
Yale University

Department of Computer Science

Inoculation Strategies for Victims of Viruses
and the Sum-of-Squares Partition Problem

James Aspnes 1 2 Kevin Chang 1 3

Aleksandr Yampolskiy 1 4

YALEU/DCS/TR-1295
July 2004

1Department of Computer Science, Yale University, New Haven, CT 06520-8285, USA.
2Email: aspnes@cs.yale.edu. Supported in part by NSF grants CCR-0098078 and CNS-

0305258.
3Email: kevin.chang@yale.edu. Supported by NSF grant CCR-0331548.
4Email: aleksandr.yampolskiy@yale.edu. Supported by NSF grants CCR-0098078 and ANI-

0207399.



Inoculation Strategies for Victims of Viruses

and the Sum-of-Squares Partition Problem

James Aspnes ∗† Kevin Chang ∗‡ Aleksandr Yampolskiy ∗§

Abstract

We propose a simple game for modeling containment of the spread of viruses in a graph of n
nodes. Each node must choose to either install anti-virus software at some known cost C, or risk
infection and a loss L if a virus that starts at a random initial point in the graph can reach it
without being stopped by some intermediate node. The goal of individual nodes is to minimize
their individual expected cost. We prove many game theoretic properties of the model, including
an easily applied characterization of Nash equilibria, culminating in our showing that allowing
selfish users to choose Nash equilibrium strategies is highly undesirable, because the price of
anarchy is an unacceptable Θ(n) in the worst case. This shows in particular that a centralized
solution can give a much better total cost than an equilibrium solution. Though it is NP-hard
to compute such a social optimum, we show that the problem can be reduced to a previously
unconsidered combinatorial problem that we call the sum-of-squares partition problem.
Using a greedy algorithm based on sparse cuts, we show that this problem can be approximated
to within a factor of O(log2 n), giving the same approximation ratio for the inoculation game.

1 Introduction

Consider a system in which n machines, each of which may or may not be protected against
viruses, are connected by a network in the form of a graph, and any virus that infects some
machine eventually infects all of its unprotected neighbors. If anti-virus software is available, a
natural response would be to protect all the machines—but perhaps the anti-virus software itself
creates costs, both in money and time to purchase and install the software and in reduced efficiency
or usability of the protected machine. Suppose that protecting a machine by installing anti-virus
software costs the owner of the machine C, but that having the machine be infected costs L, which
may or may not be greater than C. If the virus spreads from some initial machine chosen uniformly
at random, on which machines does it make sense to install the anti-virus software?

The answer will depend on whether we adopt the perspective of the owner of a single machine
or of the society as a whole. When the anti-virus software costs more than the loss from infection,
no economically rational machine owner will install the anti-virus software, every machine will be
infected, and the system will incur a social cost of Ln. But for many graphs, selective inoculation
of a few central machines can limit the spread of infection to a small subset of the graph, greatly
reducing the total cost of infection in return for a small investment in anti-virus software. We can
ask how much of an improvement a centralized solution can provide, and how easy it is to find a
good centralized solution.
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After discussing some previous work on related problems (in Section 2), we give a complete
characterization of the Nash equilibria for an anti-virus software installation game in which each
machine’s owner separately chooses whether or not to install the software, without regard to the
effect on other machines. (This game is defined in Section 3.) We show (in Section 4) that
finding either the most or least expensive equilibrium is NP-hard, but that some Nash equilibrium
can be computed in O(n3) time and that any population of nodes will quickly converge to a Nash
equilibrium by updating their strategies locally based on the other nodes’ strategies. Unfortunately,
the cost of any such Nash equilibrium may be badly suboptimal; the price of anarchy for this
game is Θ(n) in the worst case. This shows that for many graphs and values of C and L, letting
the users choose individually whether or not to inoculate their machines will give bad results.

We then consider (in Section 5) the possibility of a centralized solution in which a dictator
computes and enforces an optimal inoculation plan. We show that essentially the same argument
that shows that extreme Nash equilibria are hard to find applies to the optimal solution as well.
However, we show that the problem of finding an optimal inoculation plan reduces to a graph
partition problem in which we are asked to partition the graph by removing m nodes; the quality
of the partition is measured by the sum of the squares of the sizes of its components. We give (in
Section 6) a polynomial-time approximation algorithm that removes O(log2 n)m nodes in order to
achieve a partition with quality within O(1) of the optimum.

Conclusions and open problems appear in Section 7.

2 Related work

In this section, we describe three classes of work related to this paper: virus propagation models,
economic models of investment in security, and game-theoretic models of security. We then discuss
some work on the graph partition problem that is related to the sum-of-squares partition problem
we consider in Section 6.

2.1 Virus propagation models

Traditional epidemiological models characterize the viral infection in terms of birth rate and death
rate of the virus [4, 9]. Usually, these models assume that an infected individual is equally likely
to infect any other individual in the population; meanwhile, computer viruses usually spread via
localized interactions. Kephart and White extended the traditional model by transferring it onto
a directed random graph [16]. Later works (e.g., [15, 17, 25]) studied virus propagation over other
kinds of graphs, including Internet-like power-law graphs [22,23,26]. We do not restrict the network
topology in any way and consider a general undirected graph. Our model is in some ways closer to
models in percolation theory (see [18]): an infected node infects all of its unprotected neighbors,
spreading infection throughout the graph until it is blocked by an anti-virus software.

2.2 Economic models of security

Our work is motivated in part by an observation that security technologies exhibit network exter-
nalities [1]. Specifically, the benefit obtained by using security technology (anti-virus software in
our case) does not accrue only to the user of the security technology but rather to all users of the
network. Aspnes et al. [3] also consider anti-virus immunization, and proposed studying how to
encourage highly connected nodes to use anti-viral techniques.
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We assume that costs of installation and infection are known. Alternatively, one could use risk
analysis to estimate the costs and benefits from installing a security technology (see, for exam-
ple, [13]), or estimate values based on empirical studies of the costs of security breaches [6, 10].

2.3 Game-theoretic models of security

Application of game theory to network security has yielded interesting results [11, 12, 24]. For
example, Bell uses a simple game to study network reliability. In the game, the router tries to find
a least cost path and a network tester tries to maximize this cost by failing links [5]. Kunreuther
and Heal recently introduced the notion of interdependent security (IDS) games, in which
decisions to adopt security technology by one agent affect other agents [20]. Kearns and Ortiz
subsequently extended their paper and gave an algorithm for finding approximate Nash equilibria
in this model [14].

Our work is similar to work on IDS games in certain respects: each agent in both our game and
an IDS game makes a decision whether or not to invest money in a security technology, and this
decision affects other agents. The main differences are that we assume that installing anti-virus
software protects against all bad effects of viruses, while the IDS work concentrates on negative
side-effects of security breaches even on protected parties; and we assume a restricted network
topology that contains the spread of viruses, while the IDS work assumes a complete topology.

2.4 Graph partition problems

In Section 6, we describe and provide an approximate solution for a new graph partitioning
problem. Previous work on other forms of graph partitioning includes the approximation algo-
rithm of Leighton and Rao [21] for sparsest cut, from which the same authors derive a pseudo-
approximation algorithm for b-balanced cuts, where each side of the cut must have size b|V | or
greater. The case of b = 1/2 is graph bisection, for which Feige and Krauthgamer [8] give a good
approximation algorithm. Even et al. [7] give O(log n)-ratio pseudo-approximation algorithms for
several balanced partitioning problems, including the ρ-separator problem and the k-balanced
partitioning problem.

3 Our model

We represent network topology by an undirected graph G = (V,E), where V = {0, 1, . . . , n− 1} is
a set of network hosts and E ⊆ V × V is a set of (bidirectional) communication links. Our basic
model for installing anti-virus software is a one-round game:

Players. Our game has n players corresponding to nodes of the graph. Initially, all nodes are
insecure and vulnerable to infection.

Strategies. We denote the strategy of i by ai. Each node i has two possible actions: do nothing
and risk being infected or inoculate itself by installing anti-virus software. Node i’s strategy
ai is the probability that it inoculates itself.

Nodes’ choices can be summarized in a strategy profile ~a ∈ [0, 1]n. If ai is 0 or 1, we say
that node i adopts a pure strategy; otherwise, its strategy is mixed. We call nodes that
install anti-virus software secure and denote the set of such nodes by I~a. We associate an
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attack graph G~a = G − I~a with ~a. It is essentially the network graph with secure nodes
and their edges removed (see also Figure 1). Note that both I~a and G~a are random variables
unless all strategies are pure.

Attack model. After the nodes made their choices, the adversary picks some node uniformly
at random as a starting point for infection. Infection then propagates through the network
graph. Node i gets infected if it has no anti-virus software installed and if any of its neighbors
become infected.

Individual costs. Suppose it costs C to install anti-virus software. If a node is infected, it suffers
a loss equal to L. For simplicity, we assume that both C and L are known and are the same
for all nodes; we discuss possible consequences of removing these assumptions in Section 7.

The cost of a mixed strategy ~a ∈ [0, 1]n to node i is

costi(~a) = aiC + (1− ai)L · pi(~a).

Here pi(~a) is the probability of node i being infected given the strategy profile ~a, conditioned
on the event that node i does not install the anti-virus software. It is equal to the probability
that some vulnerable node reachable from i without passing through a secure node is the
initial point of infection. For pure strategies, this is just ki/n, where ki is the size of the
connected component containing i in the attack graph G~a.

1

2 3
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2 3
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Figure 1: Sample graph G and its attack graph G~a for ~a = 010100.

Social cost. The total social cost of a strategy profile is the sum of the individual costs. For pure
strategies, there is a simple characterization of the total social cost in terms of the attack
graph G~a. Because each node in the same component of G~a has the same chance of infection,
the ki nodes in the i-th component between them face a loss of ki · (Lki/n) = (L/n)k2

i . So
the social cost is

cost(~a) =
n−1∑
j=0

costj(~a)

=
n−1∑
j=0

ajC + (1− aj)L · pj(~a)

= C|I~a|+
L

n

l∑
i=1

k2
i ,
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where k1, k2, . . . k` are the sizes of the components in G~a.

4 Nash equilibria

We consider first the choices that the nodes will make in the absence of coordination, by examining
the Nash equilibria of the game defined in Section 3. The assumption that the nodes will reach
a Nash equilibrium is a very strong one, as it requires assuming that the nodes are aware of each
other’s choices to install or not and that the nodes can evaluate C (printed on the box for the anti-
virus software) and L (which is more problematic). It also assumes that the nodes can compute
a Nash equilibrium in a reasonable amount of time, which is not always possible for some games.
However, we can show that Nash equilibria for our game are easily characterized in terms of the
sizes of the components of the attack graph (Section 4.1), and that a population will converge to
some Nash equilibrium quickly even though finding the best or worst pure equilibrium as measured
by total cost is NP-hard (Section 4.2).

We can further imagine that some of the difficulties of limited information could be overcome
by considering an iterated game where nodes pay C to rent the anti-virus software in each round
and update their strategies based on observations of losses to viruses and the strategies of other
nodes in previous rounds; though we do not analyze this multi-round game formally, a simplified
version is implicit in our convergence result. We also show that the hardness of finding the worst-
case equilibrium does not prevent obtaining further information about its behavior; for example,
its total cost is nondecreasing as a function of the inoculation cost C (Section 4.3).

Unfortunately, selfish behavior proves to be highly undesirable, because the cost of a Nash
equilibrium solution may be very far from the social optimum. In Section 4.4, we prove that while
the price of anarchy, defined as the ratio of total cost between the worst Nash equilibrium and
the social optimum never exceeds n, this bound is tight up to constant factors for some graphs and
choices of C and L.

4.1 Characterization of mixed and pure equilibria

A useful feature of the Nash equilibrium for our game is its simple characterization: there is always
a component-size threshold t = Cn/L such that each node will install the anti-virus software if it
would otherwise end up in a component of vulnerable nodes with expected size greater than t, and
will not install the software if it would otherwise end up in a component with expected size less
than t. When the expected component size equals t, the node is indifferent between installing and
not installing and may adopt a mixed strategy. The threshold arises in a natural way: it is the
break-even point at which the cost C of installing the software equals the expected loss L(t/n) of
not installing.

We define ~a[i/x] to be the strategy vector that is identical to ~a, except the i’th component ai

is replaced by x. Note that attack graph G~a[i/0] is the attack graph in which player i never installs
the anti-virus software.

Theorem 1 (Characterization of mixed equilibria): Suppose S(i) is the expected size of the insecure
component that contains node i of the attack graph G~a[i/0], (i.e. S(i) = npi(~a)).

Fix C,L. Let the threshold be t = Cn/L. A strategy profile ~a is a Nash equilibrium if and only
if
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(a) For all i such that ai = 1, S(i) ≥ t.

(b) For all i such that ai = 0, S(i) ≤ t.

(c) For all i such that 0 < ai < 1, S(i) = t.

Proof:
Suppose ~a is a Nash equilibrium and consider node i. The expected cost to node i is aiC +(1−

ai)(L/n)S(i).

1. Suppose ai = 0. Then node i has expected cost (L/n)S(i). If (L/n)S(i) > C, then i will
want find the situation ai = 1 with cost C preferable. Thus, we must have S(i) ≤ CL/n = t.

2. Suppose ai = 1. Then node i has expected cost C. If (L/n)S(i) < C, then i would find
the situation ai = 0 with expected cost (L/n)S(i) < C preferable. Thus, we must have
S(i) ≥ CL/n = t.

3. Suppose 0 < ai < 1. If (L/n)S(i) > C, then i will find the situation ai = 1 preferable.
If (L/n)S(i) < C, then i will find the situation ai = 0 preferable. Thus, we must have
S(i) = CL/n = t.

Thus, ~a satisfies condition (a), (b), and (c) above.
Conversely, suppose ~a satisfies conditions (a), (b) and (c) of the theorem. Consider node i.

1. Suppose ai = 0. Then node i will have expected cost (L/n)S(i) < C, and thus will not want
to switch to a different ai that puts any weight on installing at cost C.

2. Suppose ai = 1. Then node i will have cost C, and thus will not want to switch to a different
ai that puts any weight on being insecure at expected cost (L/n)S(i) ≥ C.

3. Suppose 0 < ai < 1. Then node i will have expected cost aiC + (1 − ai)(L/n)S(i) = C.
Switching to any other strategy will have the same expected cost.

Thus, ~a is a Nash equilibrium.

A special case of Theorem 1 is the following characterization for pure Nash equilibria. Because
nodes in a pure Nash equilibrium do not make randomized choices, the attack graph is not a random
object, but a determined graph. We have the same threshold conditions as before, but the removal
of randomness simplifies the situation.

Corollary 2 (Characterization of pure equilibria) Fix C,L. Let the threshold be t = Cn/L. A
strategy profile ~a is a pure Nash equilibrium if and only if

(a) Every component in attack graph G~a has size at most t.

(b) Inserting any secure node j ∈ I~a and its edges into G~a yields a component of size at least t.

For example, let C = 0.5 and L = 1, and consider the graph in Figure 1. The threshold for this
graph is t = Cn/L = 3. Then Corollary 2 tells us that pure strategy ~a = 010100 must be a Nash
equilibrium for these C and L.

6



4.2 Computing pure Nash equilibria

Designing algorithms for finding mixed Nash equilibria or proving hardness results for finding
optimized mixed equilibria would most likely involve estimating or otherwise manipulating the
expected value of the sizes of components in the attack graph, which is at the very least a non-
trivial problem. Furthermore, in the absence of central control, nodes attempting to calculate their
best strategy based on a mixed strategy paradigm would possibly run into similar computational
issues.

Thus, we turn our attention to the computation and hardness of pure Nash equilibria. Corol-
lary 2 gives us a powerful tool with which to reason about pure Nash equilibria. We now show
that computing the best or worst pure Nash equilibria is hard, but that finding some intermediate
Nash equilibrium is easy. A consequence of this algorithm is that the existence of a pure Nash
equilibrium is always guaranteed. (The existence of a mixed Nash equilibrium is a consequence of
Nash’s theorem.)

Theorem 3 Both computing the pure Nash equilibrium with lowest cost and computing the pure
Nash equilibrium with highest cost are NP-hard problems.

Proof: We reduce vertex cover to the decision problem “Does there exist a pure Nash equilib-
rium with cost less than c?” and we reduce independent dominating set to “Does there exist
a pure Nash equilibrium with cost greater than c?”

Fix some graph G = (V,E), and set C/L = 1.5/n so that t = Cn/L = 1.5, where t is the
component size threshold from Corollary 2. Then from Corollary 2, in any Nash equilibrium the
components of the attack graph all have size at most 1, and any secure node is adjacent to some
insecure node (as otherwise it could uninstall its software and be in a component of size at most
1). It follows that in a Nash equilibrium (a) every vulnerable node is either isolated or has all
neighbors secure, and (b) every secure node has an insecure neighbor.

We now argue that G has a vertex cover of size k if and only if the inoculation game on
G with the above settings of C and L has a Nash equilibrium with k or fewer secure nodes, or
equivalently an equilibrium with social cost Ck +(n−k)L/n or less, as each insecure node must be
in a component of size 1 and contribute exactly L/n expected cost. Given a minimal vertex cover
V ′ ⊆ V , observe that installing the software on all nodes in V ′ satisfies condition (a) because V ′

is a vertex cover, and (b) because V ′ is minimal. Conversely, if V ′ is the set of secure nodes in a
Nash equilibrium, then V ′ is a vertex cover by condition (a). This concludes the proof that finding
a minimum-cost Nash equilibrium is NP-hard.

For a maximum cost equilibrium, consider the set of insecure vertices. These consist of isolated
nodes (which are already in components of size 1) and nodes that do not install the software because
all their neighbors do. Given an independent dominating set V ′ ⊆ V , installing the software on all
nodes except the nodes in V ′ satisfies condition (a) because V ′ is independent and (b) because V ′

is a dominating set. Conversely, the insecure nodes in any Nash equilibrium are independent by
condition (a) and dominating by condition (b). This shows that G has an independent dominating
set of size k if and only if it has a Nash equilibrium with no more than k insecure nodes, which
occurs only if it has a Nash equilibrium with at least n− k secure nodes or, equivalently, a cost of
at least C(n− k) + (L/n)(k).

Theorem 3 says that finding extreme pure equilibria is hard. But what if we just want to
converge to some equilibrium, but we don’t care which one? Suppose we implement the process
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of convergence implied by the Nash equilibrium: at each step, some participant, whose current
strategy is suboptimal given the others’ strategies, switches. This is an easy process to implement
because each participant can detect if its strategy is suboptimal using the t = Cn/L component
size threshold from Corollary 2.1 But does this process converge to a Nash equilibrium? If it does,
how long does it take?

By choosing an appropriate potential function, we can show that this process does indeed
converge to a Nash equilibrium quickly:

Theorem 4 Starting from any pure strategy profile ~a, if at each step some participant with a
suboptimal strategy switches its strategy, the system converges to a pure Nash equilibrium in no
more than 2n steps.

Proof: Let t = Cn/L. For any strategy profile ~a, consider the set Sbig(~a) of “big” components
of G~a of size greater than t and the set Ssmall(~a) of “small” components of G~a of size less than or
equal to t. Define a potential function Φ by

Φ(~a) =
∑

A∈Sbig(~a)

|A| −
∑

A∈Ssmall(~a)

|A|.

It is easy to see that −n ≤ Φ(~a) ≤ n for any ~a. We will now show that each step of the process
reduces Φ by at least one. There are two main cases:

1. Some node i switches from insecure to secure. In this case i was previously an element
of a component in Sbig of size m > t. This former component becomes one or more new
components with total size m− 1; if all of the resulting components are big, Φ is reduced by
exactly one; otherwise, Φ is reduced by more than one as some components move from the
positive to the negative side of the ledger.

2. Some node i switches from secure to insecure. In this case the resulting component containing
i has m ≤ t elements, and it replaces one or more old components with total size m− 1. As
both the new component and the old components are small, the net effect on Φ is to decrease
it by one.

If each step reduces Φ by one, the number of steps must be less than the difference between the
initial and final value of Φ, which is at most n− (−n) = 2n.

As a special case, we can start with ~a = 1n and converge to an equilibrium from above by
checking each node once. Each such test requires computing the size of the component in the
attack graph, which takes time O(|V |+ |E|) = O(n2) using depth-first search; this gives:

Corollary 5 A Nash equilibrium can be computed in time O(n3).

It is not hard to see that the 2n in Theorem 4 is close to the best possible bound, although
a more careful analysis might reduce it slightly. A lower bound of n steps is trivial: in a system
with C < L/n and no players secure in the initial strategy profile, it takes n steps for all players to

1We must assume in this implementation either that the choice to install software or not is reversible, or that each
player can observe the other players’ intended actions and respond accordingly.
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install the anti-virus software. To get closer to 2n, consider a line with t =
√

n− 1
2 . Now consider

an execution of the process where initially players 1 through n −
√

n, in increasing order, install
to escape the single overlarge component; but then all players not at positions k

√
n for some k

uninstall; this takes 2n− 2
√

n steps.
We also have:

Corollary 6 A pure Nash equilibrium always exists.

4.3 Consequences of changes in the inoculation cost

Though Theorem 3 suggests that we cannot hope to characterize the worst pure Nash equilibrium
exactly, we can give a description of how it reacts to changes in the inoculation cost C.

Theorem 7 The cost of the worst pure Nash equilibrium is a non-decreasing function of C when
C ranges over [2L/n,L).

Proof: Fix some price of anti-virus software, C ≥ 2L/n so that bCn/Lc ≥ 2.
Suppose we increase the price from C to C ′ = C + ε (ε > 0). We denote the worst-cost Nash

equilibrium when the price is C by ~a and the worst-cost equilibrium when the price is C ′ by ~b.
If price increment is ε ≤ L/n, then the threshold (in Theorem 1) increases by at most one; that

is, bC ′n/Lc ≤ bCn/Lc+ 1. We consider two cases:

Case 1: ~a is a Nash equilibrium for C ′. This case is easy. Because ~b is a worst-cost Nash
equilibrium for C ′, we have:

costC(~a) < costC′(~a) ≤ costC′(~b).

Case 2: ~a is not a Nash equilibrium for C ′. This can happen only if bC ′n/Lc = bCn/Lc+ 1.
Specifically, there must exist a node w ∈ I~a such that adding it into attack graph G~a yields a
component of size bCn/Lc but not bC ′n/Lc. Let us denote the sizes of components adjacent
to w in G by k1, . . . , ks.2 We then have:

∑s
i=1 ki = bCn/Lc − 1.

We define a new strategy ~a′ = ~a[w/0], which is the same as ~a except we no longer install
anti-virus software on node w. Moreover,

costC′(~a′)− costC(~a) =
L

n
bCn/Lc2 −

(
C +

L

n

s∑
i=1

k2
i

)

≥ L

n

bCn/Lc2 −

(
s∑

i=1

ki

)2
− C

=
L

n

(
bCn/Lc2 − (bCn/Lc − 1)2

)
− C. (1)

Equation (1) is non-negative whenever

2 bCn/Lc − 1 ≥ Cn/L,

2We say that a component K ⊆ V is adjacent to node w if ∃v ∈ K s.t. (v, w) ∈ E.
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which always holds by assumption for all C ≥ 2L/n.

We repeat this process until there do not exist any nodes violating Nash equilibrium condition.
At each step, the cost of our new strategy does not decrease. Therefore, if at the end we get
a Nash equilibrium ~d, then

costC(~a) ≤ costC′(~a) ≤ costC′(~d) ≤ costC′(~b).

Hence,

costC′(~b)− costC(~a) ≥ costC′(~d)− costC(~a)
≥ costC′(~a′)− costC(~a)
≥ 0.

Because we chose C arbitrarily, our argument holds for all values of ε.

4.4 Price of anarchy

The notion of the price of anarchy was introduced by Koutsoupias and Papadimitriou in [19].
It is defined as the worst-case ratio between the cost of a Nash equilibrium and the cost of the
optimal solution, and is thus a measure of how far away a Nash equilibrium can be from the social
optimum.3 In our game, we show that the price of anarchy is quite high, Θ(n).

This is a consequence of two simple lemmas:

Lemma 8 (Lower bound). Let G be the star graph K1,n. Let the price of the anti-virus software
be C = L(n− 1)/n. Then

ρ(G, C, L) = n/2.

Proof: The given C and L satisfy t = Cn/L = n− 1. From Corollary 2, it follows that installing
anti-virus software on exactly one node is a Nash equilibrium. If pure Nash strategy ~a installs anti-
virus software on some node that is not the center node, the cost will be C+L(n−1)2/n = L(n−1).

An optimal strategy for the star with the given C and L is ~a∗ = (1, 0, . . . , 0) (i.e., only the
center node installs anti-virus software.) Its cost is C + L(n− 1)/n = 2L(n− 1)/n.

The price of anarchy is therefore

L(n− 1)
2L(n− 1)/n

=
n

2
.

Lemma 9 (Upper bound). Fix any graph G and costs C,L. Then

ρ(G, C, L) ≤ n.

3Because our game has a random component, the cost is an expected cost.
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Proof: Let ~a∗ denote the optimum solution.
If C > L, no node in a Nash equilibrium will install anti-virus software. Hence, there is only one

Nash equilibrium ~a = 0n, whose cost is Ln. If the optimum solution contains at least one secure
node, then then cost(~a∗) ≥ C > L. (Otherwise, ~a∗ = 0n and ρ(G, C, L) = 1.) We thus have:

ρ(G, C, L) ≤ Ln

L
= n.

If C ≤ L, then the expected cost of the worst Nash equilibrium ~a is at most Cn, because the
expected cost to each node is at most C (if the expected cost to a node is greater than C, then it
will want to switch to installing the software with probability 1.) If the optimum solution contains
at least one secure node, then cost(~a∗) ≥ C. Otherwise, the optimum solution contains no secure
nodes and hence cost(~a∗) ≥ L ≥ C.

ρ(G, C, L) ≤ Cn

C
= n.

5 Optimization

Allowing users to selfishly choose whether or not to install anti-virus software may be grossly inef-
ficient, relative to the social optimum. An alternative approach to this problem is for a benevolent
dictator to attempt to maximize social welfare by centrally computing a solution and imposing it
on all nodes.

Difficulties with this approach arise from the hardness of computing the optimum solution to the
inoculation problem. In the first two sections, we give a characterization of the optimum solution
and use it to show that the inoculation problem is NP-hard.

This suggests computing an approximate solution. We can find in polynomial time a solution
with approximation ratio at most O(log2 n); such a solution is substantially better than the Θ(n)
ratio derived from the worst Nash equilibrium.

5.1 Characterization

We have a graph-theoretic characterization of optimum strategies, similar to our characterization
of Nash equilibria in Theorem 1:

Theorem 10 Fix C,L and let t = Cn/L. If ~a is an optimum strategy, then every component in
attack graph G~a has size at most max(1, (t + 1)/2).

Proof: Strategy ~a partitions G into disjoint components. Pick some component from attack
graph with at least two nodes; we call it K ⊆ V (k = |K|). (If we can’t find a component with at
least two nodes, then all components in attack graph must have size one, and the theorem follows.)

If we install an anti-virus on some node of K, we may get m new components in G~a, where
0 ≤ m ≤ k− 1. We denote component sizes by k1, . . . , km, where

∑m
i=1 ki = k− 1. Because ~a is an

11



optimal strategy, installing anti-virus on an extra node cannot improve the total cost. Therefore,
we have:

C +
L

n

(
m∑

i=1

k2
i

)
≥ Lk2

n

⇔

k2 −

(
m∑

i=1

k2
i

)
≤ t. (2)

If m = 0, then Equation (2) becomes:

k ≤
√

t ≤ (t + 1)/2.

Meanwhile, for m > 0,

k2 −

(
m∑

i=1

k2
i

)
≥ k2 −

(
m∑

i=1

ki

)2

= k2 − (k − 1)2

= 2k − 1. (3)

Combining Equations (2) and (3), we get:

k ≤ (t + 1)/2.

5.2 Hardness of optimal solution

Unfortunately, the optimal solution is hard to compute.

Theorem 11 It is NP-hard to compute an optimal strategy.

Proof: The proof is by reduction from vertex cover and is similar to the proof of Theorem 3.

5.3 Reduction to sum-of-squares partition

Because it is unlikely that we can find an optimal solution, we naturally consider approximation
algorithms.

The optimization problem that defines the inoculation problem can be posed as follows: choose
the set of secure nodes I~a that minimizes the following objective function:

C|I~a|+
L

n

∑
V ∈φ(I~a)

|V |2,

where φ(I~a) is the set of connected components created by the removal of nodes in I~a.

12



For the purposes of our approximation algorithm for the inoculation problem, we assume that
we can “guess” m = |I~a|, the number of secure nodes in an optimum configuration. This assumption
is without loss of generality, because we can run our algorithm on all possible choices of m = 1, . . . n
and take the best solution.

Thus, a solution to the inoculation problem is reduced to finding a solution to the problem
of removing m nodes from a given graph to minimize the sum of the squares of the sizes of the
surviving components. We discuss this problem in Section 6.

6 Sum-of-squares partitions

In Section 5.3, we came across the following problem, which we now analyze in more detail.

Problem 12 (Sum-of-Squares Partition Problem) By removing a set F of at most m nodes, par-
tition the graph into disconnected components H1, . . . ,Hk, such that

∑
i |Hi|2 is minimum.

Though we have arrived at this combinatorial optimization problem via our study of containing
computer viruses, it may be of independent interest. Note that it inherits NP-hardness from the
inoculation problem. The edge version of the sum-of-squares-partition problem is similar, but asks
for the removal of m edges, rather than nodes, to disconnect the graph.

Our goal in this section is to prove the following theorem:

Theorem 13 Let OPT be the optimum objective function value for the Sum-of-Squares Partition
Problem on G with the removal of at most m nodes. We can find a set F of O(log2 n)m nodes, such
that their removal creates disconnected components H1, . . . ,Hl such that

∑
i |Hi|2 ≤ O(1) ·OPT.

An immediate consequence of this theorem is the existence of an approximation algorithm for
the inoculation problem:

Corollary 14 If OPT is the cost of the optimum solution for the inoculation problem, there exists
a polynomial-time approximation algorithm that finds a solution with cost at most O(log2 n) ·OPT.

Proof: Suppose an optimum solution contains m secure nodes, and the sizes of the insecure node
components are k1, . . . , kp, so that OPT = Cm + L/n

∑
i k

2
i . Using our approximation algorithm

for the sum-of-squares partition problem, we can find a set of O(log2 n)m secure nodes such that
the sum of the squares of the corresponding insecure components is at most O(1)

∑
i k

2
i . Thus, the

cost of the approximate solution is:

O(log2 n) · Cm + O(1) · L

n

∑
i

k2
i ≤ O(log2 n) · Cm + O(log2 n) · L

n

∑
i

k2
i

= O(log2 n) ·OPT.
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6.1 Proof of Theorem 13

Our proof of Theorem 13 is based on the algorithm PartitionGraph given in Figure 2. It uses
known algorithms for sparse cuts. The sparse cut literature has focused on edge cuts. However, in
the case of our problem, cuts that involve removing nodes in order to disconnect the graph are more
applicable. Fortunately, the Leighton-Rao approximation algorithm for finding sparse cuts extends
to node cuts: there is a well known process for converting a node cut algorithm in an undirected
graph to an edge cut algorithm in a directed graph. Since the Leighton-Rao sparse cut algorithm
extends to edge cuts for directed graphs, it can be extended to node cuts. In particular, we will
use the following fact, which is implicit in the discussion of balanced node cuts in [21].

Theorem 15 There exists an O(log n)-approximation algorithm for the following problem: Given
graph G, find a node cut that partitions the nodes G into three sets: two sets defining disconnected
subgraphs with node sets, V1 and V2, and a set of removed nodes R, such that the quantity

(|V1|+ |R|
2 )(|V2|+ |R|

2 )
|R|

(4)

is maximized.

We refer to the quantity in expression (4) as the sparsity of the cut. In the literature, sparsity
is usually given as the the inverse of expression (4), and finding the sparsest cut is cast as a
minimization problem. We have presented it as a maximization problem, since this is more natural
for our application.

Improvements to the approximation ratio for sparsest (edge) cut have recently been discovered
[2]. However, the authors do not mention whether or not their results extend to sparse cuts for
directed graphs.

Our algorithm for solving the sum-of-squares partition problem, PartitionGraph (see Fig-
ure 2), achieves the approximation results claimed in Theorem 13. The general approach of the
algorithm is similar to the greedy log n-approximation algorithm for set cover. A high-level descrip-
tion is that we repeatedly remove the node cut that gives us the best per-node-benefit, quantified
as its cost-effectiveness.

Suppose we have a connected subgraph H with k nodes. If node cut R creates connected
components with node sets V1 and V2, this cut has decreased the objective function value (

∑
size

of connected component 2) by k2 − |V1|2 − |V2|2. We thus define the cost-effectiveness of node
cut R by (k2 − |V1|2 − |V2|2)/|R|. The cost-effectiveness of R is equal to

k2 − |V1|2 − |V2|2

|R|
=

(|V1|+ |V2|+ |R|)2 − |V1|2 − |V2|2

|R|

=
|R|2 + 2|V1||V2|+ 2|R|(|V1|+ |V2|)

|R|

=
2|V1||V2|
|R|

+ |R|+ 2(k − |R|)

=
2|V1||V2|
|R|

+ 2k − |R|.

We then have the following relation between finding sparse cuts and cost-effectiveness.
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Lemma 16 Let H be a graph with k nodes. If α∗ is the maximum cost-effectiveness of all node
cuts of H, the Leighton-Rao sparsest node cut algorithm will find a cut with cost-effectiveness at
least α∗/(c log k), for some constant c.

Proof: The sparsity of a node cut that removes node set R and partitions the remaining nodes
of H into connected components with node sets V1 and V2 is given by:

(|V1|+ |R|
2 )(|V2|+ |R|

2 )
|R|

=
|V1||V2|+ |R|2

4 + |R|
2 (|V1|+ |V2|)

|R|

=
|V1||V2|
|R|

+
|R|
4

+
1
2
(k − |R|)

=
|V1||V2|
|R|

+
k

2
− |R|

4
.

We then have the following relationships between the cost-effectiveness of a cut, α, and its
sparsity, β.

β =
|V1||V2|
|R|

+
k

2
− |R|

4
= α/2− k/2 + |R|/4 ≥ α/4.

and
α > 2β.

Thus, we know there exists a node cut with sparsity at least α∗/4 (i.e. the cut with the highest
cost-effectiveness). The sparsest cut algorithm on H will find a node cut with sparsity at least
α∗/(c log k), for some constant c. This node cut will have cost-effectiveness at least 2α∗/(c log k).

Input: A Graph G. A set of marked nodes F .

1. Use the Leighton-Rao algorithm to find an approximate most cost-effective cut in each con-
nected component of G.

2. Let H1, . . . ,Hk be the components of G in which the Leighton-Rao algorithm found a cut
that removes at most (20c log n)m nodes, where c is the constant from Lemma 16. If no such
component exists, then halt and output F as the final set of marked nodes.

3. Otherwise, choose the component Hj from among those considered in Step 2, for which the
cost-effectiveness is highest. Let the cut be Hj = V1 ∪ V2 ∪ R, where R is the final set of
marked nodes.

4. Set F = F ∪R. Replace Hj by V1 and V2 in G. If |F | > (36c log2 n)m, then halt and output
F as the set of marked nodes.

5. Otherwise, repeat.

Figure 2: Algorithm PartitionGraph
We now give some lemmas that characterize the behavior of the PartitionGraph algorithm.

Fix an optimum solution for the sum-of-squares partition problem; let F ∗ be an optimum set of m
removed nodes.

Lemma 17 PartitionGraph outputs at most O(log2 n)m marked nodes.
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Proof: Since the algorithm halts as soon as we augment the set of marked nodes such that |F | >
(36c log2 n)m, we know that at the beginning of each iteration, F contains at most (36c log2 n)m
marked nodes. The lemma follows, because we add at most (20c log n)m marked nodes per iteration.

In the next few proofs, we will abuse notation slightly and denote the order of graph G (i.e. the
number of nodes) by |G| = |V (G)|. We will also denote an “intersection” of a graph G and a node
set V as G ∩ V , which is the set of nodes that G and V share.

Lemma 18 Suppose after a number of iterations, our graph G consists of k connected components
H1, . . . ,Hk, and let S =

∑
|Hi|2.

Either there exists a component Hi such that the Leighton-Rao algorithm will find a node cut
in Hi with at most 20cm log n removed nodes and cost-effectiveness at least S/(18cm log n),

or S ≤ 72OPT (or possibly both).

Proof: We assume that S > 2OPT. Note that the node cut defined by the set F ∗ ∩G divides G
into a graph with objective function value at most OPT. The node cut thus induces a cost decrease
of at least S/2.

Define F ∗
i = F ∗ ∩ Hi and mi = |F ∗

i |. Also, let the subgraph induced by removing vertices in
F ∗

i ∩Hi from Hi be composed of connected components Hj
i for j = 1, . . . , ri. (i.e, the optimum set

of marked nodes partitions Hi into these components.) Note that
∑

i

∑
j |H

j
i |2 ≤ OPT.

Since the total reduction in our objective function value from removing ∪iF
∗
i from G is at least

S/2 due to our assumption that S > 2OPT, we have:

∑
i

|Hi|2 −
∑

j

|Hj
i |

2

 ≥ S/2, (5)

because the outer summand on the left hand side of the inequality is the amount the objective
function is reduced in each component.

Let I be the set of indices i for which
(
|Hi|2 −

∑ri
j=1 |H

j
i |2
)

/mi ≥ S/(4m) (i.e. the per node
benefit is at least S/(4m).)

We have two cases.

1. There exists an i ∈ I such that for all j = 1, . . . , ri, |Hj
i | ≤ 1/3|Hi|. We assume that

mi < 1/50|Hi|, because otherwise removing all nodes in Hi will give us a trivial node cut
with cost-effectiveness at least |Hi|2/(50mi) > S/(18cm log n) for sufficiently large n. With
this assumption, we know that there exists a set R ⊆ F ∗

i that defines a node cut of Hj
i that

creates two connected components, V1 and V2 such that 1/3|Hi| ≤ |V1| and 1/3|Hi| ≤ |V2|.
The cost-effectiveness of this cut will be

2
|V1||V2|
|R|

+ 2|Hi| − |R| ≥ 2|Hi|2

9mi
≥

2
(
|Hi|2 −

∑ri
j=1 |H

j
i |2
)

9mi
≥ S/(18m).

Lemma 16 guarantees that the Leighton-Rao algorithm will find a cut in Hi with cost-
effectiveness at least S/(18cm log n). The node cut output by the algorithm cannot con-
tain more than 20cm log n nodes. Such a node cut would have cost-effectiveness at most
S/(20cm log n), since any cut in G can decrease the objective function value by at most S,
which is less than the guaranteed cost-effectiveness of S/(18cm log n).
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2. For all i ∈ I, there exists a j∗ such that |Hj∗

i | > 1/3|Hi|. Also, note that OPT >
∑

i∈I |H
j∗

i |2.

Claim:
∑

i∈I

(
|Hi|2 −

∑
j |H

j
i |2
)
≥ S/8.

Proof of claim: Let I be the set of intervals such that
(
|Hi|2 −

∑ri
j=1 |H

j
i |2
)

/mi ≤ S/(4m).
Recalling equation (5), we get

S/2 ≤
∑
i∈I

|Hi|2 −
∑

j

|Hj
i |

2

+
∑
i∈I

|Hi|2 −
∑

j

|Hj
i |

2

 .

Also, we have

∑
i∈I

|Hi|2 −
∑

j

|Hj
i |

2

 =
∑
i∈I

mi

(
|Hi|2 −

∑
j |H

j
i |2
)

mi

≤
∑
i∈I

miS/(4m)

≤ S/(4m)
∑
i∈I

mi ≤ S/4.

Combining these two inequalities proves the claim. We have the inequalities:

OPT >
∑
i∈I

|Hj∗

i |2 ≥
∑
i∈I

1
9
|Hi|2 ≥

1
9

S

8
,

where we used our claim for the last inequality. Thus, OPT ≥ 72S.

We now give the proof of Theorem 13.
Let aj be the number of connected components that comprise the graph at the beginning of

the jth iteration, and let those connected components be Hj
1 , . . . ,Hj

aj . Let Sj =
∑aj

i=1 |H
j
i |2 be

the value of the objective function at the beginning of the j’th iteration; thus S0 ≤ n2 is its initial
value. Let l be the number of iterations the algorithm needs to terminate, and Sl+1 be the objective
function’s final value.

We wish to show that after the algorithm terminates, we have reduced the objective function
value to Sl+1 = O(1)·OPT. Let F be the final set of marked nodes removed from G. If the algorithm
terminates at Step 2 of the l’th iteration because the Leighton-Rao algorithm only found node cuts
with more than (20c log n)m removed nodes, then from Lemma 18 we know that Sl+1 ≤ 72OPT.
Thus, we assume this does not occur. Furthermore, we assume that Sl+1 ≥ 72OPT (in order to
apply the “either” part of Lemma 18 to all iterations.)

In order to reason about the decrease in the objective function value after each iteration, we
impute to each node in F a per-node-decrease in the objective function value, given by the cost-
effectiveness of its node cut. We then show that the total imputed decrease in the objective function
is at least n2 −O(1) ·OPT, from which the theorem will follow.

More formally, suppose the set of marked nodes is given by the sequence F = {f1, . . . , fk},
where the removed nodes are ordered in the order in which they were removed from the graph:
nodes removed at an earlier iteration occur earlier in the sequence. We have k = |F | = Θ(log2 n)m.
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Let bj be the iteration in which fj was removed. We impute to fj the value δj = cost-effectiveness
of cut removed in iteration bj . From Lemma 18, we know that δj ≥ Sbj

/(18cm log n).
Set T0 = S0 and Ti = Ti−1 − δi to be the value of the objective function after node fi’s

per-node-decrease contribution has been made. Note Tk = Sl+1.
Claim: For all i, Ti ≤ Ti−1 − Ti−1/(18cm log n)
Proof of claim: Proving the claim reduces to proving that δi = Ti−1−Ti ≥ Ti−1/(18cm log n).

Fix an i. We have two cases.

1. bi = bi−1 (i.e. fi and fi−1 were removed in the same iteration.) Then δi ≥ Sbi
/(18cm log n),

but Sbi
> Ti, since Sbi

is the objective function value at the beginning of iteration bi, whereas
Ti is the objective function value “during” iteration bi.

2. bi = bi−1 + 1 (i.e. fi was removed in the iteration after fi was removed.) Then δi ≥
Sbi

/(18cm log n) = Ti/(18cm log n), since in this case Ti is the objective function value at the
start of iteration bi.

This proves the claim.
We therefore have Tk ≤ T0(1−1/(18cm log n))k ≤ n2(1−1/(18cm log n))k. Since k > 36cm log2 n,

it follows that Sl+1 = Tk = O(1) ≤ O(1) ·OPT.

The algorithm given above can be adapted in a straightforward way to yield an algorithm for
the edge cut version of the sum-of-squares partition problem (instead of taking sparse node cuts,
take sparse edge cuts), from which an analog to Theorem 13 may be derived. The analysis of an
edge cut algorithm would perhaps be slightly easier than our analysis for node cuts, since node
cuts modify the node set, causing minor complications. Furthermore, such an algorithm can use
sparse cut algorithms with better approximation ratios, and thus remove only O(log3/2 n)m nodes
to achieve the same constant approximation ratio for the sum of squares.

7 Conclusions and future research

We have described a simple economic game that represents the difficult problem of choosing on
which nodes to install anti-virus software to contain the spread of computer viruses in a network.
The Nash equilibria of this game have a simple characterization, and we can show that in the worst
case, the ratio between the social cost of a Nash equilibrium and a social optimum can be linear in
the number of nodes.

Our model makes some very strong simplifying assumptions: every infected node eventually
infects all unprotected neighbors; the costs of installing the anti-virus software and becoming in-
fected are known and equal for all nodes; the virus imposes no costs on protected nodes; and
nodes can observe which of the other nodes intend to install the anti-virus software and adjust
their own strategies in response. None of these assumptions correspond completely to reality, but
we believe that as a first step the resulting model is a reasonable compromise between accuracy
and analyzability, and that the results obtained with the model (especially the characterization of
Nash equilibria) are similar to what one might expect with a more complex model that took into
account limited information and learning by individual nodes. The natural next step is to incor-
porate more details in the model and see if such changes affect the results; this might involve both
theoretical work to predict the effect of changes and experimental or observational work to study
how real-world decision-makers choose whether or not to deploy specific security mechanisms.
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We have also shown how a near-optimal deployment of anti-virus software can be computed by
reduction to the sum-of-squares partition problem, a new variant of classical graph partitioning
problems where the goal is to remove m vertices so as to minimize the sum of the squares of the
sizes of surviving components. Though it is NP-hard to solve this problem exactly, we give a
polynomial-time O(log2 n)-approximation algorithm for sum-of-squares partition, which yields a
corresponding approximation algorithm for anti-virus software deployment. This algorithm may be
of use as a network administration tool for choosing how to deploy anti-virus software to minimize
the combined costs of deployment and infection and as a public-health tool for designing inoculation
strategies for containing outbreaks of highly-infectious diseases when a good approximation to the
interaction graph can be computed but the initial source of contagion is unknown. Whether or not
a polynomial-time algorithm with a better approximation ratio exists remains open.
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