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Abstract

We offer a Bayesian foundation and an algebraic design method for neural networks which rep-
resent and process visual information at several levels of abstraction. Using this design method
we can derive networks which combine symbolic and quantitative computation, such as structural
matching and analog parameter optimization. The design method begins with the formulation of a
vision problem as Bayesian inference or decision on a comprehensive statistical model of the visual
domain given by a probabilistic grammar, akin to L-systems which have been used successfully in
computer graphics to represent realistic visual environments. Our “connectionist grammars” allow
each grammar rule to compute parameter values in a neurally implementable way; the result is not
the neural network but rather a statistical model of the problem domain.

Subsequent steps in the design method allow us to derive a variety of neural networks for Bayesian
inference or decision in the problem domain, with opportunities for using new mathematical meth-
ods such as deterministic (Mean Field Theory) annealing on Potts glasses, algebraic transformations
that reduce computational cost, correlation matching in scale space, and computational attention
mechanisms. One goal of such methods is to achieve acceptable scaling in the performance of the de-
rived neural networks. We summarize several examples of the design method, including the Bayesian
derivation of the “Frameville” neural networks for high-level vision, which incorporate both parameter
optimization and a variable-binding or graph-matching mechanism to solve correspondance problems.

1 Introduction

It may be possible to close the gulf between symbolic processing, in which expressweness, abstraction,
and representational power are central, and connectionist or neural computation, which is driven by
mathematical methods from dynamics, statistics and related fields. This paper describes one approach
to doing so. The idea is to blend connectionism and expressive formal languages, not by means of a
hybrid computational model (such as a neural network inside a rule-based expert system), but rather in

a statistical model of the problem domain (which in this paper will be visual). The resulting model will

~ take the form of a stochastic “connectionist grammar” in which each generative rule has the expressive .
power of a simple, neurally implementable Boltzmann probability distribution. From this model, and
an algebraic design method, we will be able to derive neural networks which perform computations -
in the problem domain. The resulting networks have some of the representational power of symbolic
programs along with some of the mathematical advantages of connectionist network computation.
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To construct a connectionist grammar which can model the image-formation process in a complex
visual domain, we must generally include heterogeneous sources of image noise, arising from qualitatively
different phenomena such as image-level sensor noise, intrinsic variability of single objects, and scene-
level statistics. Each such phenomenon will be modeled as a process with its own grammar rule, which
influences the stochastic generation of images or other visual data such as line drawings. The structure
of the grammar will model relationships between different noise processes. The grammar is a successful
model of the visual domain to the extent that it generates pictures or images with an approximately
correct probability distribution. It is essential to choose each rule’s probability distribution to be
accurate enough for visual recognition and yet tractable enough for neural theory and implementation.

Using such grammars, we will derive neural networks as follows: (1) Obtain the grammar, by de-
tailed modelling or by automated learning from examples. (2) Compute the joint Boltzmann probability
distribution on images (or pictures) and their grammatical explanations. (3) Optionally, change vari-
ables to get an equivalent Boltzmann distribution in a more tractable form. (4) Express desired outputs
as averages under this distribution which can be calculated by optimizating an objective function E.
This step usually employs Mean Field Theory approximations. (5) Optionally, apply algebraic trans-
formations [1] to the objective function which preserve its fixed points (exactly or approximately) but
reduce cost, improve network performance or achieve network implementability in some technology. (6)
Introduce optimizing neural net dynamics for E. The entire method is sketched in Figure 1, and is
mostly to be conducted algebraically, possibly with computer assistance.

The resulting neural networks have a wide variety of forms, but the easiest ones to get are con-
strained optimization networks. There is currently no general procedure for ensuring that a constrained
optimization network will scale well. The scaling properties and practicality of Mean Field Theory
networks have been greatly improved by methods that incorporate some constraints exactly [2, 3, 4] in
matching problems similar to those we encounter. Also, some of the networks derived from connectionist
grammars have a natural hierarchical structure that suggests dividing a large constrained optimization
problem into many small sub-problems to get a scalable algorithm. Still, several different algebraic
formulations of each objective may have to be tried to achieve acceptable performance. 4

This paper is a summary of [5], omitting proofs and several applications which may be found in
[6]. A somewhat more general view of grammars whose rules posess connectionist models (similar to
the Boltzmann distributions attached to rules in this paper) is presented in [7], where such grammars
are proposed for modelling the development of biological organisms. Fortunately the large amount of
research in computer graphics is a source of accurate generative models for images, some of which are
mathematically simple enough to be put in the form of a connectionist grammar or are already close
to that form (e.g. [8, 9]). Related directions for generalization of the parallel grammar occur in the
extensive literature on L-systems [10] and graph grammars [11].

In the remainder of this section we introduce a very simple connectionist grammar which poses a
recognition problem. In Section 2 we demonstrate the algebraic design method for this grammar, and
show how the grammar may be generalized to include new noise sources. In Section 3 we consider a -
visual grammar which achieves an interesting level of generality by placing several objects in a scene,
each of which has a hierarchical structure. We show how to derive a neural network architecture
[12] which mixes symbolic computing (including structural matching or variable binding) with analog
parameter estimation for object recognition. :
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Problem:modelling

Hand-design =l Grammar, I'. ~<eeesmm—— ]earning

(expressive, e.g. recursive)

Probability Distribution, Pr
(mathematical)

Objective Function, E
(algebraic)

Neural Network, T i
(implementable)

Figure 1: A neural network design methodology. Solid arrows constitute the recommended procedure.
The arrow from Pr to E may be realized by approximations from statistical physics, such as Mean Field
Theory. Circular arrows represent valid transformations, such as fixed-point preserving transformations
of objective functions.

1.1 Example: A Random-Dot Grammar

The first example grammar is a generative model of pictures consisting of a number of dots (e.g. a sum -
of delta functions) whose relative locations are determined by one out of M stored models. But the
dots are subject to unknown independent jitter and an unknown global translation, and the identities
of the dots (their numerical labels) are hidden from the perceiver by a random permutation operation.
For example each model might represent an imaginary asterism of equally bright stars whose locations
have been corrupted by instrument noise. One useful task would be to recognize which model generated
the image data.
The random-dot grammar is shown in equation (1).

1 .
n;gf:tiz?,d ro: root — instance of model « at x
Eo(x) = '£17'§|X|2

Jittered dot

locations I'l: instance(e,x) — {dot(e,m,xm)}

Fifxm)) = 3hr Dolem—x—u)?, where <ug>m=0| @

cramble -
san dots r?: {dot(m,xm)} — {m,lagedot(x; =Y Pmixm)}

Ey({x:}) —log [Pr(P) [1; 6(xi — 3=, Pm,i%Xm)]

where P is a permutation

In this notation, each rule I'" has an “energy function” E, which determines the relative probabilities of
different parameter values according to the Bolzmann distribution associated with E,. So the probability
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(unordered dots) (permuted dots)

Figure 2: Operation of random dot grammar. The first arrow illustrates dot placement; the next shows
dot jitter; the next arrow shows the pure, un-numbered feature locations; and the final arrow is the
uninformed renumbering scheme of the perceiver. The last two steps are combined in the algebraic
expression of the grammar.

distribution associated with a particular rule I'" is

Pr(new terms, {new parameters}|old terms, {old parameters}) = e~ P57 /Z, (2)

where 8 — 1. Such conditional probabilities can be repeatedly combined in the usual way:

Pr(¢, z) = Pr(z[)Pr(€) 3)

to yield a final joint probability distribution for the entire grammar. However we are usually interested
in computing some average in this distribution, i.e. some moment of this function.

The operation of this grammar is illustrated in Figure 2. The generative process starts with nothing
(the “root” of a parse tree) and generates one instance of a model chosen randomly from a list of known
models. Let the chosen model number be a. Rule T'? also places the instance on the image plane with
a Gaussian distribution of locations x. (Hence the objective function Eq is a quadratic in x.) Given
such an instance, the only applicable rule is I'* which replaces it with a set of dots whose locations x,,
are Gaussian-distributed displacements of ideal locations given by x 4+ ug,. The final rule is special: its
input is the set of all dots generated by the grammar, and it replaces them with a permuted set of image
dots at the same set of locations. In other words it relabels the dots from index m to index ¢ by means
of a permutation P;. The permutation probability distribution Pr(P) will be taken to be the uniform
distribution on permutations. In [5] we show that a plausible general form of Pr(P) is equivalent to the
uniform distribution we assume here. ’

2 The Algebraic Design Method

We have just performed the first step of the design method of Figure 1: formulating a connectionist
grammar which generates “pictures” for a simple problem domain. Now we continue the procedure
by deriving the associated probability distribution on such pictures and their labels (Section 2.1), and
neural networks capable of performing recognition given the pictures but not the labels (Section 2.2).
In Sections 2.3 and 2.4 we illustrate the derivation of alternative networks for the same problem. In
Section 2.5 we exhibit network objective functions for a more complex grammar.
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2.1 Final Probability Distribution

Calculating the joint probability distribution is especially easy for the grammar (1) because the gra,mma,r: - ‘f
rules are not recursive. The grammar just consists of a sequence of three stages correspondmg to rules N
% — T2, After rule I, :

P%(a, x)-——( — )% m"" S | gy

2wo,

where A is the number of models to choose from. The probability after rule I'is
Prl(a,x, {xm}) = Pr'({xm}a,x)P%e,x) T
1 ( 1 )2 (1 O\ -(a%ﬂ"'“fa;‘z; o IXm-X~u%I2) )
= — r J : . . RS
V2ro, V2rojt ¢ ' ’ PR TR e

To finish the calculation we must consider Pr(P). This is the probability of a given renumbering -
from object-generation indices m to image indices ¢. This part of the grammar models the fact that the :
object-generation indices m are generally inaccessable to the perceiver, though if they were known the
perception problem would be nearly solved. One model for P, justified in [5], is to feign ignorance of
the permutation and use the maximum entropy distribution on P, namely a uniform distribution.

Then,

| (bt 2., |xm-x_ug,.z)
BN, () = a > / d{xm} [T 6(xi =D Pmixim)e (2—? 275

Pl Pisa }
permutation

6
whence, using 3°; Pk = 1,

1 11y
=B Y i Prmi <mlxl2+;‘,’3§_;|x‘_x_ugn lz)

Bil(o,x, {x}) = o Y e
P|Pisa }

permutation

(7)

The inverse temperature § just introduced must of course be set to one. But for Bayesian inference
algorithms this may be done by gradually increasing § from zero, a procedure called “annealing”, which
often has the effect of avoiding spurious local minima during a computation. ‘ '
Equation (7) is representative of most of the grammatical probability distributions we will derive in
one important way: it is a Boltzmann distribution whose objective function is a generalized “assignment”
objective function. The “assignment problem” [13] is to minimize E = Y, PysWaq over permutations
P, for constant weights W > 0. A neural net approach to this problem is analysed in [14]. In equation (7) ;
the assignment problem objective is generalized because the weights W are now functions of real—va.lued .
parameters, as will generally be the case for grammatical probability distributions: o

Eﬁnal(a, P,X) = ZP‘M,i <2N 2|X|2 + Tlx’l X- umlz) 7 . (8) o

]t
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The sum over permutations may be approximated by an optimization over near-permutations, as we
will see, and the fact that P appears only linearly in Efna makes such optimization problems easier.

A simple recognition problem might involve looking at data {x;} and inferring the most likely model o

(@) and its position (x). We must find

argmax, xPr(a, x|{x;}) = a.rgmaxa,xPr a(,?;c;)}(; - (Bayesian inference)
= argmax, xPr(e,x, {x;}) o
= argmax, x Z Pr(a, X, {Pm,i}, {X,‘})- (9) e
P|Pisa } Bt L
permutation

Note that the combination of equations (9) and (3) perform Bayesian inference: they determine Pr(model
params|data) in terms of forward conditional probabilities including Pr(datalmodel params).

2.2 Neural Network with Match Variables

We review how configuration-space sums over P (along with other variables) may be approximated by
quadratic match neural nets. For example we may compute Prf(a, x|{x;}) as follows:

1
Prf(a,x|{x,-}) = G E €xXp — ZP ™ (2N 2I |2 lx‘l x—umlz)

{T&i ) )
= e fim [tV [ Ui} e -BF (e, (03 (V)

where

Fle,x,{U1{V}) = va,( ol s, 2|x, —um2)+<A/2)Z(2vm,,--1>2

m

+(1/ﬂ)ZUm,, i (Uﬂ)Zlog (Zexpv )

Up to this point the expression is exact; no approximations have been made. Now the Mean Field '
Theory approximation replaces the U and V integrals with the problem of finding the saddle points
({U*},{V*}) of the objective function F:

(11)

argmax, P/ (o, x|{x}) ~ argmax, xe1lima-.co exp —BF(a,x,{U"},{V*})

= (argmax, imacoexp—BF(a, 07}, (7)), =) P

where the saddle points satisfy the neural net fixed point _equa,tions
(0Eess/0U =0:) Vyi = expUnji/ Zexp Unm,;

J

' 1 1 e ,
(0Fesf/0V =0:) Up; = P [2Na,2 Ix|* + §B—J€|x,- —x—u¥]*+ A(;Vn,,- - 1)] (13)

1 o
(0E.s¢/0x=10:) X = N (0:/07)) ;Vmi(iﬁ —up,).
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Convergent descent dynamics for such networks may be found in {15, 3] and many others. The maxi-
mization with respect to a in equation (9) can be handled by making one copy of this neural net for
each model and adding a winner-take-all circuit.

The match variables V,,; bear a strong resemblance to the outer product representation commonly
used in variable-binding networks but are not yet. in the same league of expressive power since only
actual data items x; are bound to anything. Instead the V variables simply express the answer to a
visual correspondance problem.

2.3 Algebraic Transformations

The direct translation of equations (11) or (13) into a neural network results in a number of connections
proportional to N3, where N is the number of data vectors and also the number of model vectors. We
can reduce this cost to O(N?) by using algebraic transformations of F' that preserve its fixed pomts, as

described in [1]. The new objective is F(a,x,{U},{V}), where

+(1/ﬂ)EUm iVinyi = (1//3)2% exp Un; + (1 /g)zlogam,

my

and F' explicitly has only O(N?) interactions (neural connections) between different variables. Some of
the connections are, however, of a new type o exp U which is discussed in [1]. Such transformations as
from equation (11) to (14) are represented in Figure 1 by a circular arrow.

Further algebraic transformations of the objective function may also be beneficial. For large prob-
lems, N? connections may be too many to implement (in software simulation or in neural hardware)
at one time. We would like a way to “pay attention” to just part of the optimization problem at any
moment. For example one could partition the original image, and hence the data set {x;}, into roughly
equal-sized blocks of nearby data, and only relax the neurons associated with one or a few of these
blocks at any given time. That would induce a partition of all the neurons into blocks which pertain
to local regions of the image. By analogy with “virtual memory” and “virtual processors” in computer
science, we may say that such a domain decomposition allows a few “physical neurons” to simulate many
“yirtual neurons”. The active set of neuron blocks can be controlled dynamically by another objective
function, as in [16, 17]. In this way we find a computational attention mechanism which serves the
purpose of trading off temporal and spatial costs of a computation.

2.4 Correlation Matching in Scale Space

Short of approximating a P configuration sum via Mean Field Theory and neural nets (Section 2.2
above), there is a simpler, cheaper, less accurate approximation that we have used on matching problems
similar to the model recognition problem (find o and x) for the dot-matching grammar. From equations

(7) and (9),

: 1 1 ) . .
Paxx) = C Y ew-Y Pu (M 4 2|x,-—x-um|2),
. mi 97 It (15)
P| P isa }

permutation
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1 1
Pf(e,x|{x}) = C > exp — Z Pri (2]\,02|x|2 +5-3 |%; — x — u?n|2)
P|Pm,; € {0,1,...N} mt T jt
A Zm,i Pmi=N :
v ( . ) [ | : 2 ! a'|2 P -
~ T Z H exp — 2|x[ + 2|Xi-x—»um| -
N! (PISP=N} Py ...PyNn iy 2No? 203

(since almost all the multinomials are = N!)
N
= C' [Em,,- exp — (ﬁ?[xlz + 2—;3:|x,~ -—x - uf‘nlz)] ;

. 16
The key step is the approximation of the sum over permutation matrices with a sum over a super(sét),
namely all N X N nonnegative-integer-valued matrices whose entries sum to N. Among such matrices,
the vast majority have low occupancy for most rows and columns. This is an entropy argument in
favor of the approximation. There is also an energy argument: multiple assignments are allowed but
discouraged by the effective energy term (1/20%)%,, ;% —x — u2 |2 unless two values of x; or two
values of u,, happen to be within o;; of each other. Finally notice that the insertion of the multinomial
factor improves this approximation rather than further degrading it, since configurations with Pp,; > 1,
not present in the original sum over permutation matrices, are weighted less strongly than those in
which every P element is 0 or 1.
Under this approximation,

1 1
argmaxa,xPr(a,xl{x,-}) ~ argmax, x Zexp - (2NO’2 le + 2—0_2—|X¢' - X - ugmlz) . (17)
; T It

my

This objective function has a simple interpretation when o, — co: it minimizes the Euclidean distance
between two Gaussian-blurred images containing the x; dots and a shifted version of the u,, dots
respectively: '

argmin, x [dz |G * [1(z) — G * I2(z - x)|?
2
= a,rgmina,xfdz Ga/ﬁ*Eeﬂ(Z.—Xi)—Go/ﬁ*2m5(z—}<—u;',g)| : (18)

argmaxg x Yomi [ dzexp — s [|z — xil® + |z — x — uj %]
= argmax, x Yom; €XP —3,7 [Xi — X — up|

Il

_ Furthermore, note that multiplying the objective in (17) by a temperature factor 8 = 1/T simply rescales
oj+. From this fact we conclude that deterministic annealing from 7" = oo down to T' = 1, which is a good
strategy for finding global maxima in equation (17), corresponds to a coarse-to-fine correlation matching
algorithm: the global shift x is computed by repeated local optimization while gradually decreasing the
Gaussian blurr parameter o down to oj;. The output of a coarse-scale optimization is taken as the input
to the next finer-scale optimization, as in deterministic annealing and other continuation methods. The
resulting coarse-to-fine correlation matching algorithm is similar to the scale-space matching procedure
of [18]. .

The approximation (16) has the effect of eliminating the discrete Pp,; variables, rather than replacing
them with continuous versions Vi,;. The same can be said for the “elastic net” method [19], which can
also be derived from an assignment problem [2, 20]. Compared to the elastic net, the present objective
function is simpler but is expected to be less accurate.
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Figure 3: Operation of a two-level random dot grammar. The first arrow illustrates cluster placement
and cluster jitter; the next shows dot placement; the next shows dot jitter; and the final arrow is the
scrambling or renumbering operation. Not shown: rotation, dot deletion. ’

Experiments with a neural net for performing the maximization of (17) with respect to x have been
reported in [1]. A continuation from large o down to o;; was used, and it greatly reduced the network’s
susceptibility to finding incorrect local minima of the objective fuction.

2.5 A More Complex Grammar

To illustrate the generality of the grammatical method for posing vision problems in a form from which
neural networks can be derived as in Figure 1, we exhibit a more complex grammar. Unlike the simple
random-dot grammar considered in Section 1.1, here we add rotation and dot deletion as new sources
of noise and introduce a two-level hierarchy, in which models are sets of clusters of dots.

Consider an object with a hierarchical decomposition into parts, with internal degrees of freedom
describing the relative positions of the parts. For random dot features the resulting pictures will
generally be clusters of dots with unpredictable jitter of both the dot and the cluster positions. We can
also easily add two-dimensional rotations to this grammar, and a dot deletion rule which changes the
constraints on P. A concise model of such an object is given by the grammar of equation (20) below.

The corresponding probability distribution is Pr3(e, x, {x.}, {xi}):

3 = 2emi Pemi (m’:zlxl’*fﬁrlxc-x—moruz l”r.lz'lx-'—xc—R(e)'u?me)
P.[' = ¢y Z e cd Jt
{ P| Zi Pni<1 }

a.ndzm Pmi=1

(19)

where C is the number of clusters and N/C is the number of dots in each cluster.
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10T;?§LS ro: root — instance of model o at x and rotated by 4
Eo(x) = gl
rotated,
jittered cluster | T?!: instance(a,x) — {cluster(e,c,x.)}
locations
Bi({x.}) = —2715; S |xe —x—R(6) -uZ|?>, where <uf>.=0
Moemtons. |75 ol ) = {predot(e, m xen)
Ex({Xem}) = 20 7 i 3o [Xem — X — R(8) - ug, |2, where <uZ, >m=0
dot 3, dot(e, m, Xem) if Wem = 1;
deletion I%: predot(a, ¢, m,xm) — { nothing if wem =0.
ES(wcm) = HWem
bl .
S:;.lag;tse r: {dOt(c) m, me)} - {lma’gedOt(xi = Zcm Perm ixcm)}
E4({X;‘}) = - log H 6(X, Z Pern zxcm)
where Z P _wcm AN Pmi=1 "
20

As in Section 2.2 one may approximate the maximization of the integrated probability Prf(a,x, {xc}/{xi})
with respect to @, x and X, via a neural net objective function F(a,x,{x.},{U},{V}) given by

2 4 |2 _ 2
Echz(Nzll 2N e —x— RO) w4 oy ix, x. — R(6) - u I+u)

cmyt

+(A/2) Z(Z ‘/cm,i - 1)2 + (1/:3) z Ucm,iv'cm,z' - (1/ﬁ) 2108 (1 + EGXP Ucm,i> .
| (21

Alternatively, as in Section 2.4 one could use an objective function without match variables:

1
Eefs(a,x,{x:}) =) exp— ( x| + |x. —x — R(8 u°‘]2 —|x; — %, — R() - u§‘m|2) )
ff z 2'No 2 2N 2 ) 20}t ( )

cmi
(22)
Intermediate designs result from changing variables by separately considering the cluster and the
member to which a data item is assigned: P.,; = PLP2;. Then P! could be turned into analog match
variables and P2 could be approximately integrated out, assuming that oj; is small with respect to the
variance of model dot locations u%, within a cluster, but not assuming that o4 is small with respect

to the variance of cluster locations ug.

3 Frameville from a Grammar

We reach an interesting level of generality with a new grammar which places several objects in a scene,
each of which has a hierarchical structure of feature locations (dots). This degree of complexity is
sufficient to introduce questions of knowledge representation in high-level vision, such as representing an
unpredictable number of instances of a model in a scene, as well as requiring segmentation and grouping
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of data into objects as part of the recognition process. We show how the grammatical approach can yield
neural networks nearly identical to the “Frameville” neural networks we have previously studied as a
means of mixing simple Artificial Intelligence frame systems (or semantic networks) with optimization-
based neural networks. What is more, the transformation leading to Frameville is very natural. It
simply pushes the usual permutation matrix P as far back into the grammar as possible, from lower
levels of abstraction and scale to higher ones. :

3.1 The Frameville Neural Architecture

Most neural net architectures appear inadequate for high-level vision problems because they lack the
ability to express, much less use or learn, sufficiently abstract knowledge: knowledge of parameterized
classes of shape, or of geometric relationships between objects, or of similarity in topology, shape or
function. One might try to use a more abstract computational unit to model small concepts. Such a
“frame” could only result from the combined action of many artificial neurons, and in this way would
be a collective, large-scale phenomenon in a neural network. A frame would more readily map to the
intuitive idea of the “concept” of an object if it: (a) could be instantiated many times in one scene or
computation, with different parameters such as position and internal degrees of freedom; (b) could collect
feedback from such dynamically allocated instances for use in learning; (c) could express the expected
or allowed range of variation from a prototype model; and could enter into various relationships with
other frames, including (d) part-whole hierarchies, (e) geometric relationships, and (f) generalization
and specialization relationships.

The design goal of the “Frameville” type of neural network architecture [12, 21, 22] is to provide
such capabilities in much the way they can be provided within a frame system as used in Artificial
Intelligence programming [23], while exhibiting a neural substrate or implementation which provides
the kind of inexact matching abilities that objective-function based neural nets are capable of. The
Frameville objective function was based on inexact graph-matching applied to a part-whole relationship
denoted INA,p € {0,1}:

E =) INAypina;;Me; Mp; H**(F;, F;) (23)
af i
subject to constraints including conventional syntactic constraints on M and ¢na separately, along with
new mixed constraints:
Yoo INAugMyi = 3 ina;; Mg; (a)
Zﬁ INAapMﬁj = Z,- i'n,a,-jMa,' (b)

(See Figure 4.) Here a or 3 index the “frame”, which could also be called the “object model”, or
“prototype object”, and ¢ or j index an instance tied to a through My, € [0,1]. INAyg is assumed to be
a tree in this paper (so ), INA,g < 1) but may be a directed graph in general Frameville. F; are the

parameters of the instance, and H*P is a distance or parameter-fit function specific to the part-whole
relationship INA,g.

A typical use of F;, F; and H @8 would be for F to hold environment-centered coordinates of
the object 7 and of its part j, along with deduced object-centered coordinates such as translations
and orientation angles of each part, and for H to perform coordinate transformations to deduce such
coordinates and to check consistency between the deduced and expected object-centered coordinates of
an object’s parts.

In this and a number of other important respects, the Frameville networks resemble the “TRAFFIC”
system of [24]. Other networks are related to Frameville by virtue of the use of graph-matching or arrays

(24)
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of match neurons for visual object recognition [25, 26, 27, 28, 29] or using related obJectlve functlons
for high-level knowledge representation [30, 31, 32, 33].

The basic Frameville architecture was extended in [21] in order to deal with the extra complexmes'
that arise when we apply Frameville to first-order logic instead of high level vision. A very Slmlla.l'
representation was used for first-order logic neural networks by Pinkas [34]. :

From such constrained optimization formulations, it is straightforward to derive neural networks as )_
suggested in the algebraic design procedure of Figure 1. Constraints may be implemented using some

combination of penalty terms, Lagrange multiplier neurons [35], or derived Mean Field Theory terms.
We now show how to use the first part of the algebraic design method of Figure 1, by deriving Fra,mevﬂle
constrained optimization problems from a connectionist grammar.

3.2 The Grammar

It can now be shown that the Frameville objective function and syntax constraints, as outlined above,
can be derived from a random-dot grammar with multiple instances of two-level objects. We use multiple
index notation 8 « (a, sz) (i.e. model § may occupy the s3’th “slot” of model a, if INA,g = 1 = INA, ;)
and v « (a, s, s3) (i.e..model v may occupy the s3’th slot of model (assy), if INAgy = 1 = INAqs,,s5)-
The multiple-instance grammar is shown in equation (25) below.

N unknown

objects re: root — {object(a)la € {1,...N}}
Eo(x) = 0
stf;gﬁ)g%if: rt. object(a) — instance(a, o, xq)
to objects Ei(e,xq) = 5%?|xa|2
o | T instance(d, a,%;) — {cluster(a, &, 52, Xess)| IVAae, = 1}
Ez({xa,,,}) = ET E,, INAO: 32lx032 — Xgq ‘,’2!2
= E Ma 32 H( 2)(xdﬁx032)
jittered dot 3 P ~
locations r : CIUSter(a7 @, S2, xd-‘?) - {predOt’(a 52, 53, xaszss)l 32,83 — 1}
E3({x03283}) = 27 233 masz,ss |xa8283 Xas; — 8283 |2
= ng MOIM 33 (018283)(x”2’x“233)
dOt 4 . dOt'(a o 32183$ xdaz.Ss) lf waa3233 = 1;
deletion T#*: predot(a,a, sz, 53,Xasys;) — { nothing o 2y
E4(w“"’2"3) = IMA, Snﬂmwz,asl‘aszsa E (1 - Caawaaszsz)
scramble 5. {imagedot(xXr = ) 505,55 Pm,,ssy.xasz,,s)lwk =1}
all dots, T>: {dot(a, &, 5283, Xasase)} = U{imagedot(x)|wr = 0}
and add
noise dots E5({xk}) = _log[ H 6(xk - Z Paas:ss,kxaa3233)]

klwr=1 aaszss

—log 6(2 Wk — Zaasaaa A“a"i”i’)
+lextra Z (1 “-’k) :
where Z Paasz-’s,k = Agasys, and Zaasgsa P¢a3233.k =Wk

PN

(25

We have introduced the “aliveness variables” A” € {0,1}:
Aaa3233 = CaaIMa,32INAasg,33“’:1013233 (26)




Connectionist Grammars for High-Level Vision 13 

Instance i

Model o

Figure 4: Frameville neural network. (a) The objective function, E = }°,53";; INAsgina:; Mai Mg;
x H*®(F;,F;). Circles are neurons, ovals are models (or frames) and triangles are model (frame)
instances containing analog parameters (internal circles). (b) The constraints, ), INA,pMy =
2jina;jMp; and 3 g INAogMp; = Y itna;jMy;. Since INA,p is a tree, the two constraint diagrams
are not symmetric. '

which is required in the expression for Es. Here C,, records the choice of model made in rule I'! by
object(a); thus 3, Coa = O(a — 1)O(N —a) and }°,, Caa = 1. Aqas,s; Tecords which combinations of
indices survive the whole grammar to account for some data dot.

In this grammar, I'? is the essential new ingredient. I'* and the “noise” dots of I'° are just extra
types of noise that can be handled. The following restrictions on Frameville apply for this grammar:
INA is a tree; ISA is absent; sibling relationships (hence graph-matching on these relationships) are
absent. Also it will turn out that the instance indices k and j are preassigned to either level 3, 2, or 1
of a hierarchy (corresponding to models indexed by «, 8 and - respectively) which is not true of the
original Frameville objective (23); this however is a much less substantive restriction.

One useful moment of the joint model-image probability distribution is

f - 1
B ({xaa}7 {xaasg}, {Caa}l{xk}) 2 2 P‘ Zk Paaszss,k <1 A Zaaszss Paaszsa,k <1
A Paasgss,k = Paaszss,kcaaINAa,sg Ima32,s3

€xp _BE({xaa}’ {Xaasz}» {Caa}s {xk})-
| | (21)
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Figure 5: Change of variables, and the corresponding change in objective function, from global permu-
tation variables P to local correspondance variables M and grouping variables ina. Note that analog
parameters move from the models (where they must be present in multiple copies) to the instances.
Left of arrow: objective of equation (28). Right of arrow: objective of equation (23) or (39).

Here 3 is the inverse temperature (to be taken to 1) and

E( : ) = Z Z P‘w‘32531k [}Io‘sw3 (xaasz’ xk) — Mextra — ll'a3283]
aaszss k 7 ’(28)
+ z C'csz'Iow2 (xa.a, xaasg) + Z CaaHmom(xaa)- ,
aasy ax

This objective is illustrated in Figure 5(a).

3.3 Changing Variables

To get the Frameville objective and constraints, we must reparameterize Prf and E by changing variables. =
Generally we do this by pushing the permutations, P, farther back into the grammar. A computational '
advantage is that P’s replacements will have fewer indices and hence be less costly. To begin with,
for a data item indexed by k we could separately specify its correspondance to s3 and to (a,, s3).
Unfortunately E needs to know more than s3 in order to apply the correct H term, so we instead
consistently specify a, 3, 33 and a, ¢, s, for each k:

~

Pa.asgss,k = Masgsa,kinaaasz,k ) ) . (29) o

where

83

Ma3233,k = ZPaasgsa,k and inaaasg,k = EPaasgsa,k- o (30) - 7
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The constraints on P may be consistently translated into new constraints on M and ina.

This change of variables is one-to-one, so E could simply be rewritten in terms of M and ina. But
we can do better. na has many similarities to P with one index removed, so one could try to change
variables again to remove another index. This doesn’t quite work because iﬁawsz  relates coarse-scale
models to fine-scale data and therefore the constraints on ina are tighter than the constraints on P. So

before attempting a hierarchical induction step, we factor ina into a grouping term inajx that constructs
a data hierarchy, and a coarse-scale matching matrix Poqs,,;:

iMaasyk = 3 1165k Pagsy - ‘ | (31)
]
The resulting change of variables is illustrated in Figure 5. It has the effect of pushing the P matrix

back one level into the grammar, leaving behind Frameville variables M and ina at the bottom level
(the finest scale). This entire process can be repeated inductively.

3.4 The Constraints

Upon changing variables, the original constraints on P and C become almost identical to the Frameville
constraints. This is shown in the follwing theorem, which is proved in [5].

Theorem 1. For configurations of 0/1 variables Pyqs,s,,k and Cag, satisfying the constraints

Zk Paasgaa,k S 17
A : 2003253 Paaszsa,k S 1’ (a’) a'nd ana = 1’ (b) (32)
aaszsz,k = Pa.asz sa,kCaaINAa,sz INAasz,ss ’ o

along with auxiliary variables Q2 and Q! satisfying

Q% < 1, (a2) T:Qh < 1 (a1
B: Y = e(n(2)(0) -7)0(GF -1), (42) and T,QL = O(rM(C)-1)O>i—1) (bl)
@b = n®(C) (c2) Tui Qi = n(C) (c1)

(33)
(for certain integer-valued functions n(1?)(C)) there is a one-to-one correspondance with constrained
configurations of 0/1 variables M3, M2, M1, ina3,ina?,ina’. The correspondance is given by

_ 3
Poasyss b = M, aszsa, k2 m"'ngaasz,J (3)

C: Paasz,j = Mas; J Et 1,17,0,123 Pﬂaﬂ (2) (34)
Pii = Ml, mali (1)
and inversely by . g
Mzszss, = Ea PG»O!82$3 k - (a3) Mgsz J = Ea Paasz,j V (a’2)
ma.'j’k = Zaslsg (Esa aaszsa,k) Poas,,j (b3) mazg Y aa (Esz aasz ,J) Poa,i (b2)

Il
T

a.asg ]({C})Q (03) Paa,i

M;,i = Za Pdayi (a’l)
ina’ii’ Za Paayi (bl)

D- ,Paasz,j Zi’ ac 1({0})Qn’ (62) -

(35)
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for 0/1 variables P,4s, ; and P,q; and certain ordering functions R(C). The constraints on M and ina
are

E:
Zasgsa aszsa,k S 1 (a3) ' Ej ina?,k < 1 (b3)
Yo, M, asm <1 (a2) > inaf’] < 1 (b2)
TaMy; <1 (al) Yainay; <1 (b1)
Y1 maJ . Ma823 = 233 INAgsy,ss M50 (e3) | Tii inaj kMasm < IN,ci(,mz,ss,M,i%J (d3)
3, ina? ]M = ¥, INA, M2, y (c2) >t ina? Mgsm = INAq,ML; -, (d2)
>, inal Mroota = 3. INAmotaMl, (c1) St ma Ml = Cun <1 (d1)
a3, < e3 .
’inajz’kf < %a” a”"’ §52§ Mgsgs&k = INA"32’33M23233J¢ (f 3)
Sinady = 1 (e1) Masng = Ao Moo (72)

(36)

Proof: see [5].

Equation (36) (proposition &) is to be compared with the Frameville constraints [12, 22] which
include £(¢) and £(d) (cf. equation (24) and Figure 4) and conventional syntax constraints £(a) and
E(b) for match variables. Note that M and ina have been restricted by specializing every variable to
some hierarchical level (as has been also been done in some Frameville experiments [22]). The static
constraints of £(f) are usually taken to be obvious: only models present in the model base may have
match variables. This leaves £(e) as the only constraint not clearly accounted for in previous Frameville
research.

3.5 The Objective Function

Proposition &£ in Theorem 1 establishes the Frameville syntax constraints, including the subtle con-
straints of equation (24), as a consequence of the grammar. We must now derive the Frameville ob-
jective function, equation (23), from equation (28) which is the objective derived from the grammar.
This involves changing variables from P to ina and M as in Theorem 1, and also from analog model
variables X445, and Xqq, Which were redundantly present in multiple copies for every model, to analog
instance variables x; and x; which determine the original variables by

Xaasy = E Poas, j%x;j and Xgqo = ZPM’;X,-. (37)
3j i

Now translating (28) is a matter of substituting new variables for old in each term and adding an
entropy term that arises from integrating out @, i.e. the redundancy of M and ina with respect to P.
Then the final Frameville objective function may be calculated as in [5]:

E(M’ ina‘a z) = Zasgss zgk asgs;; MO2!32 JINAasz,sa ma I<:‘ch2s3 (X Xk)
+ Zasz Ezg ozsz ]Ml LNAa 182 zna2 chsg (XH xJ)
+ Ea Eaz root aIMl‘OOt Otzna Hroot C’l(x ) (38)

+1/ﬂ{10g(N2') lOg((N Eaas 1 Il’na'l Ml IM ,32)!)
+log(N') —log((N* — S et inad ML)




Connectionist Grammars for High-Level Vision : 17

where as before Mfoot,a = INA;oot,x = 1. Note that the u’s have been absorbed into the p&rametep
checking functions H. This objective is a stratified or layered version of the original Frameville objective,

as can be seen by rewriting it in terms of model indices a,f,... that range over all three levels, and o

similar modified instance indices 1, j, ..., and using the fact that in this paper INA is a tree:

E(M, ina, :E) = Zaﬁ E‘J Mlevel(a)Mle"el(ﬁ)INAa ’L’nalevel(ﬁ)Ha'B(x < )

+1/ﬂ[10g(N2') - 10g((N2 Zaﬁz] tna; Mx(':)ot 1M1 ﬂVAa ﬁ)') (39)

+log(N1) —log((N' — 3,45 inaj; Mgz’o“Mlz) )l

This is to be compared with equation (23). The graph-matching terms differ just by the new level

superscripts on M and ina, which preallocate instance indices i, 5,k to specific levels of abstraction.

Such specialization of instance function could probably be removed at the cost of further entropy
terms. The entropy terms are new, and easily implementable with analog neural networks by Stirling’s
approximation and algebraic transformations of the resulting X log X forms [1].

Thus we have translated the probability distribution of the Frameville grammar, specified by the
objective and the constraints, into the standard Frameville variables, recovering the standard objective
function terms and constraints along with a few new ones. This may be regarded as a transformation
at the level of the probability distribution, before Mean Field Theory is applied and hence before any
approximations are made. It may also be possible to express this derivation as a transformation at the
level of the grammar, in which the permutation operation is applied in a limited form at each stage
rather than globally at the final stage of the grammar.

3.6 Frameville and High-Level Vision

With the Frameville grammar, we approach a modest plateau of generality. From the generalized assign-’

ment problem of equation (28) we have derived a network which explicitly has problems of recognition
(find M,;), segmentation or grouping (find ina;;), correspondance between data and the expected parts
of an object (find Mys,s, k), multiple instances of a model (find x; rather than, say, x4), at multiple
levels of abstraction (levels 3, 2, and 1 in the hierarchical grammar). These processes arise from Bayesian

inference on a constrained Boltzmann probability distribution which, we have shown, is equivalent to -

the distribution generated by a simple grammar. The transformation to Frameville is natural: it simply
pushes the permutation matrix as far back into the grammar as is possible, so that each grammar rule
can be regarded as having its own renumbering processes even at abstract levels.

The resulting Frameville objective is different from the original generalized assignment objective in

several important ways. Where the assignment objective is linear in its binary-valued match variables,
the Frameville objective is cubic in far fewer variables. (The linear or cubic terms are multiplied
by analog parameter-check objectives H(x,x) in both cases.) This increase in polynomial order may
create more local minima in a smaller net. It is not clear whether this is a net gain or loss for practical
optimization. On the other hand, further simplifying transformations such as the correlation method of

Section 2.4, which have special conditions of applicability, are far more likely to apply to small, single- L

object correspondance problems (e.g. find Mys,s, & given My, ;) that can arise in Frameville than to
the original monolithic assignment problem.

Thus the Frameville formulation suggests a modular decomposition of a large vision problem into
smaller, more homogeneous pieces to which special methods are most likely to apply. The decomposition
follows the lines indicated by the hierarchical and heterogeneous grammar.

ey
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One important aspect of model-based vision, and of the original Frameville networks, is still missing:
the use of an indexing scheme such as a discrimination tree or graph composed of ISA-links to organize
the set of models into a data base. An alternative efficient indexing scheme, not used in the Frameville
networks, is geometric hashing [36].

We have studied grammars that model visual phenomena such as missing and extra data, group in-
variances, hierarchical objects, and multiple instances of an object in a scene. The rudiments of a frame
system for knowledge representation emerged naturally from one such grammar, by pushing the match-
ing process from low levels to high levels in a hierarchical, multiple-instance grammar. Nevertheless the
full representational capacities of such grammars were hardly used: it remains to design networks from

grammars that generate trees recursively, or are context-dependent (perhaps with several grammatical

terms interacting to produce new terms as in [7]), or include discrimination or property inheritance
trees on the set of object models.
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