Yale University
Department of Computer Science

ARS MAGNA
The Abstract Robot Simulator Manual
Version 1.0

Sean P. Engelson Niklas Bertani

YALEU/DCS/TR-928
October 1992

This work was partially supported by the Defense Advanced Research Projects Agency,
contract number DAAA15-87-K-0001, administered by the Ballistic Research Laboratory.
The first author is supported by a fellowship from the Fannie and John Hertz Foundation

ARS MAGNA
The Abstract Robot Simulator Manual
Version 1.0

Sean P. Engelson Niklas Bertani

Abstract

Al planning research has historically operated in formal abstractions of the real world.
This approach was useful in discovering many fundamental issues underlying planning;
also, problems in simple domains such as the blocks world can turn out to be surprisingly
difficult. Lately attention has turned to planning for more realistic domains in which
micro-world simplifying assumptions do not hold. This shift of focus introduces a new
problem of validation and comparison of different planning theories and systems. A
proper domain for planning problems must be realistically complex but also simple
enough to support controlled experimentation.

To address these questions, we developed the ARS MAGNA robot simulator. The sim-
ulator provides an abstract world in which a planner controls a mobile robot. Mobile
robotics is a particularly apposite domain since it is a major application area for Al
planning techniques. ARS MAGNA’s environment and robot models are based on cur-
rent robotics research, so that the domain is reasonably realistic. At the same time,
we abstracted away from many (though not all) real-world details of kinematics and
motor control. Experiments may be controlled by varying global world parameters,
such as perceptual noise, as well as building specific environments in order to exercise
particular planner features. The world is also extensible to allow new experimental
designs that were not thought of originally.

This work was partially supported by the Defense Advanced Research Projects Agency,
contract number DAAA15-87-K-0001, administered by the Ballistic Research Laboratory. The
first author is supported by a fellowship from the Fannie and John Hertz Foundation

Contents

1 Introduction
1.1 Simulated Domains i e
1.2 Domain DesignIssues
1.3 Some Other Domains
14 AChangeofFocus,
2 Basic Concepts
2.1 World e e e e e e
2.2 Robot e e e e e
23 Time . . . o o i e e e e e e e e e e e e e e
3 Robot Programming
3.1 Preliminaries e e e e
3.1.1 Continuation-passingt
3.1.2 RESOUTCES .+ & v o v v v o o v e o oo v e e o oo oo o e a oo oo e
3.1.3 Documentationexample
3.2 Geometry and Odometry,
3.2.1 Representing geometry
322 Odometry i i e e e
3.3 Objects i i e e e e e e e e e e
3.4 Camerasand Perception
3.4.1 Designators L e e
3.4.2 Object matching,
343 Cameracommandsttt
3.5 RobotMovement,
3.6 Carrying Things ieeneeee..
3.7 Error Messages ot i i ittt e e e e e e

3.8 TheScheduler.

Simulation Parameters

World Design

51 Maps.

5.1.1 Placetypes
52 Robots.
53 Things

531 Kickers
5.4 Defining new attributes
5.5 Manipulations

5.5.1 Defining manipulations

5.5.2 Running manipulations
Running the Simulator

The Graphical Display
B.1 Place type graphics methods

RPL Interface
An Extended Example
The Command-Line Interface

Index

ooooooooo

.........

..........

CONTENTS

43

45

.............. 49

51

57

65

71

Chapter 1

Introduction

For many years, classical Al planning research concerned itself with relatively simple
formalised abstractions of the real world. This was necessary to be able to get a grasp on
the issues underlying planning; the methodology was also sufficient in that problems in
seemingly trivial domains, such as the blocks world, turn out to be surprisingly difficult.
Lately, however, attention has turned to planning for more realistic domains, such as
mobile robotics, in which micro-world simplifying assumptions do not hold. This shift of
focus introduces a new problem of validating and comparing different planning theories
and systems [2]. The difficulty is in devising a domain for planning problems that is at
the same time realistically complex and simple enough to run controlled experiments
in.

As an attempt at dealing with these problems, we have developed the ARS MAGNA!
robot simulator. The simulator provides an abstract world in which a planner may
control a mobile robot. This domain is particularly appropriate since there is growing
interest in mobile robots in the AI community as a major application area for Al plan-
ning techniques. We designed environment and robot models based on current robotics
research, so that the domain would be realistic. At the same time, we attempted to
abstract away from many (though not all) real-world details of kinematics and motor
control. Experiments may be controlled by varying global world parameters, such as
perceptual noise, as well as building specific environments in order to exercise partic-
ular planner features. The world is also extensible to allow for the development of
new experimental designs. While we hope that the simulator will be generally use-
ful, our design was influenced by recent work in reactive planning, particularly Firby’s
RAP system [4] and McDermott’s RPL language [7], as well as Agre’s work on deictic
representation [1].

! Abstract Realistic Simulation of Mobile robots for Analyzing Goal-achievement, Aavigation and
Adaptation

2 CHAPTER 1. INTRODUCTION

1.1 Simulated Domains

When designing an environment for experimentation in planning, there are a number of
issues of that must be addressed. There are three issues of versimilitude which describe
the ability of a domain to probe the limits of planning methods. First off, the world
must be sufficiently complez so that interesting problems may be posed. Second, the
world must not be completely controllable by the robot; there must be some uncer-
tainty in the outcomes of its actions. And third, the world should not be completely
observable; questions of sensing and reasoning about knowledge are finessed away in
perfect-information domains. These requirements all stem from the desire to evaluate
planning systems realistically—the real world is complex, incompletely controllable,
and incompletely observable. We chose to model a mobile robot in an indoors environ-
ment, basing our model on current research in robot sensing and control. This choice
satisfies the criteria above well—the world is both geometrically and ontologically com-
plex, robot actions may fail in realistic ways, and sensors are local and noisy. One
ancillary requirement stemming from real-world conditions is that control over time
properly lies in the simulator, not in the planner; ideally they should be implemented
as separate processes. The ARS MAGNA simulator is implemented using processes in
Lisp, providing asynchronous planning and action, with time controlled independent of
of the planner.

From the standpoint of the experimenter, the simulator must support variability, so
that complex experiments may be designed to elucidate particular features of planning
systems under consideration. We distinguish two types of variability: flezibility, such
that a wide variety of different test problems may be posed, and tunability, where var-
ious system parameters may be changed within a particular test scenario (eg, sensor
noise). ARS MAGNA provides flexibility in several ways: world structure can be spec-
ified, objects may have user-defined attributes, and manipulation methods may also
be defined. This all allows arbitrarily complex scenarios to be constructed, within a
uniform simulation framework. ARS MAGNA also provides a set of tunable parameters,
controlling sensor and effector noise, action speed, and robot dynamics. These param-
eters correspond to physically meaningful concepts, and so may be varied meaningfully
during experimentation.

1.2 Domain Design Issues

Examining current areas of planning research allows us to identify specific issues that
should be addressed in a simulation domain for planning. Several of these have been
identified by Al-Badr and Hanks in their critique of the Tileworld domain [2]. The
analysis below is abstracted, to some extent, from their discussion. They identify the
following current research problems in planning: exogenous events, the time cost of
planning, richness of world models, sensing and effecting, measuring plan quality, and
multiple agents. Qur work currently addresses only the first four of these issues. The
question of measuring plan quality is, as Al-Badr and Hanks note, properly the concern
of the planning researcher—‘goodness’ is not built into the world. Support for multiple

1.2. DOMAIN DESIGN ISSUES 3

agents is conceptually simple in the ARs MAGNA framework, and will probably be
incorporated sometime in the near future.

Exogenous events

The problem of exogenous events is how an agent deals with events in the world not
under its control. Other than the fact that such events occur, we can identify three
important qualities that exogenous events may have in a given domain. The first is
complezity—are the events structurally simple (eg, tiles appearing) or complex (eg, prey
hiding from the agent). The second quality is variability—how many different sorts of
events are possible? It is conceivable to have a domain with only one event; regardless
of that event’s complexity, great planner flexibility need not be required. Thirdly, we
wish events to be inkomogeneous and treat different parts of the world differently. An
example of a homogeneous event is the periodic ‘wind’ in the NASA Tileworld [8].
Homogeneous events are easier to deal with, since their effects on different objects
are similar. ARS MAGNA supports exogenous events through kickers?, intermittently
applicable procedures that may move or change objects in arbitrary ways. Kickers
are implemented as Lisp functions, and so inherit the full complexity and variability of
Lisp. Direct support is provided for common operations, such as moving objects around.
Since kickers are applied (usually) to specific objects, inhomogeneity is assured.

Handling time

There are three issues to be addressed as far as time handling goes: independence of
simulator time from thinking time, synchronization between the world and the planner,
and the ability to ‘skip ahead’ and speed up the simulation. To achieve ‘temporal
independence’, we use multiple threads of execution; simulator time proceeds as a
sequence of ‘ticks’, in each of which a quantum of action takes place in the world.
Synchronization is achieved by having robot actions call planner-supplied continuations
when important events occur. This method is open to abuse, due to its flexibility
(arbitrary bits of code can be executed in the simulator process space), but detecting
this is easy, so a modicum of discipline suffices to keep things clean. Time skipping is not
currently supported in ARS MAGNA, but it is easy to conceive of it being implemented
by increasing the action quantum. This would have the disadvantage of reducing the
temporal resolution (and hence the accuracy) of the simulation, but that problem is
inherent when skipping ahead in a simulation (unless an exact closed-form solution is
available, which it is not here).

Model richness

In analysing the richness of a world, we ask the following questions. Are many differ-
ent sorts of objects possible? Furthermore, are these different objects related to each
another in interesting ways (eg, categorization or functional interaction)? And can

2Thanks to Drew McDermott for this term.

4 ’ CHAPTER 1. INTRODUCTION

complex causal mechanisms be devised, either in terms of particular objects changing
over time and via interactions with the agent or the world (eg, eggs + mixing + frying
— omelette), or in terms of devices built out of other objects (eg, chassis + engine +
transmission + wheels — car)? ARS MAGNA, as noted previously, supports an unlim-
ited variety of objects in the world. Conceptual relations between objects are properly
in the agent’s mind, in terms of the relations between object attributes. So, a bird is
an object with wings and feathers (say). Functional relationships can be established
by world designer-defined manipulations—for example, the ability to lock a door is a
manipulation that relates a key to the door. Kickers can be easily used to define inter-
nal causal properties of objects. Composite objects are not currently supported, but
could probably be devised with some ingenuity (say, by a manipulation that uses two
objects, creates a third, and destroys the first two).

Sensors and Effectors

As we consider the sensors and effectors by which the agent interacts with its world,
we must consider four issues: bandwidth, noise, cost, and interface cleanliness. By
bandwidth we mean the amount of information the agent can gather or change about
the world, compared with the information actually there. For example, a color-blind
robot would not fare well in a world in which color was a functionally important cue.
Sensors and effectors must also be noisy to be realistic; we should also like the noise
level(s) to be adjustable in a meaningful way. Furthermore, sensing and effecting cost
the agent, at least in terms of time. Such costs must be part of the domain model,
and again, should be adjustable. And finally, for purposes of controlled experimenta-
tion, the interface between the agent and the world must be clean, well-defined, and
documented. Without this requirement, it is hard to be entirely clear about what an
experiment really measures. We have attempted to address all of these concerns in
ARs MAGNA. Objects in the world are defined by their location and attributes, all
of which can be sensed and modified (through manipulations). In fact, ARS MAGNA’s
object sensing models a combination of both top-down and bottom-up sensing, allow-
ing complex perceptual interactions to be specified by the designer. Other sensors are
provided for uncertain odometry, coarse perceptual matching and for categorizing types
of environmental structures. Range sensors are not currently modelled; however, at the
level of abstraction that we are operating at, this is not a severe loss. All sensors and
effectors have associated noise and error modes, all of which can be adjusted by the
experimenter. One of our most important system design goals was that the agent-world
interface be clean and conceptually simple. All sensor/effector operations are specified
similarly, using a small set of predefined data types when complex information is com-
municated. User-defined manipulations can be defined in a structured manner, and are
treated similar to built-in operations.

1.3 Some Other Domains

This section is not a comprehensive review of the literature. Rather, for context, we
discuss some systems with similar goals as ARS MAGNA in terms of the criteria above.

1.3. SOME OTHER DOMAINS 5
Tileworld

One recent effort whose goals are similar to ours is Pollack and Ringuette’s Tileworld
simulator [9]. The Tileworld domain is a game played on a grid, where the robot’s
objective is to push square ‘tiles’ into polyomino-shaped ‘holes’. Holes have limited
capacity, requiring reasoning about limited resources. Further, tiles, holes, and ob-
stacles can randomly appear and disappear, providing some uncertainty in the world.
Various parameters of the system may be adjusted via ‘knobs’, allowing for controlled
experimentation. The Tileworld is, however, fairly simple and controlled, as well as
completely observable (the robot is omniscient), as Al-Badr and Hanks point out in [2],
and hence it is hard to say whether it supports addressing fundamental issues of world
complexity, incomplete knowledge and prediction, and real-time planning.

Seaworld

Another simulator built as a testbed for Al system experimentation is Vere and Bick-
more’s Seaworld [12]. The simulator was developed for use in testing their integrated Al
agent, whose goal was to explore issues of integrating techniques for planning, natural
language comprehension/generation, knowledge representation, and episodic memory.
The agent controls a robotic submarine which receives natural language commands over
a simulated ‘radio link’. The environment is reasonably complex, with a wide range of
different objects with which the agent can interact. Further, full 2D geometry is used;
the robot does not live in a discretized space. However, this complexity is not easy
to control, thus making it difficult to perform controlled experiments for comparative
analysis. Experimentation appears to consist primarily of ‘anecdote analysis’—seeing if
what the agent does in a few particular scenarios makes sense. Also, like the Tileworld,
action and perception are error-free, finessing a crucial issue in real-world systems.

Truckworld

The Truckworld domain developed by Firby and Hanks [5] satisfies most of our criteria
reasonably well. The simulator provides for exogenous events via update methods that
can change objects after each robot action. Time is handled by skipping the simulator
ahead by a number of time steps after each action; unlike the Tileworld, however, the
duration of each action is determined by the simulator, not the planner. Simulated
environments are graphs of places connected by roads, which further points up the
atomic action model. Other than generic visual scanning (Is there an object in my
vicinity?), no true action parallelism exists. The Truckworld simulator is implemented
using an object-oriented methodology, which allows for unlimited model richness, by
allowing the user to write their own methods for object manipulation and evolution.
Agent resources are also integrated into the world—movement uses up fuel. Sensing
and effecting are error-prone with adjustable error-rates.

The Truckworld approach to time has some difficulties, both of implementation (update
methods must reason about different lengths of time explicitly) and of operation, in
that actions are essentially atomic (nothing happens during them), though they may

6 CHAPTER 1. INTRODUCTION

take some time. The main difficulties with the Truckworld are in using it for controlled
experimentation. There is little structure for defining and customizing objects in the
world, due to the general nature of the object-oriented methodology. This makes it
difficult to establish systematically qualitatively vary an experimental setup. Effector
error is limited to arm clumsiness, speed variability, and movement failure; it is difficult
to vary these parameters in a systematic fashion. Furthermore, it is hard to relate these
to generic physically meaningful concepts. The generality of the object system makes
it difficult to systematically vary perceptual error, since errors are hidden inside object-
specific sensing methods.

1.4 A Change of Focus

All of the questions discussed in this section, many of which ARs MAGNA addresses,
can be summarized as a desire for a change of focus in planning domain testbeds. In
the early days of Al, game-like domains were seen as desirable objects of study, due
to their simplicity [11]. Recently, though, as many fundamental issues of planning
have become better understood, this same domain simplicity has become a liability,
in that the new frontier is dealing with complexity itself. A number of specific types
of complexity have been discussed above; undoubtedly, new areas of inquiry will open
up in the future. Be that as it may, this conceptual shift demands a similar shift in
research agenda, away from game-like domains towards life-like domains. Game-like
domains are characterized by determinism, enumerable rules, well-defined goals, and
bounded extent. By contrast, the life-like domains that must begin to be addressed are
non-deterministic, have uncertain rules of operation, agent-defined, often vague, goals,
and unbounded extent. These are the issues that the next generation of intelligent
systems must deal with, and development of appropriate life-like problem domains for
experimentation are essential.

Chapter 2

Basic Concepts

As discussed in the introduction, one of the main motivations behind the design of the
ARs MAGNA simulator is to provide a realistically complex, though tunable, environ-
ment for planning research. We therefore chose to model a mobile robot moving about
in an indoors environment!. The robot itself is modelled as a point robot with sensors,
effectors, and internal carrying capacity. These can be customized to experiment with
different robot configurations. The robot moves about in a world containing walls and
things. Walls are unmovable obstacles and give environmental structure, through the
notion of place types. A place type denotes a class of world positions with a particu-
lar geometric obstacle structure, eg, doorways. Things represent objects in the world
and have a set of attributes, some of which can be sensed, and some of which affect
the robots actions or movement. The remainder of this section discusses these basic
- components in more detail.

Figure 2.1: A simple ARS MAGNA world.

1The world model can also be tailored, and can probably approximate other robotic environments
as well; we have not explored this possibility yet, however.

8 CHAPTER 2. BASIC CONCEPTS

2.1 World

The robot lives in a planar world; a simple example of such a world is in Figure 2.1.
One simplification that has been made is that the world is tesselated into a grid. By
convention, we call the length of the side of a cell a meter. All entities in the world do
have real-valued positions; the grid is only used for limited purposes. First, grid cells
may be either filled or empty, filled cells denoting walls. Second, an empty cell may be
have an associated place type, depending on the surrounding wall structure. The map
in Figure 2.1 has examples of cells of two place types: doorways (marked by squares)
and concave corners (marked by dots). Place types can be sensed by the robot; this is
described further below. Place types also have canonical directions that can be used
for stabilizing the robot’s configuration. The grid is also used internally for indexing
objects and the robot. One notion this helps with is locality—an object is local to the
robot if it is less than one meter away; the grid makes such objects easy to find.

In the real world, many sensors exist which can sense various properties of physical ob-
jects. We abstract away from this complexity and assign to every wall cell and object a
single substance, consisting of a symbolic {ype and numeric parameter. This is intended
to model some sort of high-level sensory processing that categorizes substances (eg,
brick-like) and measures some property of it (eg, texturedness). In the future, this
may be extended to more complex perceptual descriptions. In addition to a substance,
objects (as opposed to walls) have a set of attributes which describe the object. Such
attributes include, for example, size, weight, and whether or not the object obstructs
vision or movement. These attributes can also be sensed by the robot, as described
below. The world is made dynamic by the fact that objects can move about by them-
selves; each object may have associated with it a set of kickers which occasionally move
the object about.

2.2 Robot

The simulated robot is a point robot with essentially synchrodrive kinematics. It can
turn in place at a limited angular velocity, and can move forward in its current direction.
There are no explicit bump sensors, but movement into an obstacle signals an error.
There are two main kinds of sensing. First, the robot can ‘directly’ sense the place
type of its current cell, if any (with noise). Second, the robot can do more detailed and
long-range sensing using cameras.

Each camera has a limited field of view and a particular resolution. One form of cam-
era sensing is acquisition of designators of objects or places. A designator encapsulates
percept-relative information the robot has about a particular entity in the world, en-
abling the robot to approach the entity, manipulate it, and so forth. A designator for
a place can be acquired given a specification of the place’s type (eg, ‘doorway’), given
that such a place is in the camera’s field of view. The robot can acquire a designator
on an object by specifying a partial description of the attributes of the object desired,
which description is matched (with noise) to the actual attributes of objects in the field
of view; one matching object is chosen to be ‘seen’. False designators, denoting nothing

2.3. TIME 9

real (ie, hallucinations), can also occur. Designators on objects come in two flavors,
local and non-local. Local designators only apply to objects next to the robot; such des-
ignators can be used for manipulating the objects they denote. Non-local designators,
on the other hand, can only be used to allow the robot to approach the objects they
denote. Note that cameras are used to track designators—when objects move, tracking
cameras follow; when they are obscured (and sometimes randomly) designators are lost.
The other form of camera sensing is the view. A view is a list of numbers, samples
of the substance parameters of the visible (occluding) surfaces in the camera’s field of
view. The view is thus an abstraction of the notion of image signature developed in [3]
for place recognition. Views can be compared and matched for place recognition.

Object manipulation is done using one of a set of hands (really arms with grippers), each
of which has a limited strength. A hand can grasp an object given a local designator,
if the object isn’t too large. Hands can also be inserted into containers to get at things
inside. Objects can be transported by carrying them in a hand, but we also provide
storage bins on the robot into which objects can be placed. Bins can also be closed to
prevent objects from kicking themselves out.

2.3 Time

Time is discretized into a sequence of ticks, each corresponding to a quantum of action.
Time in the simulator runs asynchronously to ‘thinking’ time; calls to robot commands
return immediately, after queuing events in the simulator’s time stream.

10

CHAPTER 2. BASIC CONCEPTS

Chapter 3

Robot Programming

3.1

Preliminaries

ARs MAGNA is written in Nisp [6], a portable macro package with compile-time typing.
Nisp code looks mostly like regular Common Lisp code, with some exceptions!. As far
as this manual is concerned, the relevant differences are:

Variables may be declared when bound. A type is declared by putting a hyphen
followed by a type designator after the variable’s name. Type designators are
either type names (in upper-case here, by convention) or complex type descrip-
tions, such as (Lst), which refers to the type ‘lists of objects of type . VOID is
the type denoting ‘no values’. An object of type (~ t) is either #F or of type t.

If zis if type ¢, (t_slot z), (1_(t slot) z), or !>z.slot accesses the given slot of z.

Nisp procedures are defined using defproc and deffunc (with and without side-
effects, respectively). The procedure’s result type is shown after the procedures
name, preceded by a hyphen.

An object of type tis made by (make t -args-).
The macro != is essentially a synonym for setf.

(\\ -args- -body-) is the same as #’ (lambda -args- -body-), except that NISP
type declarations are allowed in -args-.

Boolean values are given as #T and #F, for clarity.

All simulator symbols are external in the ARS package, except where otherwise noted.

3.1.1 Continuation-passing

Since the simulator’s execution is asynchronously parallel to the robot’s program, some
mechanism must be used to return values and signal errors. In particular, a robot

1This discussion is modified from that in [7].

11

12 CHAPTER 3. ROBOT PROGRAMMING

command (say, “move forward 2 meters”) may cause an error (say, “path obstructed”)
long after the command is issued and the robot program has moved on. The way
we have chosen to address this issue is to use continuation-passing for asynchronous
‘communication’ between the separate execution streams. This works as follows. Each
robot command is passed, in addition to its usual arguments, a continuation, a function
of one or more arguments which will be called when the command terminates for any
reason. This function thus specifies how to ‘continue’ computation. The first argument
to a continuation is an error code which specifies why the command terminated (NIL
indicates no error and successful termination). There are a number of different error
codes for different situations, they are described below. Other continuation arguments
give command-specific parameters which may be useful. For typing purposes, instead of
creating continuation closures with lambda or \\, please use continuation in exactly
the same way.

3.1.2 Resources

Another issue is the fact that the robot can’t do two things at once. Actually, this
isn’t quite true, because cameras can operate independently of the hands and each
other and so on. However, since a robot command may be issued before a previous
one has had a chance to complete, conflicts may occur. This is prevented in the ARrs
MAGNA system by associating commands with particular resources, such that only one
command may be active on a resource at a time. Resources are simply the robot ‘parts’
involved in the action—for movement, the resource is the robot itself, for perception, the
particular camera being used, and so on. By convention, the resource for a command
is its function’s first argument. When a new command is issued on a resource before
a previous command had a chance to complete, the previous command is interrupted
and the new command begins execution. The interrupted command’s continuation then
gets called with an error code of :INTERRUPT, allowing the robot program to decide
how to handle the situation. Commands on different resources do not interfere with
one another (explicitly, though subtle interactions may occur, eg, movement may cause
a camera track to be lost).

3.1.3 Documentation example

In the remainder of this chapter, we will describe the various robot commands available
in the simulator. Each command is summarized in a heading of the following form:

camera-get-place-designator camera place-type continuation
= camera desig

This heading describes a command which uses the camera resource and has one other
command argument, a place-type. The arguments to its continuation are the camera
and a designator, after the standard error code (a keyword). So, one way to call this
function would be:

3.2. GEOMETRY AND ODOMETRY 13

(camera-get-place-designator (vref !>robot.cameras 1) °door
(continuation (err cam desig)
(when err
(out "Get designator failed on " cam
" due to " err T))))

3.2 Geometry and Odometry

As discussed above, the simulated robot lives in a 2-dimensional world, and so has two
directions of translation and one of rotation. Wherever (relative) positions are specified
in the simulator, z increases to the right and y increases down (computer graphics
convention). Angles are expressed in radians (pi and 2pi are defined constants), with
0 angle pointing towards positive z and increasing clockwise.

3.2.1 Representing geometry

The basic datatype for 2D geometry programming that is provided is the PT, repre-
senting a 2D point with x and y slots. There are a number of Nisp operations for
manipulating PTs (and other datatypes—see below). These operations are summarized
in Table 3.1. A PT can be created in the usual way, by (make PT z y)

add ptl pt2 = pt Add two points (as vectors).

add! ptl pt2 = ptl | Destructive add (change pt1).
subtract ptl pt2 = pt Subtract two points (as vectors).
subtract! ptl pt2 = ptl | Destructive subtract (change ptI).
neg ptl = pt Negate a point.

neg! ptl = ptl | Destructive negate (change ptl).
mul ptl num = pt Multiply a point by a scalar.

mul! ptl num = pt! | Destructive multiply (change ptI).
mul ptl num = pt Multiply a point by a scalar.

mul! ptl num = pt! | Destructive multiply (change ptI).
dist ptl pt2 = num | Euclidean distance between points.
norm ptl = num | 2D Euclidean vector norm.

equal ptl pt2 = bool | Are two points the same?
copy-obj ptl = pt Copy the point.

Table 3.1: Operations for manipulating points.

For representing uncertainty, we provide the INTERVAL datatype, with numeric slots
min and max, representing the real interval from min to max. An interval is created
by (make INTERVAL min maz) For 2D, there is a PT-INTERVAL datatype, with slots x
and y, each an interval along one axis. There are also computed slots dx and dy giving
the widths of the interval along the corresponding axes. All of the point operations

14 CHAPTER 3. ROBOT PROGRAMMING

are extended to operate on intervals in the obvious fashion; there are also operations
specific to intervals, summarized in Table 3.2. A point interval may be created by
either (make PT-INTERVAL z-int y-int) or (make PT-INTERVAL pi-min pt-maz), where
the min and max are opposite corners of the interval.

3.2.2 Odometry

The ArRS MAGNA robot has built-in odometry which provides uncertain estimates of
changes in position and direction over time. A robot has a set of odometers, each
of which maintains an estimate of robot position and direction. It is suggested that
different program modules use different odometers, to avoid introducing inconsistencies.
When a robot is defined, it starts out with one odometer, which can be accessed by

robot-main-odometer robot
New odometers can be created by

make ODOMETER robot name
where name is a symbol giving a name to the new odometer; any odometer previously
existing with name is destroyed. A particular odometer can be accessed by

robot-odometer robot name
A list of all a robot’s odometers is returned by

robot-odometers robot
A program can read an odometer’s current position/angle estimate(s) as well as reset
the odometer to start again from zero. Resetting an odometer is done by calling one
of the three functions

reset~odometer odometer

reset-odometer-pos odometer

reset-odometer-ang odometer
The first resets the odometer to zero; the other two reset the corresponding portion of
the odometer. Position estimates are given as point intervals containing the possibilities
for the actual relative position since the last reset. Angle estimates are similarly given as
numeric intervals containing the possible relative angles. Current odometric estimates
are returned by

get-odometer-pos odometer &optional int

get-odometer-ang odometer &optional int
The first returns the current odometric relative position estimate; the second the current
relative angle estimate. If int is specified, it is modified and returned (for memory
conservation).

3.3 Objects

As far as the robot is concerned, objects are described by a list of attribute-value pairs
(the list is termed an object descriptor). This is represented as an association list (but
for generality, values are stored in the cadrs of the list elements). Objects that match
a given description can be looked for, and sensors can estimate the value of attributes
for sensed objects. Note that equality of two sensed objects is not given and must be

3.3. OBJECTS

15

interval-intersect?
interval-subset?
interval-intersect
interval-intersect!
interval-width
interval-dist
interval-overlap-width
interval-1bi

interval-1bi!
add-to-1bi

add-to-1bi

add-to-1bi!
nominal
grow-interval

grow-interval!
less

greater

in-interval
interval-lift

lift-1bi

intl int2

ntl int2

ntl int2

intl int2

int

intl int2

intl int2

intl int2

intl int2
ntl

ntl z

ntl z
intl
ntl num

intl num
intl int2

intl int2

z intl

z

zl[z2..]

= bool
= bool
= int

= intl
= num
= num
= num
= nt

ntl
nt

¢4

= int

mntl
z
nt

44

= z'ntl
= bool

= bool

= bool
= int

= int

Do two intervals intersect?

Is int1 a subset of int2?

Return the intersection of two in-
tervals (as an interval of the right
type).
Destructive
intl).
Width of an interval (largest dis-
tance between elements).

Minimum (axis-parallel) distance
between interval edges.

Width of the overlapping portions of
two intervals.

Least bounding interval (LBI) of
two intervals (smallest interval con-
taining both).

Destructive LBI.

Take the LBI of int! and z (of the
appropriate type, a number or a
point).

Take the LBI of int! and z (of the
appropriate type, a number or a
point).

Destructive version of the above.
Center point of the interval.

Grow the boundaries of an interval
by num .

Destructive interval growing.

Is an interval entirely less than every
element of another?

Is an interval entirely greater than
every element of another?

Is z in the interval?

Return the interval containing only
T

Return the smallest interval con-
taining all z’s specified.

intersection (modify

Table 3.2: Operations for manipulating intervals. Everywhere, z is an object of the
appropriate type (number for intervals, point for point intervals).

16 CHAPTER 3. ROBOT PROGRAMMING
Attribute Values Meaning
:obsmove {#t, #f} Does the object block movement?
:obsview {#t, #f} Does the object obstruct vision?
:closed {#t, #f} Is the object, if a container, closed?
:color {red, green, blue, What color is the object?
violet, lightred,
lightblue, lightgreen,
lightviolet}
:size numeric How large is the object? Relevant to
putting objects in containers, etc.
:weight numeric How heavy is the object? Relevant to
picking things up, etc.
:capacity numeric How much can be put inside the object?
A value of 0 indicates a non-container.
:substance numeric What substance parameter does the ob-

ject have when ‘viewed’? This will be seen
directly if either the object obstructs vi-
sion or a camera is inside it; it will other-
wise ‘corrupt’ measurements of wall sub-
stance behind it.

Table 3.3: Built-in object attributes.

determined by the robot program by analyzing object descriptions. Attribute names
are Lisp keywords. Each attribute is either symbolic or numeric. Symbolic attributes
can take on one of a predetermined set of values. There are a number of built-in
attributes, some of which have special meaning to the system. World designers can add
any other attributes they want. The built-in attributes are given in Table 3.3.

For example, a large, red box might have the following descriptor:

((:obsmove #f) (:obsview #f) (:color red) (:substance 4.2)
(:size 14) (:capacity 13) (:weight 1))

A blue column might be described as:

((:obsmove #t) (:obsview #t) (:color blue) (:substance 7.3)
(:size 10) (:capacity 0) (:shape cylinder))

Here we see a user-defined attribute :shape. User defined attributes are described
below, in Section 5.3.

3.4 Cameras and Perception

A robot may be equipped with a number of cameras, each of which is capable of long-
range perception. As discussed above, there are two sorts of results of such perception,

3.4. CAMERAS AND PERCEPTION 17

views and designators. Further, cameras are independently movable, both in terms
of viewing direction (which also enables automatic object tracking) and in terms of
being mounted on ‘virtual’ arms so that they can be used to look inside objects. Each
camera has a field of view—an angular range defining (given the camera direction)
the 2D wedge within which the camera can see; a camera also has a resolution—the
number of samples (pizels) it uses when calculating a view. This section describes the
commands for using simulator cameras. The robot’s cameras are ordered, and can be
accessed by an index (starting at 0) through the function robot-camera:
robot-camera robot index '

3.4.1 Designators

The purpose of designators in the system is to provide a sort of indexical naming of
objects in the system based on the notion of ‘effective designators’ developed in [7] (see
also ‘deictic representation’ discussed in [1]). A designator provides a handle on an
object or place (its denotation) that the system can use to control the robot, relative to
the designator’s denotation. In the simulator there are two distinct types of designators,
local and non-local. Local designators denote objects ‘next to’ the robot, and package
the information needed to directly manipulate the object (eg, to pick it up). Non-local
designators denote objects or places further from the robot, and can only be used to go
to the denoted location. There are two kinds of information stored in a designator that
are accessible to the robot program. The first is an estimate of the direction (angle
relative to the robot’s current heading) of the designator’s denotation. The second is a
description of the thing denoted. For places, it is the place’s type. For objects, it is a
(partial) description of the object.

In the simulator, designators are structures of type DESIGNATOR. There are three acces-
sible slots. Type is either :1ocal or :non-local depending on the type of designator.
Angle is the estimated relative angle (in radians) of the designator’s denotation. Fi-
nally, data is a list, the description of the denotation. For places, the car of this slot
is the place type. For objects, it is a list of attribute-value pairs, giving an estimated
descriptor for the object. This descriptor is generated randomly for false designators.

3.4.2 Object matching

For acquisition? of object designators, a mechanism for matching object descriptors is
needed. For more generality, since we will typically be matching user-specified descrip-
tions to object descriptors, we match descriptors with descriptor specifications (given
by the user). A descriptor specification is a list of attribute specifications given as fol-
lows. An attribute specification, generally, is a list whose car is the attribute specified
and whose cadr is a value specification. A value specification for a discrete attribute
is either the symbolic value desired, so (:color red) specifies objects whose color is
red, or a list of possible values, as (:color (green blue)) denoting objects that are
either green or blue. A value specification for a numeric attribute can specify either a

2This should be ‘acquisition and tracking’, of course. However, at the present time, object matching
is only done at designator acquisition time. This will be extended in the future.

18 CHAPTER 3. ROBOT PROGRAMMING

particular value or a range (as a 2-element list (min maz)); a matching threshhold may
also be specified as the third element of the attribute specification. Since values will
never match exactly, a default matching threshhold, 6, is used when none is specified.
So, (:size 4) gives a size of 4, while (:size (3 5)) specifies a size between 3 and
5, and (:size 4 2) specifies a size of 4 with a match threshhold of 2 (hence between
2 and 6), and finally, (:size (3 §) 2) specifies a size between 3 and 5 with a match
threshhold of 2 (hence between 1 and 7). Matching is done with noise, so erroneous
matching can occur.

(a) (b)

Figure 3.1: Noise parameters as a function of distance. (a) Probability of a correct
reading for a discrete attribute with base probability of 75%. (b) Standard deviation
for a numeric attribute with a base of 1 and a maximum multiplier of 10.

Noisification

A descriptor specification matches a descriptor if the descriptor has a value for all at-
tributes specified, and those values match the appropriate value specifications. Noisy
value matching is done by first perturbing the actual value by noise and then checking
to see if the perturbed value exactly fits the specification (if no matching threshhold is
provided for numeric attributes, a default is used so that matching can occur). Noisi-
fication is different for discrete and numeric attributes. Each discrete attribute has a
predefined base probability of correct readings, call it p. The actual noise probability
is dependent on the distance d of the object from the camera, by the heuristic formula
p/max(1, fpd(1 - p)). Intuitively, as distance increases, so does the noise probability,
but up to a maximum of p (see Figure 3.1a); fp globally controls the point where this
tops out. If a test on this probability fails (ie, the reading was corrupted), then the
value ‘seen’ is chosen randomly from all possible values for the attribute (uniformly).
Numeric attribute noisification is done using gaussian distributions about true. Given,
for each numeric attribute, a base standard deviation o and a maximum multiplier
p (ie, the maximum standard deviation is po), the actual standard deviation used
when choosing a value is given by max(o, /.w;ff?), increasing noise with distance. The
steepness of increase is controlled by f¢ (see Figure 3.1b).

3.4. CAMERAS AND PERCEPTION 19
Instantiated descriptors

When an object is sensed, a descriptor will be returned in a designator, giving the
sensed readings. The attributes returned include those specified, as well as possibly
some others; the probability of getting unspecified attributes depends on the attributes
specified in the command. The more you specify top-down, the more useful informa-
tion can be extracted from an image (or whatever base sensor data you have). Each
attribute has a base probability of being sensed, so to speak, de novo (call it p). An
attribute may also be said to be supported by some others, which means that informa-
tion about a supporter gives information about the attribute. For example, :capacity
is supported by both :size and :weight. Then, the actual probability of instantiating
a non-specified attribute is also proportional to the number of supporters given in the
descriptor specification, n. We use a simple binomial model, taking the probability as
1— (1 - p)™*1. If the test for instantiation succeeds, a noisified value for the attribute
(as above) is generated and added to the descriptor to be returned.

3.4.3 Camera commands

camera-view camera continuation
= camera view

This function gets a view of the world from the given camera and returns it through a
continuation. The view is a list of numbers, samples of the substance parameter of the
nearest view obstruction, at equally-spaced angles in the camera’s field of view. The
length of the view is the resolution of the camera. Each sample (a pizel) is independently
noisy. This function signals no errors.

camera-get-place-designator camera place-type continuation
= camera desig
camera-get-all-place-designators camera place-type continuation
= camera desig-lst

These use camera to get either one designator or a complete list of designators on a
place of the named type, if any are visible in the field of view. It may also return a
designator (or several) pointing to, essentially, nothing real. Place type designators are
always non-local. Errors are as follows:

:ALREADY-TRACKING Camera is already tracking another designator—tracking
should be interrupted before attempting to look for some-
thing else.

:INVALID-PLACE-TYPE Place-type is not the name of a place type.

:INVISIBLE-PLACE-TYPE Place-type names a place type that can not be rec-
ognized at a distance.

:CAMERA-ENCLOSED Camera is inside a container and so can’t look for a place
type.

:DESIGNATOR-NOT-FOUND No designator was found for some reason.

20 CHAPTER 3. ROBOT PROGRAMMING

camera-get-object-designator camera desig-type obj-atirs continuation
= camera desig
camera-get-all-object-designators camera desig-type obj-attrs continuation
= camera desig-Ist

These functions look for objects in the field of view matching obj-attrs, a descriptor
specification. The first returns a designator for a single such object; the second re-
turns all those found (possibly missing some or including bogus designators). Finding
all matching designators can take longer. Matching is done as described in Section
3.4.2; the designator returned contains a partially instantiated descriptor computed as
described there. Desig-type is the type of designator desired, :local or :non-local.
Errors possible are :ALREADY-TRACKING and :DESIGNATOR-NOT-FOUND as above.

camera-track camera desig continuation
= camera desig

This sets camera to tracking desig. It will maintain the track by turning the camera
if the robot or object moves. Note that to go to a designator, it must be tracked
by a camera. While tracking, a local designator will automatically turn into a non-
local one when appropriate (but the reverse is not true, since local designators are
more powerful; thus information is lost). When a non-local designator is approached
(by robot-goto-designator) and arrived at, the track will be lost, since when very
nearby, objects and place types look very different than when far away. Errors are as
follows:

:ALREADY-TRACKING As above. :

:LOCAL-NOT-LOCAL Desig is a local designator, but the camera is not in the
same place and so cannot track it. This may be due to the
robot moving, but may also be due to inserting (removing)
the camera into (out of) containers.

:CAMERA-INSIDE The camera is inside a container and so can’t track a non-
local designator.

:LOST-TRACK The track was lost for some reason. This can be due to oc-
clusion, moving fast of the the field-of-view, or just random
noise.

camera-untrack camera continuation
= camera

Stops camera from tracking. The error :NOT-TRACKING is signalled if nothing is cur-
rently being tracked. '

3.5. ROBOT MOVEMENT 21

camera-turn camera Aangle continuation
= camera Aangle
camera-align-robot camera continuation
= camera Aangle
camera-align-place camera continuation
= camera Aangle place-type

These functions all set the angle of camera and return an approximation to the relative
angle moved. Camera-turn turns the camera by some relative angle. Camera-align-robot
points the camera in the same direction as the robot. These two functions signal no
errors (except for the standard :INTERRUPT). Camera-align-place points the camera

in the direction of the nearest canonical direction for the current place type. If no place
type is sensed, :NO-PLACE-TYPE is signalled.

camera-insert camera desig continuation
= camera desig
camera-remove camera continuation
= camera

These functions insert/remove camera into/out of a container, denoted by desig. Desig
can either be a local designator or a storage bin, as usual. If removal is attempted
when the camera is not inside anything, :NOT-INSIDE will be signalled. Insertion can
cause the following errors:

:BIN-CLOSED Insertion was attempted on a closed storage bin.

:NOT-TRACKING Camera isn’t tracking anything.

:NOT-TRACKING-DESTINATION Camera isn’t tracking the desired destination
designator.

: CAMERA-BUMP During the insertion process, camera bumped the destina-
tion object, losing the designator as well as failing to get
inside.

:INSUFFICIENT-CAPACITY The destination has no room for the camera.

:NON-LOCAL-DESIGNATOR Desig is a non-local designator.

3.5 Robot Movement

robot-set-speed robot new-speed continuation
= robot speed
robot-set-turn-angle robot new-turn-angle continuation
= robot turn-angle

These two functions set the robots translation and rotation speeds, respectively. There
are limits on these values (as world parameters) and the specified value will be truncated
to fit them. Robot-set-speed signals either :NEGATIVE-SPEED or :T00-HIGH-SPEED if
new-speed is out of limits; robot-set-turn-anglesignals either : TO0O-LOW-TURN-ANGLE
or :TOO-HIGH-TURN-ANGLE in analogous circumstances. The command returns the

22 ' CHAPTER 3. ROBOT PROGRAMMING

actual value that was set.

robot-turn robot Aangle continuation
= robot Aangle
robot-about-face robot continuation
= robot Aangle
robot-turn-left robot continuation
= robot Aangle
robot-turn-right robot continuation
= robot Aangle

These functions turn the robot in place, returning a reading of the angular change.
The basic function is robot-turn which turns the robot by (approximately) the given
angle. The other three turn the robot by 7, —r /2, and 7/2, respectively.

robot-align-place robot continuation
= robot Aangle

This function aligns the robot with its current place, if any, that is, it turns the robot
to face in the nearest canonical direction. It may return an :INCORRECT-PLACE-TYPE
error if it determines that the robot’s current place type reading is invalid (but it may
be wrong, of course). Otherwise it operates as the turning commands above.

robot-turn-corner robot continuation
= robot Aangle

This command will turn the robot about a corner, either convex or concave. It does
the intuitive thing. If it determines the robot is not at a corner, it signals the error
:NO-CORNER; otherwise it acts as above.

robot-go-forward robot time continuation

= robot
robot-goto-wall robot continuation
= robot

These functions move the robot in a straight line forward, robot-go-forward for a fixed
number of ticks, robot-goto-wall until a wall is encountered. Robot translation will
signal :ROBOT-BLOCKED if the robot hits either a wall or an obstacle, and :NOT-MOVING
if the robot’s speed is 0. Robot-goto-wall will not signal :ROBOT-BLOCKED if the robot
is determined to be at a wall (since in this case, the condition is a success).

robot-goto-designator robot camera continuation
= robot camera desig

This command tells the robot to try to get next to the thing (object or place) denoted
by the designator tracked by camera (which designator is returned). The robot first
tries to turn to face the designator, then tries to approach it by always moving towards
it. This can cause problems if the designated object moves too fast, but that’s life.
The command succeeds when the robot is in the same cell as the denoted thing. False

3.6. CARRYING THINGS 23

designators can also be ‘tracked’, but the robot will be randomly led down the garden
path. In addition to the above-mentioned movement errors, the following errors will be
signalled:

:NOT-TRACKING Camera is not tracking anything. Note that this will also
be signalled if the track is lost for some reason; this can be
detected by the fact that the tracking process will signal an
error.

:GOTO-LOCAL The designator being used is local, so nothing need be done.

robot-stop robot continuation
= robot

Stop robot. May take several ticks, depending on braking* (see Chapter 4).

3.6 Carrying Things

Simulator robots are (usually) equipped with a set of hands, each with a particular
strength (governing how much it can carry). Hands can be used to pick things up, put
them places, and carry them. The robot’s hands are ordered, and can be accessed by
indexing (starting at 0) through the function robot-hand:

robot-hand robot index
The robot has more carrying capacity through its storage bins, each of which has a
limited capacity. Storage bins may be accessed by index, in a similar way to cameras
and hands, by using

robot-storage-bin robot index

hand-grasp-desig hand camera desig continuation
= hand desig

This commands hand to grasp the object denoted by a designator. When grasping, the
hand must also be strong enough to hold the object. The grasping procedure may also
bump the object, causing the designator to be subsequently lost (this happens silently).
The following error conditions can occur:

:HAND-GRASPING The hand is already holding something else.

:DIFFERENT-LOCATION The hand and camera are in different locations (ie, at
least one is inside a container the other isn’t inside).

:BAD-DESIGNATOR Desig is invalid.

:NON-LOCAL-GRASP Tried to grasp something far away.

:NOT-TRACKED Camera isn’t tracking desig.

:MISSED-GRASP Tried to grasp but missed for some reason.

:INSUFFICIENT-STRENGTH Not strong enough to hold the object (it’s too heavy).

24 CHAPTER 3. ROBOT PROGRAMMING

hand-ungrasp hand continuation
= hand

This tells hand to ungrasp the object currently held. The object is dropped into the
current location of the hand, if it is inside a container (or storage bin). Designators
on the object are unaffected (its trajectory can be followed). If the hand is empty,
:NOT-GRASPING is signalled.

hand-grasp-check hand continuation

= hand
hand-track hand continuation
= hand

In order to keep track of what a hand is holding, the robot has virtual force sensors
on each hand that can be tested by calling hand-grasp-check, which (when not in-
terrupted) gives an error code of either :GRASPING or :NOT-GRASPING, depending on
the hand’s state. Hand status can be monitored over time by calling hand-track,
which spawns a process that signals a :GRASP-LOST error if the hand loses its grip.
Also, hand-track will be interrupted by any other commands to hand (signalling
: INTERRUPT, as usual). If hand is empty to start, :NOT-GRASPING is signalled.

hand-insert hand desig continuation
= hand desig
hand-insert-bin hand storage-bin continuation
= hand storage-bin
hand-remove hand continuation
= hand

These functions insert (remove) a hand into (from) a container. Desig may also be a
storage bin; hand-insert-binis provided as a useful special case. The following errors
can occur:

:BIN-CLOSED Tried to insert into a closed storage bin.

:INSUFFICIENT-CAPACITY No room in the destination for the hand (hand size
includes objects grasped).

:HOLDING-THING Tried to insert the hand into the object it itself is holding.

:HAND-BUMP Hand missed and bumped the destination object, also losing
its designators.

storage-bin-open storage-bin continuation
= storage-bin
storage-bin-close storage-bin continuation
= storage-bin jammed-part

These commands open and close storage bins. This is useful to prevent objects from
‘kicking’ their way out of the bins. Storage-bin-open will signal :BIN-OPEN if storage-
bin is already open. Similarly, storage-bin-close will signal :BIN-CLOSED if storage-
bin is already closed. Also, if any robot-part (camera or hand) is inside the bin,

3.7. ERROR MESSAGES 25

:ROBOT-IN-BIN will be signalled, and the offending part given by jammed-part. There
is also a chance that an object in the bin will momentarily jam the bin door, resulting
in a :BIN-JAMMED error.

3.7 Error Messages

error-set -stuff-

warning-set -stuff-

message-set -stuff-
error-display &optional stream

The simulator provides an error-message package for asynchronously displaying system
error messages when the user wants them. Error and warning messages can also be
given by the user. The idea is that messages are queued up and only printed when the
system is explicitly told to do so; this also flushes the queue. The type-set functions
take a list of items to be printed for a message of the appropriate type. error-display
displays all messages on the queue to stream (default standard output), and flushes the
queue. If flush-all-errors# is T, then no messages will be displayed; the default is
NIL.

3.8 The Scheduler

Though you should never need to use it explicitly, we provide access to the simulator’s
underlying event scheduler just in case you think of something interesting to do that we
didn’t. The basic idea is that you can queue an event which is executed during a single
tick. Note that a tick takes as long, in real time, as it takes to execute all the events in
it. To get ongoing processes spanning multiple ticks, you need to queue a new event,
chaining the original event. Each event has an associated resource; only one event is
allowed at a time with a particular resource. Arbitration is handled by priority—events
have an integer priority; when there is a conflict, the event with the higher priority gets
queued (if priorities are equal, the event that got queued first wins). When an event
gets bumped, it is said to have been interrupted, and an interrupt handler may be
specified to be run in this case. An event may be queued to run at some given number
of ticks in the future, as well. Events may be queued using the schedule special form:
(schedule (resource | :priority priority]
[:interrupt inter]
[:when test]
[:timeout timeout]
[:timer time])
-body-)

This should be reasonably clear—resource is the resource for the event, priority is a
number giving the priority of the event, inter is a Lisp expression to be evaluated if
the event is preempted (note that the event itself, while running, can’t actually be

26 CHAPTER 3. ROBOT PROGRAMMING

interrupted), and -body- is the code for the event. There are two ways to schedule an
event for the future. The simplest is to specify time, the number of ticks in the future
to run the event (by default the next tick). The event can also be conditioned on an
arbitrary boolean expression, test. If a test is specified, then the event occurs when
(and only if) test becomes true after at least time ticks and before timeout ticks. After
timeout ticks, the event evaporates.

Chapter 4

Simulation Parameters

The physics of the simulated world can be adjusted by setting the various parameters
that act as physical constants. Due to the abstract nature of the simulated environment,
most of the parameters deal with the robot’s relationship to the environment—sensing,
effecting, and so forth. This section describes the various parameters that can be
adjusted. Ome special kind of parameter are the delay parameters, which are used
to simulate atomic actions (such as a hand insertion, which is a one step operation,
internally) taking time, by scheduling the actual operation for some number of ticks
in the future. Thus, if the world changes between-times, problems may (reasonably)
occur.

The parameters are Lisp special variables; they are listed below with default values
given in brackets.

Robot Movement

Max-Speed* [1] Maximum speed (in grid-cell units per tick) the
robot can move. Setting this higher than 1 can
cause strange effects (due to skipping over grid cells).

Max-Turn-Angle* [7/8] Maximum speed (in radians per tick) the robot can
turn.

Min-Turn-Angle* [0.05] Minimum speed the robot can turn (due to friction
and stuff).

Braking* [2] Number of ticks it takes for the robot to come to

a stop. Currently, this is implemented as a simple
delay then instantaneous stop.
Motion-Noisex [0.1] Percent noise in distance travelled as compared with
desired speed (true distance is chosen from a uni-
form distribution about the desired speed). Also
used to govern size of random odometric intervals
returned.
Robot-Turn-Max-Error* [0.01] Percent noise in angle turned, similar to motion-noisex
Robot-Align-Error-Prob# [0.1] Probability that an align operation will ‘suc-

27

28 CHAPTER 4. SIMULATION PARAMETERS

ceed’ even if the wrong place type is specified.

Robot-Move-Delay* [5] Delay before a move command starts executing (in-
ertia, friction).
Robot-Turn-Delay* [2] Delay before a turn command starts executing (in-

ertia, friction).
Robot-Align-Delay* [4] Extra delay for an align operation to start (sensing,
computation).

Cameras

Camera-Angle-Max-Error* [0.02] Max error (in radians) possible in the estimate
of the angle of a designator.

Scan-Density* [50] Number of evenly-spaced samples taken in the field
of view when scanning for a designator.

Prob-Lose-Track* [0.01] Probability that a track will be randomly lost on
any given tick.

Prob-Lose-False-Track* [0.4] Probability that a track on a false designator
will be randomly lost on any given tick. Higher
than the above, since a false designator isn’t real.

False-Desig-Drift-Dist* [1] Maximum distance that the perceived distance of
a false designator will drift in a tick, while tracking.

False-Desig-Drift-Ang* [0.2] Maximum angle that the perceived distance of a
false designator will drift in a tick, while tracking.

Camera-Insert-Miss-Prob* | 0.05] Probability that an camera insertion will miss,
also losing the designator.

Camera-Insert-Lose-Desig-Prob* [0.1] Probability that an insertion will lose
the designator even when the insertion succeeds.

Camera-Move-Delay* [2] Time it takes to move a camera (for insertion).

Camera-Align-Delay* [1] Time it takes to turn a camera.

Camera-Desig-Delay* [4] Time it takes to acquire or start tracking a desig-
nator.

Sensor Error

Type-False-Pos* [0.01] Chance of sensing a (random) place type when at
a non-typed location.

Type-False-Negx [0.05] Chance of not sensing the current place type when
one exists.

Prob-Stop* [0.07] When finding a false designator, a random angle
in the field of view will be chosen, and the ray at
that angle will be walked until either (a) the edge
of the map is reached or (b) a test of probability
Prob-Stop* succeeds. The point which is stopped
at is the location of the false designator.

Miss-Thing-Prob* [0.05] Chance that an object simply will not be seen on

a given scan, even if it would otherwise match a
given descriptor specification.
Miss-Place-Prob* [0.1] Chance that a place simply will not be seen on a
given scan, even if it would be seen otherwise.
Pixel-Error-Range* [2.0] Normal error range for pixel readings in views.
Pixel-Outlier-Prob* [0.01] Probability that a view pixel will be chosen uni-
formly from the entire possible range.
No-Sensor-Error* [nil] When set to t, this suppresses all sensing error.
Discrete-Noise-Factor* [0.1] In object matching, fp. See section 3.4.2.
Continuous-Noise-Factor* [0.05] In object matching, fo. See section 3.4.2.
Standard-Match-Threshold* [0.5] In object matching, 6. See section 3.4.2.

Hands

Prob-Miss-Grasp* [0.04] The probability that an attempted grasp will miss
its object.

Prob-Grasp-Lose-Desigx [0.1] The probability that a grasp (even successful)
will cause a designator on the object to be lost.
This is tested independently for each designator on
the object.

Hand-Insert-Miss-Prob* [0.05] Probability that a hand insertion operation will
miss its destination.
Hand-Insert-Lose-Desig-Probx [0.1] Probability than a missed hand insertion

will result in a designator being lost.

Hand-Move-Delay* [2] Time it takes to move the hand.
Hand-Grasp-Delay* [4] Additional time it takes to perform a grasping op-
eration.

Storage Bins

Bin-Close-Jam-Prob* [0.01] Probability that a storage bin will jam on closure,
if there is anything in the bin to jam it. Note that
bin jamming is an independent event; the fact that
the bin is jammed now says nothing about it being
jammed next tick.

Bin-Delay* [2] Time it takes to open or close a storage bin.

29

30 CHAPTER 4. SIMULATION PARAMETERS

To enable the experimenter to easily examine behavior in a noiseless world, we provide
the two functions:

clean-simulation

dirty-simulation
The first function sets all noise and error parameters to remove all noise, and the second
restores the simulator to its state before clean-simulation was called.

Chapter 5

World Design

5.1 Maps

The datatype for environments (worlds) is MAP. Maps are created by the defmap special
form:

(defmap name (width height &key cache)
-map-clauses-

)

This defines a map named name which is widthx height cells in size. Cache is the name
of a file in which to cache the map for reloading, since building a map from scratch is
quite time-consuming. Map clauses are forms which specify the walls and objects that
should go in the map. The types of clauses are described below.

(wall (20 y0) (z1 y1) type paramO | paramli])
This puts a straight line of filled cells in the map going from
(z0,%0) to (z1,yl). The substance type of all the cells is type
and the substance parameters are either all param0 or are inter-
polated from param0 to param1 (if param1 is specified.

" (rect (20 y0) (z1 y1) type param0 [paraml param?2 params3)

This puts a rectangle of filled cells with corners (20, y0) and (z1, y1),
with substance type type and either parameter param0 or pa-
rameters interpolated from corner to corner between param0 and
paraml, then paraml to param?2, and so on.

(circle (z0 y0) rad type param)
This puts a (digitized) circle of filled cells with center (z,y) and
radius rad, with substance type type and parameter param

(obj name (z y) descriptor &rest contents)

(obj (name :prototype proto) (z y) descriptor &rest contents)
These forms create an object with name name at position (z,7y).
The first version simply creates an object with the given descriptor
(contents is described below). The second form uses the descrip-

31

32 CHAPTER 5. WORLD DESIGN

tor of the prototype object proto as the descriptor of the new
object, with attributes specified in descriptor overriding those in
proto. This allows common combinations of attributes to be pack-
aged together. Contents described the contents of the object being
defined, consisting of 0 or more object specifications, using a re-
stricted version of the above syntax; one of:

(name descriptor &rest contents)
((name :prototype proto) descriptor &rest contents)

Note that contents can be specified recursively.

The following is an example of a simple map. This map defines an environment which s
is a single square room with a dividing wall. The room contains a lamp, a small box [
containing a pen, a large box containing a blue box (created based on a prototype box

box*), and a table (created from tablex).

(defmap big-room (75 75 :cache "~/cache/big-room")
(rect (0 0) (75 75) Bricks 0 10 30 25)
(wall (30 10) (30 50) Slate 10 30)

(obj lamp (20 20) ((:size 2) (:weight 1)
(:color lightred)
(:substance metal)))
(obj small-box (20 20) ((:capacity 5) (:size 5) (:weight 2)
(:color lightblue)
(:substance wood))
(pen ((:size .2) (:color green)))
)
(obj big-box (30 20) ((:capacity 11) (:obsview #t)
(:size 12) (:weight 4)
(:color red)
(:substance wood))
((a-box :prototype box*) ((:size 6) (:weight 3)
(:color BLUE)
(:substance wood)))
)
(obj (table :prototype tablex) (40 15) ((:color violet)))
)

5.1. MAPS 33

5.1.1 Place types

Not only can you build different environments by placing walls and objects in various
places, you can also design user-specified place types that can then be sensed and
used for robot navigation. Recall that a place type is a stereotypical bit of local
environment structure. In the simulator, this means specifying a particular set of
local configurations of wall/empty cells. Place types are also associated with canonical
directions, which the robot can align itself or its cameras with. A place type is defined
using the def-place-type special form, explained below.

(def-place-type name (cell)

:confusion confusion-prob |

:check-matchers ({(match-form direction) }*)]
:checker checker-ezpr]

:directions directions-ezpr]

:invisible invis]

:graphics ((-args-) -body-)]

ey ey —y ——) —— ——1

The def-place-type form defines a place type named name. Confusion-prob gives the
probability of finding a false place designator for the place type. The two canonical
directions for a place of the given type are computed using directions-ezpr, an expression
returning the two directions as multiple values. The variable cellis bound to the relevant
cell during evaluation. The usual way this is done is to use the canonical-dir slot
of the cell’s type slot, which gives the cell’s basic canonical direction. Given that, the
canonical directions will usually be calculated as offsets from that basic value. If invis
is t, designators cannot be acquired for the place type. A display method for cells of
the given type may be specified in :graphics; the use of this clause is described in
Appendix B.1.

There are two ways of specifying the wall configurations defining a given place type.
The simpler is by giving a set of match-forms with associated canonical directions.
These specify when a each possible cell of interest should be classified as being of the
new place type. Each match form is a list of lists, representing the cells surrounding the
cell of interest, which is in the center of the matrix. The entries are one of: nil (empty),
t (wall), or 7() (don’t care). They may also be abbreviated as -, *, and x, respectively.
Thus, any cell in a map whose surrounding cells have the corresponding wall structure
will be classified to be of type name. Further, each such cell is associated with the basic
canonical direction given as direction. An example of a place type definition using match
forms is given below. This example defines a doorway place type, for narrow openings
in walls. Each of the four match forms describes a doorway configuration in a different
direction (horizontal, vertical, and two diagonals), giving one of the directions straight
through the doorway as a basic canonical direction. The two canonical directions
for a doorway are given as the two opposite directions looking through the doorway.

34 CHAPTER 5. WORLD DESIGN

(def-place-type doorway (cell)
:confusion 0.05
:check-matchers ((((nil nil nil)
(t nil t)
(nil nil nil)) (/ pi 2))
(((mnil1 t =nil)
(nil nil nil)
(nil t nil)) 0.0)
(((t nil nil)
(nil nil nil)
(nil nil t)) (/ pi 4))
(((nil ni1 ¢)
(nil nil nil)
(t nil nil)) (* pi 3/4))
)
:directions (values !>cell.type.canonical-dir
(+ pi !>cell.type.canonical-dir))
:graphics ((win cx cy)
(xlib:draw-rectangle win draw-gcontext#
(1+ ex) (1+ cy)
(- graphics-scale* 2) (- graphics-scale* 2)
nil)
))

A more complex, but more flexible, way of specifying place type structure is by speci-
fying, instead of a set of check matchers, checker-ezpr. This is an expression that will
be evaluated with cell bound to each map cell, whose return values determine place
type classification relative to the new type. The expression should return four multi-
ple values: the first is a boolean, specifying whether a place type classification should
be performed, the second and third are integer offsets from cell, specifying which cell
should be so classified (ie, cell is not necessarily the cell to classify), and the fourth
gives the basic canonical direction for the classified cell. A useful function for place
type checkers is:
cell-occupancy-window cell width height

This returns a widthX height occupancy matrix (t = wall, nil = empty) centered on
cell which can then be matched against for place type determination. An example of
the definition of a convex corner place type, using a checker expression, is given below.
The checker finds filled cells with walls extending in two perpendicular directions with
empty spaces on the convex ‘outside’. In such situations, it classifies the corner empty
cell, giving as canonical directions the two perpendicular directions away from the walls.

5.2. ROBOTS

(def-place-type convex (cell)
:confusion 0.03
:checker (if !>cell.filled?
(let ((win (cell-occupancy-window cell 3 3)))
(cond ((matchg ((nil nil nil)
(t t nil)
(?¢) t nil)) win)
(values t 1 -1 0.0))
((matchq ((?() t ~nil)
(t t nil)
(nil nil nil)) win)
(values t 1 1 (/ pi 2)))
((matchq ((nil nil nil)
(nil t t)
(nil t ?2(0))) win)
(values t -1 -1 (* 3/2 pi)))
((matchq ((nil1 t 7?())
(nil t t)
(nil nil nil)) win)
(values t -1 1 pi))
(t (values #f 0 0 0))))
(values #f 0 0 0))
:directions (values !>cell.type.canonical-dir
(- >cell.type.canonical-dir (/ pi 2)))
:graphics ((win cx cy)
(x1ib:draw-arc win draw-gcontext*
cx cy
graphics-scale* graphics-scale*
0 (* 2 pi) nil)
)

5.2 Robots

35

Robots are of type ROBOT (surprise!) and have no user-accessible slots. They are defined

using the defrobot special form:

(defrobot name (environment (z y) ang)
[:cameras ({(fovres)}*)]
[:hands ({strength}*)]
[:bins ({capacity} ™)]

36 CHAPTER 5. WORLD DESIGN

Name is bound as a special variable to the robot structure. The robot is placed in the
environment at position (z,y) pointing in direction ang. The robot has a set of cameras,
each specified by its field of view fov and resolution (number of view pixels) res. Hands
are specified by their strength and storage bins by their capacity. For example:

(defrobot robbie (watson (10 5) 0)
:cameras (((/ pi 4) 3) ((/ pi 2) 5))
:hands (10 4)
:bins (20 5)
)

defines a robot named robbie who lives in the watson world (defined elsewhere).
Robbie has two cameras, one with 45° of view and 3 view pixels, the other with 90°
and 5 pixels, respectively. It has two hands, capable of picking up weights of 10 and 4
weight units, and two storage bins, with capacities of 20 and 5 size units.

5.3 Things

Above, in the section on map definition, we saw one way to create objects, by placing
them a priori in a world map. They can also be created on the fly, using new-thing:

(new-thing name { loc | (:with obj) | (map z y)}
descriptor
[:prototype proto]

This creates an object named name (recall that object names are only for convenience
and need not be unique). The location of the new object is either inside loc (a container,
hand, or storage bin), at the same location as obj, or at position (z,) in map. If proto
is specified, it is used as a prototype for the new thing, that is, proto’s attributes and
contents are copied into the new thing and then modified by descriptor. Otherwise,
descriptor is the complete descriptor of the thing. The thing is returned from thing,
primarily for use in defining other things. A common use of this is for creating prototype
objects, with location nil, which are only used for packaging up useful combinations
of attributes. For example, a box prototype might be specified as:
(defvar box* (new-thing box nil ((:capacity 8) (:size 8) (:weight 2))))
defining a ‘generic’ box.
Some other useful functions are those that manipulate object attributes. These will be
most useful when defining kickers or manipulations (see below). The basic attribute
accessor is

get-attribute thing atiribute
which returns the current value of attribute for thing (nil if not specified). This function
is settable, or you can use

set-attribute thing attribute new-value

5.3. THINGS 37

to set an attribute’s value. An entire set of attributes can be changed by using
change-attribute thing descriptor
where descriptor is a thing descriptor giving the new values for various attributes.

5.3.1 Kickers

While the variety of objects possible in our system can make for interesting static
environments, the true power of a robotic planner is its ability to deal with a dynamic
world. Therefore, the simulator contains a mechanism for automatic environmental
dynamism. The basic idea is that objects move (or change) every so often. This idea
is embodied in the notion of a kicker, a piece of Lisp code attached to an object which
is executed at random intervals. Kickers are generally used to randomly move objects,
thus (second-order) simulating the effects of other agents in the environment. Kickers
can also change object attributes, or create/destroy objects. The basic way to define a
kicker is by the defkicker special form:

(defkicker name (var)
([:prob prob]
[:test test-form])
-body-)

This defines a kicker named name that will execute -body- with probability prob on any
tick when test-form evaluates to true. For both test-form and -body-, var is bound to
the kicker’s object. Defkicker thus defines an abstract kicker that can be attached
to any object through the use of (set-kicker thing kicker-name). A one-of-a-kind,
idiosyncratic kicker can be defined for an object using the put-kicker special form:

(put-kicker name (var thing)
([:prob prob]
[:test test-form])
-body-)

It is nearly identical to defkicker, except that thing specifies the particular object
that the kicker is to be assigned to, and name is specified only so that the kicker can
be redefined—it is not globally bound to the kicker (for use by set-kicker). This can
also be used to remove a kicker with a given name (even a global one) from an object,
by specifying a null body.

Since the body of a kicker is only executed during ome tick, if longer-term actions
are required (for example, moving an object along a trajectory), the kicker must be
rescheduled. This is done using the function run-kicker, whose single argument should
be specified as self (which is bound to the kicker currently being executed). Moving
an object is accomplished using the function kick-thing:

kick-thing thing Az Ay kick-if-wall

38 CHAPTER 5. WORLD DESIGN

This function will move thing by (Az, Ay). If the destination is inside a wall and kick-
if-wall is true, a non-wall neighbor of the wall cell will be found and thing will be kicked
there instead. If kick-if-wall is false, however, kicking into a wall will do nothing, and
the function will return nil (otherwise, on success, it returns t). Similarly, if the object
is in a closed object or storage bin, the kick will fail and kick-thing will return nil
(regardless of the value of kick-if-wall).

5.4 Defining new attributes

Since it is impossible for us to predict all possible types of environments that users
of the simulator may want to model, and in particular, what types of objects those
environments contain, we have also provided a facility for defining new object attributes,
which can then be used in descriptor specification and can be sensed, in just the same
way as built-in attributes. An attribute is defined by specifying two things: its domain
(the possible values it can take on) and its sensing parameters (please see section 3.4.2
for a detailed discussion of the meaning of these parameters). An attribute is defined
by the defattribute special form:

(defattribute name domain
[:success success]
[:base base]
[:max-mult maz-mult]
[:noticed noticed |
[:supported-by ({supported-by}*) |

This defines an attribute named name (by convention a keyword). If domain (which is
unevaluated) is a list, the elements of the list are the possible values of the attribute,
and it is declared to be discrete. To specify a numeric attribute, domain should be the
symbol NUMERIC. For a discrete attribute, success is the basic probability of a correct
reading of the attribute’s value (modified by distance as above). The default success
probability is 1. Numeric attributes have two sensor noise parameters: base giving
the basic standard deviation of sensor readings (default 0) and maz-mult giving the
maximum standard deviation multiplier with increasing distance (default 1). Noticed
gives the base probability of the attribute being sensed when not specified by the
robot. Each supported-by is the name of an attribute which when specified by the
robot increases the chances of noticing the value of the new attribute.

For example, the :color attribute could be defined by:
(defattribute :color (red green blue violet

lightred lightblue lightgreen lightviolet)
:success .4 :support .4 :supported-by (:substance))

This specifies that color is a discrete attribute with various particular colors possible,
that color is not likely to be sensed correctly (due to lighting difficulties, etc.), that it is

5.5. MANIPULATIONS 39

not likely to be noticed, either, and that noticing color is more likely when examining
substance since when the material is known, the color is more likely to be known. Size,
on the other hand, would be defined as:

(defattribute :size NUMERIC
:base .8 :max-mult 4
:support .7 :supported-by (:capacity :obsview :weight))

Size is thus a numeric parameter, with a reasonably small margin of error and a good
chance of being noticed; size is also more likely to be noticed when trying to compute
an object’s carrying capacity, weight, or whether it obstructs the robot’s view.

5.5 Manipulations

A final way to enhance a simulated environment is to define manipulation methods, by
which the robot program can manipulate objects in the environment. For example, a
manipulation could be defined to open containers by setting the value of their :closed
attribute. A given manipulation may have a number of different methods, one of which
is applied in a given case based on the particular objects passed to it. This provides a
object-oriented sort of system, based on pattern-matching on descriptors. Also, since
a manipulation is a robot action, it may have a probability of failure, as well as a delay
before it actually occurs.

5.5.1 Defining manipulations

A manipulation method is defined by defmanipulation:

(defmanipulation name (-object-params- :by resource-param -other-params-)
([:success succ]
[:delay delay])

-~
Py

-body-)

This defines a manipulation method for the manipulation name with success probability
succ (default 1) and delay delay (default 0). The parameter list has several components
which will be discussed one by one. First, -object-params- lists the object parameters
to the function. Each variable name must be followed by a dash (-) followed by an
extended descriptor specifier, which specifies which objects can be bound to the vari-
able. The extended specifier is just like a normal descriptor specifier (as described in
section 3.4.2), with the extension that values can be given as Nisp matchvars (eg, ?x)
instead of actual values. In the first descriptor in which the matchvar appears, when
matched it is bound to the value of the applicable attribute. When the same matchvar
appears later in an attribute specification for another object parameter, the value of
that attribute must match the matchvar’s binding. This is made clearer by the ex-
ample further below. The resource-param and -other-params- are specified as ordinary

40 CHAPTER 5. WORLD DESIGN

function parameters; the only special thing about the resource-param is that when the
manipulation method is run, the value of the resource-param is used as the scheduler
resource for the manipulation event. The -body- should return two values, the first an
error code (as above) or nil for successful execution, the second a return value to be
passed to a continuation.

An example of a definition for a lock manipulation is as follows.

(defmanipulation lock (container - ((:capacity (0.1 9999)) (:lock-id ?x))
key - ((:type :key) (:lock-id ?7x))
:by hand - HAND)
(:success .9 :delay 1)
(cond ((in-location key hand)

(setf (get-attribute container :locked) t)

(values nil hand))

(t

(values :NOT-HOLDING-KEY hand))))

This defines a manipulation method which locks a container when using a key with the
same :lock-id as the container. The method usually works when applicable (90% of
the time). If the hand is not holding the key, an error is signalled. Other methods
could also be defined, for locking doors or bicycles, say.

5.5.2 Running manipulations

When executing a manipulation from a robot program, the object parameters are spec-
ified by local designators which (with luck) denote the desired objects of the action. A
manipulation is generally executed via the manipulate special form.

manipulate manipulation-name -args- continuation
The arguments are as specified in the manipulation method definition(s), with designa-
tors representing the objects they denote. So, if box-desig is thought to denote a box,
key-desig a key held by right-hand, and cont is a desired continuation (see below),
the box may (perhaps) be locked by
(manipulate lock box-desig key-desig hand cont)
Note that :by is not used here. For dealing with return values, manipulations use con-
tinuations in the same way as built-in robot commands. Manipulation continuations
take two arguments. The first, as usual, is an error code. The one standard manipula-
tion error is :FAILED, which is signalled when either no applicable method is found or
an applicable method fails its success probability test. Manipulations may also define
their own error codes. The second continuation argument is a manipulation-dependent
return value. If the user wants to decide which manipulation to run at run time, she
may, provided the parameter lists of the possible manipulations are similar enough.
This may be done by using the function run-manipulation:

run-manipulation manipulation-name -args- continuation
So, using this, the above lock example could be done as
(run-manipulation ’lock box-desig key-desig hand cont)

Bibliography

[1] Philip E. Agre. The Dynamic Structure of Everyday Life. PhD thesis, MIT Arti-
ficial Intelligence Laboratory, 1988.

[2] Badr Al-Badr and Steve Hanks. Critiquing the Tileworld: Agent architectures,
planning benchmarks, and experimental methodology. AI Magazine, 1991. sub-
mitted.

[3] Sean P. Engelson and Drew V. McDermott. Image signatures for place recognition
and map construction. In Proceedings of SPIE Symposium on Intelligent Robotic
Systems, Sensor Fusion IV, 1991.

[4] R. James Firby. Adaptive Ezecution in Complez Dynamic Worlds. PhD thesis,
Yale University, January 1989. Technical Report 672.

[5] R. James Firby and Steve Hanks. The simulator manual. Technical Report
YALEU/DCS/TR-563, Yale University Department of Computer Science, 1987.

[6] Drew McDermott. Revised NISP manual. Technical Report 642, Yale University
Department of Computer Science, 1988.

[7] Drew McDermott. A reactive plan language. Technical Report 864, Yale University
Department of Computer Science, 1991.

[8] A. Philips and J. Bresina. NASA Tileworld manual. Technical Report TR-FIA-
91-11, NASA Ames Research Center, Code FIA, 1991.

[9] Martha E. Pollack and Marc Ringuette. Introducing the Tileworld: Experimen-
tally evaluating agent architectures. In Proc. National Conference on Artificial
Intelligence, 1990.

[10] Robert W. Scheifler et al. CLX Common LISP X Interface, 1988,1989.

[11] A.L. Samuel. Some studies in machine learning using the game of checkers. In
Computers and thought. McGraw-Hill, 1963. Also in IBM Journal of Research and
Development (1959).

[12] Steven Vere and Timothy Bickmore. A basic agent. Computational Intelligence,
6(1), Feb 1990.

41

42

BIBLIOGRAPHY

Appendix A

Running the Simulator

The simulator is loaded into Nisp by typing (dsklap "ars-dir/ars-magna"), where
ars-dir is the directory in which the simulator has been installed!. This will also define
a NISP logical name ARS, bound to the installation directory. Once the system is
loaded, a robot can be started by typing (simulator robot), which will pop up a
graphic display of the robot and its world (see Appendix B). There is a command-line
interface, described below, that you can run by typing (c1i).

If you have any problems, please send email to engelson@cs.yale.edu.

At Yale as of this writing, this directory is /cs/yale/src/ lisp/nisp/ars-magna on Thailand.

43

44

APPENDIX A. RUNNING THE SIMULATOR

Appendix B

The Graphical Display

This appendix describes ARs MAGNA’s X-based graphical display system, activated
when simulator is called. It is not currently a full interface (there is no input), but
the various displays allow the user to see concisely what is going on in the world. There
are several windows showing different aspects of the world—there is a window showing;:
the world map, the robot’s cameras, its hands, and its storage bins. The remainder of
this section explains the various types of displays. It may be helpful to run the system
and refer to an actual display. Although the figures here are in black and white, color
is used when available; details are described below.

The world

The main display window shows a bird’s eye view of the robot and its world. Figure
B.1 shows an example of this display. Solid black areas are walls, white areas are open
space. In color, walls are displayed in shades of gray, denoting different substance
parameters. At the upper left is the robot, shown as a circle containing an arrowhead.
The arrowhead points towards the robot’s current direction. Not visible in this picture
are small radial lines, showing the directions of the robot’s cameras (they are more
visible in color). Directly before the robot are a couple of objects, shown as small
vertical lines. In color, different objects are shown as differently-colored lines, so they
can be more easily distinguished. Cells with a visible place type (see Section 5.1.1) are
marked, depending on the particular type. In black-and-white the marks are symbols,
here you can see a small circle denotes a convex corner; a dot, a concave corner or beak;
and a square, a doorway. On a color display, the different place types are indicated by
filled cells of different colors: convex = pink, concave = light pink, doorway = light
blue, and beak = violet. User-defined place types may also have display methods of
this sort if given a :graphics method, as described further below. The scale of the
world display can be changed by setting the variable graphics-scale#*, which specifies
how many pixels there are to a grid cell side.

45

46

APPENDIX B. THE GRAPHICAL DISPLAY

Figure B.1: The ARs MAGNA world display. The robot is at the upper left.

47

Objects

As mentioned above, objects appear in the world map as small vertical lines in particular
grid cells. In the more detailed displays, objects are shown more completely. If an object
has a value for the attribute :draw-function, which should be a procedure taking as
arguments an XLIB window, the object, x and y positions, and a width and height
(within which to draw the object), that procedure will be used to draw a representation
of the object where needed. Otherwise, by default, each object is drawn as a rectangle,
of width proportional to its :size value (see Figure B.2(b) for an example). If the
object obstructs view, an ‘X’ is drawn over it, if it obstructs movement, it is drawn as
a solid rectangle. On color displays, the :color attribute is used to determine what
color the object is drawn with.

Robot state

X RoBot Scate ROBOT DeSIGNATORS
Pos: (5.00,13.00) b: [

Bng: 0.0 1: CONVEX

Dir: (1.00,0.00)

(a) (b)

Figure B.2: The ARs MAGNA robot status displays. (a) Robot state. (b) Robot
designators.

Figure B.2 shows two displays of generic robot status information. The “Robot state”
window shows the position and direction of the robot. The “Robot designators” window
shows a list of the robot’s current designators. Designators are displayed by their
denotations. Objects are drawn as described above; place types’ names are shown,
and false designators are noted by “FALSE”. Since the list of designators can grow
large, the list can be scrolled up and down by clicking the right and left mouse buttons,
respectively.

Cameras

The robot’s cameras are displayed in detail in their own window, as shown in Figure
B.3. At the left of each camera display is a depiction of the camera as a wedge; the
direction of the wedge is the direction of the camera, and its width is the camera’s field

48 APPENDIX B. THE GRAPHICAL DISPLAY

ROBOT Cameras [I BH

Q View: 10.00 10.00 60.00 60.00 34.97 30.69 30.00 29.00
Tracking: Non-Local @14.66 CONVEX
Outside

No View
Tracking: Non-Local @9.91]
Outside

Figure B.3: The ArRS MAGNA robot cameras display.

of view. If the camera is tracking a designator, the estimated designator direction is
shown as a tick in the field of view (as shown). On the right are three lines showing:
the camera’s view, its tracked designator, and its containment. The view is shown as
a list of numbers. If the camera is tracking, the designator’s type, estimated distance,
and denotation are shown. If the camera is inside a container, that fact is shown in the
third line of the display (in the same manner as shown below, in Figure B.4).

Hands

ROBOT hands
Grasping:]

Empty

In:

Empty
In: Storage bhin #0

Figure B.4: The ArRS MAGNA robot hands display.

Two pieces of information are displayed for each of the robots hands, as depicted
in Figure B.4: the hand contents, and its containment. If the hand is grasping an
object, that object is displayed (in the manner described above). If the hand is inside
a container or storage bin, that fact is also shown, by either drawing the object, or
printing which storage bin the hand is inside.

B.1. PLACE TYPE GRAPHICS METHODS 49

Storage bins

X] RoBbT BINs

Open
Empty

Open

Contains: |:| -

Closed
Empty

Figure B.5: The ArRs MAGNA robot storage bins display.

Two data about storage bins are shown in the storage bin window: whether each bin is
open or closed, and what it contains. As shown in Figure B.5, closure status is noted
simply, by text. Bin contents are shown as a list of objects. Note that robot parts
inside bins are not shown (since they take up no ‘room’).

B.1 Place type graphics methods

Recall that when we discussed defining place types in Section 5.1.1, def-place-type
had a mysterious keyword argument :graphics. This argument allows the place type
designer to specify how cells with that place type should be displayed. This interface
is somewhat primitive at present, but not too difficult to use. Recall def-place-type:

(def-place-type name (cell)

-other-keywords-

[:graphics ((winvar zvar yvar) -body-)]
)

The :graphics clause specifies a funxtion for drawing the place type’s representa-
tion, using the CLX interface to X windows [10]. The first sublist specifies variable
names to be bound when executing the body: winvar is bound to the window to
draw into, and zvar and yvar to the position (in pixels) of the cell to be drawn.
There are three important global variables to be used here, graphics-scale%, de-
scribed above, draw-gcontext# (in the NISP package, as are all variables here except
graphics-scalex), whose value is a CLX graphics context to be used in drawing
operations, and in-color* (also in the NISP package), which is #T if the current
display is in color and #F otherwise. The variables black* and white* are bound
to their respective colors, and grey* is a 64-vector of shades of grey (0 is black,
63 is white). There are also several variables whose values are 12-vectors of colors,

50 APPENDIX B. THE GRAPHICAL DISPLAY

giving a range from dark to light shades of particular hues: redx, green*, blue*,
violet*, lightred*, lightgreen*, lightblue#, and lightviolet*. A particular
color can be easily selected for drawing by using the macro: (with-color color -
body-); if the display is not in color, black is used. Similarly, a particular line style
and/or width may be selected (see the CLX manual for available styles) by using
(with-lines ([:width w] [:style st]) -body-).

The use of :graphics should be made clearer by reference to the followmg example,
taken from the definition of the convex corner place type:

:graphics ((win cx cy)
(if in-colorx
(with-color (vref lightred* 9)
(x1ib:draw-rectangle win draw-gcontext#
cx cy
graphics-scale* graphics-scalex*
t))
(xlib:draw-arc win draw-gcontext*
cx cy
graphics-scale* graphics-scale*
0 (x 2 pi) nil)))

This bit of code does the following. If the display is in color, a filled square of side
graphics-scalex with origin at (z,y) (covering the cell) is drawn in pink (light red).
Otherwise, a circle is drawn, inscribed in that same square. Care should be taken not
to draw outside this square, since unpredictable things may happen then.

Appendix C

RPL Interface

RPL [7] is a robot programming language designed for automatic development of re-
active plans. This appendix describes an interface to ARS MAGNA from RPL. We
generally assume familiarity with RPL (please see [7] for details). One important class
of RPL entities which bears mentioning here is the fluent. Fluents are time-varying
quantities, by which dynamic behavior of a program/plan can by controlled. For ex-
ample, (wait-for f) waits until the fluent f becomes true. This locution (and others)
leads to the idiom used here of having fluents which are pulsed (set to true for an
instant) to signal particular conditions.

All interface functions operate on one particular robot (making plans much more con-
cise). Cameras, hands, and storage bins are referred to by integer indices given by
the order they appear in the defrobot form (starting at 0). The functions are of two
types: commands and accessors. Commands spawn a process in the simulator to per-
form some action or sensing, and return results via RPL fluents. Some fluents relating
to cameras, hands, or storage bins come in vectors, one for each corresponding robot
part. Accessors allow a plan to determine the configuration of the robot that is being
used, for example the number of cameras mounted. All RPL interface functions are in
the NISP package and are prefixed by “rpl-”; the names are otherwise generally the
same as the corresponding regular ARS MAGNA functions. All arguments can also be
given as fluents with values of the appropriate types.

Initialization

rpl-init-robot robot
This initializes the RPL interface to use robot. This must be called before doing any-
thing else.

Robot fluents

robot-stopped* Pulsed when the robot stops moving, whether or not a movement
was successfully completed.

51

52 APPENDIX C. RPL INTERFACE

robot-movement-error* The error code signalled by the last command to complete
(or be interrupted).

robot-angle-diff* Set to the estimated change in angle over a turning operation.
robot-arrived-at* Set to a designator that the robot successfully moved to.
robot-place-input* Pulsed when the robot’s place type is sensed.

robot-place* Set to the last robot place type sensed.

Robot functions

rpl-robot-speed
rpl-robot-turn-angle
Return the robot’s current speed and turning angle, respectively.

rpl-robot-num-cameras
rpl-robot-num-hands
rpl-robot-num-bins
Return the number of cameras, hands, or storage bins mounted on the robot.

rpl-robot-set-speed speed

rpl-robot-set-turn-angle angle

These two commands set the robot’s speed and turn angle, respectively. Any error
code is put into robot-movement-errork.

rpl-robot-turn angle

rpl-robot-about-face

rpl-robot-turn-left

rpl-robot-turn-right

rpl-robot-turn-corner

rpl-robot-align-place
These commands turn the robot in various ways. When the turn is completed, robot-stoppedx
is pulsed, robot-movement-error*is set to the error code (if any), and robot-angle-diff*
is set to the estimated amount turned.

rpl-robot-go-forward time

rpl-robot-goto-wall

rpl-robot-follow-wall

rpl-robot-goto-designator cam

These commands move the robot, pulsing robot-stopped* when done and setting
robot-movement-error*; rpl-robot-goto-designator also sets robot-arrived-at*
to the designator arrived at (if any).

rpl-robot-stop
Stop the robot and pulse robot-stoppedx.

53

rpl-robot-place

Sense the robot’s current place type and put it into robot-place*. Pulses robot-place-inputs
when done.

Camera fluents

Keeping track of camera status is done through a set of fluent vectors, indexed by
camera number. So, (vref fluent-vec i) gives the fluent for (robot-camera robot).
The fluent vectors are as follows:

camera-input* Pulsed when new sensory information is available for a camera.
camera-views* Contains the latest view computed for each camera.

camera-designators* Contains a list of designators from the last designator sensing
operation for each camera.

camera-error* The last sensing error code for each camera.
camera-tracking* Pulsed when a camera starts tracking a designator.

camera-tracking-error* The code for each camera’s last tracking error.

camera-moved* Pulsed when a camera completes a move.

camera-movement-error* The code for each camera’s last movement error.

Camera functions

rpl-camera-field-of-view ¢
rpl-camera-resolution ¢

These accessors return the ‘optical’ parameters of camera c.

rpl-camera-angle ¢
Returns the relative angle of camera ¢ with respect to the robot.

rpl-camera-last-view ¢
Returns the last view sensed by camera c.

rpl-camera-turn c ang

rpl-camera-align-place ¢

rpl-camera-align-robot ¢
Turn camera c, pulsing (vref camera-moved* ¢) when completed and setting
(vref camera-movement-errorx c) to the error code returned.

rpl-camera-view ¢

Compute the current view for camera c and put it into camera-views*. Pulse
(vref camera-input* ¢) when done.

54 APPENDIX C. RPL INTERFACE

rpl-camera-get-object-designator ¢ type specs
rpl-camera-get-all-object-designators ¢ type specs
rpl-camera-get-place-designator ¢ type
rpl-camera-get-all-place-designators c type

Use camera c to find designators of various kinds, pulsing camera-input* when done
and setting camera-error# to any error code produced. A list of the designators found
is placed in camera-designatorsk.

rpl-camera-track c desig
rpl-camera-untrack ¢

Start or stop a camera tracking. When tracking starts, camera-tracking* is pulsed;
if an error occurs, camera-tracking-errorx is set to the error code.

rpl-camera-insert c desig

rpl-camera-remove ¢

Insert or remove the camera into or out of an object, pulsing camera-moved* when
done and putting error codes into camera-movement-error*.

Hand fluents

Hand status is represented by fluent vectors in the same way as camera status.

hand-moved* Pulsed whenever a hand completes a movement.
hand-error* Set to the last error code signalled for each hand.
hand-lost#* Pulsed when a hand loses its grasp.

hand-inside* Set to the designator or bin a hand is inside.
hand-grasping# Set to the designator or bin a hand is grasping.

hand-input* Pulsed when sensory information becomes available for a hand.

Hand functions

rpl-hand-strength &
Returns the strength of robot hand A.

rpl-hand-insert & desig

rpl-hand-insert-bin & bin

rpl-hand-remove A
Move the hand into and out of objects or storage bins, pulsing hand-moved* when done
and setting hand-error* to the resultant error code. When an insertion is successful,
hand-insidex is set to the object of the insertion (a designator or bin).

55

rpl-hand-grasp-desig & c desig
rpl-hand-ungrasp h

Grasp or ungrasp an object; pulse hand-moved* when done and set hand-error* If a
grasp is successful, hand-graspingx is set to the object of the grasp (a designator).

rpl-hand-grasp-check &
rpl-hand-track &

Check or track grasping status, respectively, setting hand-error* to the error code
produced. When rpl-hand-grasp-check completes, it pulses hand-input*, whereas
hand-lost* is pulsed when rpl-hand-track#* detects a lost grasp.

Storage bin fluents

Storage bin fluents also come in vectors, as above.

storage-bin-moved* Pulsed when a bin movement (open/close) completes.
storage-bin-error* Set to the last error code for a bin.

storage-bin-jammer* If a bin cover is jammed by a robot part, the corresponding
fluent here is set to the jamming part.

Storage bin functions

rpl-storage-bin-capacity b
rpl-storage-bin-real-capacity b
Return a storage bin’s total capacity and current capacity, respectively.

rpl-storage-bin-closed? b
Return true if storage bin b is closed, otherwise false.

rpl-storage-bin-open b

rpl-storage-bin-close b

Open or close a storage bin, pulsing storage-bin-moved* when done and setting
storage-bin-error* to the error code produced. If the bin jams on closing, the
offending robot part is put into storage-bin-jammerx.

Resource functions

rpl-grab-robot

rpl-grab-camera ¢

rpl-grab-hand &

rpl-grab-bin b
These functions grab the specified resources, essentially stopping other processes run-
ning on them.

56

APPENDIX C. RPL INTERFACE

Appendix D

An Extended Example

This appendix presents a detailed example of a robot program to aid in understanding
how to use the simulator. Our objective is to write a routine that will find an object
with a given description (nearby), go to it, grasp it, carry it in a robot storage bin back
to its starting point, and drop it on the ground.

Scanning for an object

We start with a routine that will find an object with a given descriptions, returning a
designator for further use. In Figure D.1 we define a function that continually turns
a camera and looks for a matching object. This routine turns the camera to face an
unseen area of the world. When the turn is completed, we either abort if an error
occurred, or try to get a designator for the described object. If no designator is found,
we repeat until one is. Note that this function that we’ve defined takes a continuation in
the same way as built-in robot commands, since it returns immediately, after scheduling
the proper events in the robot’s ‘controller’. Figure D.2 shows a RPL version of the
same function. This version is somewhat clearer, due to the use of iteration and explicit
synchronization. Also note the use of a fluent parameter for returning the designator
found.

Going to an object

Once we can scan for an object from one position, we now write a routine (see Figure
D.3) to move in a straight line while scanning, which returns the designator found (or
an error if none). First we fire off two control processes, one for scanning as discussed
above, and one for moving forward a specified distance. The routine then waits until
something happens, and either goes to the designator found, or returns an error. This
shows the use of continuations for setting status variables in order to synchronize the
robot and the world. If you use RPL, however (Figure D.4), the necessary synchro-
nization can be done using parallelism and policies. The RPL procedure also returns
the enhanced object descriptor for use later. Another fact to note is the necessity of

57

58 APPENDIX D. AN EXTENDED EXAMPLE

(deffunc scan-for-object - VOID (cam - CAMERA type - SYMBOL spec - THING-DESCRIPTOR
cont - ROBOT-CONTINUATION)
(camera-turn cam (!_field-of-view cam)
(continuation (err cam ang)
(if err

(funcall cont err nil)

(camera-get-object-designator

cam type

spec (continuation (err cam desig)

(cond ((null desig)

(scan-for-object cam spec cont))
(¢
(funcall cont nil desig)))))))))

Figure D.1: Continuation-based object scanning function.

(def-interp-proc rpl-scan-for-object (cam type spec desig)
(let ((got-desig (state ’got-desig)))
(loop UNTIL got-desig
(rpl-camera-turn cam (rpl-camera-field-of-view cam))
(vait-for (vref camera-moved# cam))
(if (not (null (fluent-value (vref camera-movement-error* cam))))
(fail)
(seq
(rpl-camera-get-object-designator cam type spec)
(vait-for (vref camera-input# cam))
(if (vref camera-designators* cam)
(seq
(set-value got-desig T)
(set-value desig
(car (fluent-value (vref camera-designators* cam)))))))))
got-desig))

Figure D.2: RPL object scanning function.

(deffunc go-to-object - VOID (rob - ROBOT cam - CAMERA spec - THING-DESCRIPTOR
timeout - INTEGER cont - ROBOT-CONTINUATION)
(let ((desig NIL) - (~ DESIGNATOR)
(stop #F) - BOOLEAN)
(scan-for-object cam :NON-LOCAL spec (continuation (err des)
(unless err
(= desig des))))
(robot-go-forward rob timeout (continuation (err rob)
(!= stop #T)))
(unwind-protect
(loop UNTIL (or desig stop) (nop))
(if desig
(progn (camera-track cam desig (continuation (err &rest fu) ()))
(robot-goto-designator rob cam (continuation (err &rest fu)
(grab-resource cam)
(funcall cont err desig))))
(funcall cont :NO-OBJECT-FOUND rob cam NIL)))))

Figure D.3: Go to designator function.

(def-interp-proc rpl-go-to-object (cam spec timeout)
(rpl-robot-set-speed .3)
(let ((desig (create-fluent ’desig NIL)))
(pursue (rpl-scan-for-object cam :NON-LOCAL spec desig)
(seq (rpl-robot-go-forward timeout)
(vait-for robot-stopped#)))
(if desig
(with-policy (seq (set-value (vref camera-tracking-error* cam) nil)
(whenever (vref camera-tracking-error* cam)
(vait-time 1)
(if (not robot-arrived-at#*)
(seq
(print (vref camera-tracking-error* cam))
(fail)))))
(seq (rpl-camera-track cam desig)
(vait-for (vref camera-tracking* cam))
(set-value robot-stopped* nil)
(set-value robot-arrived-at* nil)
(rpl-robot-goto-designator cam)
(wait-for (and robot-stopped#* robot-arrived-at*))))
(fail))
(rpl-designator-data desig)))

Figure D.4: Go to designator RPL procedure.

59

60 APPENDIX D. AN EXTENDED EXAMPLE

manually resetting fluents such as camera-tracking-error* to known states before
relying on their values. In a more complex plan, valves would probably be used to
guarantee ownership of various resources.

Getting the object

The next stage is to actually get the target object. Figures D.5 and D.6 show procedures
to accomplish this. The sequence of events (somewhat clearer in the RPL code) is:

1. Get alocal designator and track it

N

. Grasp the object
3. Open the storage bin and insert the hand into it
4. Ungrasp the hand (dropping the object)

5. Remove the hand from the bin and close the bin.

This plan exhibits more complex robot coordination than the previous ones. The plan
still is not terribly robust—it simply fails when errors occur. Making the plan more
robust by using error-recovery strategies is left as an exercise for the reader.

Putting the object down

The plan for putting an object down (that is, taking it out of a storage bin and dropping
it) is similar to that for grabbing it. The one significant difference is the necessary
insertion of a camera into the storage bin, to sense the target object for grasping.
We only show the RPL procedure (in Figure D.7) for clarity; the continuation-passing
version is analogous.

Returning home

Returning to home base based purely on odometric information is bound to be inac-
curate. But it is the simplest thing to do, so we shall assume that it will work well
enough. The basic idea is to start an odometer counting before executing some proce-
dure, and then after the procedure finishes, to maneuver the robot such that the center
of the odometric interval (the best estimate of relative position) is near the origin. A
general RPL macro to do this is shown in Figure D.8. A new odometer is created, the
desired body is executed, and then the robot repeatedly turns toward the origin and
moves forward. This will clearly fail if there are obstacles; again, robustness is left as
an exercise for the reader.

61

(deffunc grab-object - VOID (h - HAND cam - CAMERA spec - THING-DESCRIPTOR
bin - STORAGE-BIN cont - ROBOT-CONTINUATION)
(scan-for-object cam :LOCAL spec
(continuation (err cam desig)
(if (null desig)
(funcall cont :NO-DESIGNATOR-FOUND nil))
(camera-track cam desig (continuation (err &rest fu) ()))
(hand-grasp-desig h cam desig
(continuation (err &rest fu)
(if err
(funcall cont err desig))
(storage-bin-open bin
(continuation (err &rest fu)
(hand-insert-bin h bin
(continuation (err &rest fu)
(hand-ungrasp h
(continuation (err &rest fu)
(funcall cont err desig))))))))))))

Figure D.5: Object grabbing function.

(def-interp-proc rpl-grab-object (h cam spec bin)
(set-value (vref camera-designators* cam) ’())
(set-value (vref camera-error* cam) nil)
(let ((desig (create-fluent ’desig nil)))
(rpl-scan-for-object cam :LOCAL spec desig)
(if (vref camera-error* cam)
(£fail))
(set-value (vref camera-tracking-error* cam) nil)
(with-policy (seq (set-value (vref camera-tracking-error* cam) nil)
(whenever (vref camera-tracking-error* cam) (fail)))
(rpl-camera-track cam desig)
(vait-for (vref camera-tracking* cam)))
(with-policy (seq (set-value (vref hand-error* h) nil)
(whenever (vref hand-error* h) (fail)))
(vith-policy (whenever (vref camera-tracking-error* cam) (fail))
(rpl-hand-grasp-desig h cam desig)
(wait-for (vref hand-moved* h))
(rpl-storage-bin-open bin)
(vait-for (vref storage-bin-moved* bin))
(rpl-hand-insert-bin h bin)
(vait-for (vref hand-moved* h)))
(rpl-hand-ungrasp h)
(vait-for (vref hand-moved* h))
(rpl-hand-remove h)
(vait-for (vref hand-moved* h))
(rpl-storage-bin-close bin)
(vait-for (vref storage-bin-moved* bin)))))

Figure D.6: Object grabbing RPL procedure.

62 APPENDIX D. AN EXTENDED EXAMPLE

(def-interp-proc rpl-put-down-object (h cam spec bin)
(rpl-storage-bin-open bin)
(wait-for (vref storage-bin-moved* bin))
(with-policy (seq (set-value (vref camera-movement-error* cam) nil)
(vhenever (vref camera-movement-error* cam) (fail)))
(rpl-camera-insert cam bin)
(vait-for (vref camera-moved* cam)))
(let ((desig (create-fluent ’desig nil)))
(with-policy (seq (set-value (vref camera-designators* cam) ’())
(set-value (vref camera-error* cam) nil)
(vhenever (vref camera-error* cam) (fail)))
(rpl-scan-for-object cam :LOCAL spec desig)
(set-value (vref camera-tracking-error* cam) nil))
(with-policy (seq (set-value (vref camera-tracking-error* cam) nil)
(whenever (vref camera-tracking-error* cam) (fail)))
(rpl-camera-track cam desig)
(vait-for (vref camera-tracking* cam)))
(with-policy (seq (set-value (vref hand-error* h) nil)
(whenever (vref hand-error* h) (fail)))
(rpl-hand-insert-bin h bin)
(wait-for (vref hand-moved* h))
(with-policy (whenever (vref camera-tracking-error* cam) (fail))
(rpl-hand-grasp-desig h cam desig)
(wvait-for (vref hand-moved# h)))
(par
(seq (rpl-hand-remove h)
(wait-for (vref hand-moved# h))
(rpl-hand-ungrasp h)
(vait-for (vref hand-moved* h)))
(seq
(rpl-camera-remove cam)
(wait-for (vref camera-moved* cam))
(rpl-camera-untrack cam))))))

Figure D.7: RPL procedure for putting an object down.

(def-interp-macro (with-odometric-return 7name . ?body)
‘(let ((odo (rpl-new-odometer ’,name)))
»@body
(let ((nom (nominal (ars:get-odometer-pos odo))) - PT)
(with-policy (seq (set-value robot-movement-error* nil)
(whenever robot-movement-error* (fail)))
(loop UNTIL (< (dist nom origin*) .5)
(1et ((ang (nominal (ars:get-odometer-ang odo))))
(rpl-robot-turn (- (atan2 (- ({_(PT y) nom)) (- (!_(PT x) nom)))
ang))
(wait-for robot-stopped#*)
(rpl-robot-go-forward 1)
(wait-for robot-stopped#))
(!= nom (nominal (ars:get-odometer-pos 0do))))))))

Figure D.8: RPL macro for returning to (approximately) a starting position.

63
Putting it all together

The final top-level RPL plan is given in Figure D.9. The robot goes and gets the object,
returns, and deposits it on the ground. Simplicity itself, at this level.

(def-interp-proc get-object-and-return (h cam spec bin walk-time)
(seq (with-odometric-return temp-odom
(rpl-go-to-object cam spec walk-time)
(rpl-grab-object h cam spec bin))
(rpl-put-down-object h cam spec bin)))

Figure D.9: Top-level RPL procedure for getting an object and bringing it back.

64

APPENDIX D. AN EXTENDED EXAMPLE

Appendix E

The Command-Line Interface

The Command Line Interface (CLI) is an interactive user interface for controlling the
robot. Note that the CLI takes the place of a robot program, so only primitive robot
operations are provided, which may seem cumbersome at times. The prompt Robot>
signifies that the CLI is running. Commands to the CLI consist of a command name
followed by a set of arguments separated by spaces. Command lines delimited by parens
are evaluated as Lisp expressions, providing a way to escape to Lisp. All cameras,
hands, designators and storage-bins are specified by their numeric index in the CLI.
The indices are also used for display.

CLI Messages

All robot operations are accompanied by messages, which are displayed after an opera-
tion is finished. Since most actions take some time to complete, messages may arrive at
any time. Messages come in three forms: messages, warnings and errors (as discussed
in Section 3.7) . Whenever an operation completes successfully, a message is returned
stating the result of the operation. Warnings, preceeded by *WARNING* ->, inform the
user that an event outside the robot’s control has occurred as a consequence of its
action. For example, warnings are displayed when designators are lost due to the robot
moving. Errors, preceeded by *ERROR* ->, are issued when the robot fails in a task.

Built-in Commands

Built-in commands basically serve the purpose of aiding the user in performing tests on
the simulator and determining the status of the robot at certain times. The following
built-in commands are defined in the CLI:

ALIAS [Alias Cmd]: Displays the currently defined aliases, if no arguments are present,
or allows for the definition of a new alias for Cmd.

EVAL Exp: Evaluates Exp as a LISP expression.

65

66 APPENDIX E. THE COMMAND-LINE INTERFACE

REPEAT Num Cmd: Repeats the command Cmd a Num number of times.

HELP [Cmd]: Displays the main command menu, if no argument is present, otherwise
help is displayed for the specified command. The main menu shows all of the
built-in commands as well as those that affect the robot’s movement and turning.

QUIT: Exits the CLI.

MENU-BIN: Displays the menu of possible commands for manipulating storage-bins.
MENU-CAMERA: Displays the menu of possible commands for manipulating cameras.
MENU-HAND: Displays the menu of possible commands for manipulating hands.

BINS: Displays the various storage-bins on the robot, including their status (open or
closed), total capacity, current capacity and contents.

CAMERAS: Displays the status of the cameras on the robot, including field of view,
resolution, current location and designator being tracked, if any.

HANDS: Displays all of the hands on the robot, including their strength, location and
what they are grasping.

THINGS: Displays a list of all the objects in the world together with their locations and
attributes.

STATUS: Displays the status of the robot, including position, last change in position,
last estimated change in position, current heading, speed, turning speed, the views
from all of its cameras and any currently valid designators.

There are two more built-in commands, POS x y and ANGLE ang. These commands
instantaneously set the position and angle of the robot respectively, without any error
(and ignoring obstacles).

Robot Commands

For most robot control functions discussed above, there is a corresponding command
in the CLI. These are fairly self-explanatory with a few exceptions. First, all cameras,
hands, storage bins, and designators are specified with identification numbers instead
of the actual structures. Secondly, the robot is never specified, it is always assumed?.
Finally, some commands differ slightly in other ways from the function they roughly
correspond to. The following list presents these differences:?2

OBJ-DESIG cam type specs: Attempts to find an object designator using the speci-
fied camera, where type is either local or non-local and specs is the list of
attributes to match the object against.

!Note that when multiple agent capability is added, this assumption will have to be changed.
2Remember that the arguments cam, hand, bin and desig refer to the identification numbers of the
respective objects.

67

PLACE-DESIG cam place: Attempts to find a place designator. Note that the type
does not have to be specified since it is assumed to be non-local.

CAM-INSERT-DESIG cam: Inserts the specified camera into the local designator which
it is tracking.

CAM-INSERT-BIN cam bin: Inserts the camera into the specified storage-bin.
HAND-INSERT-BIN hand bin: Inserts the specfied hand into specified storage-bin.

HAND-INSERT-DESIG hand cam: Inserts the hand into thelocal object designator tracked
by cam.

A CLI Example

Following is an example session with the CLI. Lines in sans serif are typed by the user.

Robot> obj-desig 0 local ((:size 5))
Robot> get-designator: Camera O found Designator O
Robot> cam-track 0 0
Robot> camera-track: Camera O tracking Designator O
Robot> cam-track 10
Robot> camera-track: Camera i1 tracking Designator O
Robot> cameras
CAMERA FIELD RES ANGLE
0 0.79 3 =-5.75 Tracking Local Object designator @ 0.00, -5.75
1 1.57 & -5.75 Tracking Local Object designator @ 0.00, -5.75
Robot> cam-insert-desig 0
Robot>
WARNING -> Camera O moved. No longer tracking Designator O
camera-insert: Camera O inserted into SMALL-BOX#3
Robot> obj-desig 0 local ((:size 1 2))
Robot> get-designator: Camera O found Designator 1
Robot> cam-track 0 1
Robot> camera-track: Camera O tracking Designator 1
Robot> status

Position: (20.00,20.00)
D Position: (0.00,0.00)
Angle: -2.65

Speed: 8

Turn Angle: 0.30

View: Camera O: TRACK 121.94 121.56 119.71

Camera 1: TRACK 79.85 76.62 11.80 10.40 14.80
Place:] NIL
Designators:

68 APPENDIX E. THE COMMAND-LINE INTERFACE

0 Local Object @ 0.00, -5.75
:SUBSTANCE Wood :CAPACITY 6.4 :0BSMOVE No :0BSVIEW No
:SIZE 5.1
1 Local Object @ 0.00, -5.73
:0BSVIEW No :SIZE 0.2
Robot> hand-grasp 0 0
Robot>
ERROR -> Hand O not in same location as Camera O
Robot> hand-insert-desig 0 1
Robot> hand-insert: Hand O inserted into SMALL-BOX#3
Robot> hand-grasp 0 0
Robot> hand-grasp: Hand O grasped PEN#2
Robot> hand-remove 0
Robot>
WARNING -> PEN#2 has moved
WARNING -> Removing Designator 1
WARNING -> Designator 1 no longer valid. Camera O lost track
hand-remove: Hand O removed from SMALL-BOX#3
Robot> hand-insert-bin 0 1
Robot>
WARNING -> PEN#2 has moved
hand-insert: Hand O inserted into Storage-bin 1
Robot> hands
HAND STRENGTH GRASPING
0 10 PEN#2 Located in storage-bin.
i 4
Robot> hand-ungrasp 0
Robot> hand-ungrasp: Hand 0 dropped PEN#2 into Storage-bin 1
Robot> bin-close 1
Robot>
ERROR -> Hand 0 still in Storage-bin 1
Robot> hand-remove 0
Robot> hand-remove: Hand O removed from Storage-bin 1
Robot> bin-close 1
Robot> storage-bin-close: Storage-bin 1 closed
Robot> bins
BIN STATUS TOTAL-CAP CURRENT-CAP CONTENTS
0 Open 20 20.0
1 Closed 5 4.8 PEN#2

Here the robot is looking for an object inside of another object. The first command
finds a local object designator using camera 0. Note that both cameras are set to
track the designator. This is necessary since one camera is going to move inside the

69

object and we want the designator to remain so that a hand can follow the camera
into the object. The cameras command shows that the cameras are indeed tracking the
same object. When camera 0 is inserted, it loses its track, but designator 0 remains,
because it is being tracked by camera 1. Camera 0 now locates another object inside
of SMALL-BOX#3. The status command shows what attributes the designated objects
have. Note that the attribute lists are not necessarily accurate or complete. Also, the
view of camera 0 consists basically of several samples of the same number since this
is the substance value of SMALL-BOX#3. In order for hand 0 to grasp PEN#2, it has to
be in the same location as camera 0. PEN#2 is grasped and removed and then inserted
into storage-bin 1, which can not close until PEN#2 is released and hand 0 has exited
the storage-bin. Each time a hand moves with an object, a warning is issued in order
to explain the possible disappearance of designators.

70

APPENDIX E. THE COMMAND-LINE INTERFACE

Appendix F

Index

Commands

camera-align-place camera cOntiNUALIONcuuuuineuneneuenennnennenn. 21
camera-align-robot camera continUAlionocuiiiueneieninnnanennnns 21
camera-get-all-object-designators camera desig-type obj-attrs continuation ..20
camera-get-all-place-designators camera place-type continuation 19
camera-get-object-designator camera desig-type obj-attrs continuation 20
camera-get-place-designator camera place-type continuation 12
camera-get-place-designator camera place-type continuation 19
camera-insert camera desig CONMINUATIONveenenene i eieeneenaneanennnnn. 21
Camera-remove CAMETrad CONLINUALIONvueurneeueneueneenennensnaeeeneenennnns 21
camera-track camera desig CONINUALIONouu e e e et eeeieeanennennnenns 20
camera-turn camera Aangle continuationo.uuieeniineenneannannnn. 21
camera-untrack camera Continuationcoueeiiinineeenrnnenneennannn. 20
camera-view camera continuationc..eeuun... e 19
hand-grasp-check hand continuationc.ooeeeeeereneeniiieenennnnns. 24
hand-grasp-desig hand camera desig continuationcooun.... 23
hand-insert hand desig continuationc.ouuiiiiiiiiiininannnnan.. 24
hand-insert-bin hand storage-bin continuationc.ccouevueneneni.. 24
hand-remove hand continuUationc..oiuueuieeiiniiiiiiiiinninnnns 24
hand-track hand CONBINUALIONoouueuieei ittt aeae e 24
hand-ungrasp hand continuationcooiiiiiiiiiiiiiii i, 24
robot-about-face 7060t CONLINUALIONovenruninenen i e enannnnnn. 22
robot-align-place 10bot CONtINUALION «......ovueeeeeieieie e e ennnnns. 22
robot-go-forward robot time continUalioncocueiiiiiniiiinininiinnn.. 22
robot-goto-designator robot camera continuationc..iiieiin.... 22
robot-goto-wall 1obot CONLINUALIONcouiviieiieeinen i eaeiaeianainnnan 22
robot-set-speed robot new-speed cONLINUALIONooueeienuien i, 21
robot-set-turn-angle robot new-turn-angle continuation 21
robot-stop 70bot CONLINUALION ...ovnetir ettt 23
robot-turn robot Aangle continuationcoiiiiiiiiiiiiiiiiiia 22

72 APPENDIX F. INDEX

robot-turn-corner robot CONLINUALIONcvuiueiininiiiniiiiiiiannennnnnn. 22
robot-turn-left robot continuationoeiuiiiiiiiiiiiiiiiiiiia.. 22
robot-turn-right robot continuationccoiiiiiiiiiiiiiiiiiininin.n. 22
storage-bin-close storage-bin continuation e 24
storage-bin-open storage-bin continuationol 24

Functions and Macros

cell-occupancy-window cell width heightcovuvrineniiiiniiiiiiaennnn.. 34
change-attribute thing descriptorc.cuuuiieiienenneieneariieieinneannns. 37
clean-simulationcciiiiiiiiiiiiiiiiii it et e i e e e aeanan 30
defattributecciiiiiioiiriiiiiiiooiaionnnn e eieieeeeeeeieeiaeeaa. 38
o =5 - I3 =1 o OO 37
defmanipulation e etaee e aoeaaoan et iei e e, 39
o L= g o - Yoty 5 =P 33,49
o T=5 5 o) oo AP e 35
dirty-simulationo.iiiiiiiiiiiiiiiiii i i it et e, 30
error-display &optional SIreamoieiiiiiiiiiiiiiii i, 25
ETTOT-Set -StUff- .t e i e 25
get-attribute thing attributettt i 36
get-odometer-ang odometer &optional Ntcouvuiniiiiiiii i 14
get-odometer-pos odometer &optional inlcvviiiirininiiinienanaieanan. 14
kick-thing thing Az Ay kick-if-walloiiiniii i, 37
make ODOMETER 70bOT TAMEoninnetii ittt ieieeeeieeaennaananannns 14
manipulate manipulation-name -args- continuationoeeeeeeeiennn. 40
message-set -Stuff- e 25
2t 8 < o = o .37
reset-odometer 0dOMmeteruuuinnini i nt ittt 14
reset-odometer-ang odometercoiiiiiiiiiiiiiiiiiiiiiiiiiiaeaean... 14
Treset-odometer-pos 0dometerciiuiniiiniiii i et 14
robot-camera 70bot iNdexiiniii i e e 17
robot-hand 7obot index i e 23
robot-main-odometer 70DOtl i, 14
TObOot-0dometer TODOL MAME ..ot ittt ieneeee i eneeneneanenennns 14
robot-0dometers 10DOtt i e, 14
robot-storage-bin 70bot iNdeTttt i i 23
run-kicker ettt et et et et aaaeaas 37
run-manipulation manipulation-name -args- continuation 40
set-attribute thing attribute new-valueot 36
set-kicker thing kicker-namecoeiiiiiiie i 37

warning-set -stuff- e e 25

73

Parameters

Bin-Close-Jam-Prob*cccvvvrvinennnnnnn.n. PP 21 ¢ |
Bin-Delay®iiiiiiiiirinereiinieiiie i et eeeae e e 29
Braking*iiiiiiiiiiiiieiin., e e e e ie e .27
Camera-Align=Delay*c.c.iieuveenenernenenennrnonennanns ceeenraneeane....28
Camera-Angle-Max-Error*ccoveuiiiininnnnnennnnn.. e ceeee...28
Camera-Desig-Delay*ccvieiiniiiiiiiniiiiiiiininnen.. e cee...28
Camera-Insert-Lose-Desig-Prob* e ce.. .28
Camera-Insert-Miss-Prob* e e e, cee...28
Camera-Move-Delay*ccoovviiininnnnnnnnnnnnn.. e ceeeee..28
Continuous-Noise-Factor*cvvvvninn.n. e 4
Discrete-Noise-Factor* e e ceeene.29
False-Desig-Drift-Ang*coiiiiiiiiiiiiiiiiiiiiiiiiinnninnns cereen.... 28
False-Desig-Drift-Dist*cciuiiriiiiiiiiiiiniiiiininnnnnnn. e 28
Graphics-Scale*ccooivivinnnnn... PR 1
Hand-Grasp-=Delay*c.oiiiiiiiiiiinnieeneneneanenennreeneenennss e .29
Hand-Insert-Lose-Desig-Prob*c.cciiiiiiiiiiiiininniiiienininnnne....29
Hand-Insert-Miss-Prob*iiiiiiiiiiiiiiiiiiiiiiiiiiieaiienans. 29
Hand-Move-Delaykouiiiiiiniiiininnreerennreneernneneeneneenenenneeneana29
Max-Speed*iiiiiiiii i i e et 27
Max-TUurn-Angl ek . ittt ittt it e e e e 27
MIn-Turn-Anglekiiiiiiiiiiiiiiiee i iieeeieeaeareenaneneenenennnenn 27
MiSs=Place=Prob¥itiitiitiiiiiii i it raenaeaeeeean 29
Miss-Thing-Prob* ittt ittt 29
Motion-Nodise* oot i it e 27
No-Sensor-Error* A
Pixel-Error-Range*iuiiiiiiiiiniiiianninrnennnnnnennnnn. cereee..n29
Pixel-Outlier-Prob* et cee..29
Prob-Grasp-Lose-Desig* e e ceen... 29
Prob-Lose-False-Track¥ccoiiiiiiiniennnninnnnn.. e ceee... 28
Prob-Lose-Track*ccuunn... e ceeeee.... 28
Prob-Miss=GraspP*iiititii ittt ettt 29
PO SOk o e e e i, 28
Robot-Align-Delay*coiiuiiiiiiiiiiniiiineieinnnnnnn.. e 28
Robot-Align-Error-Prob* it 2T
Robot-Move-Delay* PPt o
Robot=Turn=Delay*cuiuiniiiieiiiininenrnrninnennneanensenennenennennan..28
Robot-Turn-Max-Error*ciiiiiiiiniiiiiinnenirnenerennnnnnnnannnennn. 27
Scan DS ¥ Lo e e e .. 28
Standard-Match-Threshold*iuiiiiiiiiiviiininnenennenennenne.....29
Type-False-Neg*oiuiiiiiiiiiiiiiiiiiiiiiiierenienennennennenennnnannens. 28
Type-False-Pos* ... ittt ittt ittt i it iee e eaenenenne.. 28

74 APPENDIX F. INDEX

Data Types

DESIGNATOR ...ueenntttnnenntente et et e e ete e eae et et e e et e e et ee e ene e 17
INTERVAL . .ountttnnt ettt ettt et et e et e et e et e e et e e e e 13
MAP L 31
2 13
PT=INTERVAL . .ouuttnninttntt et e e et e et e e et e e e e e et e 13
021 PPN 35

RPL Interface

Tpl-camera-align=place Couuiiiiiiiiii ittt iiieiiotetaonoeeneneanionans 53
rpl-camera=align=Tobot €oiuiiiiiiiiiiiit it eiiiiererenennnaeonennenennans 53
Ipl-camera=angle €o.itiiiuitiotionttnetanne ettt eanaaaas 53
rpl-camera-field-of=vVieWw €oiiiuiiiiiiiiiiiiiinii ettt 53
rpl-camera-get-all-object-designators c type specsccuiiiiinnn... 54
rpl-camera-get-all-place-designators ciypeccoiiiiiiiinnennennnnn. 54
rpl-camera-get-object-designator c type SPecsceitiiiiiiiiiinaannn.. 54
rpl-camera-get-place-designator ciypecciiiiiiiiiiiiiiiiiiiiaaaa. 54
rpl-camera-insSert € desigoueniiintiii i i e 54
TPl-Camera=last-VieW C ..viiiintnttinnneerneeeeeannnneereneneenansennnees 53
TPl-CaMETa~TEMOVE € .outttittinnietnnnnnnnnnenneeenneeennnsonnsenseenennnsnen 54
rpl-camera-resolution €t i et e e, 53
TPl-camera-track € deSIg «..uvuintnueene ettt te i eeeeeteanarenernnaeannnn, 54
TPLl=CaMeTa=tULI C QTG . .ottt ittt ittt et eaneeneeraeaneenacasananeanans 53
TPl-Camera-UNTIaCK € ...vuutiinttiiitiiiett ittt aaaeeneeeeanaaaanaaneeanaanenns 54
By 0 R ot 1= ot R e =Y 53
rpl-grab-binb et teeeeietiaeiarea s etueea s tete e o tseenonenneans 55
TPl-grab=camera €t i e e it 55
rpl-grab-hand Acoiuiiiiiiiiiiiiiiii it F 55
TPl-grab-=Tobot ... e et 55
rpl-hand-grasp-cheCk Aciiiuiiuiniii ittt ittt it et iaiaaeaaans 55
rpl-hand-grasp-desigh cdesigoooiiiiiiiiiiiiii i i i, 55
rpl-hand-insert h desigouininiiiiiiii i e e 54
rpl-hand-insert-bin A bincooiuitiiiiiii i e e e 54
TP1-hand=TemMOVE A ...ttt ettt teee e eeteae et eae e enennanens 54
rpl-hand-strength b ... i i e 54
TPL-hand=track B .. .ottt ittt i e e 55
TPl-hand-ungrasp bcouiiiuiiiii i e e 55
TPl-init-robot 70Dt ... e e 51
TPL-TODOt=DOUL=FACE . .uuenettitniaaeaeeeeeraiaeeeeeeenenenennennns. 52
TPl-Tobot-align-pPlacecuiiiiiiiiitiiiiii i i e ettt e 52
TPl-Tobot=F0lloWw=Walliiuuiiiiiiiiiiteeineernnrerananeantennennnennan 52

TPl-robot=go=forward {imettt e i i e 52

75

rpl-robot-goto-designator camoiiiiiiiiiiiiiiiiiiiiiiiiiee ... D2
TPl-Tobot=goto=Wall ciiiiitiitiitiieniietiointoteiancnoneonncensenes 52
rpl-robot-num-binsl ceeee... 52
TPl-TObOt-NUM-CAMETaScitiiiireneinneneinennenneneennnns R R Y]
rpl-robot-num~handsc..iioa. e e c...52
rpl-robot-placec.iiiiiiiinnniiannn et e ce....03
Tpl-Tobot-set-speed SPEedcovueutiniine e 52
rpl-robot-set-turn-angle angleoooiueieeinrntinenneeninnerneaneneas 52
rpl-robot-speed et e e et 52
TPl-TobOot=Stop ...ttt e Y 2
rpl-robot-turn angle e et R V2
rpl-robot-turn-angle e e . ¥4
rpl-robot-turn-corner P
rpl-robot-turn-left e e R ¥4
rpl-robot-turn-right e e ..52
rpl-storage-bin-capacity b e e ee....55
rpl-storage-bin-close b ...l e55
rpl-storage-bin-closed? b e 1]
rpl-storage-bin-open b e e ..55
rpl-storage-bin-real-capacity bciiiiiiiiiiiiiiiiiiiiiiiiei el D5

RPL Fluents

camera-designators*o.iiiiiiiiiiiiiiiiiiii ittt il .. D3
CAMETATETTOTH o\t tttinunenneeenaeesnsononeonueanasonssoaesansosncosesssesaneesssDd
CAMETA~INPULH .. ittittiitittieitieteaeeeaeanaaaaetaaraaeeanaeracecnasanaan. D3
CamMera-MOVEd*oviinuetieennnneonnnaenennaneenncns e cee...83
camera-movement-error* e et 53
camera-tracking* R |
camera-tracking-error* e e Y 3 X
camera-views¥ e e e e .53
hand-error* e e, B, 54
hand-grasping* et e ..54
hand-input* e e et e 54
hand-inside* e PP
hand-lost* ...ttt R 7
hand-moved* P 7
robot-angle-diff* A e 52
robot-arrived=at*ttt e e i D2
robot-movement-error*c..iiiiiiiiiiiiiaaan. R e ..51
Tobot-place® i i i it ittt it D2
robot-place-input*cciiiiiiiiiiii it S s A
Tobot=Stopped*iiiiiiiiiiiiii ittt ittt ieieneenaaees..D]
Storage=-bin=error*ottt it ie e . . DD

76 APPENDIX F. INDEX

storage-bin-jammer*ottt i et et 55
storage-bin-moved® i i e e e e 55

Error Codes

ALREADY=TRACKINGennnntinnttne ettt e e e e e e e, 19,20
tBAD=DESIGNATOR ... ouuretnntt ettt et et e e e e e e e e e e 23
SBIN=CLOSED .. .teonnnnt ettt et e e e e e et e e e e e 21,24
SBIN=JAMMEDoontitinnet ettt e e e e e e e e e e, 25
30 B1) . TR 24
CAMERA=BUMP\ttt ettt e e e e et e e et e et e e 21
CAMERA=ENCLOSEDuurrttttnnt et et et e e e, 19
CAMERA=INSIDE ... \uvtnte ettt et e et et et e et e e e e 20
DESIGNATOR=NOT=FOUNDuureenninnneeeenneeeneee e e aaaneennn 19,20
DIFFERENT-LOCATIONouvtnneninttneeennee e et e e e e e eeaaneans 23
o 1 Lo | AP 23
GRASPING .. 'uttttt it ettt et e e e e e e e e e e e e 24
GRASP=LOST . .tuunttteenteee et e e et e e e et e e et e, 24
HAND=BUMP\ttt ittt ettt et e e e e e e e 24
HAND=GRASPING .. .uuuet ettt et ettt e e e e e e e e e et e 23
HOLDING=THING ...\ uvvtnnnte ettt e ettt e e e e e e e e e e 24
INCORRECT=PLACE-TYPEeuuttinninteee e e e e 22
INSUFFICIENT=CAPACITY ...ouueinnnttnne ettt e e e e e e e eeans 21,24
INSUFFICTIENT=STRENGTHovvtnniinn ittt e e e e e e, 23
SINTERRUPT «.vvtttninete ettt et e et e e et e e e e e e e 12,21,24
INVALID=PLACE=TYPEuuurnnntntee et e e e e e e 19
INVISIBLE-PLACE=TYPEuueiinnieinntee ittt e e e 19
LOCAL=NOT=LOCALrttnnnttt et e e et e e e, 20
LOST=TRACK ...t nnnttteennt ettt e e et et e e et et e e e e e 20
MISSED=GRASP ...ttt et e et e e e e e e e e, 23
NEGATIVE=SPEEDuvtnnenntee ettt et e e e e e e e e e 21
NO=CORNER . ..uuttenote et et e e et e et e et et e e e e e e, 22
NON-LOCAL=DESIGNATORuuvennnnnneeennneeenee e e ee e e eanens 21
NON=-LOCAL=GRASP\\tnrtne ittt et e et e e e e e e e, 23
SNO=PLACE=TYPE ...\ttt ettt e et et e e e e e 21
SNOT=GRASPING .. ovvtttntte e ettt ettt et e e e et e e e e e e 24
SNOT=INSIDEuurrnte ettt ettt et e e e e e e e et e et 21
() (1) 4. (e R 22
SNOT=TRACKEDurttntetont ettt e e et e et e e e e 23 -
SNOT=TRACKING ..ottt ettt ettt et et e e e et e e e e e e 20,21,23
NOT-TRACKING=DESTINATION ...ovttnnntnnnne et e e e e e e eee e, 21
SROBOT=BLOCKED ...\ttt ente ettt ettt et e e et e et e e e e e e e 22
SROBOT=IN-BIN .00ttt ittt ettt ettt e e e e e e e e e, 25

:TOO-HIGH-TURN-ANGLE

:TOO-LOW-TURN-ANGLE .

..

..

