sample the overall image colors in red, green, blue, and monochrome (obtained
from the standard RGB to luminance conversion, luminance = .3R +.59G + .1 1B), and also use a series
of neighborhood texture comparisons as the features to build the image 'gene’. Additionally, color and
monochrome gradients are sampled and used as features. All features can be scaled in importance by
varying the number of samples included. Figure 2 illustrates the sampling procedure, which works as
follows:

o Image processing techniques like those in Sections 3.2.1 - 3.2.3 are applied to the original image.

+ A new buffer of the same size as the image is created and used to store the results of the image
processing.

« When the new buffer is filled, it is sorted.

« The sorted buffer is sampled at regular intervals to extract a sequence that captures the distribution
of values in the image.

The sampling method creates a non-decreasing discrete function of the image’s pixel values (or a
function of these values), and then samples this function to characterize the image.

[0]5[6[9[12[13[22]39]65]

X

L 5] 9[13!»391

Fig. 2. This diagram demonstrates our sampling method. Samples are chosen at fi xed intervals from a sorted list of pixel values and used
to create a mew sequence that approximates the original data. This particular diagram shows an array sampled with a sampling interval of 2,

3.2.1 Color Sampling

The color features of an image are cxﬁacted by doing regulér sampling of a sorted array of the image’s
pixel values. Pixel values are either the image’s red, green, or blue channels, or an extracted “luminance”
channel. This gives a general simplified color distribution function for the image, and these functions can
be compared element by element by their Euclidean distances in the SOTA.

3.2.2 Texture Sampling

Texture sampling is done in a similar way to color sampling, but the resultant elements instead represent
the value of the difference between the processed pixel and the average value of its horizontal and vertical

95

neighbors, For example, images with signifigant low level detail or rapid color change between pixels
such as a picture of TV static would have a high value of textural complexity, whereas large regions
of flat, slowly changing colors skew the distribution downward. An example is shown in Figure 4. This
sampling compares fine grained texture compiexity, and can be extended to coarser and coarser graining
by resampling the image to lower resolutions, which is discussed in Section 3.2.4.

3.2.3 Gradient Sampling

The gradient sampling technique used is based on the Sobel operator, a set of convolution masks
commonly used for edge detection. Our program detects gradients in the horizontal and vertical directions
separately as well as the overall (non-axis-aligned) gradient. Sampling the sorted gradient magnitudes for
data to add to our gene allows the classification scheme to reflect the distributions of low-level change
in test images. For example, an image that is composed of a single flat color will have a constant (at
zero) gradient function, an image with high gradients throughout will have a conmstently large gradient
function, and an image with large variations in its gradients will have a gradient function that represents
a spectrum of gradients from small to large. These functions are compared as part of the overall image
sequence in the SOTA neural network. Gradient sampling can be repeated at lower resolutions to produce
feature sequences that focus on larger scale variations. A nice property of the Sobel operator is that its
convolution masks reduce the effects of image noise, making gradient sampling in particular more resistant
to noisy images.

3.2.4 Image Resampling

We have decided to do texture sampling on a number of different image resolutions in order to identify
patterns within larger neighborhoods. Single pixel neighborhoods are not very representative of overall
textures, since they consider such a small surrounding area at each pixel. We use a simple averaging scheme
to resample the images by averaging a 2 x 2 square of the original image to obtain each resampled pixel.
This halves the resolution of the image, as demonstrated in Figure 6. This allows us to process the images
at a lower resolution, taking larger scale features into account.

3.2.5 Feature Scaling

The features that we extract are all added to the gene for each image and the genes are input into the
SOTA for classification. In order to scale features in importance, the features can be sampled with a higher
or lower density. For example, sampling the color at higher rates will make the color distribution more

96

(@) ®

Fig. 3. Ilustrates the conversion of an image to monochrome using standard luminance calculations. (a) shows the original unage o
Town IT by Wassily Kandinsky) and (b) shows the i image after conversion to monochrome.

current processed pixel 10
91 41| 4 —_— 3
6

Fig. 4. Demonstrates how processed values are cbtained in the texture sampling procedure. The processed pixel is compared with the
average values of its neighbors, and the magnitude of the difference Tounded to the nearest integer is used as the processed value. In this
example, result = abs(4 — ((10 + 9 + 6 4 4)/4)), rounded to the nearest integer:

® ®)

Fig. 5. Tllustrates the conversion of an image to grayscale gradient image, The lightness of each pixel corresponds to the magnitude of the
gradient at that pixel given by the Scbel operator. (a) shows the original image and (b) shows the gradient image after conversion.

97

@ ®) © @

Fig. 6. [llustrates the usage of resampling an image multiple times, halving the resolution each time. (a) shows the original image (I
Salvatore by El Greco, (b) shows the original image resampled to half the original resolution, (c) shows the original image resampled to
one quarter the original resolution, and (d) shows the original image resampled to one eighth the original resolution.

important in determining distances between two images. Figure 7 shows two sequences that scale feature
importance differently. Another method of feature scaling iS'applying non-linear scaling to"the individual
values of the extracted feature sequences. This can be done in different ways for different features, and
enhances or reduces differences between selected sequences in Euclidean space.

[color] textire | gradient]
(@)

| color] texture i gradient |
®

Fig. 7. Shows two differently scaled composite sequences to be input into the SOTA neural network. (a) gives equal weight to color,
texture, and gradient properties, while (b) emphasizes color and gives texture and gradient less inflience.

3.3 Data

The input images we used are selected from the works of Wassily Kandinsky. These paintings represent
a large number of different color and texture combinations, as well as different artistic periods. These
characteristics make the data useful for testing our classification system.

3.4 Experimentation and Results

The following experiments show and describe classification trees produced from image feature sequences
built with different features and scalings of those features. A major difficulty in experimenting with our
system was the difficulty in displaying the resulting trees. The figures showing our results were time-
consuming to build, and this was a limitation in testing large image sets. Another difficulty we had was

98

in comparing our results to what we “should” have seen. Our evaluation criteria were subjective since we
didn’t have a clear metric to measure our results against, but the classifications in our results should also
appeal to the reader’s intuitive reasoning about how images should be grouped.

3.4.1 First Experiment: Texture Sampling

For our first experiment we presented SOTA with a series of sequences generated by texture-sampling
a series of randomly chosen Kandinksy paintings. A partial tree of results for this experiment is shown
in Figure 8. The results are those that we were hoping for, with the tree showing distinct categories that
break down based on the amount of high-frequency texture change in the corresponding images.

3.4.2 Second Experiment: Color Sampling

The second expetiment was to present SOTA with the same series of images as in the first experiment,
sampling color rather than texture. Each image was sampled 100 times based on its red channel only.
Results for this experiment are shown in Figure 9. This experiment also showed promising results, dividing
the images into visibly different color categories. '

343 Tﬁird Experiment: Color and Texture Sampling

In the third experiment we presented SOTA with image sequences consisting of a new set of color and
texture sampled Kandinsky paintings chosen at random. Each image was sampled 100 times based on its
blue channel and its texture. Results for this experiment are shown in Figure 10. The results show that
the images are now partitioned based on intuitive visual differences in both color and texture complexity.

3.4.4 Fourth Experiment: Gradient and Texture Sampling

This experiment uses the same set of images presented in the previous experiment, but the sequences
are built by sampling image gradients and texture 100 times each. The results were similar to those in
the previous experiment, but with a key difference. No direct color sampling was used in the fourth
experiment, but the results show classifications that appear to be based on color differences. Although this
could be a coincidence, we reason that it is more likely due to overlap between features. Since the gradient
and texture features use monochrome color, and this is dependent upon the images three color channels,
these features contain some of the information that is provided by straightforward color sampling, In the
case of this experiment, this information was enough to preserve many of the classifications produced by
experiment three.

99

4 CONCLUSIONS AND FUTURE WORK

As can be seen in Figures 8 through 12, our modified SOTA neural network was relatively successful
in classifying images into groupings of similar images. However, one drawback of using a SOTA neural
network to perform image classification is that there isn’t a clearly defined metric for measuring the
correctness of a resulting classification. “Correctness” is based primarily upon the user’s opinions of the
classification results, even though it can be shown that our classifications are correct based on the features
that were extracted. A major goal of future work will be to reconcile user preferences with the set of
features to be extracted by the image processor. Although our work at this point reflects only simple, low-
level features, it may become necessary in the future to use more complex feature extraction techniques.
As it is, we have provided a content-based image classification system with a framework for scaling
features to fit the tastes of individual users.

In addition to the experiments that were run, future tests should use a large range of images and
explore different feature scalings. The difficulties that we had in displaying the SOTA output (which
involved manually manipulating images, nodes, and connections) translated into difficulties in analyzing
results and making improvements. In the future, it will be necessary to look into tools for quickly and
automatically displaying the trees described in the program output, in order to speed up experimentation
and analysis.

One interesting area of research is reoccurring themes over time in an artist’s body of work. Figure
11, which was generated by color and texture sampling, shows two images, assigned to neuron 4, created
23 years apart from each other. Picture With White Border painted in 1913 and Dominant Curve painted
in 1936, both by Wassily Kandinsky, have been grouped together due to their similar textural and color
characteristics. This observation can allow us to draw further conclusions that the artist, in 1936, revisited
a theme that existed in his work around 1913. By generating SOTA neural networks, themes and style
patterns can be extracted allowing users the ability to organize an artist’s body of work, not chronologically,
but by style and theme.

REFERENCES

{1] 1. D. A. J. M. Carazo. Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a
phylogenetic tree. Journal of Molecular Evolution, 44:226-233, 1997,
{2] T Kohonen. The self-organizing map. In Proc. IEEE ‘78, pages 1464-1480, 1990.

100

Rysugpuey Apssem £q ore sSunured
IV pumei@yoeq 10100 S[3uls & Wl samB g [[ews Jo sopyend [eryxo) TEjms aeys Poq IoweBor pooeld Ueoq AT YOMM B UOINSU W PO 10T IF6I DU aMIg A4S 70m056] seBeum o
e ANON SOWR 00T Potdimes sem oFewy 4sed ‘0 Jo samosal v pur 0Z JO plousanp Aqenea v pua Sundmes oaxe; Suiwn JIomou [EMeT VIOS SUBMSAI oW 51 oy Umoys g Bi]

BB IS §0 YHNAUD

yim Buigeamiog

4D LT 806 L

PogRUN enjg
‘o el s To70vEL

8106
abuwip 10 GEEL

X
woEddus) Z076E6 |

by
SUUM 20 E¥EL

J0Buig Y| ¥§TE061

, Biog
BBjoA 207 00E 1L

ugpers
Awvoip L0 EE6E

Uy
m_ﬂun—uc L bOFEPE

101

Aysupuey Asvep Aq ame

sBugured [[v uoyEInTEs 10]00 JoMO] B oARY e (7 Uomal) weIBopUIp o JO JYSU oy U0 soBeUl) pUE UONBINES J0[00 19YBTY & aAwy e (] UCIROW) WRIBCIDUSP o JO Yol oy uo sefew ey
20N ‘wown 00T Pojdmme cum afewn Ysed *0CT JO SOMOSA B PUB (OZ JO PIOYSAI] Lyqeues ¢ s Suyidues Jo10o pox Suisn YJomeu [enou YOS Sunmsox o St A0 UMoys ‘¢ "Ly

o
snsi(Q 20 25

g e
WESD LOYESL yyopo g aceL

PRz
(O 1P8L

oldig Xadwoy
10 BE6L

B

‘PUBIOH U} s1ysEg

oo
sfuwicy 1O GESE

) _uyy
pasdwa | 107 PEEL

uopenifg
Awioojo L0 EERL

. X
uogisoduion NQ|mﬁE—
#

_ong
A48 20 OK61L

‘enbiy
oShym zo st

. wnsin

18 #0 YUAYO
yum Bagemyog.
YOUMA LT B06L

e
S PUNY LOOV6)

Baog ubon 707804}

Ut LoTva6L

102

ey Aoy ostre0sq 1osBoy padnoal are ¢ WOMON Y WIDIUNOM §UT606] PUe 9 uowwsmaidu] L6061 seSeunt o ‘S[dwexe Jog 'SORUEIUNS [EMXS UO poseq pooeld Ueeq eary sefew yeip
OSe AON HogERmMIES 10j0o ey 0 Surpnodsanioo wresFopusp 9 Jo IYIU pur Yof oW 03 PoOs UG aaey ‘G 2By Ul se ‘arey soBett Je HoN “amyesy 1od sowrn g7 pojdues sem oSerm
Yorgl "0CT JO 0amosal ¥ pUR 00Z JO Ploysanp Lrqeires ¢ v Sugdmes amixey mis poulqmos Saydures 10[00 onjq Buien yXosiou [BMU YIOS Sunmssl o ST eloy umoys ‘01 “Buf

JepIog PIRIAN
R 84N01g
L6 E184

181017 8Buvigy .
10 5E6L

6} vopes)rosdig
gq i6L

. _ A
euass Lopsedwenio ETes
ingsjog : e
o 886|

usnopy
80 6061

11 spom
IBUS B0 Z26)

rearig Jevsy epuen
i ypinug Lo BESL .
10°0L8} . B uojEBoIdig i

4076061 umo} PiC 10 Z08E PaBmr]

103

PaFRISUSE $1 YoM ‘01 SmBL Ul JE0MIU o) O JOJAI NOK J1 I9AIMO I0J09 J0U INQ SIXY; PUe JusiperS sy & Surproooe P20y uj 330avoYy puy ApPWI) £076061 PUR UDRNOW SUT6061 9
uonwsIidul] L0 606] SoBeml o Pim Buoe “HT nomMaU 0} pouBISSE Useq SVY NVWINY UJ YNy [T0I6] ofem oy osmeooq Bunserayul £104 st joMou SHY], "umey 1od soum o1 podums
sum afemI yovgy 0QT JO 60MOLAl B PUR 0 JO Plogsanp Anpiqeuea v pw Supdines axmxe Y psuiquos Faydums Juorperl Suren ypoaon Temou YIOS Sanmsal oy st ateq umoys Yy 81

NBULNP 3]
YD L 0LBL

..._uE:qE
o _ A 806061
uogsodilios Lo €261

ﬂﬂgmﬁw
000
10 8est } sprom
Weosy sued SRR

10 wes) S — 51
piamdy 10U00Y Uy eBRIBOIA uogusiradu)
107626} Puy hewwed - 2570

€0 6061

1@or sBuBIO.
Lo SE61

sang sop0 SHUM
JRUEIoq UIM 80ty
- L0 ELBL

20 96}

104

Ajsupuey] Ljssep £Aq sxe sSuputed (v ‘woumjosa Jo jaas] Jod sewm 0] pejdmes sem aFemm
Uor *0QT JO 5amMOsal ® PUR 00T JO Plousenp L1Miqeiies @ (Rla UOTN{ORAI JO €10A9] 2a1tp Je Surdures armxe) surcrgoouow Suwisn jIomicn emot YiOS Sunmsar o si cioyq umoys -1 3uf

1joIA sbuRID
_JuA Lo SES!
uonsodwonLy ET61 , .

wsppom |
Hewg 2o eest

‘ @ uogeBAaITuY
e, L Bget

G 6261
Wo0RY SjuvD
epiog B3UM L0 ¥EEH

WP a3l
L0 €181

nedini ul

joycoy u| eBerciH2NE0 10 0L8L
puy Lewiss NN

€0 606

64
uopesiAvIdu
oList

105

106

Modeling Memory Consolidation to study the Effects of
Trauma-induced Amnesia and to simulate Categorical

Learning
Bhavna Kapoor
Department of Computer Science
Yale University, New Haven,
Connecticut 06511

Abstract

Any neural network modeling of the intricate process of memory consolidation involving
the neocortex and the hippocampus must account for the fact that learning in the brain is
an on-line, incremental, adaptive and life long process. The Adaptive Resonance Theory
(ART) class of models lend themselves well to these requirements. We use this neural
‘network paradigm to model a rudimentary memory consolidation system in the form of
the ART1-Memory Consolidation (ART1-MC) model. Further, we simulate traumatic
brain injury and study the response of the model to trauma and compare it with the
observed, clinical effects of retrograde and anterograde amnesia. We also enhance the

model to support categorical learning from a general to a specific domain.

Keywords - adaptive resonance theory, memory consolidation, trauma, anterograde

amnesia, retrograde amnesia, general to specific learning

1. INTRODUCTION

The hypothesis that new memories in the brain consolidate slowly over time
was proposed 100 years ago, and continues to guide memory research. In modern
consolidation theory, it is assumed that new memories are initially 'labile' and

sensitive to disruption before undergoing a series of processes (e.g., glutamate

107

108

release, protein synthesis, neural growth and rearrangement) that render the memory
representations progressively more stable (Haist et. al., 2001). It is these processes
that are generally referred to as “consolidation”. The principal agent in memory
consolidation research, in terms of brain regions, is the hippocampus. The
hippocampus is involved in the consolidation of contextual memories into various
parts of the neocortex, and is part of a region called the medial temporal lobe (MTL),
that also includes the perirhinal, parahippocampal, and entorhinal cortices. Lesions in
the medial temporal lobe typically produce amnesia characterized by significant loss
of recently acquired memories as compared to normal memory. This has been
interpreted as evidence for a memory consolidation process ([15]).

Understanding the complex dynamics of human memory consolidation will be
informed by extensive and accurate computer simulations of brain process models.
Research into the development of such neural network models is motivated by the
fact that it is not always possible to obtain experimental data with regards to human
brain functioning, and that neural network models could provide important insight
that might benefit our understanding of memory disorders such as Alzheimer's
disease.

Trauma-induced amnesia models have active use in building computerized
medical decision support systems for traumatic brain injury to support surgeons in
making difficult medical decisions; for instance; recommending a risky open-skull
surgery to a patient (Li Y.C. et. al., 2002). Using neural network models to simulate
categorical learning can help in evolving advanced, unsupervised learning systems
crucial to research in artificial intelligence, machine learning and robotics.

In this report, we study and enhance an Adaptive Resonance Theory (ART)
based neural network model called the Adaptive Resonance Theory-1 Memory
Consolidation model (ART1-MC). Section 2 introduces the architecture and working
of the ART model as proposed in (Carpenter G. & Grossberg S., 1986) . Section 3
discusses the details of modeling trauma on ARTI-MC model and the results
obtained. In Section 4, we enhance the ART1-MC model to the ART1- Memory
Consolidation with Categorical Leamning (ART1-MCCL) model and discuss the

working and results of this model. Finally, in Section 5, we summarise the results

obtained in the report.

2. MODELING OF MEMORY CONSOLIDATION

Any neural network strategy that attempts to model the intricate and partially
understood process of memory consolidation involving the neocortex and the
hippocampus must account for the fact that learning in the brain is an on-line,
incremental, adaptive and life long process. The Adaptive Resonance Theory (ART)

class of models lend themselves well to these requirements.

2.1 Adaptive Resonance Theory (ART)
Adaptive Resonance Theory (ART) was developed by Gail Carpenter and Stephen

Grossberg during their studies of the behavior of models of networks of neurons. The
ART paradigm can be described as a type of incremental clustering. It has the ability
to learn without supervised training and is consistent with cognitive and behavioral
models. It is an unsupervised clustering paradigm based on competitive learning that
is capable of automatically finding categories and creating new ones when they are
needed.

ART was developed to solve the learning instability problem suffered by
standard feed-forward networks. The weights, which have captured some knowledge
in the past, continue to change as new knowledge comes in. There is therefore a
danger of degrading, even losing the old knowledge with time. The weights have to
be flexible enough to accommodate the new knowledge but not so much so as to lose
the old. This is called the stability-plasticity dilemma and it has been one of the main
concerns in the development of artificial neural network paradi gms.

ART architecture models can self-organize in real time producing stable
recognition ability while getting input patterns beyond those originally stored. ART is
a family of different neural architectlees, The first and most basic of these is ART1 ,
which can learn and recognize binary patterns. ART2 is a class of architectures

categorizing arbitrary sequences of analog input patterns. ART3 and ARTMAP are

109

110

generally more complex while employed in specific problem domains such as
invariant visual pattern recognition, where biological equivalence is discussed.

The ART architectures use a combination of feedback, higher-level
control, and nonlinearities to form regions in state space that correspond to concepts,
embodied in the statistical structure of the input. The earlier ART models developed
grandmother cells at an output layer. New patterns to be classified were judged either
as new or as new examples of old concepts. If they were sufficiently far away from
previously classified patterns in the state space, new grandmother cells were formed.
On the other hand, if they were within a certain distance from a previously classified
pattern, they would be interpreted as prototypes of known concepts. As such, ART
models employ a combination of bottom up (input-output) competitive learning with
top-down (output-input) feedback learning.

An ART system consists of two components: an attentional subsystem and
an orienting subsystem. The stabilization of learning and activation occurs in the
attentional subsystem by matching bottom-up input activation and top-down
expectation values. The orienting subsystem controls the attentional subsystem when
a mismatch occurs (in the attentional subsystem). In other words, the orienting
subsystem works like a novelty detector. This structure leads to four basic properties
of ART models:

1) Self-scaling computational units

The attentional subsystem is based on competitive learning, enhancing pattern
features but suppressing noise.

2) Self-adjusting memory search

The system can search memory in parallel and change its search order adaptively.

3) Direct category access

Already learned patterns directly access their corresponding category.

4) Adaptive modulation of attentional vigilance

The system can adaptively modulate attentional vigilance using the environment as a

teacher.

2.2 Overview of the ART1-Memory Consolidation (ART1-MC)
model

2.2.1 Architecture
As in figure 1, the ART1-MC model consists of 2 processing levels F1 and F2. Level

F1 contains a network of nodes, each of which represents a particular combination of
sensory features. Level F2 contains a network of nodes that represent recognition
codes or categories that are selectively activated by the activation patterns across FI.

The attentional subsystem consists of gain control parameters that enable F1 to

Search
Attentional Qrienting
subsyatem subsystem
A
@,
—b.a-u st £
+ + Pesot

LTy,

4 [k
LTm
Matching

. 3o -
"’.‘N STM O F L criterion:

g, 4 vigitance
+ + § parameter
Internat
activa tnput
reguiation

Fig 1. Block diagram of ART1-MC model

distinguish between bottom-up input patterns and top-down priming or template
patterns. The orienting subsystem is responsible for generating a reset wave to F2
when there is a mismatch of bottom-up and top-down patterns at F1. It is controlled

by the vigilance parameter.

2.2.2 Working

The interactions between the attentional and orienting subsystems of ART1-MC self-

111

112

stabilize learning, without an external teacher as the network familiarizes itself with
an environment by categorizing the information within it in a way that leads to
stabilizing the performance of the network over time.

Level F1 encodes a distributed representation of an event by a short-term
memory (STM) activation pattern across a network of feature detectors A,B,C,D.
Level F2 encodes the event using a compressed STM representation of the F1 pattern.
Learning of these recognition codes takes place at the long-term memory (LTM)
traces within the bottom-up and top-down pathways between levels F1 and F2. The
top-down pathways read out learned expectations whose prototypes are matched
against bottom-up input patterns at F1. The size of mismatches in response to novel
events are evaluated relative to the vigilance parameter rho of the orienting subsystem
A. A large enough mismatch resets the recognition code that is active in STM at F2
and initiatés a memory search for a more appropriate recognition code. Output of
subsystem A can also trigger an orienting response. If the expectation is close enough
to the input exemplar, a state of resonance develops as the attentional focus takes
hold. This resonant state, rather than the bottom-up activation, is what drives the
learning process. The resonant state persists long enough, at a high enough activity
level to activate the slower learning process. The system learns prototypes, rather than

individual exemplars.

2.2.3 Implementation Details

As the ART1-MC model belongs to the ART1 category, it is capable of
processing only binary inputs. The input set is a sequence of patterns of random
binary values. The length of each pattern is 5. The length of the input sequence ranges
from 25 to 200. The output of the system is an input-output mapping from a given
input pattern to a class. The system has a fixed number of classes. This number is
parameterized and ranges between 10 to 35. The system does not dynamically create
new classes to account for novel inputs. If it encounters a new input pattern outside
the categories it knows, that pattern simply triggers a “novel input found” response
from the system. The vigilance parameter Rho is set to 0.9. The ART1-MC system
has been ixhplemented using ANSI C on the the TurboC compiler.

3. SIMULATING TRAUMA-INDUCED AMNESIA

Possible causes of amnesia in humans include dementia, alzheimer's disease,
infection, brain tumor, brain injury and certain metabolic disorders. Our focus
however, is to specifically and restrictively study the effects of amnesia caused by
sudden, localized injury (henceforth referred to as trauma) to the parts of the brain
believed to be the major players in the task of memory consolidation, i.e., the
hippocampal formation. and the neocortex (Cohen et. al., 1993).

Clinical symptoms of amnesia in humans include memory loss of events
prior to trauma (retrograde amnesia), inability to lay down new memory of events
after trauma (anterograde amnesia), failure of consolidation, tendency to learn the

first event in a series and abnormal reactions to novelty (Grossberg & Merrill, 1994).

3.1. Modeling Trauma

Recall that in the ART1-MC model of declarative memory consolidation discussed in
Section 2, the orienting subsystem plays the role of the hippocampal system while the
attentional subsystem represents aspects of the inferotemporal cortex.

To model traumatic injury in the ART1-MC model, we develop 2 functions
that cause localized random disruption in either the orienting or the attentional
subsystems. As trauma can occur at any point in the learning cycle, a measure of
randomness is attached to when the trauma function is triggered in the model during
the training cycle. The nature of the input to the system remains the same as discussed
in Section 2. Two different and independent input sets have been used and each is
tested under normal as well as trauma conditions. The input-output pairs from pre

and post trauma test cycles are compared to draw inferences about the change in

behaviour of the system.

3.1.1 Trauma to the Orienting Subsystem

The orienting subsystem, by means of the vigilance parameter (tho) calibrates how

much novelty the system can tolerate before activating the orienting subsystem to

113

114

reset mismatched categories and to select better F2 representations with which to
learn novel events at F1. This, without risking unselective forgetting of previous
knowledge. Trauma to the orienting subsystem randomly resets the vigilance

parameter, the value of which determines the extent of amnesiac damage.

3.1.2 Trauma to the Attentional Subsystem

The attentional subsystem is characterized by the properties of layer F2. In the ART1-
MC model, trauma to the attentional subsystem is achieved by randomly disrupting
the weights, i.e., the STMs associated with F2, and also by resetting the L parameter
of the net, since this is involved in the initialization and the weight adjustment
functions for F2.

3.2 Experimental Results
3.2.1 Experiment 1
Aim : To study the effect of trauma on the Orienting Subsystem.

Training set : 3 sets of fixed-size input sequences of lengths 25, 50 and 100. The

input sequences consisted of 30 random combinations of binary values. The size of

each pattern was 5. The number of classes was fixed to 30. The vigilance parameter
was set to 0.9.

Output before trauma : Each input pattern was classified by the network into one of
the 30 classes. The output class for each unique input pattern was recorded.

Trauma : The same input sequences were used to train the network but the network
was traumatized (i.e. the vigilance parameter was reset to a random value) at roughly
the mid-point of each input sequence (i.e. 12, 25, 50). The new value of the vigilance
parameter after trauma was recorded.

Qutput after trauma : The output class for each unique input pattern was recorded.
The outputs before and after trauma were compared for each input pattern and the
number of misclassified patterns was recorded for each of the 3 input sequences of
lengths 25, 50 and 100. The percentage error in classification was calculated and

plotted against the corresponding value of the vigilance parameter after trauma to

give the plot in figure 2.

Effect of Trauma to the Orienting Subsystem (Hippooampus)

59) 1 1 1 1 1 ¥ i ¥ i T 1)])) L] 1 ¥ 1 1 i) ¥ i
45 -

48 L .

Percentage Error in 1/P Classification after Trauma

2}
-1-8.90.80.70.608.50,40.30.20.1 @ 9.10.20.38.48.50.60.70.80.9 1 1.11.21.31.41.5

Value of Vigilance Paraneter after Trauma

Fig. 2 Experiment 1

3.2.2 Experiment 2
Aim : To study the effect of trauma on the Attentioning Subsystem.
Training set : 1 set of fixed-size input sequence of length 50. The input sequence
consisted of 30 random combinations of binary values. The size of each pattern was
5. The number of classes was fixed to 15. The vigilance parameter was set to 0.9.
The number of weights in level F2 was fixed to 15. The value of the L parameter was
setto 1.

Output before trauma : Each input pattern was classified by the network into one of
the 30 classes. The output class for each unique input pattern was recorded.

Trauma : The same input sequence were used to train the network but the network
was traumatized (i.e. n (0 <= n <= 15) weights in level F2 were randomly feset toa

value between 0 and 1) at roughly the mid-point of each input sequence (i.e. 25). The

115

116

number of weights distorted was recorded.

Output after trauma : The output class for each unique input pattern was recorded.
The outputs before and after trauma were compared for each input pattern and the
number of misclassified patterns was recorded. The number of misclassified input

patterns after trauma was plotted against the number of F2 level weights distorted as

" shown in figure 3.

Effeot of Trauma to the Attentioning Subsystem (Neocortex)

35 1 T L 1 ‘) ¥ L) L i L)] 1

o
5
o 30 | e
|
-
s
@
+
"~
® oy |- -
[
c
4
]
»
%
a &eé}t -
a
N
-
°
@
T 15t 4
-
"
-]
N
Ll
o
& e b i
E
“
o
[
£ st 3
€
3
z

o i 1 1 1 i i g L 1 i i 1 i A1

-] 1 2 3 4 S [7 8 9 ie i1 1g 13 14 1S

Number of level F2 weights distorted
& L]
Fig. 3 Experiment 2

3.3 Effects of Trauma on the ART1-MC and their Implications

The following observations have been made based on the experiments in Section 3.2.

3.3.1 Effects of Trauma on the Orienting Subsystem
When the effective value of the vigilance parameter tho after trauma is within the

bounds 0 and 1, mild amnesia occurs. A limited form of retrograde amnesia and a

slightly more pronounced anterograde amnesia is observed. The reason for the limited
nature of the former is that once consolidation has taken place, the search process for
familiar events is progressively decoupled from the orienting subsystem, and thereby
the disrupted value of the vigilance parameter has little effect on the recall of well
consolidated events. This corroborates the widely held hypothesis in
neuropsychology that the hippocampus mediates the gradual formation of neocortical
memory representations.

The unlimited anterograde amnesia is seen because with a corrupted vigilance
parameter, the network cannot correctly carry out the memory search to learn a new
recognition code.

Another relevant observation is that anterograde amnesia in this case is only
temporary. With further input samples, the orienting subsystem is able to re-stabilize
itself relatively quickly. However, its behaviour may not be the same as it was before
trauma. More specifically, if the post-trauma value of the vigilance parameter is small
ie. between 0 and 0.4, the underlying recognition system loses the ability to be
specific and makes broad generalizations and abstract prototypes. Likewise, if the
resultant value of the vigilance parameter is large, typically between 0.75 and 1, the
recognition system becomes more prone to making narrow generalizations and to
prototypes that represent fewer input exemplars, even a single exemplar. This
behaviour of the system is consistent with clinical effects of mild amnesia wherein
the subject is able to generally classify and identify events but has trouble dealing
with details or vice-versa and remains in a state of confusion for some time after the
trauma.

It is also seen that if the vigilance parameter becomes greater than 1, severe
amnesia (both retrograde and anterograde) sets in. Also, the network takes longer to

re-stabilize and resume normal memory function.

3.3.2. Effects of Trauma on the Attentional Subsystem
Trauma to the F2 layer parameters results in the inability of the system to be able to
consistently classify input patterns. As the degree of distortion of the weights in F2

increases, the system is unable to recognize patterns it had seen before the trauma and

117

118

classifies these as novel inputs. Changes in the L parameter of the network however
do not degrade the performance of the system significantly unless the value of L
crosses a threshold value 5.

The observations on the response of the attentional subsystem to trauma show
that it closely resembles the symptoms of clinical retrograde amnesia caused by

traumatic injury to the neocortical region i.e. the site of long term memory.

4. SIMULATING CATEGORICAL LEARNING

The perception and identification of various categories is an important aspect of
learning processes. The ability to divide the world into structured categories emerges
early in infancy and continues to be refined by experience and leaming throughout
human life. For example, infants as young as four months old can classify various
domestic cats into a single category — correctly excluding horses and tigers — although
they can make the mistake of including female lions. By seven months, with the
development of finer-scale visuo-perceptual categorization skills, the category “cat’ is
well enough differentiated to exclude female lions. (Hasegawa et. al.,, 2002)
Behavioral and neurophysiological evidence shows that the neural mechanisms of
categorization learning may be embedded in the inferior temporal cortex, a part of the

neocortex.

4.1Modeling Categorical Learning

The ART1-MC model can be easily adapted to simulate categorical learning. We call
the new model that we develop to do so the ART1-Memory Consolidation with
Categorical Learning model (ART1-MCCL).

4.1.1 Architecture
The general architecture of this model is the same as ART1-MC. To specialize the
model for categorization support, the attentional subsystem in ART1-MCCL is used

to represent the inferior temporal (IT) cortex, an area of the neocortex previously

implicated in representing visual objects and subject to flexible adaptation in different
learning paradigms. As shown in figure 4, the model has, in addition to the attentional

and orienting subsystems, a categorization subsystem which is controlled by a gain

function gs.

4.1.2 Working

During the learning and consolidation process, the categorization subsystem
maintains a sparse associative map of the input patterns and their corresponding
feature map categories. Every feature map category in the categorization subsystem
corresponds to a unique input pattern. If the input A to the F1 level is similar (but not

the same) as a pattern B which the network has already seen and classified, both

9
CAT EGOR\VL- .
NG ‘ st Crienting
SUBRSYETEM Attentianal| i RO
subsystem' syhsystem
1
st Fy

LTM!*

Matching
criterion:

. vigilancs
+ ¥ paramaeter

G AP A G BT M AR SED G P G e S S

) SEugy SIS sy
Internat
active input

reguiation

Fig. 4 Block diagram of ART1-MCCL model

inputs essentially map to the same class and a clash occurs. This prompts the
categorization subsystem to explicitly reclassify the previous input A through an
explicit feedback input loop. In the process, the attentional subsystem which now has

knowledge of pattern B discovers prominent distinguishing features between A and B

119

120

and creates subcategories for the 2 inputs under the same general class heading.

4.2 Experiment

To show that the ART1-MCCL model is capable of categorical learning, it was tested

on randomly generated sequences of fixed-length patterns. The vigilance parameter

tho was set to 0.9. Following is a sample test case of size 35 (patterns named A-M

and represented as red and yellow boxes in figure 5) and the corresponding classes

and subclasses (1-11), represented as ovals in figure 5 :

Input Sequence : ***o*
**0*0
****0
**0*0
****o
**0*0
****0
*00*0
*00**
*00*0
*oo**
000**
00***

o****
00***
000**

0000*

=T o mnm T mgmogaowow oWy

00000

o****
*o***
0
***0*
****0
**0*0
*00*0
*oo**
000**
00***
0000*
00000
0000*
o****
00000
0000*

**000

Z o e T s Eogwa»c)R o

Result : Figure 5 shows the output generated for the above input sequence. The oval

nodes show the class number and the rectangular nodes are the individual input

patterns. Note that for this particular example, the ART1-MCCL model has been able

to successfully categorize and subcategorize all but 2 of the input patterns (M and n.
This can be attributed to the fact that these 2 patterns occur towards the end of the
training sequence. So the network has not seen enough samples of M and J to be able
to deal with them.

; @(\\

M ¥

Fig. S Result of Training with Subcategorization

5. CONCLUSION
The ART1-MC model was chosen over it’s counterparts such as backpropagation and

multi-layer feedforward networks to model memory consolidation because it supports
incremental learning and thereby circumvents the stability-plasticity dilemma. This
model when subjected to traumatic injury to the attentional or the orienting
subsystems has shown behavior which is consistent with the observed and
experimental effects of trauma-induced amnesia. Not only is this further indication of

the ART1-MC model’s ability to correctly model brain functions, but it is also a clue

121

122

that Adaptive Resonance Theory models are effective for neurobiological modeling.
The study of trauma-induced amnesia shows that memory consolidation over a period
of time does take place and it also gives an insight into how the hippocampus and the
neocortical regions might be interacting with each other to achieve this. Likewise,
the ART1-MCCL model provides a reasonable simulation of categorical learning and
lends further credence to the behavioral and neurophysiological evidence that the IT

cortex plays an important role in categorization tasks.

5. REFERENCES
1. Alvarez R. & Squire L.R. (1994). Memory consolidation and the medial temporal

lobe : a simple neural network model. Proceedings of National Academy of
Scienes (USA), V.91, PP. 7041-7045.

2. Carpenter G.A. & Grossberg S. (1986). A massively parallel architecture for a
self-organizing neural pattern recognition machine. Computer vision, graphics

and image processing (1987), v.37, pp. 54-115.

4. Cohen, Neal J, and Howard Eichenbaum. Memory, Amnesia, and the

Hippocampal System. Cambridge, Massachusetts: MIT Press, 1993.

5. Clark RE., Broadbent N.J., Squire LR. & Stuart M.Z. (2001). Anterograde
amnesia and temporally graded retrograde amnesia for a nonspatial memory task

after lesions of hippocampus and subiculum. Journal of neuroscience (2002),
v.22(11), pp. 4663-4669.

6. Grossberg S. & Merrill J.W.L. (1994). The hippocampus and cerebellum in
adaptively timed learning, recognition, and movement. Journal of cognitive

neuroscience (1996), v.8, pp. 257-277.

7. Haist, F., Gore, J.B. & Mao, H. 2001. Consolidation of human memory over

decades revealed by functional magnetic resonance imaging. Nature
neuroscience, 4 (11), 1139 - 1145,

8. Hasegawa I. & Miyashita Y., Categorizing the world : expert neurons look into
key features, Nature Neuroscience (2002), v.5.2, pp. 90-91.

9. Hasselmo M.E. & McClelland J.L., Neural models of memory. Current opinion in
neurobiology (1999), v.9, pp.184-188.

10.Li Y.C, Liu L, Chiu W.T, Jian W.S. Neural network modeling for surgical
decisions on traumatic brain injury patients. International Journal of Medical
Informatics (2002), Volume 57, Issue 1, pp. 1-9.

11. Meeter M., Control of consolidation in neural networks: avoiding runaway |
effects. Connection science (2003), v.15(1), pp. 45-61.

12. Pandya. A. & Macy R., Pattern Recognition with Neural Networks in C++, CRC
Press (1996).

13. Sigala N. & Logothetis N.K., Nature (2002) , v.415, pp. 318-320.

Web Resources

13. CELEST Technology website, Boston University
bttp://cns.bu.edu/techlab

14. Karsten Kutza. Neural Networks at your Finger Tips
http://www.neural-networks-at-your-fingertips.com/

15. About Memory : Learning about memory for permanent memory improvement

hgp://www.memog-key.com/Natureoﬂ\/lemog/consolidation.html

123

124

Learning The Distances Between Pairs of Sensors on the Retina

Edo Liberty
Department of Computer Science, Yale University

Abstract

This paper describes an experiment done with a neural net. The architecture of which, is
based on the model of the retina and the visual cortex. The net used was a hybrid of a feed-
forward net (first layer) and a Hebbian net (second layer). The first layer models the sensors
on the retina by calculating one value for each pixel in the image, using the brightness of the
pixel and it's neighboring pixels. Each value is thought of as the output of one independent
sensor. The location of the sensor is defined to be the location of its central pixel (see Figure
2). The sensor outputs are then fed, with out regard of their original position in the image,
to the second layer, which learns the map between the sensor outputs and their original
position in the image, using Hebbian learning. '

1. INTRODUCTION

How does the brain map the information received in the visual cortex to a specific physical
locations on the retina? It is obvious that this process is performed, since we can easily tell
a straight line from a crooked one and can easily say that the title of this page is “inside”
the frame of the page although the black ink bears no resemblance to the white paper. This
is done by using the knowledge that the sensors receiving the image of the black ink are
located “inside” the region of sensors that received the white of the paper.

This paper shows how the first stage of such a process was achieved, namely, the creation
of a mapping between physical distances of sensors on the retina and “neural distances”
in the brain, the latter expressed in terms of synaptic weights. We procced by scgmenting
the retina into small scgments. Each such scgment is processed by a small feed forward
neural net to deduce some local property while ignoring the segments position in the visual
field. The local property will be the value of a specified function of the intensity values of
the pixels belonging to the segment. Every small net will act as an “independent sensor”.
These sensor outputs are then given as inputs to a second net that uses Hebbian learning to

125

deduce the original positions of the individual sensors, as shown in Figure 1. This is done

under an assumption that the distance between them (the sensors) is inversely related to the
correlation between their outputs.

Figure 1. On the left hand side, three retinal segments.and their corresponding first layer
ncts. On the right hand side the gray rectangle represents the Hebbian net, referred to as
the Sccond Layer.

We will show that, during the learning process, every synaptic weight between two neurons
in the Hebbian net (denoted with small squares on the right hand side of Figure 1) becomes
proportional to the Euclidian distance between the corresponding segments.

In section 2 we discuss the specific implementation details of the first layer. We include a.
description of the specific local function chosen, the training set, and the training details.
The second section deals with the second layer. We describe how image inputs were created
and how the Hebbian network was implemented. The third section contains the results of
the experiment, given both graphically and numerically. The results show that the distances
between sensors, learned by the net, are correct up to an error of 10% of the image size. The
fourth section includes result analysis. In this section we also describe some variants of the
experiment performed and mention some results but without going into any detail.

126

Our eventual goal is to accurately position each sensor on the XY plane and thereby re-
constructing the retinal spatial structure. The distance map created in this experiment is
therefor only the first of two stages. After the distance map is obtained, each sensor actual
position can be approximated using a relaxation process similar to a self organizing map due
to Kohonen (1982). This paper will not describe the implementation of this second process.

2. FIRST LAYER

"The first stage will be to create the small nets that perform the local calculation. The calcu-
lation chosen is a weighted average of the brightness of the central pixel and it’s neighbors.
A pixels neighbors are the eight pixels surrounding it (as shown in figure 2).

3 T = N

Figure 2. Sensor s’ and the nine inputs it receives.

The average function for sensor (pixel) &’ in figure 2 is
F(s') = (x5 + 3(22 + 24 + 76 + 25) + 2(z1 + T3 + 7 + 3)) /25

Here z; denotes the brightness of pixel i. This simple linear function can be approximated
by a single neuron with 9 inputs. Each training epoch contained a 1000 randomly chosen
exemplars. Each such exemplar consisted of a random vector with 9 components and the
weighted average of these components. Random inputs were chosen because training the
net with inputs taken from actual images resulted in very slow convergence rates. This is
due to the fact that visual data extracted from 3x3 pixel matrices is usually not sufficiently
diverse. In other words, the vast majority of 3x3 pixel matrices contained roughly the same
color and therefor contained less information then a random such matrix.

127

Technical Details

Net configuration:

e 1 output neuron

¢ 9 inputs

e Training algorithm: gradient decent
o Transfer function: linear

e Learning rate: 0.01

e Max number of epochs: 1000

e Error goal: 0.1
Training:

e Size of training set: 1000
e Epochs needed for convergence: about 150

e Training convergence graph shown in figure 3.

w5 % T 0 K]
it Bpocii:

Figure 3. The performance graph while learning the average function.

128

3. SECOND LAYER

Having trained the basic calculating blocks, we now turn to describe the implementation of
the second layer. In this section we describe how input images were created and how the
Hebbian network was implemented. For reasons of technical convenicnce I chosc to work
with images consisting of 12x12 pixcls 1. Since the average function is not defined for pixcls
on the edge of the image we do not create sensors for them. This means that from a 12x12
pixel image we actually get only a 100 sensor segments, instead of the expected 144. In
order to supply the images needed to train the second layer, a random generator for images
was created. The random images created are not literally random. The generator randomly
selects two chords through the image. The chords divide the image into four parts. To
each of the above parts the generator assigns a random color 2. To make the model more
realistic the intensities were summed with noise.- Each pixel in the image was augmented by
a random brightness value between 0 and 20. The same experiment was run without noise,
the results of which are given in section 4. Sample input images are shown in figure 4.

Figure 4. Three typical images created by the random image generator.

An adjacency matrix M of size 100x100 is initialized to zero. M will hold the learned distance
between each pair of sensors. The distance between Sensor(z1,y1) and Sensor(zs, 1) is the
Euclidian distance d = \/ (z1 — 2)? + (y1 — ¥2)?. In the adjacency matrix this distance will
be given in M(4, j) = M(10z; + y;, 10z; + ;).

At each iteration, after an input image is supplied the 100 outputs of the basic nets are
calculated. These outputs are then fed as inputs to the second layer. For each pair of such
outputs we update the learned adjacency matrix as follows,

M109:1+y1,10:r:2+y2 (n+1) = MlOw] +41,1022+y2 (n)+7l|0UtPUt(5'6n30T (xl’ yl))—OUtput(Sensor (2:2, y2))|

This weight updating formula serves as the implementation of the Hebbian learning. Each
entry in the adjacency matrix, corresponding to two sensors, holds the weight of the con-

1The number of basic nets neoded is roughly the number of pixols in the analyzod image. Larger picturcs will bo computa-

tionally intense since the size of the Hebbian network connecting all the sensors is quadratic in their number.
2A color in this case was just & number belween 0-235

129

nection between them. Notice that a large difference between sensor outputs causes a large
increase to their corresponding weight. This gives us the desired effect. Sensors that are
far apart are likely to have different outputs, therefore the corresponding weight between
them in the Hebbian net would often increase. Whereas sensors which are very close to one

another will usually exhibit similar outputs and the corresponding weight between them will
remain relatively low.

The main claim is that, if a sufficient number of images are presented to the net, the resulting
learned adjacency matrix is proportional to the actual distance matrix D (see figure 8) 3 The
proportionality factor between the two matrices can be found in two ways. One way, is to
calculate the factor C' that minimizes The total error, min||CM — D||. This method was
not chosen. Alternatively, notice that the largest entry in the actual distance matrix D is
of size 10+/2 corresponding to pairs of sensors in opposite corners. If the two matrices are
proportional to each other, then the scaling factor must be equal to the ratio between the
largest entry of M (the learned adjacency matrix) and 10v/2. Although the scaling factor
achieved by the first method clearly reduces the average error, we chose to use the second
mcthod. The rcason was that the sccond method docs not require the usc of D (the actual
distance matrix) 4.

3The matrix D holds the actual distance between all pair of sensors. The distance between sensor(z;,y;) and sensgor(zj,y;)
is given in the distance matrix D in position

D(i, §) = D(10z: + 44,10z + y5) = 1/ (@1 = 7)? + (s — 45)2

1For every NxN image the scaling faclor is N+/2. There is no need 1o find the largesl entry in the actual distance malrix.

130

4. RESULTS

For visualization purposcs the learned adjaccncy weight matrix was rescaled to the range
0-255 and prescnted as a gray scalc image. Given in the figures below arc the learncd adja-
cency weight matrices after 10, 100, and 1000 images ware presented to the network.

Figure 5,6. Learned adjacency matrix for 10 and 100 images.

For visual comparison, I present in figures 7 and 8, M the learned adjacency matrix and D
the matrix created by calculating the Euclidian distance between each pair of locations on
the original imagc.

Figure 7,8. Learned adjacency matrix for 1000 images and the actual distance matrix D.

131

Numerical Results

In the table below all errors given are in pixel length units. Both D and M are of size NxN,
N=100

number of images Maz|Mi; — Digl 5z oy |Miyj — Digl Fy/Tig(Mij — Dig)?

10° 11.890 4.0696 4.7607
10t 7.3089 2.0748 2.6034
102 4.9418 1.1954 1.4874
103 4.7736 1.2661 1.6169
104 4.7642 1.2158 1.5554

5. DISCUSSION

I will argue later that the errors displayed in the table are sufficiently small. Nevertheless
after processing a large number of images the largest error in distance is still about § pixels.
The exact reason for which is not known. However the errors are distance errors between
each pair of sensors. This means that statistically each sensor is displaced by only half of
that. Moreover the sensors close to the borders of the picture suffer from border effects.
Thus the near border sensors are responsible for most of the average error. In a second
experiment I measured the errors corresponding to centrally located sensors. The errors
found were typically less then one pixel.

Now consider the average error, the second colum in the table. Notice that it is less the 1.3
pixels in length. That means that the weights in the Hebbian net give an almost correct
distance estimate to each pair of sensors °. These results are satisfactory. Using these
distances we can initiatc a sclf organizing rclaxation process that achicves an accurate map
of the actual scnsor locations on the retina. This process, although not complicated, is out
of the scope of this paper and will be dealt with in a subsequent article.

One surprising result was that using a very basic local function like a weighted average over
& nine dimension input vector (or a 3x3 matrix) was sufficient to learn the correct sensor

5In our case we have a 100 sensors, which means thal we oblained for each sensor 99 almost correct distances o olher sensors

132

distances, i.e to learn the matrix D. Moreover I managed to get very similar results while
running the learning process using a wide variety of local functions. These results are not
shown in this paper. It seems that the choice of the local function is almost irrelevant.

The corelation between neighboring regions was always sufficient to build a full and correct
distance map.

Not included in this paper are experiments which I made with different characteristics for
the generated images. One set of those images were divided to more then 4 colors and with
more noise. A feature of these experiments was much slower convergence. Moreover much
faster convergence was achieved by using a different set of images. The later were divided
by only one chord and assigned only two colors (instead of four), they were also not added
with noise.

6. SUMMARY

Overall, the results achieved, are accurate enough to demonstrate that global knowledge re-
garding the relative distances between sensors on the retina can be achieved while processing
their outputs, and the corelation between them, i.e no description of their actual geometric
physical setup is needed. Although this is not shown here, the data learned by the Hebbian
net is perfectly sufficient to restore the original location of each of the sensors. Moreover the
same task can be performed by the Hebbian net regardless of the local functions calculated
by the first layer.

ACKNOWLEDGMENTS

I thank professor Willard Miranker for his help with writing this paper.

133

134

A Game Theoretic and Genetic Algorithmic Approach to
Modeling the Emergence of Mind in Early Child Development

with Exposure to Semi-Developed Parents

‘ James Logan
Yale University, Department of Computer Science
New Haven, CT 06520

Abstract

We use a genetic algorithm to study a child's development of mind in a game theoretic
environment modeling the interaction with parental figures. The development of mind is
investigated when the child is exposed to both a developed parent and a semi-developed
parent, one whose game strategy is optimal or not optimal respectively. This provides a
model for how a child's interaction with both a parent and an older sibling can affect their
development. As the quality of the sibling's play decreased, the child's development was
slowed. Also, when the exposure time to the sibling was increased, relative to exposure
to the parent, the child's development was slowed.

Keywords: genetic algorithm, game theory, development of mind

1. INTRODUCTION

Early in life, children develop an awareness that their mind is disjoint from the
environment. Understanding how this development matures and comes about is an active
topic of psychological research. This maturation of awareness is affected by the
interaction with parents during early development[1]. This parental interaction can be
generalized to two types of responses to a child, "mentalizing" and "non-mentalizing". A
mentalizing response would be one in which the parent responds to the child in such a
way that acknowledges the child's state of mind. This could be by relating the child's
actions to how they are feeling, thus linking the action to a mental state. A non-
mentalizing response would be one in which the parent is responding directly to the

child's actions without linkage to how the child is thinking or feeling[1]. However, a child

135

is rarely exposed to only one parent during this development.

We will model the interaction of a child with a fully developed parent and a
semi-developed parent, which we will refer to as a “sibling” herein. The real life basis
for this interaction would be a child who interacts with his parent for a period of time
followed by interaction with an older sibling for a period of time. This interaction should
affect the child's development as the strategy he encounters will alternate.
Hypothetically, this might slow the child's development as it will make the child more
likely to misinterpret the strategy as a whole.

To model the development and interaction with a parent, we use a game theoretic
approach adumbrated by Miranker and Mayes. The model was originally implemented
by Vladimir Barash and is extended to include multiple parent interactions and
investigation of that arrangement. This model uses a variant of the game Prisoner's
Dilemma in a recurrent form to model the interaction between parent and child. A
genetic algorithm is utilized to model the development of the child's emergence of mind
through fitness from the game derived from increasingly good memory selection.

In section 2 we discuss the model set up and how it aligns with the interaction
with a parent and sibling. Section 3 will discuss the experiments performed and their
results. Section 4 will provide conclusions drawn from these results. Overall, the results
of the experiments are that with increasing exposure to the sibling, the child's
development is slowed and when the sibling's development is reduced the child's

development is also slowed.

2. THE MODEL
2.1 Game Theoretic Environment
To model the interaction between the parent and child, a modified version of iterated
Prisoner's Dilemma will be used. The game consists of iterative steps that result in a
changes to the fitness level of the child. The parent's strategy is not based on a payoff
system; the parent's strategy is fixed during the experiment. The moves are Intuition and
Mind for the child and Attention and Ignore for the parent. The child wants to get
Attention from the parent, and also wants to use his Intuition instead of building his

Mind. This models that there is a cost involved with using his Mind, so he prefers to
136

utilize his Intuition. The parent wants the child to develop his Mind, but prefers Ignoring
the child to paying it Attention. This models that the parent has a cost associated with
paying Attention to the child, while Ignoring the child and having him develop would be

ideal to the parent. The payoff matrix is shown in the following table (payoffs are listed
as parent, child):

Attend Ignore
Mind RR S, T
Intuition T,S PP

Figure 1: Payoff Table
This model becomes a Prisoner's Dilemma when TSR>P>S. This models the desired
interactions as described above.

2.2 Genetic Algorithm Mind Model

The strategies of the parents in this ﬁlodel are held constant in order to isolate the child's
development. It is assumed that the parent is at a constant stage of development, and thus
the ﬁarent's strategy should not be fluid during the interaction. The strategy of a fully
deﬁéloped parent will be to play a "tit for tat" strategy. This strategy plays Attend if the
child last played his Mind or plays Ignore if the child last used his Intuition.

The child's play consists of two options, a random play or a memory based play.
At: 'ﬁﬁe beginning of play, the child's choice of play is 50/50, because the child has no
development of memory at this point and so plays randomly; the child simply chooses
random plays. The child's fitness is increased by an amount equal to the payoff. The
child then determines whether or not to memorize this play. This determination is done
- by checking against a random variable and a memory is created, as follows.

The child's memory is structured as a list of sequences of plays. Bach sequence
contains a list of tags, which are a set of 2 moves (1 for the parent and 1 for the child).
Each sequence is also assigned a weight. This weight represents how beneficial the
sequence is for the child to follow, and is given a relatively small value when first
specified, based on the overall increase of the child's fitness based on the series of plays.
(which initially will be low due to the short length of the sequence)

If the child chooses to use his memory, then the child searches his memory for
tags that agree with the last sequence of plays beginning with the last play of the parent.

If one or more sequences is found, the child orders the tags based on their weight and
137

plays the first move in the sequence with the greatest weight. If the parent's subsequent
move is the same as the next tag in the sequence, the sequence is continued, with the
child playing the corresponding move in the next tag. The child continues to follow out
the sequence unti] either he reaches the end of the sequence or the parent deviates from
their move listed in the sequence. Once the parent deviates from the sequence's
predicted moves or the child's tag sequence runs out, the child makes a random play. If
the payoff from this play is is greater than a specified constant then the payoff is added to
the child's fitness and the weight of the tag is increased, otherwise it is subtracted from
the fitness and the tag's weight is decreased. If the child's sequence is at an end, the
random move is added to the end of the sequence. If the parent has deviated from the
moves in the sequence, the beginning of the sequence (the part that has been traversed) is
used to create a new sequence with the deviating parental move and the child's move
added on. Once the sequence has been completed, the child then begins again and either
plays randomly or searches his memory for another sequence. For an example of
memory generation, see Appendix A.

2.3 Exposure to Multiple Parents

The extension to this model is the exposure to the child of parents with different
strategies. The first parent's strategy will be a "tit for tat", as described above. A second,
less developed parent, or sibling, will be modeled with the same strategy, but with a
random deviation from that strategy. The sibling's deviation will occur if a random
variable, constrained between 0 and 1, overcomes constant threshold, A. The value of A
can range from 1 (being a fully developed parent) to .5 (being random in choice
selection).

We will model the child playing with the parent for a period of time and then
playing with the sibling, with repetitive exposure. To do this, the iterations of the
Prisoner's Dilemma game will alternate between the parent and the sibling, with exposure
to each spanning multiple turns. For example, the developed parent would be exposed to
the child for 10 iterations, or turns, followed by 10 turns of exposure to the sibling. The
repetition represents multiple exposure to both participants. A single 'run’, or a single
instance of the game, will consist of 100 iterations. The model for the child's memory
will be reset for each run by removing all sequences and setting the child's fitness back to

138

zero. The goal will be to determine what the effect of the exposure to multiple parents

will have on the development of the child's development.
3. EXPERIMENT
3.1 Overview

First, we ran the model with no interaction with a sibling in order to produce a baseline to
compare with. Second, we ran the model several times with both the fully developed
parent and the sibling, altering the development of that sibling. Third, we ran the model
with a fixed development of the sibling, or A value, while changing the frequency of
parent-sibling interaction.

The information we are trying to extract from the model is at what point the child
develops a strategy that allows him to play the game effectively. That is, the child has a
development of mind at this point that allows him to play successfully. This effectively
results in the child's fitness exploding. We want to see the effect of exposure to multiple
caregivers on thé time for the child to develop this strategy. To measure this, we ran the
game (for 100 child plays) 40 times and noted the number of child plays, or turns, until
the child's fitness rose above a specified threshold, sufficiently high to indicate when the
fitness has exploded. For each trial of 40 runs, there are several that do not ever exceed
the threshold. This means that the child's fitness has never exploded, herein referred to as
the run “maturing”. These runs are not included in the figures but their number is noted
in the text. For a more detailed descriptioﬂ of how this threshold is used and an example
run, see Appendix B. '

3.2 Exclusive Parent Exposure

These runs included no interactions with a sibling and provide a basis of comparison (see
Figure 2). During this trial, in which 5 runs did not mature, we can see the the majority
(22) of the runs matured before 55 turns, with the remaining maturation trailing off
toward 100 plays. The mean and standard deviation of time to mature are 53.57 turns and
17.51, respectively.

3.3 Exclusive Sibling Exposure

For this trial, the child is exposed only to a sibling with an A value of .75 (see Figure 3).
We see that the maturation of the runs is delayed, with most occurring between 40 and

80. This trial also exhibit a distribution that more closely resembles a normal
139

12, T T s ¥ T T T T T T

Number otRims

65

Tufizte Exeéed Toredhivld

Figure 2: Exclusive Parent Trial

12 s T S r R S .

Number.of Fiues

it A EXCoRd Theebliold.

Figure 3: Exclusive Sibling Trial
140

distribution. During this trial, 4 runs did not mature. The mean time to mature was 59.17
turns and the standard deviation was 17.13.

3.4 Comparison of Different Levels of Sibling Development
For this series of trials, the child is exposed to the fully developed parent for 10 turns
followed by the sibling for 10 turns, repeated 5 times. The sibling's 'A' value, which

determines the randomness of their plays, is tested at several values and shown for the

values of .65, .75, and .85.

ot e

&,

“imiberoitfung

| Tore 1 Excesit Thréskiold

Figure 4: Sibling with A=.65

For the run with A=.65 (see Figure 4), it is obvious that exposure to the sibling is
affecting the child's development. The explosive growth of these runs is occurring much
later than in the exclusive parent trial, as shown in Figure 4. During this trial, there are 6
runs that fail to mature. The mean time to mature is 57.36 turns with a standard deviation
of 19.09.

When the A value is increased to .75, as shown in Figure 5, the bulk of the
exponential growth occurs between 40 and 70 turns, with 2 runs failing to mature. As

expected, the increase in A value has decreased the overall time to converge for most of

141

agg 1 T 13 it 1 T L34 T T T

A "'

Hiiniber ot Bims

R) 1 i 1 3 ? Hf

Turis'ts Bxceed Thréshold

Figure 6: Sibling with A=.85

142

the runs. The mean maturation time was 55.29 turns with a standard deviation of 18.01.
On the third trial, with A=.85 (see Figure 6), the time to mature decreases overall,
although less pronounced than the previous change, to a mean of 54.92 turns with a

standard deviation of 17.72 turns. Two runs failed to mature.

A Value Mean Stand Dev. Non-Maturing
0.65 57.36 19.39 6
0.70 56.54 18.38 5
0.75 55.48 18.31 2
0.80 55.16 16.66 4
0.85 54.92 17.72 2
0.90 55.08 1591 2
0.95 52.21 15.39 1

Table 7: Statistics of Trials vs. Changing A Value
Overall these runs show that as the sibling's development is decreased from that
with no sibling exposure, the effect on the child is a slow down of maturation of fitness.
The mean time to mature and the.standard deviation both decreased as the A value of the
sibling decreased. The number of ndn-matun'ng runs showed a trend of decreasing

overall, with a single outlier. See Table 7 and Figure 8 for results.
70 4
67.5+
65
62.5
60
57.5
85 -
52.5
50 -
47.5-
45
425

Average Turns to Exceed Threshold

40
0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 09 09 09 09
3 5 8 3 5 8 3 5 8 3 5 8
A Value

Figure 8: Changing A Value vs. Turns to Exceed Threshold

143

3.5 Comparison of Different Levels of Sibling Exposure

Next we examine the effects of how siblings affect how the child's mind develops, we
adjusted the amount of time that a child interacts with the a parent and a sibling. The
base comparison run, that with a sibling with an A value of .75, is shown in Figure 5

above. The first trial exposes the child to the

12 e T e e, s . ’. e e e —

NirberofRans

Figure 9: Exposure Skewed to Developed Parent
developed parent for 15 turns, followed by 5 turns with the sibling, repeated 5 times. The

next trial flips the exposure, with the child seeing the sibling for 15 turns and the fully
developed parent for 5 turns. We would expect that longer exposure to the sibling would
delay the child's developmént

In the first trial, shown in Figure 9, the maturation time was shorter than in the
non-skewed case as expected, with 3 runs not maturing. The mean time to mature was
55.16 turns with a standard deviation of 16.57. This aligns with our prediction as the
child is being exposed to the parent for the bulk of the time of the experiment, and thus
the retardation introduced by the sibling does not have as much effect on the results.

When the child is exposed to the sibling for the longer period, the time to mature
144

is increased from the base case, but still only has 3 runs not maturing. (see Figure 10)

The mean time to mature for this trial was 57.86 turns with a standard deviation of 19.65.

N
-t
-
]
e

Hurtier of Rury

Figure 10: Exposure Skewed to Sibling
This trial shows that the randomness of the sibling affects the ability of the child

to achieve it's convergence on a strategy, which is what was expected. The longer the
sibling was exposed to the child, the longer it took the child's mind to mature, as seen in
Figure 10. Also, the increasing exposure to the sibling spread the distribution of the
maturation times. However, it seems that the number of runs that didn't mature were not

affected greatly by the change in time exposed to the sibling. These observations are

summarized in Table 11.

Sibling Mean Stand Dev. Non-Maturing
Exposure
0.25 55.16 16.57 3
0.5 55.48 18.31 2
0.75 57.86 19.65 3

Table 11: Statistics of Trials vs. Sibling Exposure

145

4. CONCLUSION

The results suggest that as the child is exposed to a sub-optimal strategy it
becomes harder for him to converge on a sequence of plays that dominates the playing
ability of the parent's optimal strategy. As the A value of the sibling is decreased, and
thus the sibling's development decreased, the child's development is slowed. The child's
memory development is retarded due to the inconsistent strategies that the sibling
exposes him to. This A value can be linked to the a physical attribute of the parent's
condition. For example, a decreasing A value could represent an increase in depression
on the part of the parent or a decrease in the parent's ability to focus on raising the child.
The exposure to a sub-optimal strategy does slow the child's development, but the effect
that is more pronounced is the increase in unpredictability in the maturation time of the
child's development. This result could be interpreted as showing that although a child is
overall hindered by exposure sub-optimal parenting, the child's development would also
be less likely to be in synchronization to other children. In other words, the child may
mature faster or slower than his peers as the unpredictability of his development has

increased.

5. REFERENCES AND ACKNOWLEDGEMENTS

1. Mayes and Miranker, A Game Theoretic and Genetic Algorithmic Approach to
Modeling the Emergence of Mind in Early Child Development

I would like to acknowledge Willard Miranker for his supervision and guidance

on this project and also Linda Mayes for her perspectives on the psychological aspects of

the experiments.

146

6. APPENDICES

Appendix A

To illustrate how the memory is formed, we show the memory generation on a half run

without sibling interaction,. The symbols used are 'T — Intuition, 'M' — Mind, 'A’ ~

Attention, and 'G' — Ignore. Following the sequence it the weight assigned to the tag,

Memory after 5 moves

[M,A], 0.050
IM,G,M,A], 0.060

As you can see, the initial sequences formed are relatively short and have low values for
their weights due to the low payoff that playing these sequences generates. Note that the

longer sequence, although

Memory after 10 moves

[M,A], 0.050
M,G,M,G,1,G], 0.106

Memory after 15 moves
.IM,A,M,G], 0.086
M,GM,G,I,G,M,A], 0.124

Memory after 20 moves
[(M,A,M,G,,G,ILA,LA], 0.149
M,GM,G,1,GM,A], 0.124

Memory after 25 moves
[M,AM,G,I,G,I,LAM,G], 0.383
M,GM,G,I,GM,A,1,G,1,G], 0.279
[M,A,M,A], 0.050

Memory after 30 moves
M,AM,G,I,G,LA,LA,LG], 0.450
M,GM,G,I,.GM,ALG,I,G], 0.279
M,AM,A}, 0.050
M,AM,G,I,G,1,G], 0.085
IM,AM,G,I,GM,G], 0.166

Memory after 35 moves
M,AM,G,],G,LA LA LG}, 0.450
IM,GM,G,I,GM,A,I,GM,A}, 0.617
M,A,M,A], 0.050
IM,AM,G,1,G,1,G}, 0.085

147

M,AM,G,L,GM,G], 0.166
M,GM,G,I,GM,G,1,G], 2.018
M,A,LG], 8.050

Memory after 40 moves
M,AM,G,I,GLA,LAIG], 0.450
M.,G,M,G,I,GM,A,LLGM,A], 0.617
M,A,M,A], 0.050
M,AM,G,1,G,1,G], 0.085
M,AM,G,I,GM,G], 0.166
M,G,M,G,I,GM,G,L,G], 2.018
M,A,1,GM,A], 18.780
M,G,M,GM,G,LG], 321.905

Memory after 45 moves
[M,AM,G,I,G,LA,LLA 1G], 0.450
M,G,M,G,,GM,A L,GM,A], 0.617
[M,A,M,A], 0.050
[M,AM,G,I,G,1,G], 0.085
M,AM,G,I,GM,G], 0.166
M,G,M,G,I,GM,G,L,G], 2.018
M,A,LLGM,ALG,LALA], 2422.438
M,G,M,GM,G,I,A], 5815.975
[M,A,1,GM,AM,A], 2747.032

Memory after 50 moves
[M.AM,G,L,G,ILA,LLA 1G], 0.450
M,G,M,G,I,GM,A,LLGM,A], 0.617
[M,A,M,A I,G], 197786.497
[M,AM,G,I,G,1,G], 0.085
M,AM,G,I,GM,G], 0.166
M,GM,G,I,GM,G,I,G], 2.018
MA,LGM,ALG,LAIA], 2422.438
M,G,M,GM,G,LLA], 5815.975
M,A,LGM,AM,A,LG], 13735.182
[M,AM,A 1G], 197786.497
[M,G,M,A,L,G], 131857.658

148

Appendix B

This experiment's key observation was the time of maturation of the child's mind.
An example of a single run is shown in Figure A1. As you can see, the fitness of the
child stays relatively low until the point at which a “critical mass” is achieved; once that
point is reached, the child's payoff explodes. This critical quantity is representative of the
child's play maturing. For our trials, the threshold to determine

Ghild's Fifness.

T N I T R I I R S R [
e 10 2q 30 40 &0 60 70 80 90 100
Numbet.o¥ Tﬁlﬁé’:ﬂl@\g&d‘
Figure B1: Example run

reaching of maturity was Fitness=105. This threshold was chosen because, as seen in
Figure B1, the fitness can bounce around quite a bit before reaching the point of interest.
In our trials, we ran 40 runs and used the point at which the fitness exceeded the threshold
to determine the point of maturation. Any skew caused by the somewhat high threshold

value remains constant throughout the experiments, and thus can be disregarded.

149

150

Performance Analysis of Different
Neurogenetic Behaviors

Yihui Qian
Department of Computer Science
Yale University
New Haven, CT 06520, U.S.A.
Email: yihui.qian@yale.edu

Abstract — Neural networks have been proved to be good modeling tools for simulation
of neurogenesis phenomena. In this paper, after developing a feed forward neural network,
we analyze the performance of different neurogenetic behaviors. We investigate the effects of
the proportion of replaced neurons, the distribution of the replaced neurons and the neuron
selection criteria. Through simulation and analysis, we show that the learning speed of neu-
ral networks can be improved by increasing the number of replaced neurons, or by changing
the distribution of replaced neurons appropriately, or by replacing those neurons with large
weights.

Keywords — neurogenesis, apoptosis, neural network, hippocampus

1. INTRODUCTION

Neurogenesis in mammals, the fact that new brain neurons are born and developed even
in adulthood, is a recently discovered phenomenon and has been widely accepted. It has also
been demonstrated that the adult neurogenesis in mammalian species occurs in the dentate
gryrus (DG) of the hippocampus and in the olfactory system (Eriksson et al, 1998). Since
the hippocampus is prominently identified with short-term memory functions, long-term
memory retrieval and emotion related activities etc., it is suspected that neurogenesis plays
a key role in many memory related activities.

Recent studies have shown that neurogenesis favorably informs memory development
(Chambers et al, 2004). However, there are still some questions remaining to be inves-
tigated regarding functional significance of different kinds of neurogenetic behaviors. For
example, what is the relationship between the number of replaced neurons and the effect it
brings to brain activities? Does the distribution of replacement also affect the performance?
Furthermore, is the replacement deterministic or random?

In this paper, aiming to answer these questions, we build a feed forward neural network to
simulate the neurogenesis process and study the performance of various neurogenetic behav-
iors. Specifically, the performance is referred to as the mean convergence time for learning
process and the quality of recall process in a noisy environment. With these two perfor-
mance metrics, three experiments are conducted: 1) neurogenesis simulations with different

151

proportions of replaced neurons; 2) neurogenesis simulations with different distributions of
replaced neurons; and 3) neurogenesis simulations with different neuron selection criteria.

The remainder of this paper is organized as follows. The experiment model is introduced
in Section 2. The experiment results are presented in Section 3. We provide analysis and
discussion of the experiment results in Section 4. Finally. we draw our conclusions and out-
line some future work in Section 5.

2. EXPERIMENT MODEL

2.1 Training and Learning Datasets

In our experiments, two character sets are employed as the training and learning datasets.
First, the Roman alphabet is applied to train the network. Then the Greek alphabet, which
has 14 letters in common with Roman, is presented to the network. Each character of both
alphabets is encoded as a 7 x 5 pixilated image. The encoding of the characters in our
experiment is the same as that in (Miranker, 2004).

2.2 Network Architecture

Human hippocampus is comprised of three layers — an input layer (Entorhinal Cortex),
a middle layer (DG) and a final output layer (CA3). The Entorhinal Cortex is projected
to the DG layer via modifiable perforant path axodendritic connections, and the DG is
projected to CA3 via modifiable mossy fiber axodendritic connections. In order to capture
the characteristics of this system and obtain meaningful simulation results, we build a three-
layer feed forward network — one Input layer, one Middle layer and one Output layer — to
model the process.

The Input layer, Middle layer and Output layer has 35, 16 and 35 neurons, respectively.
The nodes in neighboring layers are fully connected, but there are no intra-layer connections
between the neurons in the same layer. Each neuron in the Middle and Qutput layer also
has a firing threshold (bias) applied to it.

The Log-Sigmoid Transform Function

1 —e %%
Y= Trem g

is used as the transformation function for the Middle and Qutput layer, where Y; is the
output of the k-th neuron and Vj is the k-th neuron’s weighted sum of inputs. Note that
the log-sigmoid function provides a computationally equivalent simulation to the somato-
dendritic activation in hippocampus (Chambers et al, 2004).

2.3 Simulation Settings

Weights and biases initialization are performed as follows. The Input-Middle layer
weights are uniformly randomly chosen from the interval [-1, 1], and the Middle-Output

152

layer weights are uniformly randomly chosen from [-0.01, 0.01]. These choices have been
shown to be appropriate for the character recognition task (Chambers et al, 2004).

We use back propagation training with adaptive learning rate algorithm! as the training
method for both Roman and Greek learnings, since this algorithm provides an effective
learning mechanism with a relatively fast convergence rate. :

The simulation has two phases. The first one is the learning of Roman alphabet and the
second is the learning of Greek alphabet.

o The learning of Roman

The encoding of the whole alphabet, which is a binary valued 35 x 26 matrix,
is presented as input. The training target (expected output) is the same as the
input matrix. In terms of training parameters, we set the training goal as MSE
(mean square error) < 10~2 and the maximal training epochs as 1000.

o The learning of Greek

After the Roman alphabet is learned, the Greek alphabet is presented to the
network. The number of maximal training epochs is still fixed as 1000, but the
learning goal is set to MSE < 5 x 103,

" The apoptosis and neurogenesis process are simulated via re-initialization of appropriate
Middle layer neurons. The re-setting of a neuron’s weights in random manner models the
process in which that neuron dies and is replaced by a nascent neuron.

3. THE EXPERIMENT RESULTS

MATLAB 6.5 and MATLAB Neural Network Toolbox was used to build the network and
simulate the process. As introduced in Section 2, the number of neurons in Input, Middle
and Output layer is 35, 16 and 35, respectively. Moreover, the 16 neurons in the Middle
layer are numbered from 1 to 16 in each of the following experiments.

3.1 Experiment 1

In this experiment, we investigate the difference of performance caused by changing the
proportion of neurons undergoing neurogenesis.

The network is trained with Roman and Greek alphabets as explained above. The con-
vergence epochs for learning Greek is used as one performance metric. We conduct the
experiment with 0, 2, 4, 8, 10, 14, 16 neurons replaced, respectively. In each setting, the
lowest numbered neurons are selected for replacing, e.g. if the total number of replaced neu-
rons is 2, the 1-st and 2-nd neurons will be replaced. Because of the random initialization of

153

500+ 4

450} -

400} 1

Convergence epochs

360} .

300 E

L i 1 F i 1

250

0 2 4 6 8 10 12 14 16
Number of replaced neurons
Figure 1:

" Convergence epochs v.s. number of replaced neurons

Table 1:
The results of experiment 1

of replaced neurons 0 2 4 8 10| 14 | 16
Mean # of convergence epoches | 497 | 445 | 408 | 425 | 363 | 309 | 261

weights and biases, we repeat the simulation for six times for each setting and average the
results.

Table 1 and Figure 1 show the results. We can see that when the number of neurons un-
dergoing neurogenesis increases, the network needs fewer epochs to learn Greek. This shows
while the learning of Roman provides a good starting point for learning those common
characters in Greek alphabet, it may provide a poorer setting for learning those disparate
characters. Thus, the overall performance depends on which kind of effect plays a more
significant role. In this experiment, it is demonstrated that the negative effect dominates
the performance. Consequently, the learning speed of Greek is improved when more neurons
are replaced by nascent ones.

3.2 Experiment 2

In this experiment, we investigate the performance-distribution relationship of neuroge-
nesis process. The number of replaced neurons is fixed as 4, but we change the distribution

1Matlab. code “traingd”

154

Table 2:

The results for setting 1 of experiment 2 — the neurons undergoing neurogenesis are 13, 14, 15, 16

Convergence Epochs NSSE

1 341 1.7164

2 562 0.1625

3 441 0.6433

4 422 0.9893

5 508 0.2424

6 497 1.0184

7 653 0.2409

8 398 0.5133

9 456 1.5994
10 347 2.1934
Mean 462.50 0.9319
S.D. 96.53 0.7044

Table 3:
The results for setting 2 of experiment 2 — the neurons undergoing neurogenesis are 7, 8, 9, 10

Convergence Epochs NSSE

1 487 1.4753

2 511 0.1599

3 505 1.4093

4 609 1.1105

5 465 1.3327

6 581 1.0221

7 514 0.2584

8 500 0.2393

9 431 1.6407
10 476 0.2782
Mean 507.90 0.8926
S.D. 52.59 0.5932

of these neurons in each test.

Besides using the convergence epochs to evaluate the performance, we also use the sum of
error squares after recalling with noisy inputs as another performance metric. The meaning
of this value is explained as follows.

After training the network with Roman and Greek alphabets, we present the network

155

Table 4:

The results for setting 3 of experiment 2 — the neurons undergoing neurogenesis are 1, 5, 9, 13

Convergence Epochs NSSE

1 360 1.1862

2 541 1.4665

3 388 1.0275

4 355 1.6797

5 503 1.4905

6 340 1.2099

7 639 0.9650

8 380 2.6778

9 525 1.1491
10 394 0.6302
Mean 442.50 1.3482
S.D. 101.64 0.5540

Table 5:
The results for setting 4 of experiment 2 — the neurons undergoing neurogenesis are randomly
selected

Convergence Epochs NSSE

1 359 0.7601

2 436 1.3900

3 348 1.5011

4 1000 0.0445

5 272 1.2825

6 461 0.8268

7 441 0.5844

8 440 0.6874

9 890 1.1964
10 445 0.8385
Mean 509.20 0.9112
S.D. 238.50 0.4397

with a noisy input matrix. This matrix is 35 x 5 in dimension, consisting of noisy version
of five characters - say,A,B,H,K and ¥- in Greek alphabet. (The noisy input matrix can
be found in Appendix). The output is compared with the standard A, B, H, K and ¥ in
Greek and the difference is reflected by a scalar NSSE (noise input sum square error), which

156

is calculated as:
NSSE = GSSE{A}+ SSE{B}+ SSE{H} + SSE{K} + SSE{¥},

where 5
SSE{4} = Z(A,- - A)?
i=1

where A’ is the output after recalling with noisy version of A. SSE{B}, SSE{H}, SSE{K}
and SSE{¥} are computed in the same way.

The neurons in Middle layer are numbered from 1 to 16. The experiments are carried
out with the following four settings: 1) the replaced neurons are located at one side — the
replaced neurons are 13, 14, 15, 16; 2) the replaced neurons are located in the center —
the replaced neurons are 7, 8, 9, 10; 3) the replaced neurons are distributed — the replaced
neurons are 1, 5, 9, 13; 4) the replaced neurons are randomly selected.

As before, due to randomness of initialization, we repeat each simulation for ten times
and average the results.

The results are given in Table 2-5. Note that when the replaced neurons are distributed in
a scattered manner, the network learns faster than when the replaced neurons are clustered
no matter in the center or at one side. However, regarding recalling with noise, the clus-
tering distribution performs better than the scattered distribution, i.e. have a smaller NSSE.

3.3 Experiment 3

The third experiment is designed to test whether the neurogenesis process conforms to
some deterministic rules to select neurons to be replaced. The two selection criteria we
investigate are: 1) replace neurons that are used most often; and 2) replace neurons that are
used least often. For the first one, it aims to test whether the most frequently used neurons
tend to age fast and thus be replaced soon. For the second one, it aims to verify if the “use
it or lose it” theory can apply in the neurogenesis process — if a neuron is not used very
often, it will be replaced soon because of its uselessness.

To model these two processes, we calculate the SW (sum of weight squares) for each
neuron in the Middle layer:

35 35
SW{neuron k} = 3" [wis* + Y jwi|% k = 1,2, ..., 16

i=1 =1
where wy; is the weight between the i-th node in the Input layer and the k-th neuron in the
Middle layer, and wjy is the weight between the k-th neuron in the Middle layer and the
J-th neuron in the Output layer.

According to the definition, the larger the value of SW is, the more frequently the neurons
is used.

In'each simulétion, the number of neurons to be replaced is fixed as 4. As before, we use
both the convergence epochs for learning Greek and the NSSE of recalling with noise as the
performance metrics. We repeat each test for nine times and average the results.

157

Table 6:
The results for case 1 of experiment 3 — replace the 4 neurons with the largest SW

Convergence Epochs NSSE

1 363 1.2633

2 630 0.6642

3 496 0.6948

4 363 0.5904

5 319 2.1844

6 328 0.8909

7 395 1.9198

8 432 1.7544

9 262 1.9617
Mean 308.67 1.3238
S.D. 109.93 0.6386

Table 7:
The results for case 2 of experiment 3 — replace the four neurons with the smallest SW

Convergence Epochs NSSE

1 420 0.6310

2 303 1.1450

3 586 1.0471

4 498 0.5801

5 642 0.2625

6 512 1.1308

7 537 1.1421

8 484 1.3125

9 289 1.6748
Mean 474.56 0.9918
S.D. 118.97 0.4286

The results are shown in Table 6-7. We can see that selecting the neurons with largest
SW makes the network converge faster. However, in terms of noise recalling, selecting neu-
rons with smallest SW performs better.

4. ANALYSIS AND DISCUSSION

Experiment 1 shows that when the number of neurons undergoing neurogenesis increases,

158

the overall learning performance can be improved. It indicates that previous knowledge may
sometimes cause negative effect for the leaning of new knowledge. For example, a person
usually needs more time to learn a second foreign language than his /her first foreign language.
One of the reasons is because he/she needs extra time to memorize the similarities and
differences between these two languages. Under this circumstance, learning without former
knowledge outperforms learning with previous “disturbing” knowledge.

Experiment 2 shows that when the replaced neurons are distributed in a scattered man-
ner, the network converges faster but gets a worse recalling ability. On the other hand,
if the replaced neurons are clustered, the network learns slower but performs better under
noise recalling. This indicates that when the network has more time (relatively more con-
vergence epochs) to learn, its memorizing ability can be developed more sufficiently. As a
result, it performs more robustly under noise perturbing. In summary, if the replaced neu-
rons are scattered, short-term memory is improved, while long-term memory development is
impaired.

From Experiment 3, we have seen that replacing neurons that are used most often, which

with larger weights, can improve the network’s learning performance. This is indeed what
to be expected if we interpret the network’s behavior from an “infomax theory” perspective:

Let X and Y denote the Middle layer’s input and output respectively, with X; and Y;
being the i-th element. Let V; denote the induced local field of %-th neuron in the Middle
layer and let by, denote that neuron’s bias (k=1, 2, ..., 16). Then we have

35
Ve =) wi X + by, (2)
i=1
and) "
_e—a :
}/k - 1+eaVk . (3)

Since V}, is in the neighborhood of the origin, for each neuron k, we can approximate its
output as:
1-—-ev
1-(1-aV)+0(V?
1+(1-aV)+0(V?)
aV 1

DI 4 (4)
2

aV

Y =

Q

x(1+2—2K+(%)2+-~)

Q

2
av
o

Assuming b; is a Gaussian random variable with zero-mean and variance oZ, from (77),

e

159

each Vj is also a Gaussian random variable whose variance can be obtained as:

35
V&I(Vk) = V&I‘(Z WX + bk)

i=1

= Var(Zwkt)+ab (5)

E[Zwk,X E(th)]+,

i=1

where the second equation holds because "3, wy; X; and by are independent.

Therefore, the variance of each Middle layer neuron’s output is:

o3, = Va.r(ng)

a2
= —-—Var(V}c) (6)
= —{E[Z W X; — E(Zwk,X)] + ab}
t=1
The mutual information of X, Y can be computed as (Haykin, 1999):
I(Y;X) = log(o7 5)- (7)

Assuming the bias variance o7 is a constant, the mutual information I(Y’; X) is maximized

2
by maximizing the ratio ;—2—2—%3%—;5 The relationship of 62 and w; is given by (?7).
b =1 Tt

From (?7?) we have
% ~{E[Zwmx E(Zwkz)]+t
i is):wzz % Zw (8)

i=1
0(1)
4 (Zt—l w O'g)

Since of is a constant, (??) can be maximized by mmnmzmg ¥3, w;. This means that
replacing those frequently used neurons, which with large ¥°2° w;, by “naive” neurons, which
with relatively smaller 3%, w;, can maximize the Middle layer’s output. This can further
help to produce a more desirable output at the third layer.

However, with regard to noise recalling, replacing neurons that are not used very often
(those neurons with small weights) generates a smaller NSSE. This is because when it takes

160

more epochs for the network to converge, the network also has more time to learn. Hence
the long-term memory can be developed more sufficiently.

5. CONCLUSION AND FUTURE WORK

In this paper we have analyzed the performance of various neurogenetic behaviors after
building a three layer feed forward network and simulating the neurogenesis process. It is
demonstrated that the learning speed of the network can be improved while the number of
replaced neurons increases, or the replaced neurons are distributed in a scattered manner,
or the replaced neurons are those with large weights. However, with regard to recalling with
noisy inputs, the faster the network converges, the worse it performs under noise perturbing.

Further research is necessary for more conclusive results.

First of all, the simulation model needs to be further refined. Currently, we only use
back propagation algorithm to train the network, which is a supervised learning procedure.
However, the memory development in human brain is actually an unsupervised learning
process. Thus an unsupervised training algorithm, for example, the Hebb’s learning rule
would be more desirable for the simulation.

-Besides, we did not include lateral connections between neurons in the same layer in our
model. However, in real life scenario, lateral connections do exist between some neurons in
the same layer. Taking this factor into consideration may produce a more realistic model
and thus a more informative result.

ACKNOWLEDGEMENT

The author would like to thank Prof. Miranker for his guidance and advice.

REFERENCE

R. A. Chambers, M. N. Potenza, R. E. Hoffman and W. Miranker, (2004) “Simulated apop-
tosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks,”
Neuropsychopharmacology, Vol. 29, Issue 4, pp. 747-758, Apr. 2004

W. Miranker, (2004) “Apoptosis/Neurongenesis favorably informs memory development,”
Technical Report,, Yale University, DCS TR 1234, 2004

S. Haykin, (1999) Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999

P. S. Eriksson, E. Perfilieva, T. B. Eriksson, A. M. Alborn, C. Nordborg, D. A. Peterson,
and F. H. Gage, (1998) “Neurongenesis in the adult human hippocampus,” Nature M edicine,

161

Vol. 4, No. 11, pp. 1313 - 1317, Nov. 1998

Appendices I — Noise Version of A, B, H, K and ¥

Table 8:
Noise Version of A
11011010
0{11011}0
0{1101110
110]0i01]1
11111131
1{0{0}j0}1
11004011

Table 9:

Noise Version of B

of1411140
110010141
110j0j01}1
1114110
1{0]0j01}1
110{0}0141
1{1111110

162

Table 10:
Noise Version of H

0j0107011

110/0j0¢1
1{010j0]1

11010}0]1
11010011
11010}0}1

Table 11:
Noise Version of K

0j]0j1f0

0j0j0j01{1

1j0(0f1}0

1{110(0]0

110(1j0]0

1

110{0j01}1

Table 12:
Noise Version of ¥

0joj1f0](1

1{0({1]0]1
110111071

0j0j1401]0
0101140140
0j0(1(0f0

163

164

An Enhanced ASLD Trading System For
Traders and Portfolios

James Stewart and Bin Zhou
Yale University
New Haven, CT 06520

Abstract

An Adaptive Supervised Learning Decision Trading (ASLD) System has been devised
by Xu, Cheung and Hung in 1997 that is trained by best past investment decisions and
then makes a investment decision directly for the future. We use a Monte Carlo
method to test the ability of the ASLD System to make money over a larger number of
possibilities. Instead of only following one path to test the neural network, we
consider different possible future situations. Analyzing the results in terms of mean
returns, standard deviation and distribution, suggest further possibilities to enhance
the accuracy of the prediction.

1. INTRODUCTION

There are many kinds of neural network trading systems that use different
methodologies and different investment strategies to maximize trader profits. In 1997,
Xu and Cheung devised a trading system to learn the desired past investment
decisions through a supervised learning neural network (which can be concluded
through the dataset) that is called “Adaptive Supervised Learning Decision (ASLD)
network”™. This system is trained by the desired investment decision teaching signal,
and then it can make the decision to “maximize the profit”. They implement the
ASLD system by means of an adaptive Extended Normalized Radial Basis Function
(ENRBF) network and train the network by the Coordinated Competitive Learning
(CCL) algorithm which is described by L. Xu, and Y, M. Cheung, 1997.

Employing the ASLD trading system, we use Monte Carlo method to generate
different sample paths to predict different future returns. The results may be analyzed
in terms of mean returns, standard deviation and distribution, which may further
enhance the accuracy of the prediction.

165

166

2. ASLD TRADING SYSTEM

To demonstrate the Monte Carlo method effect in the prediction ability of the neural
network, we focus on only one asset for clarity. We assume the price of this asset at
time t is: z,. We suppose exactly one currency can be invested each day. At time t, the
trader can invest one currency on the asset, hold the asset without further investment
or sell the asset. I, denotes the trader’s investment signal at time t.

1) At time t, if the asset will keep on decreasing in the next g time steps
(prediction), the trader’s right choice is to sell it out at time t to avoid the
devaluation. In this case, we let I,= -1, which means the trader should sell the
asset at time t. 4

2) At time t, if the asset will keep on increasing in the next g time steps
(prediction), the trader’s right choice is to buy the asset at time t to make profit. In
this case, we let I,= 1, which means the trader should invest on this asset at time
t.

3) Otherwise, the trader’s right choice is to neither buy nor sell the asset at time t,
which means he will take a neutral position. In this case, we let 1,=0.

Specifically, I, is determined by:

Lif z>z,>.>2, >z,
1= Lif z, <z, <..<z,,,<z,,
0, otherwise

We suppose there exists a nonlinear relation among I,, I, and the asset’s price
history: I, = fl1,,,2,,2, is.-2,_4,,] Where dis the time lag which denotes the past
d steps which may influence the invest signal at time t. We shall use a neural
network to approximate this function 1.

3. EXTENDED NORMALIZED RBF NETWORK WITH
COORDINATED COMPETITIVE LEARNING

Input Hidden Layer Output Layer

Figure 1. Structure of an ENRBF network
As shown in Figure 1, the network consists ot three layers: an Input Layer, a Hidden

Layer and an Qutput Layer. There are d +1 neurons in the Input Layer, X neurons
in the Hidden Layer and only one neuron in the Output Layer.
According to the ENRBF methodology,

i(w!’.x+cj)exp[—0.5(x—mj)’ Z;‘(x—mj)]
y=r)=—
Zexp[—O.S(x —m,) X (x-m,)]

Where x, y correspond to the input, output. W; isa (d +1)x1 matrix which denotes
the j th neuron’s input weights. C; is the bias of that neuron. 7% is the center vector
of that neuron. Z is the receptive field of the activation function ¢() We usually
assume that Z; =O}21 and that o ,2 is estimated roughly.and heuristically. In fact,
we use 2 instead of O jz in the Multivariate Gaussian Function. Simon Haykin
regards this parameter as the Multivariate Gaussian Function’s “width” (Haykin,
Simon, “Neural Networks, a Comprehensive Foundation.”, page 275-276). In the

ENRBF network, we use (x ~ m y) Z;l (x-m ;) to define the induced local field.

¢(x)= exp (-0.5x). w.,cj,n},g are parameters of the network which need to be
learned through training,

167

168

We use the Coordinated Competitive Learning (CCL) algorithm to perform the

-training process. There are two kinds of CCL algorithms: Batch CCL Algorithm and

Adaptive CCL Algorithm. We use the former for the initial training of the network
based on the past data until the time t-1. Then we can predict the best trading
decision based on the trained network. We use the latter algorithm to update the
network. (Please check the paper “Adaptive Supervised Learning Decision Networks
for Trading and Portfolio Management,” published by L. Xu, and Y. M. Cheung in
1997 for detail)

4. AN ENHANCED ASLD TRADING SYSTEM BASED ON

MONTE CARLO METHOD
" . Teaining Data Set Teslillﬁ Da_qa Set

0 i
., Do

™ WA o
1.c-sqf‘ﬂ-~ ""&'\ ~. - -'M\—dw : _—- - _\kzﬁ‘v—\;;);‘\;‘* " "
,...m-_-_\‘l'\ﬂ’f,__.ﬂ.. e MM
1.2 4 - :

Figure 2. The USD-DEM rate series of 1096 data poines. Each horizontal bar represents 10 data points

Here is a figure comes from “ddaptive Supervised Learning Decision Networks for
Traders and Portfolios” written by Xu and Cheung. The authors use the past
USD-DEM rate data set from Foreign Exchange Market to train the network and then
use the trained network to produce a predicted testing data about the USD-DEM rate
series.

Fraining Data Set Testing Data Set

Figure 3. the Neural Network with Monte Carlo Method

We use the figure 3 above to illustrate our approach. Based on the figure2, it is

“possible to use Monte Carlo method to generate different branches to predict different
future returns at time t. Then we can analyze each possible gain generated by the
network through each predicted branch, the results can then be analyzed in terms of
mean returns, standard deviation and distribution. We can not test our idea because of
the problem of the Coordinated Competitive Learning (CCL) algorithm. We will
discuss the algorithm later.

1If we can implement the neural network, we may get the possible distribution result as
in Figure 4:
Possibility

40%

0.5

-0.5 0 Possible gain for investing
one currency after ¢ days

Figure 4. The possible distribution result generated by Monte Carlo method

Our data are drawn from the foreign exchange market, which contains detailed
information on the Eur/Usd rate from January 1998 through December 2004. We
assume that Euro is a normal good and we consider the Eur/Usd rate to be the price of
Euro.

For any given day t, we examine the Eur/Usd rate in the next q days from the
Eur/Usd rate data set to determine a rational behavior on the day t. If the rate will
keep on increasing in the next g days, we should invest on Euro. If the rate will keep
on decreasing in the next g days, we should sell Euros for US dollars. Otherwise,
we should neither buy nor sell. The behavior we got is the expected output I,.

169

We believe that the asset’s price history in the past d days and thie ifivestoi’s
behavior on the day t-1 can influence the investor’s behavior oni the day t. So thete
should be a relation among them: I, = f[I _,,2,,z2, ,......2,_,,,] Where dis the titiie
lag which denotes the past d days, which inay influence the invest signil on the day
t. For converiiefice, we usé thié log valie instead of the actual past @ days’ price arid
transform the value into notthalized inputs between 0 and1 (we compute the mininiuim
price MinP aid the maxiiium price MaxP dutitig 1998 - 2004, then we compuite
the normalized inputs: p,, e =P —MinP)(MaxP~MinP) . f P equals
10 MaxP , the tiottiidlized value is 1. If P equals to MinP, the niormalized value is 0).

© We try to implement the Extended Normalized RBF network with Coordifisted

170

Competitive Learninig algotithm, but we hiave been utsuccessful. According to the
algorithm, we have to compute the matrix Z-for the jth neuron and use the inverse of
the matrix, Zl, to update the neural network. We find that the matrix z;is not
invertible for some neurons because Z‘, can be a zero matrix in some situations.

Here is a part of the Coordinated Competitive Learning (CCL) algorithm. It is used to
updated the parameter Z‘, (Please check the paper “Adaptive Supervised Learning
Decision Networks for Trading and Portfolic Management,” published by L. Xu, and
Y. M. Cheung in 1997 for detail algorithun)

new 1 d L)
q; =’]7§I(J 'xl)

new 1 < .
m; =';,,.,—N§I(J|xi)xi

J

new 1 N - new new
Z_} =a;,mN§I(Jlx1)(xi"mj)(xl“‘mj)T

From the algorithm above, we find if there is only one I(j|x,) equals to 1 (others

equal to 0), Cjw= /N, "}W= x,, so that sz becomes a zero matrix (not

invertible).

We believe there may be some mistakes about the Coordinated Competitive Learning
algorithm in the original paper which presented by L. Xu in 1997. Because of this, we
can not develop our further research.

6. CONCLUSION AND FUTURE DIRECTIONS

We have been unsuccessful to employ the Extended Normalized RBF network with
Coordinated Competitive Learning algorithm. In the future work, if we can not fix the
error in the Coordinated Competitive Learning algorithm, we will use another
learning algorithm (maybe back-propagation algorithm) in order to test our idea, We
still believe that by using Monte Carlo method, we can test the ability of the Adaptive
Supervised Learning Decision Trading (ASLD) System to make money over a larger
number of possibilities. It is partly because we consider different possible future
situation instead of only following one path to test the neural network. By analyzing
the mean returns, standard deviation and distribution of each branch, we can get a
general view about how well the trading system will perform on a variety of different
possible price evolutions.

REFERENCES

- Y. Bengio, “Training a neural network with a financial criterion rather than a
prediction criterion,” in Proc. Fourth Int. Conf, Neural Networks Capital Markets,
A. S.Weigend, Y. Abu-Mostafa, and A.-P. N. Refenes, Eds., 1997, pp. 36-48.

2. L. Xu, “RBF nets, mixture experts, and Bayesian ying-yang learning,”

Neurocomput., vol. 19, no. 1-3, Pp- 223-257, 1998,
3. L. Xu and Y. M. Cheung, “Adaptive. supervised learning decision. networks for
traders and portfolios,” J. Comput. Intell. Finance, vol. 5, no. 6, pp- 11-16, 1997.
4. L. Xu, M. L Jordan, and G. E. Hinton, “An alternative model for mixture of
experts,” in Advances in Neural Information Processing Systems, J. D. Cowan, G.
Tesauro, and J. Alspector, Eds. Cambridge, MA: MIT Press, 1995, pp. 633—640.
5. L.Xu, and Y. M. Cheung, “Adaptive Supervised Learning Decision Networks for
Trading and Portfolio Management,” Computational Intelligence in Finance, 1997
6. Haykin, Simon, “Neural Networks, a Comprehensive Foundation.” New Jersey:
Prentice Hall, 1999

p—

171

	1
	2

