An algorithm is presented for the rapid evaluation of expressions of the form
m
Y aj-ehie
Jj=1

at multiple points x;,x2,---,Zn. In order to evaluate the above sum at n points, the algorithm
requires order O(n + m) operations, and a simple modification of the scheme provides an order
O(n) procedure for the evaluation of an order n polynomial at n arbitrary real points. The algorithm
is numerically stable, and its practical usefulness is demonstrated by numerical examples.

A Fast Algorithm for the Discrete Laplace Transformation

V. Rokhlin

Research Report YALEU/DCS/RR-509
January 1987

e

The author was supported in part by the Office of Naval Research under Grant N00014-86-K-0310

1. Introduction
In this paper, we present an algorithm for the rapid evaluation of expressions of the form

m .
Z aj - e Pie (1)
=1

where z > 0, & = {a1,02, - -,am},B = {B1,B2,--,Bm} are two finite sequences of real
numbers and B > 0 for all 1 < 5 < m. To evaluate the sum (1) at n arbitrary points on the
real axis, the algorithm requires a number of arithmetic operations proportional to

(n+ m-loga(=)) - (loga(2))?, (2

where € is the precision with which the calculations are being performed, and in most cases
likely to be encountered in practice, the estimate (2) can be reduced to

1
(n+m) - logg(z) (3)
(see Observations 7.1, 7.2 below).

The evaluation of expressions of the form (1) is closely related to several classical problems
in the theory of computation. For example, the problem of rapidly evaluating a polynomial

m

P)=> Pt/ \ (4)

=1

at m different points is readily reduced to the form (1) by the obvious substitution z =
log(t). The classical algorithm for evaluating (4) at m points has an asymptotic complexity
O(m - log?(m)) (see, for example, [1,2]), making (3) a moderate improvement over previously
available results, so far as the asymptotic CPU time estimate is concerned. On the other hand,
the algorithm of the present paper is numerically stable, and our numerical experiments (see
Section 8) indicate that in practical calculations, it is extremely efficient, making it a method
of choice whenever expressions of the form (1) have to be evaluated at large numbers of points.

Remark 1.1. Classical algorithms for the rapid manipulation of polynomials are purely
algebraic, and are applicable to polynomials over a wide class of fields. On the other hand, the
algorithm presented here is based on approximation theory (i.e it relies on certain facts from
real analysis) and is restricted to polynomials over the field of real numbers. While it can be
generalized to certain other fields, detailed investigation of such generalizations is outside the
scope of this paper, and will be reported at a later date.

2. Relevant Facts From Approximation Theory
Suppose that a,b are a pair of real numbers such that a < b, and that k > 2 is an integer.
Chebychev nodes #;,%3,- - -, ¢ on the interval [a,b] are defined by the formula

_a+b a-b 2741 7

t; 5t 5 - cos(. —2-) (5)

For a function f: [a,b] — R, we will denote by PF 5.7 the order k — 1 Chebychev approxi-
mation to the function f on the interval [a,b], i.e the (unlque) polynomial of order £ — 1 such
that Pkb sti) = f(t;) for all : = 1,2, -- k. There exist several expressions for the polynomial

Pa’b’f, and the one we will use in this paper is

k
Py () = > w(t) - £(2)) (6)
Jj=1
with
us : 1,i#j (t)
J(t) H:—l Jd#] (tl - ti) (7)

The following well-known lemma provides an error estimate for Chebychev approximations.
It is the principal analytical tool of this paper, and can be found, in a somewhat different form,
in [3].

Lemma 2.1. If f € c*[a,b] (i.e. f has k continous derivatives on the interval [a,0]), then
for any t € [a, b],

—a k
| B gle) = 1(0) 1< 2 B2) @

with

_ (k)
M= e | FY5(t)] (9)

Furthermore, for any k£ > 2 and ¢ € [a,b],

St <2, (10)
and
Z | uj(t) | <24 2 -log(h). (11)

In the present paper, the above lemma will be used in the special case where 0 < a < b,
and f(t) = e~"!, with 4 > 0. Under these conditions, the expression (8) assumes the form

ob-a)r
| P g0 - (0 1 L Lol o, (12)

and the following lemma provides a form of the estimate (12) independent of ~.

Lemma 2.2. If under the conditions of Lemma 2.1, f(¢) = e™7!,b = 2a, and a > 0, then

| Phy (0= 1) 12 5 (19

IA

[

for all k > 2 and ¢ € [a,)].
Proof. Obvously, for ¢ € [a,2a], the estimate (12) can be rewritten in the form
E ok
k 7 a — .
| Paps () = f(O) IS 7 5 €™ (14)
Differentiating the latter expression with respect to -, we find that its maximum is achieved at

k

7= P (15)

Now, substituting (15) into (14) and using Stirling’s formula, we obtain

1 kg o _ 1 k* 1

[P = fOIS - Qe < et < o (10

B

3. Exact Statement of the Problem
In the description of the algorithm below, we will assume that:

a) &= {ai, s am},B={B1,P2, ,Pm}, ¥ = {21,22,-- -, 2, are three finite sequences of
real numbers. _

b) The sequences 2 and Z are monotonically increasing.

c) 1 >0.

d) T1 2 0.

e) We would like to evaluate the sums

m
S’O,,ﬁ(xk) = Z a; e Piwk (17)
J=1

for all £ = 1,2,---,n with a relative accuracy ¢ > 0, i.e. we would like to find a number
Sa,8(xk) such that

| Sep () = Sas() |
m
j=1 [;|

<e (18)

for each k € [1,n].

Remark 3.1. As has been mentioned in the Introduction, the problem of evaluating a
polynomial of order m at n points is easily reduced to the form (17). Indeed, suppose that a
polynomial of the form (4) has to be evaluated at a monotonically increasing finite sequence
of points t;,t3,---,t,. It can be assumed without a loss of generality that 0 < {; < 1 for all
k=1,2,---,n, and we will introduce a new variable 2 = —log(t), and denote —log(tx) by ax.
Thus, evaluation of the polynomial (4) at a monotonically increasing finite sequence of points
has been reduced to evaluating the expression

m .
> Pt (19)
Jj=1

at a monotonically decreasing finite sequence of points 7 = {®1,22,- -, 2, }. Finally, by revers-
ing the order of the sequence #, we reduce the evaluation of the polynomial (4) at the points
t1,t2, - -, t, to the standard problem formulated above.

4. Notation

In this section, we will introduce several definitions to be used in the description of the
algorithm in Sections 5, 6 below. Throughout this section, we will assume that we are dealing
with the problem described in Section 3, and that ¢ is an integer whose particular value is to
be determined later.

We will denote by M the smallest integer number such that

Bm - Tn

We will define a finite sequence {Ui},i=1,2,---, M of intervals on the real axis by the formulae

Pm P :
U" = ?:i,gtf_—ll]forISiSJ\’[—l,
B
U = [0,557) (21)

Similarly, we will define a finite sequence {Vi},i=1,2,---, M of intervals by the formulae

x T .
Vi = 72'1_’-2‘—3] for1<i<M-1,
X
Vi = [0, ——-—21,\[,1_1]. (22’)

For any 1 = 1,2,---, M, we will denote by f3; the subset of B consisting of all points £; such
that B € Uy, and for any ¢ = 1,2, -, M, we will denote by Z; the subset of z consisting of all
points z7 such that zj € V.

For each ¢ = 1,2,---,M,m; will denote the number of elements in B;. Similarly, for each
t=1,2,---,M,n; will denote the number of elements in .

Remark 4.1. Obviously, depending on the distributions of the points f5; and z;, the M
can be fairly large. However, the total number M of such 7 that m; # 0 is bounded by m, and
the total number NV of such 7 that n; # 0 is bounded by n. For obvious reasons, we will refer
as empty to intervals U;,V; such that m; = 0 and n; = 0. In the opposite case, the intervals
will be referred to as non-empty.

For each 1 = 1,2,---,M, and j = 1,2, - -, ¢, we will denote by ﬂ; the j-th Chebychev node on
the interval U;.

Similarly, for each ¢ = 1,2,---, M, and j = 1,2,---,q, we will denote by x} the j-th Cheby-
chev node on the interval V;.
For each k = 1,2,---,M, and 7 such that §; € Uy, we will define the finite sequence {ul'?,j},j =
1,2,---,¢q by the formula

H ﬁk ﬁl (23)

I=1,l#5

For each k =1,2,--- M, and ¢ = 1,2, -, q, we will define a real number u,’C by the formula

B;€U

Observation 4.1. Due to Lemma 2.2, the expression
g k
k(t) — Z u,’-“’j . e—ﬁi -t . (25)
Jj=1

can be viewed as an approximation to the function e~#!, Furthermore, for any ¢t € [0, o0],

3 1
k M
| 65(1) - P < = (26)
Combining (24), (25), (26) with the triangle inequality, we easily see that the sum
q
L —Bk.
) = Sub A=Y T ol et
i=1 =1 B;€Uy
k — B3k
= D a) ue’ (27)
€ i=1

can be viewed as an approximation to

Z a] . e-ﬂj‘l’ (28)

B;€UL

and that

_ 1
EOED DRI N S P P (29)

B; €V B;€U}

Furthermore, combining (11) with (24) and using the triangle inequality, we obtain

Slutle Yoy 1Y s D<@+ 2 top) X Ja). (30)

JEUL i=1 B;€U}

Given k= 1,2,---,M, and ¢ = 1,2,---, ¢, we will define a real number fF by the expression

nr—1 q
= Y Yu-e -8} <t (31)
J=vi+l I=1

For each k = 1,2,---,M, and 1 < j < n such that z; € V}, we will define f; by the formula
J J

q

k k

fi= Zvl,j S
=1

with the coefficients vl’fj defined by the formula

q k
ko Ty — T
v = 11 A

=101 74 l

(32)

(33)

Observation 4.2. Due to Lemma 2.2, for any j = 1,2,---,n and k such that z; € Vi, f;

can be viewed as an approximation to the expression

ng—=1 q

fi= X S ueetin,
i=vp+1 =1
and
. 1 Ml o«)
[Gi=Fils 5 X Y14l
i=vi+1 I=1

Combining (35), (29) (30), and using the triangle inequality, we conclude that

m
s 1
[fi= e e < = (34
i=1

EREN

dog@) -3 fai |
i=1

for any 7 =1,2,---,n. Now, for any given € and ¢ > 2 - log,(e),

HE—1 m
5= X aee g ey lail.
i=vp+1 i=1

Forany 1 =1,2,---,M — 1, we will denote by v; the largest integer such that

Vi < 10gs (B - 2u) = i — loga(loge ().

Similarly, for any ¢ = 1,2,---, M — 1, we will denote by yu; the smallest interger such that

. 1
pi > 1oga (B - xn) — 1 — 1092(2)'

(36)

(37)

(38)

(39)

For any k = 1,2,---, M, we will define the subset W of the interval [0, Bn] by the formula

we=|J Vi,

i2pk

and denote by Sy the sum

(40)

S = Z aj. (41)

BiEW)
Observation 4.3. It is easy to see that if z € U; and § € V; with 5 < v;, then
e <e (42)
Similarly, if € U; and g € V; with 5 > p;, then
e ™f —1|<e. (43)

Fuerthermore, for any ¢ = 1,2,---,M — 1,

1

pi = vi < 2-loga(=). (44)
In other words, given 2 € U; and § € V}, one of three possible situations obtains:

a) j < v;. In this case, e=#% can be approximated by 0 with a precision e.

b) 7 > p;. In this case, e #7 can be approximated by 1 with a precision e.

¢) v; < 7 < pi. In this case, e7#% can not be approximated by either 0 or 1. However, the total
number of indices j for which this situation obtains is bounded by 2- logg(%), independently of
z,3, or 1.

5. Informal Description of the Algorithm.

We will illustrate the idea of the algorithm on a simplified example. Namely, we will assume
that gB; € Uy, i.e.

Pm

> < Bi < Pm (45)
foralli =1,2,---,m, and z; € V1, i.e.
% <zj<z, (46)

forall y=1,2,---,n.
Consider the function e=#% with g € U;,x € V;. Fixing z and viewing %% as a function
of B, we construct its g-point Chebychev approximation ¢¥2(/3) on the interval U;. Due to (6),

YI(B) =Y ui(B) - e, (47)

=1

with the functions u; defined by (7), and the coefficients ﬂ; defined in Section 4. According
to Lemma 2.2,

| 92(8) - P |< o, (48)

and, given a fixed precision ¢, we can choose ¢ ~ 2 -1 og4(), and in all subsequent calculations
replace e7#% with ¥¢(8). Combining (48) with the tnangle inequality, we obtain the estimate
-5 1 &
IE%‘%(@'%Z%"G“|S4—q'2|af| (49)
j=1 j=1 j=1
for any z € [0,400], and due to (45), the latter can be rewritten in the form

q m
—z.-81 -
| D e P =Y aj-e “I< Zl%l (50)
=1 J=1

with the coefficients 11,49, - -, 1, defined by the formula
m
i =Y o ui(B). (51)
Jj=1

Now, instead of evaluating (17) at each of the points z;, we start with evaluating the
coefficients 4,7 = 1,2,-- -, ¢, which is, obviously, an order O(m - ¢) procedure. After that, we
evaluate the expression

q
D eTmA (52)
=1

forall k= 1,2, -, n, which is an order O(n - ¢) procedure (evaluating a ¢g-term expansion at n
points). Thus, the total operation count becomes O((n+m)-g). Due to (49), in order to obtain
a relative accuracy €, ¢ has to be of the order log4(%), and we have reduced the computational
complexity of evaluating (17) from O(n - m) to

O((n+m) - loga(3)). (53)

An alternative approach would be to calculate the coefficients v; for i = 1,2, - - - ,q (order
m - ¢ operations), evaluate the expression

q

D e (54)

i=1
for all £ = 1,2,---,¢ (order q operations), and interpolate the expression (17) from the
Chebychev nodes 21,23, - -, q, to the points 2,22, - -, x, (order n-q operations). The result-
ing CPU time estimate in this case is

O((n+m) - g) +0(¢*) = O((n +m) - loga(2) + O((logs(1))?), (55)

which is not substantially different from (53).

When the points 81,082, -,fm and z1,22, -,z do not satisfy the inequalities (45),
(46), the above approach can not be used in such straightforward manner. However, for any
1,7 € [1, M], Lemma 2.2 can be used separately on each of the intervals U;,Vj, with the results
combined to obtain an approximation to (17). This is done in the following section, resulting
in an order

1 1
O((n+m) - log(z) +O0(n- (log(z))3) (56)
algorithm for evaluating (17) at n points with a relative precision e.

6. Detailed Description of the Algorithm
Algorithm
Stage 1.

Comment [Choose parameters and perform geometrical preprocessing.|
Choose precision ¢ to be achieved. Set ¢ = 2- log(%). Construct the intervals U;, V;, and the
sets By, %; with ¢ = 1,2, -+, M.

Stage 2.

Comment [On each of the non-empty intervals Uy, evaluate the coefficients uf in the expan-
sions (27).]

Step 1.
Comment [Set all coefficients u¥ to zero.]

dok=1,M-173#0
do:=1,q
set u,k to zero.
end do
end do

Step 2.
Comment [For each f3; on each of the non-empty intervals Uy, evaluate o; - “f,i and add it to
the uf.]

dok=1,M-1,56#0

do:=1,q
do 3; € Ui
Evaluate “f,i via formula (23) and add the product a; - uf, to uf.
end do
end do
end do

Stage 3.

Comment [Evaluate fF via formula (31) for all k& = 1,2,---, M such that & # 0, and
7'=132a7Q]

dok=1M-17#0

do:=1,¢q .
evaluate the expression fF = ;“___;}H YL uf - el
end do
end do
Stage 4.

Comment [For each j = 1,2,---,n, evaluate f; via formula (32).]

dok=1M-1,3#0
do Ty € Vi
evaluate the expression f; = Y7, v,’fj . qﬁ,k.
end do
end do

Stage 5.

Comment [For each £ = 1,2,---, M and each 2; € Vi, use Observation 4.3 to evaluate the
sum S = Eﬂ’je w, @j. Add the result to f;, concluding the calculation.]

Step 1
Comment [Evaluate Sj.]

set Sl = EﬂieUl (e

Step 2
Comment [Evaluate Sy recursively for k = 2,3, -+, M.]

dok=2,Mz. #0
evaluate S via the formula Sy = Sp_1 + ZﬁjEUk o;j.
end do

Step 3
Comment [For all k = 1,2,---,M, and all 7 such that z; € Vi, add Sk to 2;, concluding the
calculation.]

10

dok=1,M,z; #0
do z; €V
add Sk to fi.
end do

end do

7. Complexity analysis

Stage
number

Stage 1

Stage 2

Step 1

Step 2

Stage 3

Stage 4

Stage 5
Step 1

Step 2

Operation
count

O(n +m)

O(M - q)

O(n-q?)

O(m)

O(n+ m)

Explanation

Each of the points 8y, B, - -, B is assigned to a single
interval U;. Each of the points z1, 29, -, 2, is assigned
to a single interval V;.

Each of the coefficients uf?, with £k =1,2,---, M,
andz=1,2,---,q is set to zero.

Each of the points £1,82, +, fm

contributes to the coefficients uf’{ with
J=1,2,---,¢q, and evaluating each of the coefficients
uk ; requires order g work (see (23)) .

The sum (31) has to be evaluated

at ¢ nodes xf,xfj,‘ .- 9:(’]“ on each of non-empty
intervals V1,V5, - -+, V),

and on the k — th interval, it contains

Hr — Vi terms. However, due to (44)), up — v < ¢
forallk=1,2,---, M.

The expression (32) has to be evaluated for

each of the points z;, 2, -, ,, and evaluating

each of the coefficients vf; requires order ¢ work (see (33)).
The sum §] = EB;EUl o contains no more than m terms.
The total number of non-empty intervals V; is bounded by n,

and the total number of coefficients a;
is bounded by m.

11

Step 3 O (n) Each of the numbers f; is amended once.

Summing up the CPU times for all stages above, we obtain the following time estimate:
— 1
Tma,=a~m+b-n+c~m-q2+d~n-q2+e-1\1-q2olog(—e—), (57)

where the coefficients a,b,c,d,e depend on the computer system, language, implementation,
etc. However, M < m, and ¢ ~ log(L), and the estimate (57) assumes the form
113 Lo
T,otalzaom-(log(—e—) +b~n'(log(z))”. (58)
The estimate (58)) is independent of the locations of the points f#;,z; in R, and does not
depend on any precomputed data. The following two observations reduce it to
1

Tiotat = O((m + n) 'log(z) (59)

for many problems of practical interest.

Observation 7.1. The term b-m-g% in (58) is associated with the Stage 3 of the algorithm
and the grossly pessimistic estimate

M < M < m. (60)

According to (20),
ﬂm U i 1
M~-1 < 1092('—"6_—') = lng(ﬁm) + log?(ln) + IOQQ(E)- (61)
Normally, when calculations are performed on a physical computer, the exponential in the
binary representation of a real number is bounded, and we will denote this bound by A. It
immediately follows that in all cases,

M < M < 3-logy(A) +1, (62)

and the estimate (57) becomes

Ttoza.l=a‘"2+b'n+0'm‘q2+d'"'(12+e‘109(A)“12‘109(%)' (63)

Observation 7.2. The terms c-m-q? and d-n-¢? in (57) are associated with the Stages
2 and 4 of the algorithm, and with the fact that in order to evaluate each of the coefficients
uf,; (or vf,i)s a ¢ — 1-term product of the form (24) (or (33)) has to be evaluated. Obviously,
the coefficients uf, depend only on the distribution of the points §;, and not on that of z; or
«;. Similarly, the coefficients v]'-"',,- depend only on the distribution of the points z;, and not on

that of 3; or a;. Therefore, for fixed distributions of §; and z;, the coefficients u.';,i, v}“,,- can be
precomputed and stored, reducing the total CPU time estimate to

12

F

1
Tiotat ~a-m-q+b-n-qg++c-log(A) - q°- log(—e—). (64)

However, ¢ ~ log(s), and log(A) is fixed for given computer system and language. Thus, when

m,n — 0o,

1
€

TtotalN(a'm+b‘n)'q ’ (65)

8. Numerical Results

A computer program has been written implementing the algorithm of this paper. The
calculation is performed in two stages, each implemented by a separate subroutine. During
the initialization stage, the coefficients uf, s v,l“’ ; are evaluated for given distributions of points
B1,82,"+ Pm, T1,%2, -+, Tn (see Observation 7.2). During the second stage, the sums (17)
are evaluated for a given set of weights ay, a9, -, oym.

Remark 8.1. It is clear from Tables 1, 3, 5 that the first stage (initialization) tends to
be several times more expensive than the second (evaluation). However, in most applications
the algorithm has to be initialized once, with subsequent repeated evaluation of the sums (17)
for varying sets of weights a;,aq, -+, a,,. This situation is similar to that encountered for the
Fast Fourier Transformation.

The program has been applied to a variety of situations, and three such examples are
presented in this section, with the computations performed on a VAX-8600 computer. In each
case, we performed the calculations in three ways: via the algorithm of the present paper
in single precision arithmetic, directly in single precision arithmetic, and directly in double
precision arithmetic. The first two calculations were used to compare the speed and precision
of the algorithm with that of the direct calculation. The direct evaluation of the field in double
precision was used as a standard for comparing the accuracies of the first two calculations. In
all cases, we set € = 1072, and

m=n=10-2F (66)

with & varying from 1 to 8.
Tables 1, 3, 5 contain the CPU timings for the examples 1, 2, 3 respectively. Following is
a detailed description of the entries in these Tables.

n - the number of points at which the sum (1) is being evaluated.

Tinit - the initialization time of the algorithm.

Taiy - the CPU time required by the algorithm once it has been initialized.
T4ir - the CPU time required by the direct calculation.

Tables 2, 4, 6 contain the accuracies for the examples 1, 2, 3 respectively. In the description
of the entries of these tables below, S denotes the sum (1) at the point zx as evaluated directly
in double precision. Sgi' denotes the sum (1) at the point x4 as evaluated directly in single
precision, and S,‘:lg denotes the sum (1) at the point z; as evaluated in single precision via the

13

algorithm of the present paper. Following is a detailed description of the entries in the Tables
2,4, 0. '

n - the number of points at which the sum (1) is being evaluated.

alg - the maximum error produced by the algorithm at any point. It is defined by the formula
alg” = max | S -S| (67)
bgir” - the maximum error produced by the direct calculation at any point. It is defined by the

formula

maz _ x | Sdr _ g, . , 68
alg lréllii;n I k k I ()
smazrel _ the maximum relative error produced by the algorithm at any point. It is defined b
alg p g y
the formula
S _ g, |
smazre _ max ——-—-——' k —. 69
alg 1<k<n I Sk ' ()
Sair #rel _ the maximum relative error produced by the direct calculation at any point. It is

defined by the formula
dir q
mazr __ . ISk '_‘bkl
als = e Sk (70)

62;3; - the relative error as defined in Section 3 as produced by the algorithm. It is given by the

formula

~al
6r;:l — E;::l b}: !~ Sk |
“ k=1 | Sk |

(71)

5(’1',‘?: - the relative error as defined in Section 3 as produced by the direct calculation. It is given
by the formula

61‘;1 — EZ:I I Slf:h.r — Sk I
ar k=11 Sk |

Following is a detailed description of the three examples.

(72)

Example 1. In this example, the points 81,08;,---, B and 21,22, - -, x, were defined by
the formulae

Bi =

——(i-1), (73)

B= 2 (k- 1), (74)

14

and the weights o, g, - -, oy, were generated randomly on the interval [0, 1]. Here, by ”direct
algorithm” we mean a straightforward implementation of the formula (17). The results of this
set of experiments are summarized in Tables 1, 2.

Example 2. In this example, the points f1, 82, -+, Bm and z1,29,- - -, T, wWere generated
randomly on the interval [0, 5], and the weights o, s, - -, @y, Were generated randomly on the
interval [0, 1]. Again, by ”direct algorithm” we mean a straightforward implementation of the
formula (17). The results of this set of experiments are summarized in Tables 3, 4.

Example 3. Here, we evaluate a polynomial of order n at a collection of randomly gener-
ated points on the interval [0, 1]. The coefficients of the n — th order polynomial are randomly
distributed on the interval [0, 1]. In this example, the direct evaluation of the polynomials is
performed via the Horner’s rule (see, for example, [3]), and the algorithm of this paper is ap-
plied via the formula (1). The results of this set of experiments are presented in Tables 5,
6.

The following observations can be made from the Tables 1-6, and are in agreemant with
the results of our more extensive experiments.

1. In all cases, the accuracy produced by the algorithm of the present paper is comparable to
that obtained by the direct calculation. For large n, the algorithm tends to be slightly more
accurate.

2. The CPU times and accuracies produced by the algorithm are virtually independent of the
distributions of points oy, B;,zr in R!.

3. When used for evaluating expressions of the form (17), the algorithm becomes faster than
the direct calculation at n = m < 20, if the initialization time is ignored. If we include the
initialization time, the break-even point is between n = m = 40 and n = m = 60.

4. When used for evaluating polynomials, the algorithm becomes faster than the direct calcula-
tion at roughly n = m = 40, if the initialization time is ignored. If we include the initialization
time, the break-even point is roughly n = m = 300.

15

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison Wesley, Reading, Ma, 1974.

[2] A. Borodin, I. Munro, The Computational Complezity of Algebraic and Numeric Problems,
Elsevier, New York, NY, 1975.

[3] G. Dahlquist, A. Bjork, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.

»

16

20
40
80
160
320
640
1280
2560

20
40
80
160
320
640
1280
2560

mazx
alg

412E-06
.179E-05
.408E-05
.138E-04
.378E-04
922E-04
.273E-03
.522E-03

Tim't

0.0112
0.0369
0.0802
0.136
0.218
0.333
0.484
0.727

mazx
6di

.638E-06
.219E-05
.688E-05
.262E-04
.873E-04
.231E-03
.7T40E-03
.233E-02

Table 1

Example 1 : Timings

Talg

0.0015
0.0042
0.0092
0.0165
0.0283
0.0468
0.0784
0.137

Table 2

Example 1: Accuracies

maz,rel
6alg)

.383E-06
459E-06
.623E-06
.825E-06
.597E-06
.103E-05
.841E-06
.880E-06

5 t;w"z:z,rel

.243E-06
.418E-06
.671E-06
.116E-06
.195E-05
.258E-05
473E-05
.886E-05

T4ir

0.0081
0.0318
0.1278
0.5202
2.069
8.368
33.25
133.58

rel
6alg

.359E-07
.783E-07
.100E-06
.173E-06
.238E-06
.279E-06
.420E-06
.407E-06

rel
6di

.556E-07
.960E-07
.169E-06
.326E-06
.550E-06
.699E-06
.114E-05
.181E-05

20
40
80
160
320
640
1280
2560

20
40
80
160
320
640
1280
2560

mazx
alg

.312E-06
.109E-05
.354E-05
.835E-05
.198E-04
.606E-04
.336E-03
.451E-03

Tim't

0.0097
0.0275
0.0768
0.126
0.210
0.326
0.497
0.698

mazx
6di

.164E-06
.270E-05
.364E-05
.161E-04
.298E-04
.128E-03
.657E-03
.149E-02

Table 3

Example 2 : Timings

Talg

0.0011
0.0033
0.0089
0.0157
0.0271
0.0455
0.0784
0.1351

Table 4

Example 2: Accuracies

maz,rel
6alg

.160E-06
.405E-06
.658E-06
.860E-06
.974E-06
.824E-06
914E-06
.827E-06

maz,rel
6dir

.192E-06
.316E-06
.860E-06
.845E-06
.158E-06
.288E-05
.423E-05
.7T99E-05

0.0083
0.0332
0.1328
0.536
2.12
8.50
34.12
138.34

rel
6alg

.268E-07
.501E-07
.832E-07
.100E-06
.115E-06
.185E-06
.207E-06
.348E-06

rel
6di

.141E-07
.124E-06
.857E-07
.194E-06
.173E-06
.389E-06
.100E-05
.115E-05

20
40
80
160
320
640
1280
2560

20
40
80
160
320
640
1280
2560

maz
alg

.T72E-06
.218E-05
.518E-05
.615E-05
.103E-04
.224E-04
615E-04
.7157E-04

Tinit

0.0135
0.0435
0.0948
0.1327
0.222
0.306
0.422
0.664

5e
.260E-05
275E-05
.554E-05
.462E-05
.232E-05
.295E-04
.360E-03
.120E-02

Table 5

Example 3 : Timings

Tal g

0.0015
0.0052
0.0109
0.0172
0.0286
0.0445
0.0718
0.1322

Table 6

Example 3: Accuracies

maz,rel
6alg

.301E-06
.396E-06
.528E-06
.671E-06
.851E-06
.832E-06
.T45E-06
.862E-06

maz,rel
6dn'

.305E-06
.337E-06
.210E-06
.304E-06
.387E-06
422E-06
.120E-05
.191E-05

0.0013
0.0047
0.0179
0.0729
0.2779
1.101
4.54
18.37

rel
6aly

.673E-07
955E-07
.127E-06
.T66E-07
.646E-07
.680E-07
949E-07
.590E-07

83

.227E-06
.121E-06
.136E-06
ST6E-07
.146E-06
.894E-07
.555E-06
.932E-06

