We present a modification of the Fast Multipole Method (FMM) in two dimensions. While
previous implementations of the FMM have been designed for harmonic kernels, our algo-
rithm works for a large class of kernels that satisfy fairly general conditions, amounting to
the kernel being sufficiently smooth away from the diagonal. Our algorithm approximates
appropriately chosen parts of the kernel with “tensor products” of Legendre expansions and
uses the Singular Value Decomposition (SVD) to compress the resulting representations.
The obtained singular function expansions replace the Taylor and Laurent expansions used
in the original FMM. The algorithm requires O(/N') operations, and is stable and robust.The
performance of the algorithm is illustrated with numerical examples.
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1 Introduction

In this paper, we describe a fast algorithm for the evaluation of all pairwise interactions in
large ensembles of particles in the plane, i.e., sums of the form

N
w(z;) = ) ¢;K(zi, z5), (1)
Jj=1
where q1,...,gn are arbitrary complex numbers, zi,...,T, are points in the plane, and

K : R? - R? is a non-oscillatory kernel. Such computations appear in a variety of numerical
methods for the solution of problems of computational physics.

The algorithm of this paper is a version of the Fast Multipole Method (FMM) in two
dimensions. The structure of the FMM algorithm is left virtually unchanged from the one
described by in [3]. The version of the FMM algorithm used in this paper, however, replaces
the Taylor and Laurent expansions with “tensor products” of Legendre expansions that are
subsequently compressed via the Singular Value Decomposition (SVD). This approach leads
to an algorithm that can be applied to a variety of non-oscillatory kernels that are sufficiently
smooth away from the diagonal.

In two dimensions, the original Fast Multipole Method (FMM) relies on the Taylor and
Laurent expansions (see [14], [7]) for the evaluation of Coulomb interactions in large ensem-
bles of particles. During the last decade, several improvements of the original scheme have
been suggested. A new version of the FMM, based on specially designed singular function
expansions, was introduced in [10]. The approach taken in the latter paper, when used in
combination with an intermediate representation consisting of complex exponentials, leads
to an algorithm that is about five times as fast as the original FMM, due to the reduction
of the number of parameters needed to represent far and near fields. A similar technique
was used in one dimension in [18]. A version of the FMM for polynomial interpolation
(see [5]) uses Chebyshev expansions that are compressed by a suitable change of basis ob-
tained via Singular Value Decomposition (SVD). Finally, an analytical apparatus based on
least squares approximation of integral operators was developed in [17]. This analytical
apparatus leads to fast algorithms for a fairly large class of kernels in one dimension.

The plan of the paper is as follows. In Section 2, we introduce mathematical and
numerical preliminaries. In Sections 3 and 4, we describe a generalized Fast Multipole
Method in two dimensions and present the complexity analysis. Finally, in Section 5, we
demonstrate the performance of the algorithm with several numerical examples.

2 Mathematical Preliminaries

2.1 Gaussian Integration and Interpolation

In what follows, we will denote by P the n-th Legendre polynomial on the interval [a,b] C
R. We will refer to the roots 23, ...,z2% of P2*(z) as the Gaussian nodes of order n and
will denote by wi”b, ..., w2? the weights of the corresponding Gaussian quadrature on the
interval [a,b]. We will denote by L, the projection from the space of continuous functions
on the interval [a, b] to the space of polynomials of order n, preserving the function values at




the Gaussian nodes. For a given continuous function f [a,b] — C, the function L, f(z) is
the polynomial of order n such that L, f(z%®) = f(z%?). As is well known, for all z € [a, ],

n—-1
Lof(z) =Y ax - P (2), @)

k=0

and the coefficients a; are given by the formula

= 3 uBp £(aat)- Pulait). 3)

m=1

The polynomial L, f will be referred to as n-th order Legendre expansion of the function
f. For any integer n we will denote by ||Ly||oc the L%°-norm of the operator Ly, defined by
the formula
ILnllo = sup  ||LnfllLoofay)- (4)
[1fllzooa,b)=1
We will denote by a;(z),...,an(z) the set of polynomials of order n defined by the

formulae n

T—zp .
ai(x) = H T — ’ z=1,2,...,'n, (5)
k=1 Tt T Tk
where z1,. ..,z are the Gaussian nodes of order n on the interval [a,b]. It is readily seen

from (5) that for any continuous function f : [a,b] — C,
n—1 n
Lof(z) =) ar- Pi(z) = Y f(z:) - oi(z). (6)
k=0 =1

For any natural n and continuous function f : [a,b] = C, we will denote by E,f the
error of the best approximation to f among all polynomials of order 7, i.e.,

E.f = n}}n“f - P||L°°[a,b]- (M

Let p > 0 be an arbitrary positive real number. For any analytic function f : C — C, we
will denote by M([a, b], f,p) the maximum of the absolute value of f in the p-neighborhood
of the interval [a, b], i.e.,

M([a,b],f,p) = sup sup |f(z+ pe)|. (8)
z€[a,b)] 06[—-7r,1r

The following five lemmas are well known. Their proofs can be found, for example, in
[16], [12].

Lemma 2.1. If n > 0 is an integer, and P : C = C is a polynomial of order n, then for
any interval [a,b] C R,

1 n
MI|PIlL2[a,b] < ”P”L°°[a,,b] < W——:—G'I'HP“Lz[a,b]. (9)




Lemma 2.2. For any continuous function f : [a,b] = C,

1f = Znfllzotany € (U + [1Zalloo) - 1f = Enfllpoege (10)
Lemma 2.3. For any n times continuously differentiable function f : [a,b] — C,
2(b—a)"
4nn!
Lemma 2.4. If f : C — C is an analytic function, then for any positive real p > 0,

M([a,b], f,p)
P '

”f - Enf”LW[a,b] < ’ ||f(n)”L°°[a,b]- (11)

1F ™| poofap) < - (12)

Lemma 2.5. For any natural n,
”Ln”oo <n. (13)

By combining (9), (10), (11), (12), and (13), we obtain the following theorem describing
the rate of convergence of Legendre expansions of an analytic function on the interval [a, b].

Lemma 2.6. Suppose that f : C — C is an analytic function, and that for some positive
p> (b - 0,)/4,

M([a, 8], £, p) < o0. (14)
Then
Jim ||f = Lnf|peofa) = 0. (15)
Furthermore, for anyn > 1,
b—a\"
I = Lnfllimten < 200 +m)-M((a, 8] £,0) - (222) (16)

A standard approach to the construction of polynomial approximations of functions in
higher dimensions is to expand them into “tensor products” of one-dimensional Legendre
polynomials. For an m-dimensional cube Q = [ay, b1]X. . .X [am, by] and continuous function
f:Q — C, we will denote by L, f the (unique) polynomial of m variables having the form

n—-1 n-1
Lof(@1,eoyZm) = 3 oo D Ohyyph - PP (1) - PEI (), (17)
k1=0 km=0

and coinciding with f on the n™ “tensor product” Gaussian nodes

a1,b am,

(zk, ,...,:z:kmb’"), ki=1,...,n5...5kp=1,...,n; (18)

the coefficients ay,,  i,, are given by the formula

n-1 n-1
b Wb b b b b b ,b
Ok, =kz ...kz whr e wpm L f (L g bm) PR (g | pemibm (g8mibm)
1=0 m=0

(19)



In a mild abuse of terminology, we will be referring to such polynomials as polynomials of
order n in R™ and to expansions of the form (17) as Legendre expansions of order n in the
cube @ € R™. For an analytic function f : C™ — C, we will denote by M(Q, f,p) the
maximum of the absolute value of f in the p-neighborhood of the cube Q, i.e.,

M(Q,f,p) = max sup sup |f(z1,...,7k+ pe’,...,zm)l. (20)
k=1,..m zeQ oe[—m,)
The following two lemmas are a simple consequence of Lemmas 2.1 and 2.6; they can
be viewed as multidimensional analogues of the latter (see for example [17]).

Lemma 2.7. If n > 0 is an integer and P : C™ — C is a polynomial of order n, then for
any cube Q = [a,b]™ C R™,

1

nm
————=||Pllz2(@) < lIPll(@) £ ——57!1PlIL2(0)- (21)
16— o™ 1b—a™

Lemma 2.8. Suppose that f : C™ — C is an analytic function on C™, and that for some
positive p > (b—a)/4,
M([a,b]™, f,p) < o0. (22)

Then, for anyn > 1,

I = Lo liosm < 200+ )™ M(e,H™ £.0) - (222) (23

2.2 Singular Value Decomposition of Integral Operators
Let T : L?(Y)) = L?(X) be integral operator given by the formula
T N@ = [ K@nf©)d, 24

where K is a square integrable function on X x Y, i.e.,

1/2
K@ Wlizoon = ([ [ K@ 0P dzdy) < 4o (29

The function K : X xY — R is usually referred to as the kernel of the integral operator 7.
The following theorem can be found (in a more general form) in [15].

Theorem 2.9. For any K € L?(X xY), there ezist two orthonormal systems of functions
{ur} € L3(X), {w} € L%(Y), and a sequence of nonnegative numbers s; > sg > ... > 0,
for k=1,2,..., such that

o0
K(z,y) =Y ur(z)sevi(y), (26)
k=1
in L*(X x Y) sense,
o0
> Iskl? < +o0, (27)
k=1

and the sequence {si} is uniquely determined by K.

4




Formula (26) is normally referred to as the singular value decomposition (SVD) of the
operator T (or the kernel K). The functions u; and vy are usually referred to as the left
and the right singular functions, respectively, and the numbers sy, are referred to as singular
values of the operator K (or the kernel K).

The singular value decomposition can be used to construct finite-dimensional approx-
imations to the operators of the form (24) and the corresponding kernels K. Specifically,
given a positive real € > 0, one can truncate the expression (26) after a finite number p of
terms, leading to the expression

P
K(z,y) = Y uk(z)skve(y). (28)
k=1

Now, if p has been chosen in such a manner that

oo
> st<e (29)
k=p+1

P
1K (z,y) — > uk(z)skve@)llz2xxy) < € (30)
k=1

Theorem 2.10 (Minimal property of the SVD). Suppose that the SVD of the opera-
tor T : L2(Y) — L?(X) with the kernel K : X x Y — R is given by the formula

then due to (26),

K(z,y) = Y uk(z)skvi(y). (31)
k=1
Then for any f € L*(Y),
P
(T (=) = D ur(@)skbrllrz(x) < spr1llfllzzeyys (32)
k=1

where the coefficients by, are given by the formula
be= [ F)oetw) dy. (33)

2.3 Approximation of the SVD of Integrals Operators

The following theorem is a straightforward generalization of Theorem 2.10.

Theorem 2.11 (Approximation of the SVD). Suppose that the operator T : L2(Y) —
L?(X) is defined by (24), that there ezist a positive number § > 0 and a square integrable
function K : X x Y — R such that

1K (z,y) — K(z,9)|lr2xxv) < 6, (34)




and that the SVD of K is given by the formula

K(z,y) =Y iix(z)5kk (y). (35)
k=1
Then for any f € L*(Y),
p -~
T - £)(e) = > (@) kbrllzzcx) < (6 + Spa)lIFllz2rys (36)
k=1 )

where the coefficients by are given by the formula
b= [ 1@)0uto) dy. (37)
Proof. Obviously, (34) implies

I [ K@@y~ [ K@n)i@ dllze <l (39)

and from Theorem 2.10, we obtain

p -~
I [ B0 @) dy = 3 tn(@)sbellzage < Spsallfllzzery (39)
k=1
Now, (36) follows immediately from (38), (39), and the triangle inequality. O

3 Analytical Apparatus

In the remainder of this paper, we will be assuming that all charges are located in a unit
square [0,1] x [0,1] in R2.

3.1 Notation

We will denote by Y (+1%2) the square

Lky,k2) 1 1 2 2
Y( 1,k2) [T’ 7j| X [-—2-l_’ _éi.] , (40)

where I > 1, k; = 1,...,2, ko = 1,...,2% I will be referred to as the level of the square
Y (k1k2) - and (ky, ky) will be referred to as the coordinates of the square Y (:%1:%2), We will
denote by Z(¥1%2) the union of the square Y (*¥1:¥2) and its immediate neighbors on the
level I. We will denote the subset X (:k1:%2) of [0,1] x [0,1] by the formula

x(bk1ke) — [0,1] x [0,1]\ ZUk1k2), (41)

and refer to X(*1:#2) as the interaction domain of the square Y ("¥1%2)_ In other words,
the interaction domain of the square Y:¥1:%2) consists of all squares on level I that are




not immediate neighbors of Y (4%1%2) and not Y (bk1:%2) jtself. For consistency, we will also
referring to the unit square [0, 1] x [0,1] as Y1),
Suppose now that the function K : Y(©1.1) x Y(®L1) _; C is such that

2
/x(l,kl,kz) (./}"(’-kxykz) | K (z,9)]| dy) dz < +00, (42)

2
Lo ey K@) d2) dy < +oo @)

foralll > 1,k =1,...,2,, kp = 1,...,2.. For any square Y k1k2) | we will define the
integral operators

and

Pplkiks) . p2yUkuk)) _y [2(x Gkk2)) (44)
RUkvk2) o p2(x(kuke)y y 12y (kika)) (45)
by the formulae
(l)klik2) . =
(PR .0)@) = [ Ko, (46)
(RUELR) . 0)(y) = / K(y,7)o(z) dz. (47)
X(lvklyk2)

The function (PWF142) . g) € L2(X(kik2)) with o € L2(Y (WF1:F2)) will be referred to
as the potential due to the charge distribution ¢ on the square Y{:51:%2)  Similarly, the
function ( (ll’k"k’) - 0) € L2(Y(H k) with o € L2(X("k1k2)) will be referred to as the
incoming potential due to some charge distribution o on X (-F1:k2),

Due to (42), (43), and Theorem 2.9, there exist functions

{uin7(lskl)k2)} € L2(Y(l,k1,k2))’ {v:uty(l,kl uk2)} € L2(Y(l,k1 ,kz))’ (48)
fup Uiy @ 2(x kb)), ymbRy @ p2(x tkka), (49)
and positive real numbers _
{siPCRRy, - (spthiy, (50)
such that
o
K(z, y) — Z uzut’(lakl ’k2) (z)sZUt’(l:kl !kz)vzut)(l:klyk2) (y), (51)
k=1
w . - I3
K(y,z) = Z u;cn’(l’kl’kZ) (y) s;cn’(l’kl’kZ)v;cn’(l’kl’kz)(:v). (52)
k=1

We will refer to (51), (52) as the outgoing and incoming singular value decompositions for
the square Y (bF1:k2)  respectively.

We will be using finite-dimensional approximations to the operators (44), (45) obtained
by truncating expressions (51), (52) after a finite number of terms. Specifically, given two
natural numbers p; and r;, we will define the operators

P;Si’khkz) . L2(Y(l,k1,k2)) - L2( X(l:k11k2)), (53)
Rgl,khkz) . L2( X(l,kx,kz)).__) L2(Y(l,k1,k2)) (54)

7



by the formulae

(Pzgi,kl,kz) -o)(z) = /;, . Ky, (z,y)o(y) dy,

(RGHH) . g)(y) = /X irony K (4,2)0(2) da,

with
p1
(Lk1,k ,(Lk1,k ,(Lka,k

Kp(z,y) = Y uptthdd)(g)spnlthuk mblbnks o)

k=1

T1

in,(l,k1,k in,(l,k1,k2)_in,(l,k1,k

Kn(y,z) = 3w tRg)spliuilynihk q),

k=1

Substituting (57), (58) into (55), (56), we obtain

D1
(Pﬁ"“”") ) = Z ugut,(l,kx,kz)(m)szut,(l,kl,kz)azut,(l,kx,kz),
k=1

with the coefficients azut’(l’kl’kz) given by the formula

azut,(l,kl,kg) — /

out’(l,kl 1k2)
v @)
Yy (Lkg kg)

o(y) dy,

and

T1
in,(l,k1,k in,(l,k1,k in,(l,k1,k
(Rg;klykz) . o’)(y) = Z u;’cn( 1 2)(y)$;n( 1 2)a;cn( 1 2),
k=1

with the coefficients gi™(¥12)

given by the formula

gim(bkika) /

in,(l9klyk2)
X (Lkq k) v (-’B)O‘(:E) dz.

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

The function (P,Si’kl’kz) - 0) € L*(X(bkike)) with o € L2(Y (Wk1%2)) will be referred to
as the outgoing singular function expansion due to the charge distribution o on the square
Y(kik2) Similarly, the function (RYF1#2) . ¢) € L2(XUk1k2)) with o € L2(Y (k1k2)) will
be referred to as the incoming singular function expansion due to some charge distribution

o on X (bkuk2),

3.2 Singular Function Expansions of the Potentials

The following theorem provides a tool for approximating potentials produced by arbitrary

charge distributions.

Theorem 3.1. Suppose that the outgoing potential g*1:k2) ¢ [2(X (Lk1k2)) g induced by

the charge distribution o(bF1k2) ; [2(Y (krk2)) 3 R e,

g(l,kl,kz)(x) = ( P(l,k1,k2) . a(l,k1,k2))(z) = /

Y(l'kl 2k2)

8

K(z,y)ob*1k2)(y) dy.

(63)




Then

o0
g(l,klyk2)(x) = Z Uzut’(l’kl’kz)(x)szut’(l’kl’kz)azut’(l’kl’kz), (64)
k=1
with the coefficients a,‘:"t’(l’khkz) given by the formula
out,(Lk1,k2) _ (Lkyk2) () outs(bk1k2) () o 65
% /}"(lvkl.kz) 7 (¥)v (v) dy. (65)

Furthermore, for anyp > 1,

y4
t,(L,k1,k t,(L,k1,k t,(l,k1,k
llg@#1:k2) (z) — 37wt lbhuka) (g sgubsbuka) b Chika)|| o ks <

k=1
t,(l,k1,k
Ss;j_l( 1 2)||0'(l’k1’k2)”Lz(y(l,kl,kz))a (66)
and »
(L k1 .
D lag Rk < olbukad2, . (67)
k=1

Proof. (66) follows immediately from Theorem 2.10. Singular values szut’(l’k"’”) converge
to zero as k — oo; therefore, (66) implies (64). Finally, due to (65), azut’(l’kl’kz) are the
coefficients in the orthonormal basis {v,‘:"t’(l’kl’kz)}, from which (67) follows immediately. O

3.3 Translation Operators and Error Bounds

The following three theorems constitute the principal analytical tool for manipulating out-
going and incoming singular function expansions. Theorems 3.2, 3.4 provide formulae for
the translation of outgoing and incoming singular function expansions, respectively. Theo-
rem 3.3 describes a mechanism for converting an outgoing singular function expansion into
an incoming singular function expansion.

Theorem 3.2 (Outgoing to Outgoing). Suppose that the outgoing singular function ez-
pansion gout(bkika) . [2(x(k1k)) 5 B 4s given by the formula

)
gwt,(l,kx k2) (z) —_ E u:ut’(l,kl 1k2) (z)s:ut’(l’kl ’k2)a’zutv(l’k1 yk2), (68)
k=1
with the coefficients a;“t’(l’k"’”) such that
= t,(Lky,k
Z la:u !( K1, 2)'2 < +w, (69)
k=1

and that Y(bkLk2)  y(-1mi,ms)
Then there ezists a linear mapping

A(l-—l,m1,mz),(l,k1,k2) . lz(N) - 12(N) (70)




converting the sequence of coefficients {aZ"t’(l’k1 ’kZ)}, k=1,2,... into the sequence {am t.(—1ma,mz) 1}
m=1,2,..., defined by the formulae

(o)
aglut,(l—l,ml ,'m.z) — Z Ag;l)ml )mz),(lykl:kz)azuty(l7k1)k2), (71)
k=1
Agi—];l,ml,mﬂ:(l’klakﬁ — / vzut,(l,khkz) (y)v:lut,(l—l,m;( ,‘mg)(y) d’y, (72)
Yy (Lk1,k2)
such that for all z inside X (=1m1,m2)
[}
gout,(l,khkz)(z) = Z uZutU=1mi,m2) (7 sgnut,(l-l,mx,mz)a%t,(l—l,mx,mz). (73)
m=1

Furthermore, for any p > 1,

p
”gout,(l,k1 k2) (:B) _ 2 u:zut,(l—l,ml,mz) (z)sgnut,(l—l,m1,mz)aglut,(l—l

’ml’mz)||L2(x(l—1,m1,m2)) <
m=1

o0

S(I-1,m, t,(1,k1,k:

< s;ﬁ_tl( my mz)JZlazu Lk 2)|2. (74)
k=1

Proof. We observe that go*(%12) can be viewed as the potential

grubbkika) () = /

Y (4k1,k2)

K(z,y)oF1k2) () dy (75)

induced by the charge distribution g(W¥1:52) ; [2(y(-F1k2)) 3 R defined by the formula
o9}
a(l,kl,kz) (y) — Z azuty(lykl)k2)v?‘t1(l;k1:k2) (y). (76)
k=1
We will denote by o(!=1m1:m2) the charge distribution on the square Y(~1m1,m2) given by

the formula

a(l—l,ml,mz)(y) = { a(l’kl’kz)(y)’ ifye Y(l’kl’kZ)a (77

0, if y € YU-Lmima)\y (Lkikz)

and by g{=1m1.m2) the outgoing potential on X (=1m1.m2) dque to the distribution g(—1m1.m2)
on the square Y (=1m1m2) e

g(l—l,m;,mz)(z) — (P(l—l,m1,m2) . o-(l—l,mz,mz))(x) =

= K (z,y)o(~1mma) (y) dy. (78)

Y(l—l,ml ,mg)

Due to Theorem 3.1,

g(l-l,m1 ;m2) (x) = i u;:nut,(l—l,m1 ,m2) (x)sﬂt,(l—l,mx ,mg)agzut,(l—l,ml ,m2) , (79)

m=1

10




with the coefficients aZ**(~1™1™2) gefined by the formula

aout,(l——l,m; ;m2) =
m y(-1,my,ms)

oi=1mi1,mz) (y)v;lut:(l-l,ml,"‘?) (y) dy. (80)
NOW, usmg (77), we have
qout(l=1my,ma) _ / glbkika) (y)pputi=Limima) () gy, (81)

Y(l'klrk2)
Substituting (76) into (81), we arrive at

oo
agutli=Limsma) _ $ gout (ki ko) ( [ e o0 R (puti=ms ma) dy) =
Y (5k1.k2

k=1
(=]
— Z a;ut,(l,h,kz)A&f1,kz),(l—1,m1 ,mz), (82)
k=1
where , v ) ( )
Lk1 kz), l~1,m1,m2 = out, ltklyk2 out,(l-l,ml,mz)
A - L(l,kl.kz) Yk ¥)vm (y) dy. (83)

Now, from the combination of (78) and Theorem 2.10, we obtain

I K(z,y)o(l=tmima) () gy —

y(-1,my,m3)

p
Z uﬁt)(l—lyml 9m2)(z)sgzut)(l_lyml)m2)a;t‘lt’(l—1
m=1
) l"l’ ) -
< s;lfl( my mz)”a(l l’m"mz)“Lz(y(l—l.m1,mz))- (84)

Due to (77), we have

I K(z,y)o"F1k2) (y) dy —

Y(l’kl ,kz)

’ml’mZ)lle(x(l—IM1-mz)) <

p
out,(l—-1,m;,m out,(I-1,m1,m2) out,(I-1,m,,
Z uZt( 1m2) () sout:(i=1m1 2) gguti( lmZ)“L‘«’(X("“v'"l”"ﬂ) <

m=1
t,(1-1 K ka1,
< s;:t_l( ;m mz)”o.(l kuka))| (G k2))- (85)
Thus,
p
”gout,(l,kx,kz)(x) _ Z Ugnut’(l—l’ml’mz)(Z)anut’(l—l’ml’mz)a,?:t’(l_l’ml’mz)lILz(X(l—l,ml,mz)) <
m=1
£(1-1 ) | = | out,(Lk1k2)
out,(t—1,m;,m out,({,K1,
< sgpfimtmma) | | gouti ko) 2 (86)
k=1

Finally, the singular values s?t’(l’kl’kz) converge to zero as k — oo; therefore, (86) implies
(73), and from the combination of (76), (77), (80), we have

P

-1, -1, —
D laphtmmal 2 < Jjgl-bmuma) @, oy =
m=1

o0
t,(1,k1,k
= ”a(l,kl’kz)”iz(y(lvkl’kZ)) = z |a:u ( Rl 2)[2. (87)
k=1
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The proof of the following two theorems is virtually identical to that of Theorem 3.2,
and is omitted.

Theorem 3.3 (Outgoing to Incoming). Suppose that the outgoing singular function ez-
pansion govb(kuka) . [2(x(Ukike)y 5 R is given by the formula

)
gout,(l,kl,kz) (:l:) — Z uz‘ut,(l,kl k2) (x)szut,(l,kl ,kz)azut,(l,h ,kz), (88)
k=1
with the real coefficients az"t’(l’k"kz) such that
e Lk
Z Iazut,( ) 1,k2)l2 < +00, (89)
k=1

and that Y(bmim2) « x(Lkuke)
Then there ezists a linear mapping

Blbmima)Wkika) . 12(NY S 12(N) (90)

converting the sequence of coefficients {azut’(l’kl’kz)}, k=1,2,... into the sequence {a%"(l’ml’m)},

m=1,2,..., defined by the formulae

o0
af,’.:’(l’ml’mz) — Z Bg,,:nlym2)s(lyk1,kz)azut,(l,kl,k2)’ (91)
k=1
l: ’ ’ lyk 7k y l,k ,k 1
B’(n}:m m2),(Lk1k2) _ /Y(l,kl,kz) vout( 1 2)(y)v:rr:,(l,m1,m2)(y) dy, (92)
such that for all z inside Y (bm1m2),
gouta(lyklyk2) (x) = i ui;;a(lvml:m2)(z)s:':a(l,ml,m2)a:‘;’(11m1rm2) (93)
m=1
and
= i — t,(1,k1,k2) 12
2 Ia:::(l,ml,mz)|2 < Z lazu o(Lksk2) 2 (94)

Furthermore, for any p > 1,

4
lg™ 5142 (@) — 37 wfp s ma) ) simmime) G )| my iy <

m=1
i o0
< s;:;(ll,ml,mz)\J Z l azut,(l,kl ,kz)lz. (95)
k=1
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Theorem 3.4 (Incoming to Incoming). Suppose that the incoming singular function
ezpansion gim(bkike) . [2(yUkika)y 5 R is given by the formula

w . . .
gln,(l,k1,k2) (z) = Z u;cn,(l,kl,kz)(x) s;:n,(l,khkz) a;cn,(l,khkz)’ (96)
k=1
with the coefficients ai"’(l’kl’kz) such that
o in,(L,k1,k
Z la';cn,( WK1, 2)l2 < +00, (97)
k=1

and that Y (+lmima)  y(lkiks),
Then there ezists a linear mapping

C+1m1,m2),(Lkyk2) I2(N) — I2(N) (98)

converting the sequence of coefficients {a;;"’(l’kl’kz)}, k=1,2,... into the sequence {af;"(”l’m”m)},

m=1,2,..., defined by the formulae

o0
ai’:,(l’ml ma2) — Z Cg';c‘l,ml:m2)’(l:k1:k2)a;“ts(l’khk2)’ (99)
k=1
where
I+1,m1,mz2),(l,k1,k: in,(l,k1,k 1
C;: i) - /X(z k1.k2) ,vzn( ' 2)(y)”;r?’(l+1’m1’m2)(y) dy, (100)
such that for all y inside Y (+1:m1,mz)
giny(l7kl’k2)(z) - i uif':a(l+1,mlym2) (z)s;“g:(l'*'l:mlym2)a;:77:s(l+17m1amz) (101)
m=1
and
o0 o0
Z ia;::,(l+1,m1,m2)12 < z Iaiﬂ;(l,kl,k2)|2' (102)
m=1 k=1

Furthermore, for any p > 1,

. p - N 3 .
”gm,(l,klakz) (z) - Z u::,(l+1,m1,m2)(x) s;r:,(l+1,m1,mz)a::,(l+1,m1,m2)|] L2(Y (+1,my,ma)) <

m=1
- w -
< s;i::gl'f'l:ml:m'b’)\' Z | a;c"’(l’kl ,kz)lz_ (103)
k=1

3.4 Singular Value Decompositions of Translation Operators

The algorithm of the following section (like its counterpart for harmonic fields described,
for example, in [3]) depends on the efficient application of the translation operators (70),
(90), (98) to arbitrary vectors. Clearly, these operators convert functions on the square
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into functions on the square, and could be extremely expensive to deal with numerically.
Fortunately, Theorems 2.7, 2.8 of Section 2 guarantee that (asymptotically speaking) the
cost of applying each of the operators (70), (90), (98) to an arbitrary vector is of the order

c+d-log(e)?, (104)

with the constants ¢, d independent of the operator to be applied (as long as the conditions
of Theorem 2.8 are satisfied). We will discuss the procedure for the efficient numerical
evaluation of the operator (90) in some detail; the operators (70), (98) are in this respect
identical to the operator (90).

Let us consider the operator (90) with some m;, mo, k1, k2. Choosing some natural n, we
construct an n X n tensor-product Gaussian discretization of each of the squares y (hmi,ma2)
Yy (kuk2)  and expand the kernel K on Y(bmime) x y(kik2) jnto a 4-dimensional tensor
product Legendre series. Due to Theorem 2.8, the error of such an expansion is bounded
by

b(1+n)*-q", (105)

where b is a positive constant and |g| < 1. Choosing n = ¢ + d - log(e), we guarantee that
the error of our expansion is less than any arbitrary a-priori prescribed €. An examination
of (105) shows that the length of the expansion required to obtain reasonable accuracy
is not excessive, though it is considerably greater than the lengths expansions required
for harmonic kernels (see, for example, [3]). An additional improvement in the required
lengths of expansions is obtained by replacing the tensor-product Legendre expansions of
the operators (70), (90), (98) with their Singular Value Decompositions via Theorems 2.9,
2.10, 2.11. The cost of this latter step (in terms of CPU time requirements) is of the order
p3, and would be excessive, except for the fact that this procedure has to be performed only
once for each kernel, since the necessary SVDs can be precomputed and stored; needless to
say, this requires an amount of storage proportional to p - n2.

Remark 3.5. The situation is simplified when the kernel K is convolutional, i.e depends
only on the difference between its arguments. Indeed, in this case, the SDVs of the trans-
lation operators AU=lmima)(bkike) = gllimime),(bkuke) - Q(+1mime)(bkik2) do not have to
be calculated for all interacting pairs of squares on all levels, but only for all interactions
of a single square on each level. In this case, the construction of the SVDs requires trivial
amounts of both CPU time and disk space. When the kernel K is not only convolutional but
possesses additional symmetry (rotational, up-down, etc.) the situation is further simplified.

4 Generalized Fast Multipole Method in Two Dimensions
4.1 Notation

In this section we will introduce the notation to be used in the description of the algorithm.
For any subset A of the computational box, T'(4) will denote the set of particles inside
A.

B is the set of all nonempty boxes at the level . By will denote the computational box
itself.
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If box contains more than s particles, it is called a parent box. Otherwise, the box is
said to be childless. Note that s is the maximum number of points in a childless box.

A child box is nonempty box obtained from the division of a parent box into four.

Colleagues are adjacent boxes of the same size at the same level. A given box has at
most eight colleagues.

Two boxes b and c are said to be well separated if they are separated a distance greater
or equal to the length of the size of the smallest box.

With each box b at the level [, we will associate five lists of other boxes.

List 1 of a box b will be denoted by Up. It is empty if b is a parent box. If b is childless,
it consists of b and of all childless boxes c that are adjacent to b.

List 2 of a box b will be denoted by Vj. It consists of all boxes ¢ that are children of the
colleagues of the b’s parent and that are well separated from b.

List 3 of a box b will be denoted by W), It is empty if b is a parent box. If b is childless,
it consists of all descendants of b’s colleagues whose parent are adjacent to b but who are
not adjacent to b themselves. Note that b is separated from each box ¢ in Wj, by a distance
greater or equal to the length of the size of c.

List 4 of a box b will be denoted by Xj. It consists of all boxes ¢ such that b € W,. Note
that all boxes in List 4 are childless and larger that b.

List 5 of a box b will be denoted by Y. It consists of all boxes c that are well separated
from b’s parent.

®, will denote the p-term outgoing singular function expansion for the box b.

¥, will denote the p-term incoming singular function expansion for the box .

T’y will denote the p-term incoming singular function expansion for the box b due to all
particles in T'(V}).

Ap will denote the p-term incoming singular function expansion for the box b due to all
charges in T'(Xj).

Tp(r) is the result of evaluation of the expansion ¥} at a particle r € T'(b).

ap(r) will denote the potential at r € T'(b) due to all particles in T(Us).

Bs(r) will denote the potential at r € T'(b) due to all particles in T'(W}).

75(r) will denote the potential at r € T'(b) due to all particles in T(Y3).

F(r) will denote the potential at .

Ap,c will denote the translation operator (a p X p matrix) in the Theorem 3.2 for the
boxes b and ¢ such that b = Y(=1m1.m2) apd ¢ = Y (bkuk2),

By,c will denote the translation operator (a p X p matrix) in the Theorem 3.3 for the
boxes b and ¢ such that b = Y(bm1m2) and ¢ = Y(bkik2),

Cs,c will denote the translation operator (a p x p matrix) in the Theorem 3.4 for the
boxes b and c such that = Y(+1m1m2) apg ¢ = ybkikz),

4.2 Informal Description of the Algorithm

1. Create the adaptive quad-tree. Compute the outgoing and incoming singular functions
for each box in the computational tree, by the means of the Theorem 2.11.

2. For each childless box b, the interactions between particles in 7'(b) and T'(U;) are
evaluated directly. For each particle r € T'(b) the result is a(r).
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3. For each childless box b, form an outgoing singular function expansion ®, by the
means of Theorem 3.1. For each parent box b, use Theorem 3.2 to translate and
merge the outgoing singular function expansions of its children into the outgoing
singular function expansion ®,.

4. Use Theorem 3.3 to convert the outgoing singular expansion of each box in V}, into the
incoming singular function expansion in the box b, adding the resulting expansions
together to obtain T'.

5. Convert the potential of all particles in T'(X;) into a incoming singular function ex-
pansion in the box b, adding the resulting expansions to obtain A,. Add A, to T.

6. For each childless box b, evaluate the potential B;(r) due to all particles in T'(W}) by
evaluating the outgoing singular function expansions ®. for each box ¢ € W3,

7. Translate the incoming singular function expansion I'p of b’s parent B to the box b
by the means of Theorem 3.4. Add the resulting local expansion to I'y.

8. For each childless box b, evaluate the local expansion I'y at every particle r € b and
add the result to os(r) and B,(r), obtaining the potential F(r) at .

4.3 Detailed Description of the Algorithm

Step 1: Initialization

Comment [ Set the order n of Legendre expansions, the number of terms p in all singular
function expansions, and the maximum number s of the particles in a childless box. Create
the computational tree. ]

do!=0,1,2,...
do b€ B,
if b contains more than s particles then
subdivide b into four smaller boxes,
ignore empty boxes, add nonempty boxes to Bj4;.
endif
enddo
enddo

Comment [ For each box b in the computational tree, compute the outgoing and incoming
singular value decompositions of the kernel K. ]

dol=0,1,2,...
do b€ B

Set b = Y(Fik2)  Compute two singular value decompositions for z €
X Ukik2) o e y(hkike),
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)
K(z,y) =Y ufi(z) - s - v (v),
k=1

[
K(y,z) = Y ui(y) - si - vik ().
k=1

enddo
enddo

Step 2: Local Interactions

Comment [ For each childless box b, evaluate interactions with the particles in T(Uy)
directly, obtaining the potential due to nearby particles. ]

do!=0,1,2,...
do b € By, b is childless
do z; € T(b),:cj € T(Up)

ap(z;) = op(z;) + Z%‘ - K (x4, z5).
J

enddo
enddo
enddo

Cost [9(N/s) - s- s+ 8(N/s) - s - s operations. ]

Step 3: Outgoing Singular Function Expansions

Comment [ For each childless box b, form the outgoing singular function expansion ®;. ]

dol=0,1,2,...
do b € By, b is childless
Evaluate the coefficients of the outgoing singular function expansion for the
square b by the means of the Theorem 3.1.,

Dk = Y gj - vii (),
z;€db

forallk=1,...,p.
enddo
enddo

17




Cost [ Np operations. ]

Step 4: Upward Sweep

Comment [ For each parent box b, form the outgoing singular function expansion ®; by
translating the outgoing singular function expansions of b’s children and adding the resulting
expansions together. ]

do!=...,2,1,0
do b € By, b is a parent box
Use Theorem 3.2 to translate and merge the outgoing singular function ex-
pansions of b's children b;, by, b3, by into the outgoing singular function
expansion ®,

Oy = Oy + App, - P, + A p, - Db, + Appy - Doy + Abpy - Do,

enddo
enddo

Cost [ (4/3)(N/s) - p* operations. ]

Step 5: Adaptive Part

Comment [ For each childless box b, form the incoming singular function expansion Ay
due to particles located in List 4 of b. ]

do!=0,1,2,...
do b € By, b is childless
Use Theorem 3.1 to evaluate the coefficients of the incoming singular function
expansion A, for the square b

Dok =Y g vin(zi),
z;€Xp
forallk=1...,p.
enddo
enddo

Cost [ 8(N/s) - p- s operations. ]

Comment [ For each box b, evaluate the outgoing singular function expansion ®; at each
particle located in boxes c in List 4 of b. ] :

do!=0,1,2,...
do b € By, b is childless
do z; € X
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P
Bo(zi) = Bo(zi) + Y, Boye - sPF - ugt(za).
k=1

enddo
enddo
enddo

Cost [ 8(N/s) - p- s operations. ]

Step 6: Outgoing to Incoming

Comment [ For each box b, convert the outgoing singular function expansion ®, for each
box ¢ in List 2 of b, into the incoming singular function expansion I';, adding the resulting
expansions together. ]

do!=0,1,2,...
do b € B,
For all boxes ¢ € V}, convert the outgoing singular function expansion into
the incoming singular function expansion for the box b by the means of
Theorem 3.3. Add the resulting singular function expansions to I

Iy=Tp+ z By - ®c.
ceVy

Add T, and A to obtain the incoming singular function expansion ¥,

Uy, =T + Ay.

enddo
enddo

Cost [ 27- (4/3)(N/s) - p* operations. ]

Step 7: Downward Sweep

Comment [ For every parent box b, translate the incoming singular function expansion ¥,
to b’s children incoming singular function expansions. ]
do!=0,1,2,...
do b € By, b is a parent box
do c € B4, cis a b's child

Translate the incoming singular function expansion ¥} by the means of The-
orem 3.4. Add the resulting local expansion to ¥,

V=T, + Cc,b - .
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enddo
enddo
enddo

Cost [ (4/3)(IN/s) - p? operations. ]

Step 8

Comment [ For every childless box b, evaluate incoming singular function expansions ¥,
at each particle, obtaining the potential due to distant particles. Find the potential at r € b
by adding a(r), Bs(r), 15(r) together. ]

do!=0,1,2,...
do b € By, b is childless
For each particle z; € b, evaluate

¥4
Y(z5) = Y Wpk - shy - ubs (z5).
k=1

Add ap(z;), Bs(z;), 1s(z;) to obtain the potential F(z;) at z; € b

F(z;) = ap(z;5) + Bo(z5) + Yo(z5)-

enddo
enddo

Cost [ N - p operations. ]

4.4 Complexity of the Algorithm

Since s is the average number of particles in a childless box at the finest level, there are
approximately N/s childless boxes, and approximately

N

B=(1+1/4+1/4%+..)-(N/s) = % (106)

boxes in the tree hierarchy. Therefore, Step 3 requires Np work, Step 4 requires Bp? work,
Step 6 requires 27Bp? work, Step 7 requires Bp? work, Step 8 requires Np work, and Step
2 requires 9 - N/s-s-s = 9Ns work. Thus, a reasonable estimate for the total operation
count is

9Ns + 2Np + 29Bp? = 9Ns+2Np+29- = - — . P2 (107)

With s = 2p, the operation count becomes approximately

40 Np. (108)
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The adaptive part of the algorithm in the Step 5 requires O(8(NN/s)ps + 8(N/s)ps) =
O(16Np) work, and Step 3 requires additional O(8(N/s)s?) = O(8Ns) work. The total
operation count is

17Ns + 18Np + 29Bp® = 17N's + 18Np + 29(4/3)(N/s)p?. (109)
By setting s = 1.5p, the operation count becomes approximately

69 Np. (110)

5 Numerical Results

A FORTRAN program has been written implementing the algorithm described in the
preceding section. All timings listed below correspond to calculations performed on an
UltraSparc-1/167 computer with 128MB RAM, using double precision arithmetic. The or-
der of Legendre expansions was n = 4, n = 8, and n = 16 and the number of singular
functions varied from p = 9 to p = 36 to p = 90 in order to achieve roughly 3, 6 and 10
digits accuracy, respectively.

The results of these experiments are presented in the tables below. The first column con-
tains the number of particles used in the simulation. The second column contains the time
for construction of the computational tree and precomputation of values singular functions
at locations of particles. This can be done once for any given configuration of particles.
We do not include the time for precomputation of singular value decompositions in this
column, since this can be done in advance for any given kernel. The third column contains
the total run time of the algorithm. The fourth and the fifth columns contain the actual
time required by the algorithm and the time required by the direct algorithm, respectively.

Finally, the last two columns contain the relative 2-norm E; and the relative maximum
error E obtained at any one particle. They are defined by the formulae

712 1/2 _f

where f; is the value of the potential at the i-th particle position obtained by the direct
calculation, and f; is the result obtained by the algorithm.

For the first set of tests, the positions of particles were uniformly distributed in the unit
square. For the second set of tests, two fifth of charged particles were distributed uniformly
along two ellipses and the remaining of particles were distributed randomly in three circles
with a gaussian density. The number of terms in the singular function expansions was set
to 9, 36 and 90, and the number of particles in a childless box was set to 15, 61, and 153,
respectively.

Several observations can be made from Tables 1-12 below, and from the more extensive
numerical experiments performed by the authors.

1. The number of singular functions required to obtain 3-digit accuracy is 9; the cor-
responding order of the Legendre expansions is 4. The 6-digit scheme requires 36-term
singular-function expansions, and Legendre expansions of order 8. In order to obtain 10
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digits, we used 90-term singular function expansions, and obtained these (during the pre-
computation stage) by starting with Legendre expansions of order 16.

2. For the 3-digit version of the scheme, the break-even point with the direct scheme is
n ~ 200; for 6 digits, the break-even point is n ~ 800, and for 10-digits the scheme becomes
faster than the direct one at n ~ 3000.

3. The efficiency of the algorithm does not suffer significantly when the charges in the
simulation are clustered. On the other hand, unlike its counterpart for harmonic kernels,
the algorithm of this paper does not seem to derive any advantage from the clustering of
particles in the simulation.

4. The cost of the algorithm grows rapidly with the increase of accuracy requirements.
The algorithm is considerably slower than modern versions of the FMM for harmonic fields,
especially in high-accuracy environments (see, for example, [10]).

5.1 Generalizations and Conclusions

The algorithm of this paper has an obvious analogue in three dimensions: quad-trees are
replaced with oct-trees, two-dimensional expansions are replaced with three-dimensional
ones, and the programming becomes more involved. Such a scheme has been implemented
(see [6]), and found to work satisfactorily, as long as the required precision is low. For accu-
racies better than three or four digits, the CPU time requirements of the three-dimensional
scheme become excessive.

For many kernels, the algorithm of this paper can be accelerated via an approach similar
to the one used by [4], [9], [10] to accelerate the FMM for harmonic fields in two and
three dimensions. Specifically, most the operators (70), (90), (98) can be diagonalized;
this requires that the kernel K be approximated by linear combinations of exponentials on
appropriately chosen parts of the product Y (:*142) x X (Lk1:k2)  Needless to say, this can
not be done for a “general” kernel K; however, it appears to be possible for many kernels
(and classes of kernels) of interest. Such a scheme would require several developments (both
analytic and numerical); it would accelerate the two-dimensional version of the algorithm
significantly. The real pay-off of such a project would be in three dimensions, where it
would be likely to make large-scale high-precision simulations feasible.
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Figure 1: The computational box and three levels of refinement.
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Figure 2: Non-uniform distribution of charges and its associated adaptive quad-tree.
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Figure 3: Box b and its associated Lists 1 to 4 for the charge distribution in Figure 2.
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N | Tinit (3) Talg (3) Trun (s) Tdir(s) E, Ey
200 0.007 0.009 0.015 0.019 | 0.11770E-03 | 0.85266E-03
400 0.015 0.018 0.034 0.076 | 0.27390E-03 | 0.19749E-02
800 0.024 0.047 0.071 0.310 | 0.29473E-03 | 0.20307E-02
1600 0.062 0.089 0.151 1.344 | 0.39506E-03 | 0.36146E-02
3200 0.105 0.213 0.318 5.371 | 0.42503E-03 | 0.38485E-02
6400 0.266 0.399 0.666 | 21.783 | 0.49194E-03 | 0.43736E-02

Table 1: Uniformly distributed particles. K(z,y) =1/|r —y|, s =15,p =9, and n = 4.

N | Tinit(s) Talg (5) | Trun (s) Tir(s) E, Ey
400 0.066 0.042 0.107 | 0.075 | 0.37968E-07 | 0.36455E-06
800 0.124 0.130 0.254 0.309 | 0.30664E-07 | 0.23301E-06
1600 0.255 0.251 0.505 1.347 | 0.59016E-07 | 0.63131E-06
3200 0.492 0.684 1.176 5.375 | 0.67426E-07 | 0.67145E-06
6400 0.997 1.230 2.227 | 21.756 | 0.16065E-06 | 0.16568E-05

Table 2: Uniformly distributed particles. K(z,y) = 1/|z —y|, s =61, p = 36, and n = 8.

N T%nit(s) Ta.lg (s) Trun (5) Tair(s) E, Eoo
800 0.832 0.213 1.045 0.316 | 0.35519E-11 | 0.27597E-10
1600 1.625 0.580 2.205 1.342 | 0.27911E-11 | 0.23206E-10
3200 3.210 1.374 4.515 5.371 | 0.47909E-11 | 0.35374E-10
6400 6.301 3.138 9.438 | 21.798 | 0.40687E-11 | 0.47116E-10

Table 3: Uniformly distributed particles. K(z,y) =1/|z —y|, s = 153, p = 90, and n = 16.

N | Tinit(s) Ty (8) | Trun (s) | Tair (s) Ey Ew
200 0.007 | 0.007 0.014 0.014 | 0.33680E-06 | 0.11237E-02
400 0.015 0.016 0.031 0.055 | 0.24487E-05 | 0.46567E-02
800 0.024 | 0.037 0.061 0.227 | 0.75789E-05 | 0.67792E-02
1600 0.063 0.077 0.140 1.016 | 0.36380E-04 | 0.82441E-02
3200 0.105 0.173 0.278 4.064 | 0.10114E-03 | 0.11347E-01
6400 0.267 | 0.353 0.619 | 16.397 | 0.42311E-04 | 0.12510E-01

Table 4: Uniformly distributed particles. K(z,y) =1/|z —y|?, s=15,p=09, and n = 4.

26




Figure 4: Uniformly distributed particles and the associated partition of the computational
box.
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N | Tinit(s) Toig (8) | Trun(s) | Tair(s) Ep Eoo
400 0.065 0.033 0.099 0.055 | 0.33610E-09 | 0.96336E-06
800 0.126 0.098 0.223 0.225 | 0.74619E-09 | 0.55977E-06
1600 0.254 | 0.210 0.465 1.016 | 0.59034E-08 | 0.21584E-05
3200 0.493 0.529 1.022 4.090 | 0.18124E-07 | 0.17612E-05
6400 0.996 1.036 2.031 | 16.365 | 0.14692E-07 | 0.47616E-05

Table 5: Uniformly distributed particles. K(z,y) = 1/|z —y|?, s =61, p = 36, and n = 8.
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N Tinit (3) Talg (3) Trun(s) Tdir (S) E2 Eoo
800 0.826 0.180 1.006 0.231 | 0.14987E-12 | 0.17505E-09
1600 1.597 | 0.450 2.047 | 1.009 | 0.32363E-12 | 0.74589E-10
3200 3.205 1.217 4.422 | 4.104 | 0.20036E-11 | 0.25330E-09
6400 6.315 | 2.507 8.823 | 16.404 | 0.46900E-12 | 0.16662E-09

Table 6: Uniformly distributed particles. K(z,y) = 1/|z—y|?, s = 153, p = 90, and n = 16.

Figure 5: Highly non-uniformly distributed particles and the associated partition of the
computational box.
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N Tim‘t(s) Talg(s) Trun(s) Tdir(s) E; Fe
200 0.008 | 0.010 0.019 | 0.019 | 0.13524E-03 | 0.87697E-03
400 0.016 | 0.029 0.045 | 0.076 | 0.20754E-03 | 0.11468E-02
800 0.029 | 0.058 0.087 | 0.309 | 0.26133E-03 | 0.12042E-02
1600 0.057 | 0.126 0.183 | 1.344 | 0.32551E-03 | 0.26410E-02
3200 0.114 | 0.245 0.358 | 5.368 | 0.37247E-03 | 0.34192E-02
6400 0.224 | 0475 0.699 | 21.788 | 0.42360E-03 | 0.35911E-02
Table 7: Highly non-uniformly distributed particles. K(z,y) = 1/|z—y|, s =15,p =9,
and n =4.
N Tinit(s) Talg(s) Trun(s) Tdir(s) E; Eoo
400 0.065 | 0.060 0.125 | 0.076 | 0.59124E-07 | 0.61426E-06
800 0.140 | 0.139 0.279 | 0.315 | 0.77114E-07 | 0.11068E-05
1600 0.264 | 0.413 0.677 | 1.336 | 0.10049E-06 | 0.97051E-06
3200 0.528 | 0.834 1.363 | 5.439 | 0.12151E-06 | 0.12184E-05
6400 1.052 | 1.867 2.919 | 21.761 | 0.15353E-06 | 0.15668E-05

Table 8: Highly non-uniformly distributed particles.

K(z,y) =1/|z — y|, s = 61, p = 36,

and n = 8.
N | Tinit(s) Talg (8) | Trun(s) | Tair (s) E; Eow
800 0.805 0.250 1.055 0.314 | 0.40445E-11 | 0.87339E-10
1600 1.716 0.603 2.319 1.338 | 0.61795E-11 | 0.75092E-10
3200 3.334 1.769 5.103 5.442 | 0.88132E-11 | 0.85507E-10
6400 6.540 5.366 | 11.906 | 21.810 | 0.11716E-10 | 0.12124E-09

Table 9: Highly non-uniformly distributed particles.

and n = 16.
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N | Tinit(s) Talg (8) | Trun(s) | Tair(s) E, Ey
400 0.016 0.023 0.039 0.055 | 0.44531E-04 | 0.19765E-02
800 0.029 0.045 0.075 0.226 | 0.72969E-04 | 0.37896E-02
1600 0.058 0.100 0.158 1.016 | 0.98016E-04 | 0.70910E-02
3200 0.115 0.197 0.312 4.064 | 0.24054E-03 | 0.577T00E-02
6400 0.225 0.382 0.608 | 16.405 | 0.23213E-03 | 0.82506E-02

Table 10: Highly non-uniformly distributed particles.

K(:c,y) = l/lz_ylza s=15,p=9,

and n = 4.
N | Tinit(s) Talg (8) | Trun(s) | Tair(s) E, Ex
400 0.065 0.045 0.110 0.054 | 0.61825E-08 | 0.15019E-05
800 0.140 0.108 0.247 0.234 | 0.10608E-07 | 0.20936E-05
1600 0.265 0.312 0.577 1.016 | 0.13661E-07 | 0.18906E-05
3200 0.521 0.639 1.160 4.059 | 0.38933E-07 | 0.21694E-05
6400 1.043 1.439 2.481 | 16.408 | 0.38956E-07 | 0.61407E-05

Table 11: Highly non-uniformly distributed particles.

K(z,y) = 1/|z —y|?, s = 61, p = 36,

and n=8.
N | Tinit(s) Talg (8) | Trun(s) | Tair(s) E, Eo
800 0.805 | 0.192 0.996 | 0.230 | 0.10539E-11 | 0.41111E-09
1600 1.717 | 0.477 2.194 1.010 | 0.68055E-12 | 0.18332E-09
3200 3.338 1.352 4.691 | 4.144 | 0.28719E-11 | 0.39139E-09
6400 6.540 | 4.045 | 10.586 | 16.411 | 0.29936E-11 | 0.21587E-09

Table 12: Highly non-uniformly distributed particles

and n = 16.
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