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1. Introduction

This paper concerns a constructive adaptatioh of the Borel-Cantelli lemma and
the variants of it known as 0,1 laws [1]. In generalvwe restrict our
attention to techniques éhat allow us t0'soive problems of the following
variety: Given effective rules for constructing finite objects and measuring
their complexity, when does there exisf\an infinite object that is
decomposable into infinitely many finite parts that ére maximally complex?
We choose to set such problems in the context of the complexity theory for
infinite strings, since results phrased in this way have implications for
other aspects of complexity tﬁeory (e.g. the complexity of pélynomial
evaluation [2,3]).

Let'{O,l}* denote the set of all finite strings over the alphabetv{O,l},
let {0,1}” denote the set of all infinite 0,1 strings, and let N denote the
set of non-negative integers.

By a complexity measure on strings we mean a function

c: {0,1}* > N.

There are several natural examples of such measures: Let a e {0,1}*; then,

for instance, we can take c(ao,...,ak) to be either

(1) the complexity in the sense of [6] of the string

Gsee sy
or (ii) the length of the shortest straightline program that

evaluates the polynomial
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From all strings of length k, we can choose those with maximal

complexity )t

c, = max {ctx lal = x}T

Kk 4ef0,1}%

With this notation, we can phrase our problem more precisely:

When does there exist a os'{O,l}(u such that *)

c(ao,...,ak_l) = ¢ for infinitely many k ¢ N?

Problems such as (*) have comcrete motivation. Consider polynomials
with 0,1 coefficients that are hard to evaluate in the sense of [3], that is,
polynomials with the property that the 0,1 string obtained by concatenation of
coefficients is of maximal complexity. Conversely, if o is a finite or
infinite string over {0,1}, then a corresponds in a natural way to a power
series

lal

qa(x) = I «
1i=0

xi
i .

For |a| < <, we can take c(ao,...,alal_l) to be the number of non-scalar

multiplications required to evaluate the polynomial qu(x) by a straightline

t We use |a| to denote the length of a. If o e'{O,l}m, then by convention

lal = W,



program. Suppose that c(uo,...,ak_l) = - " Then by adaptation of (*) we ask

whether there is an infinite power series

for which there are infinitely many hard initial segments; i.e. for infinitely

. many n € N, the polynomial

gives C(QO""’an)‘=Cn+l' A specific instance of this problem has been

examined by Lipton [3], who showed the following.

Theorem 1: There is a power series

with o e {0,1}, i = 0,..,such that for infinitely many n € N

1/4

_ en
c(ao,...,an) =c > Tog o

for some fixed € > 0.

Our main result is a step toward solving (*) in a more general context.

Let Mk be the number of strings o ¢ {0,1}* such that |al = k and c(a) = ¢ e

If there exists a real ¢, 0 < € £ 1, such that
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for infinitely many k, then there exists an infinite B e {0,1}* such that
C(Bo"°"8n) =C i1

for infinitely many n ¢ N. We actually present two proofs of this result.

One proof is an easy corollary of the nonconstructive Borel-Cantelli lemma.
This proof gives almost no information regarding the string B beyond its
existence with nonzero probability ~- indeed, all this is provided by such a
proof is an infinite set of strings that satisfy the conclusion. For our
purposes, however, more insight is needed into the comstruction of B.
Therefore we give a more careful counting argument, which shows that if the
complexity measure ¢ is a recursive function then the construction corresponds
to a computation in the Turing degree 0" [7]. Thus, even when viewed as

a strictly measure-theoretic argument, our result carries independent interest
since it gives a constructive proof technique for a class bf theorems whose

only previous proofs have been nonconstructive existence proofs (Erdds [4]).



2. Red Trees

Problems of the form (*) can be viewed as problems concerning infinite trees
by making a simple observation. By way of analogy with Theorem 1, we call
finite strings with maximal complexity hard strings and say that an infinite

string is hard infinitely often if it has infinitely many hard initial

prefixes. Since there is a natural correspondence between seté of strings
closed under the prefix relation and trees, we will interpret (*) as dealing
with infinite trees in which nodes can be colored red or white. A red branch
from the root will be a hard string. We will show how to construct infinite
bfanches that are red infinitely often for trees having the required
distribution of red nodes. |

By a red tree we mean a countably infinite binary tree whose nodes are

partitioned into white nodes, denoted VW’ and red nodes, denoted V If T is

R

a tree and x ¢ V, U V,, then T denotes the subtree of T with root x. For

R w?
Ac VR U VW’ A' denotes the set of descendants of elements of A; i.e.
A" = v T, -
X€eA

For any tree T and any node x of T, dT(x) denotes the depth of x in T, i.e.
the length of the branch joir ing x with the root of T. A level of T is the

set of nodes at a given depth; for k € N,

2T(k) = {x: dT(x) = kl.

If T is a red tree and € is a real number, 0 <e < 1, then we say that

T is e~red if for infinitely many k ¢ N



k
IlT(k) n VRI > e2 .

Intuitively, we sat that T is e-red if there are infinitely many levels at
which some fixed positive fraction of the nodes are colored red.
The key property of e-red trees is established by the following

theorem.

Theorem 2: 1If T is an e-red tree, then for Some €' > 0 and some x e VR’ Tx
is e'-red.
Proof: For any node x € VR u Vw and A > 0, we define £(x,)) as follows:

£(x,) = wk[(Vn)(n = k > I8, () n Vel < A2"2." (2.
X

If there are x ¢ VR and A > 0 such that f£(x,A) = «, then for all k there

exists n 2 k such that

n
Isz(n) n VRl 2 A2,

and thus Tx is A-red. Hence, it is sufficient to assume that for all x € VR

and A > 0
f(x,A) <=

in order to derive a contradiction.

Choose d ¢ N, § < 0, such that

1 - de + (d-1)-8§ < 0. (2.2)

t+ For any predicate P(v,xl,...,xn), uy[P(y,xl,...,xn)] denotes the smallest
v € N such that P(v,xl,...,xn) holds.



We will now describe a construction that at its nth stage define

(i) a
(11)
(111)
(iv)
(v) a

[

o

W]

The distribution of

depth kn of T,

set of white nodes Wn,

set of red nodes NRn’

set of red nodes ORn’

set of red nodes R_ = NR_ u OR_.
v n n n

W

n

» NR_, OR at the nth stage of construction is shown in

Figure 1. Using the fact that f£(x,A) < < at each stage, our construction will

allow us to accumulate red nodes discarded at previous stages, the old red

nodes ORn’ along with the new red nodes NRn encoyntered at the current stage

and white nodes Wn until at-some achievable stage the assumption that

f(x,A) < = forces an impossible condition on Wn.

We now give an inductive description of the construction.

Stage 1: (i) construction of klz Since T is e-red, there is some b € N
such that
12..(b) n V.| 2 e2®;
T R !

therefore set k1 = b;

(11) Wy = Vo 0 fp(ky)s

(1ii) NR
(iv) OR

(v) R

v

R 0 Eplky)s

¢ (¢ = empty set);

NR, u OR,.

1 1

Assume that Stages 1,...,n are complete and consider
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To establish this claim, consider Stage n of the construction outlined above

(see Figure 1). By step (iv),

n-1
'ORn = U Qi

i=1

1
where Qi c VR n QT(kn) n Ri' But for 1 < i <n

|Q1| < |Ri| + max llT(kn)‘n Vp n T b
xeRi ’

and since for ¢ defined by (2.4)

§
kn > max {f(x, m). X € Rl U R2 U... U Rn-l

it follows that for 1 = 1,...,n~1

kn
IR [+8+2

11 < GoDyetaD) -
Therefore
|0Rn|

n-1 |R, |-62Kn
1

< I V—
=1 (n-1) ¢(n-1)
n-1 R
=1 {(n-1) ¢(n-1)
< s2kn,

establishing our claim.

Now, by the definition of kn,

IOR | + INR | = e2Fn,
n n

(2.5)
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and thus by (2.5)
kn
INRnI 2 (e-6)2 D, (2.6)
We know by steps (iii) and (iv) of Stage n that Wn n NRn = & and

—_ L
WoOUNR =W o0 k),

so that
| . zkn'kn—i’

W1+ INR | = W

and therefore, by (2.6),

W1 < w1 - 28Rl o (egyo¥n,

Proceeding inductively, we finally obtain
|
(1 - (n-1)c + (n-2)8) - 2¥n-1 . Jknkn-1 _ (.5 okn

< (1 -ne+ (a=1)s) « 20,

IA

Returning now to the proof of the main theorem, let us consider Stage

n = d of the construction. By (2.2) and the lemma, we have
Wl < (1 - de + (a-1)8) - 24 <o,

which is clearly impossible. Thus we conclude that for some X € VR and

0 <A<l f(x,\) =w. [

We are now ready to prove our main result. The constructive proof will
follow directly from Theorem 2, while the nonconstructive proof relies on the

following technical fact:
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Lemma (Lemperti [5]): Let M = Al,...,An,... be events in a sample space and

let v be a probability measure such that

[+ -]

z v(Ai) =

i=1

and for some real € > 0

v(An

nA) < e va) va)

for infinitely many n,m € N. Then

v(lim sup A ) > O,
noo n

i.e. the events Al,... occur Infinitely often with nonzero probability.

Theorem 3: Let T be e~red for some real € > 0. Then T contains an infinite

branch that is red infinitely often.

Proof (Constructive Version): By Theorem 2 we can inductively form the

following branch:

(i) Let % € VR be the first node in an enumeration of V_ u V

R W

such that Ty, is e'-red for some ¢' > 0 and let B, be the

branch from the root of T to xl.

(ii) Assume we have constructed branch Bn. Then Txn is e-red for

some ¢ > 0 and there is a first node Xn+l in VR u Vw such

1 - o
that Txn+l is e'-red. Let y be the path from x, tox . and

define Bn+1 = BnY.

Clearly wu B, is infinite and red infinitely often. [

n=1
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Proof (Non-constructive Version): Let v(Ai) be the probability of achieving a
branch from the rest of T through QT(i) containing a red node x. Then by
Lemperti's lemma there is, with non-zero probability, an infinite branch that

is red infinitely often. [J

As we promised, the constructive version of tﬁe theorem yields more
information about the hard path than the non-constructive proof does. Observe
that the‘constructioﬁ used in the proof of Theorem 2 requires only finitely
many evaluations of f(x,A) at known arguments and that determination of
f(x,A) requires only Turing machine computations that ask oracle questions of
the type (Vn) (k)R(n,k,x) for some recursive R. Thus the procedure is
recursive in 0". Conversely, every 0" computation is recursive in the f(x,})

construction. The following corollary states this precisely.

Corollary: The function defined by the constructive proof of Theorem 3 is in

the Turing degree 0".

Proof: By the observation above, the construction defines a set in 23 n Iy in
the arithmetical hierarchy and thus the construction is recursive in 0" (see
e.g. Theorem VIII, page 314 [7]). On the other hand, given a predicate of the
form (Vn)(4k)R(n,k), we may form the red tree T, which has lT(n) < VR if
(Zk)R(n,k) and lT(m) [= Vw for all m 2 n if ~(dk)R(n,k). Therefore, the O"

computations are recursive in our construction. 0
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