Composite Semantics:
One Generic Environment is Enough

Jonathan Young

Research Report YALEU/DCS/RR-595
. December 1987

This research was supported in part by National Science Foundation grant CCR-
845145.

Composite Semantics:
One Generic Environment is Enough

Jonathan Young

December 1987

Yale University
Department of Computer Science !

Abstract

A composite semantics is one in which several semantic analyses
are combined into one; for example, strictness analysis combined with
sharing analysis. While denotational semantics is a good framework in
which to write a composite semantics, problems often arise when one
analysis calls upon another analysis which uses a different environ-
ment domain. In this paper we discuss the deficiencies with existing
techniques for solving this problem, and present a new solution using
generic environments, unevaluated mappings of identifiers to syntac-
tic objects. We show how to write a standard semantics using this
technique, and how the value domain which results corresponds to the
usual reflexive domain.

1 Introduction

Denotational semantics [10,3,9] has recently become one of the tools of choice
for research in the formal description of programming languages because it
enables the researcher to abstract away from “operational” or implementa-
tion issues and to concentrate instead on the more algebraic properties of

1This research was supported in part by National Science Foundation grant DCR-
845145.

a language. Within the more formal and mathematical framework of de-
notational semantics, it is easy to apply formal techniques to reason about
programs without reference to a particular implementation, to verify the
correctness of different implementations, and to prove the safety of various
program optimizations.

While denotational semantics is a useful tool for describing and under-
standing programmming language semantics, problems have arisen recently
as researchers have tried to build on their previous successes. For exam-
ple, an exact semantics which captures sharing properties depends on the
standard semantics of the predicate in a conditional [2]. Variations on strict-
ness analysis need to call the original strictness analysis [1]. It is desirable
to prove corresponding properties between a new semantics and an old (or
standard) semantics [6,8], but the two semantics have different types of en-
vironments. What do we do?

2 Previous Techniques

We begin with a criticism of some existing techniques and then present our
new method for solving this problem. For simplicity we refer to the “new”
analysis (or semantics) which wants to call the “old” analysis. (This is
not to imply that the same problem does not arise when there are mutual
dependencies between semantic analyses.)

The first technique is a simple appeal to the reader’s intuition. Quoting
from a recent paper,

“When we use the semantic function A in the definition of S
we assume that the environment aenv results from a computation

of A for the same expression as the one for which the action of
S is being defined.”[8] 2

While this is fine for a technical paper in which the details are intuitively
clear from the context and do not contribute to the presentation, researchers
who actually try to implement this correspondence quickly find that there
is more to it than meets the eye. In particular, it is not sufficient to merely

2This citation is not meant to indicate that the paper in question is the only offender,
since the author [6] and others have done the same. This paper is perhaps unique in
admitting to doing so in such a direct manner.

track aenv as a function of the ezpression being evaluated. It is important
to maintain the contezt of this expression — including the values of all bound
variables.

A second technique involves asking an oracle for the meaning of an ex-
pression in the middle of an exact semantic analysis [7,4]. In particular,
oracles are useful for choosing which arm of a conditional to evaluate. Al-
though the oracle is understood to correspond to the standard semantics,
the reader’s intuition is again being appealed to; it is no easier to implement
oracles than “corresponding environments.”

Some researchers [2,5] have tried to avoid the difficulty of incompatible
environments by computing the old semantics as part of their new interpre-
tation. The new result domain is a tuple, one component of which contains
the result under the old analysis. While this method is easy to implement
(and debug!), it violates a fundamental precept of software engineering: it
is not modular — small changes to one semantics may necessitate changing
several others.

Of course, one solution to the problem of incompatible environments is
to keep track of the environment for the old analysis in addition to the new
environment. While this is a correct way to implement a new semantics,
this method violates the modularity principle in two ways. First, it is not
easy to modify the new semantics to call a third analysis... or a fourth...
The second, and perhaps more difficult problem, is that the new analysis
must understand how to create and maintain the environments for all of
the old analyses which it uses. (It should be noted, of course, that some
researchers [1,8] have managed to avoid the proliferation of environments
described above by the simple expedient of using the same types of environ-
ments for several related analyses, but this technique does not appear to be
generally applicable.)

In this paper, we introduce a new technique, generic environments, for
solving this problem. We begin by introducing a simple, higher-order lan-
guage (equivalent to the untyped lambda calculus) and presenting its “tra-
ditional” standard semantics. After some minor domain changes to allow
generic environments, we present the new standard semantics and another
semantics which calls the standard semantics using the generic environ-
ments. We also construct a correspondence between the new result domain
and the old result domain.

3 The language

We use a language similar to the higher-order, untyped lambda calculus with
constants.

¢ € Con constants
f,z € Id identifiers

e € Ezxp expressions defined by:
u=c|z| (e e2) | (Az.€) | eg
eg i:=letrec fi=e¢;in e

3

All functions take one argument (curried). For conciseness, we write
Azyz.e for Az.Ay.Az.e. Some constants are (possibly higher-order) primitive
functions, such as + = Aab. “a+b” or if = (Apca. “if p then c else a”).

4 “Traditional” Standard Semantics

A word on notation: [[e]env is to be read as an abbreviation for the pair
(e,env). While this is not standard, it is a minor variation on the most
common practice. Our reason for using this variation will become apparent
in section 5.

Traditionally, the standard semantics for this language would look like
this:

Standard Semantic Domains

Bas = Int+ Bool +... domain of basic values.
Dsig = Bas+ (Dsig — Dsig) domain of denotable values.
Epsia = FEzpx Envgy domain of exp, env pairs.
Envgyg = Id— Dgyy domain of environments.

Standard Semantic Functions

Kes.y: Con — Dgyq
Esta: Ep— Dgyq

Kes,allel

env[z]

(Esta [er]env) (Esta [e2]env)

M. €stq [e]env]v/z]

Esta [e]end’

whererec env' = env| 544 [ei]env'/f; |

Esta [c]env

Esia [z]env

Esta [e1 ex]env

Esta [Nz.€]env

Esia [letrec f;i =¢; in e]env

I

[

The following primitive functions might be used:

Kesial+]l = Xab.a+b
Kesialifl = Apea.if p then celse a

5 New Standard Semantics

.If we were to write a new semantics § : Ep — Dg, the environment domain
would probably be Envg : Id — Dg. But the environment domain for the
standard semantics was Envgsiy = Id — Dg;q. This creates a problem if §
needs to call £. What we desire is an unevaluated environment, containing
objects which are evaluated later. A naive attempt at this would map each
bound identifier to the “code” (in Exzp) to which it was bound. But the
expression alone is not enough; we must also remember the environment in
which the expression occurred. This pair of an expression and an environ-
ment corresponds exactly to elements of our Ep domain. Our new domains
are:

New Standard Semantic Domains

Ep = FEzpx Env domain of exp, env pairs
Env = Id— Ep, domain of environments.

It turns out that the standard value domain Dg,q is not exactly what we
want for our new standard semantics. Instead, we use another domain in
which functions expect elements of Ep as arguments. It should be empha-
sized that this is purely to preserve the symmetry of the semantic equations;
we will show in section 7 how the domains correspond. Thus:

D = Bas+ (Ep— D).

The domain changes induce only three changes in the semantic equations
for £: we must evaluate the value obtained when looking up a variable in
the bound variable environment, and in two places (function application
and equation groups) we must not evaluate the expression and environment
pair before using it as an argument or putting it into the environment.
The equation for function abstraction (Az.e), in fact, requires no change,
although the argument v changes type from Dgq to Ep.

New Standard Semantic Functions

Ke: Con— D
§: Ep— D
€ [clenv = Ke[c]
 [z]lenv = € env]a]
€ [er eadenv = (€ [er]env) ([ex]env)

€ [Mz.e]env
¢ [letrec f;=¢; in e]env

M. € [e]env[v/z]
€ [e]en’

whererec env' = env[[e;]env'/f; |

We must also change the primitive functions to reflect the fact that
functions now take as arguments elements of Ep rather than of D. Since
¢ maps from Ep to D, this is not difficult to do: we simply call £ on each
argument. For example:

Ke[+] = Xab. Ea+E b
Ke [if] = Apca.if € pthen € celse & a

6 Example

To demonstrate how generic environments work in practice, we now present
an exact strictness analysis, which calls the new standard semantics. This
presentation is a minor variation of [6] (to which the reader is referred for
more details); the main difference is that this analysis is “exact” — it uses -
the standard semantics of the predicate of a conditional to choose between
the arms of the conditional. (It is not clear how desirable this analysis
is; it is mainly for expository purposes.) Our value domain is a set of
variables (those which will certainly be evaluated) together with a higher-
order behavior:
Sp=P(Id) X (Ep— Sp);

when sp = (s, f) € Sp, we write (sp)ser = s and (sp)sn = f. The analysis,
S : Ep — Sp, is defined by:

S [c]env

S [z]env

S [e1 ez]env

S [Mz.e]env

S [letrec f;=¢; in e]env

Ks[e]

({z}, err)U<(S env[z])
Applys (§ [er]env) ([ez]env)
(¢, Av. S [e]env]v/z])

S [e]end

whererec env' = env| [e;]env'/f; |

The primitives for this analysis are:

Ks [+] (¢, Aa. ((S a)sets Ab. (S b)set, error))
Ks [if] (6, Ap. {(S p),Ac. if (€ p) then
((S), a. Lgp)
else (¢,\a. (S a))))

For comparison, an inexact (abstracted) strictness analysis would instead
use:

Ks [if] = (8,2p. {(S p),Ae. (8, (Aa. (S ¢) A (S a))))).
Applys, U<, and N are defined as follows:

Applys spep = spU<((sp)sn ep),
(s1,f1)U<(s2, f2) = (s1U s3, f2), and
(s1,f1) N (s2, f2) = (s1Ns2, Az (f1 2) O(f2 2)).

Note how this composite analysis uses only the one generic environment,
which is also passed to the standard semantics. If we had not used a generic
environment, we would have had to either pass around two environments
(one for § and one for £) or use a strictness domain which included the
value domain, such as

Spt = D x P(Id) x (Ep — Sp*).

In either case, the values from the standard domain would need to be com-
puted along with the strictness values, and several of the semantic equations
would need to be changed. On the other hand, we have implemented this
analysis without significant deviation from the above equations.

7 Domain Conversion

In this section, we show a correspondence between (certain) elements of
DStd and D.

We need the assumption that elements of our domains are eztensionally
equivalent; that is, if di,ds € D and for all ep € Ep we have di(ep) = dz(ep),
then we also have d; = dz (and similarly for Dg,q).

We also need some definitions. A value dsyq € Dg;q is denotable if there
exists an expression e such that dg;g = Eg4q [e]nullenv (where nullenv is
the empty environment). Similarly, a value d € D is denotable if there exists
an expression e such that d = £ [e]nullenv. We write D for the denotable
values in D. Note that there is a function U : f)sm — Ep which for any
denotable d returns some [e]nullenv € Ep which evaluates to d. Note that
&(U(d)) = d for all d € D. Although & and U are not strictly inverses, we
do have the following interesting properties:

Lemma: If £(ep) = €(ep'), then for any denotable d € Ep — D, we have
d(ep) = d(ep').

Proof: (omitted).

Corollary: d(U(&(ep))) = d(ep) for all denotable d € D and ep € Ep.
Proof: &(U(E(ep))) = & (ep).

We also need to define the finite elements of our domains. Let

D%, = Bas ‘ .
Diyg = Bas+ (Dig}— Dl
D® = Bas ‘
D': = Bas+ (Ep'~! — Dj1)
Ept = {ep|é(ep) € D'}

Observe D%,y C Dgig and D' c D for all i. We say that an element d € D
is finite if d € D' for some ¢ (similarly for Dg;q), in which case we say that
the depth of d is 1.

Let In : Dstq — D and Out : D — Dgyq be defined (by mutual recur-
sion) as follows:

I'n(dsgd) = if dgsig € Bas then dgq

else ep. In(dgia(Out(€ (ep))))
Out(d) = if d€ Bas then d

else)\dsm. Out(d(U(In(dgtd))))

Theorem: For all finite, denotable dgtd, Out(In(dsiq)) = dsia. Also, for
all finite, denotable d, In(Out(d)) =

Proof: By simultaneous induction on the depth of dg;q and d. The base
case is trivial. Assume the equations hold for all elements of D,; and D'
Then for dgq € Dk,; — D, and d € D' — D*, we have

Out(Aep. In(dsia(Out(€ (ep)))))

Ad'syq. Out((Aep. In(dsia(Out(€ (ep))))) (U(In(dy,y))))
Ad'syq. Out(In(dsia(Out(€ (U(In(dy,y,)))))))

Ad'gyq. Out(In(dsia(Out(In(ds,,)))))

2‘1:9:4' dsta(dseq))

Std

Out(In(dseq)

L | T

In(Out(d) In(Adsiq. Out(d(U(In(dsed)))))

Aep. In((Adstq. Out(d(U(In(dsea))))) (Out(€ (ep))))
Aep. In(Out(d(U(In(Out(€(ep)))))))

Aep. d(U(€ (ep)))

gep- d(ep)

[T 1

8 Conclusion

We have presented a new technique, generic environments, for writing se-
mantics. Because generic environments are unevaluated, they can be used
in any semantic analysis where an evaluated environment would previously
have been used. We showed how to write both a standard semantics and a
composite semantics using this technique, and we showed how the domains
which arise correspond to the usual domains.

