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Abstract

In the area of real-time vision there has been a shift away from large complex, geometry-based
vision systems towards simpler, image-based, task-specific systems. One particular advantage
of simplifying vision is that it becomes more accessible to users who are not experts in vision.
Moreover, it is likely that making vision cheap and easy to use will accelerate both practical
and theoretical advances in the field. However, building many task-specific applications will also
place a greater emphasis on flexibility and reconfigurability of real-time vision systems.

Just as the use of graphics was accelerated by the development of the X-windows system, we
believe that creating the proper type of programming environment around real-time vision, an
“X-vision” system, will greatly accelerate the development of vision, both theory and practice.
To this end, we have constructed a framework for visual tracking and hand-eye coordination out
of modular software components. Over the past two years, we have used these components to
construct several vision-based hand-eye and mobile robotic systems. This article describes the
tracking system and some of its features, and briefly describes its use in several applications.
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1 Introduction

Historically, applications using real-time vision resorted to specialized hardware in order to process
the huge amount of information available in video images. This tended to limit work on real-time
vision and related applications such as visual servoing to those who could afford such hardware
and the support personnel required to maintain it. However, the speed of standard workstations
continues to increase, prices continue to decrease, and multi-processor architectures are becoming
more widely available and accessible. These advances anticipate the day when many real-time vision
applications can be run on standard workstations or PCs outfitted with a simple framegrabber.

One area that is particularly amenable to software-based systems is tracking of spatially localized
features in a sequence of images. Because the processing is local, large data bandwidth between
the host and the framegrabber is not needed. Likewise, the amount of data that must be processed
is relatively low and can be efficiently dealt with by off-the-shelf hardware.

The design of many task-specific visual tracking systems places a strong emphasis on mod-
ularity and reconfigurability. Providing this flexibility depends on having an intuitive, consistent
framework for expressing vision programs. Just as user-interface design was spurred by the creation
of portable graphics systems such as X-windows, we believe that vision research and application
would be greatly accelerated by the construction of the “X-vision” system. To this end, we have
constructed modular software-based system for experimental vision-based robotic applications [12].
The emphasis has been on flexibility and efficiency on standard scientific workstations and PC’s.
The system is intended to be a portable, inexpensive tool for rapid prototyping and experimentation
for teaching and research. The model of computation is one of independent tracking agents that
communicate information to one another in a hierarchical network. Such programs are amenable
to implementation on either serial or MIMD processing hardware.

By adopting this viewpoint, not only does vision becomes simple and cheap to use, but we have
found that many vision-based tasks are naturally and easily conceptualized within this framework.
One reason for this is that our software abstraction of local tracking inherently serializes the vision
process. That is, a complete image containing motion contains a great deal of complex dynamics:

illumination changes, motion, occlusion and disocclusion, and so forth. Correctly anticipating and




dealing with all of these changes in a coherent way is impossible in all but the most controlled
circumstances. Moreover, since most processors for handling full-frame image sequences in real-
time are SIMD, whatever operations are performed on an image sequence must be applied uniformly
over entire images. This rigid structure severely limits the capabilities of such systems.

In contrast, localizing vision disregards much of the irrelevant dynamics of a scene. Several
small image regions are naturally thought of as simple (in the sense of low-dimensionality) dynamic
systems. These systems are loosely coupled and interact with one-another in specific, predictable
ways. Furthermore, since the data associated with a single image region is relatively small, it is
possible to utilize more flexible image processing algorithms that are adaptive to the local spatial
and temporal properties of that region.

Our system is organized in such a way as to provide a simple, easily reconfigured abstraction for
visual tracking. We have used this system for hand-eye coordination, eye-in-hand visual servoing,
mobile robot navigation, and a variety of other tasks. The remainder of this article describes our
system in more detail and provides experimental evidence that this approach is a useful tool in the
construction of effective vision-based systems. The remainder of the article is organized into three
sections: Section 2 describes our tracking system in some detail, Section 3 shows several examples

of its use, and Section 4 discusses current and future research directions.

2 Tracking System Design and Implementation

It has often been said that “vision is inverse graphics.” In many ways, our tracking system fits this
analogy. Suppose, for example, that a graphics system is to display a complex object. Typically,
an object-centered coordinate system will be defined, and the constituent parts of the object, e.g.
the polyhedral faces of a polygon, are described in that coordinate system. This decomposition
is carried out until primitive graphics objects, e.g. lines, are reached. These are translated to
screen coordinates and displayed. Good graphics systems make defining these types of geometric
relationships simple and intuitive.

Our tracking system provides this functionality and its converse. That is, it is possible to

describe features or objects parametrically. Given the parameters of high-level objects, they are




Figure 1. On the left, a sample image showing a reference line on the waist of the robot, and on the right

the image associated with the window as it appears in window local coordinates.

broken down into their constituent components. However, instead of displaying the object, we now
seek to locate the low-level features in the neighborhood of their expected location. Once found,
we recompose the object for high-level feature from its components.

This motivates the two central ideas of our tracking architecture: window-based image process-
ing, and state-based composition of networks of tracked features. Furthermore, just as graphics
systems are often naturally described in an object-oriented way, we have found the ob ject-oriented
programming is well-suited to describing tracking systems. The use of object-oriented methods
allows use to hide the details of how specific methods are implemented, and to interact with the
system through a pre-specified set of generic interfaces. It also enhances the portability of the

system.

2.1 Low-Level Feature Detection

A window is a rectangular area of an image defined by its size, sampling characteristics, position,
orientation, in device (framebuffer) coordinates. All image processing operations within the window
are defined relative to the local window coordinate system. To illustrate, suppose that we have an
image with a window located about the white line in Figure 1(left). Then the image associated
with that window (in window coordinates) is shown in Figure 1(right). Note that the line appears

roughly horizontal in window coordinates.
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Figure 2. One dimensional convolution followed by superposition.

Tracking a feature means that a window maintains a fixed, pre-defined relationship to the
feature. Hence, any operation such as line detection or feature matching can be implemented
assuming the requisite feature only deviates slightly from a standard orientation and position
in local coordinates. This makes image processing simple to implement, fast to execute, and
easy to specialize. At the same time, acquiring windows at any position and orientation can be
implemented quickly using ideas for fast rendering of lines and boxes borrowed from graphics [6].
Thus, the combination of movable oriented windows and image processing assuming a canonical
configuration leads to fast feature tracking. The low-level features currently available in our system
include solid or broken contrast edges detected using convolutions, and general grey-scale patterns
tracked using SSD methods [2, 23, 13]. These basic features can be easily composed into a wide

variety of more complex configurations.

2.1.1 Edges

We often utilize occluding contours and contrast edges as the basis for tracking applications. In
most image processing systems, the majority of the time needed to perform edge detection is
devoted to convolution. The key idea in fast contour localization is to use problem constraints
and prior temporal information to simplify detection. The main observation is that, in window
coordinates, detecting a contrast step edge in canonical position can be thought of as a series of
one-dimensional detection problems as shown in Figure 2(left). Assuming the edge is vertical in the
window, convolving each row of the window with a derivative-based kernel will produce an aligned

series of response peaks. These responses can be superimposed by summing down the columns




of the window. Finding the maximum value of this response function localizes the edge. If the
edge is not correctly oriented, the response curve broadens. However, if the edge is symmetric,
the maximum still correctly indicates the location of the edge in the window. Thus, for the price
of a single pass with a one-dimension convolution and a series of summations we can localize the
position of a contrast edge.

In order to compute orientation, we sum the response to the scalar convolution along image
diagonals as indicated in Figure 2 (right). This closely mirrors the effect of performing the convo-
lution at orientations close to nominal. The result is three response curves with different maximum
values. The curve with the highest response is that closest in orientation to the underlying edge.
By performing parabolic interpolation of the three curves, it is possible to predict the actual orien-
tation of the underlying edge. In the ideal case, if the convolution template is symmetric and the
response function after superposition is unimodal, the horizontal displacement of the edge should
agree between all three filters. In practice, the estimate of edge location will be biased. For this
reason, edge location is computed as the weighted average of the edge location of all three peaks.
Assuming the convolution template can be expressed with integers, this entire operation can be
performed with only integer addition and multiplies except for the interpolation step. If additional
localization accuracy is required, a second derivative operator can be performed in the local neigh-
borhood of the detected edge at the computed orientation, and the zero-crossing used to compute
sub-pixel accuracy.

A particularly simple detector is the derivative of a triangle distribution. The convolution
template consists of n.—1’s followed a 0 followed by n 1’s [7]. This kernel is attractive because
no multiplications are needed to compute the convolution. Furthermore, the time to compute the
convolution can be made independent of the size of the kernel. This is accomplished by noting that
the difference in response between one pixel and the next can be computed by four additions and
subtractions of pixels at the transition points of the convolution template. This detector on a Sun
Sparc 2 with an Imaging Technologies 100 series framegrabber requires 1.5ms for a 20 pixel line
searching & 10 pixels using a mask 15 pixels wide (n = 8).

Detectors based on these ideas have been found to have good rejection characteristics and good




localization accuracy. Edges outside the window obviously do not affect their operation. Edges
within the window, but oriented incorrectly do not provoke much filter response and are generally
rejected. In addition, the value and/or sign of the response can be used to enhance the “tuning” of
the filter for a particular contour. For isolated straight edges, localization accuracy has been found

to be on the order of 0.1 pixels.

2.1.2 Correlation

SSD tracking relies on the image constancy assumption which states that two images separated
by a brief time instant differ only by a geometric distortion. It is well-known that the geometric
distortions of an image are well-approximated locally by an affine transformation [3]. Following

[16, 19, 13], the general form of the image constancy constraint can be written as:

BI(Ax+d,t+7)+v=I(x,t), T>0,

where A is a 2 x 2 matrix, d = (dz,dy)T, x = (z,y)T, and B and 7 are relative image contrast
and brightness, respectively. Given an image with an identified region centered at ¢ = (u, v)T and
a spatial extent represented as set of image locations, W, the correspondence with a second image
can be determined by minimizing
O(A,d) = E (I(Ax+d +c,t+7) - I(x+c,t)*w(x), 7>0, (1)
xEW
where w(+) is a weighting function over the image region.

Two approaches to solving this problem have been proposed. A discrete optimization approach
is described by [20]. However, their system considers only translations (no contrast or brightness
compensation, and A fixed to be the identity matrix), and utilizes a special signal processor to
perform the calculations.

Other authors solve the problem using continuous optimization [2, 19, 13]. This approach has
the advantage of efficiently estimating all 8 parameters simultaneously, and can be modified to
work in situations where not all parameters are fully determined by the gray-level structure of the

image. The disadvantage is that, in practice this method will only work for motions of a fraction




Figure 3. The bulls-eye pattern used for invariant-based target recognition.

of a pixel. Larger motions cannot be guaranteed to converge, although in practice they often do if
the gray-level structure of the image is sufficiently simple [19].

In our tracking system, we adopt the continuous optimization approach. The full 8 parameter
system is decomposed into smaller parameter groups, consisting of translation, brightness and
contrast, scale, and orientation and shear.! We integrate interframe changes over time so that we
are constantly computing the match between the initial and the current frame. These calculations
are performed at an adaptive level of resolution, leading to a fast algorithm for tracking fast motions
and a slower but more accurate algorithm for tracking slower motions. Tracking speeds on a Sun
Sparc II range from 3 — 4 milliseconds for pure translation of a 20 x 20 region at one-quarter
resolution to 10 — 15 milliseconds when both scaling and translation are calculated. Details can be

found in [13].

2.1.3 Specialized Patterns

In many applications, it is useful to be able to detect fiducial marks for specialized patterns as a
starting “seed” for initialization of more complex tracking. We provide such an initializer in the
form of an invariant-based target recognizer. This method was inspired by [21].

Briefly, the method proceeds as follows. It is well-known that four points on a line define

an value, the cross-ratio, that is invariant to projection [17]. We utilize this idea to detect the

!The last two have not yet been fully implemented and tested.




“bulls-eye” pattern shown in Figure 3. Across any line passing through the center, there are a
total of 15 cross-ratios that can be computed (although not all are independent). For a particular
configuration of circles, these cross-ratios index the pattern. Because it is circularly symmetric,
this pattern has the same cross ratio no matter what direction it is viewed from.

Using the simple edge-detectors described above, we scan the image looking for a series of edges
that have the correct sequence of bright/dark transitions, and which have the correct cross-ratio
signature. If a candidate is found, a cross ratio calculation in the orthogonal direction is performed
to verify the signature. The method has been found to work very reliably for targets of moderate
image size (about 40 pixels minimum). It takes about 1.5 seconds to locate a target in a 480 x 640

image on a Sun Sparc II processor.

2.2 Networks of Features

Every feature or image property in our system can be characterized in terms of a state vector. For
basic features—those that operate directly on images—the state of the feature tracker is usually the
position and orientation of the feature (= that of its window) relative to the framebuffer coordinate
system. We define composite features to be features that compute their state from other basic and
composite features.

To illustrate the relationship between basic and composite features, consider computing the
location of the intersection of two contours. The state of a single contour tracker in an image is
the vector L = (z,v,8)T describing the location of a window centered on the contour and oriented
along it. The low-level feature detection methods described above compute an offset normal to
the edge, §t, and an orientation offset §6. Given these values, the state of the contour tracker is

updated according to the following equation:

—6tsin( + 66)
LY =L+ | 6tcos(f + 66) (2)
8+ 60

Note that there is an aperture problem: the state vector, L, is not fully determined by information

returned from feature detection. There is nothing to keep the window from creeping “along” the




contour it is tracking.

This problem can be solved by defining a composite feature that is the intersection of two
non-collinear contours. This feature has a state vector C' = (:c,y,O,a)T describing the position
of the intersection point, the orientation of one contour, and the orientation difference between
the two contours. From image contours with state L, = (z1,%1,61)7 and Lé = (22,92,02)T, the
distance from the center of each tracking window to the point of intersection the two contours can

be computed as

A1 = ((z2 — z1)sin(f;) — (y2 — y1) cos(62))/ sin(fy — 61)

A2 = ((z2 —z1)sin(61) — (y2 — y1) cos(61))/ sin(6, — ;)

The state of a corner C = (z, yc, b, @) is calculated as:

T, = 1+ A1cos(f;) 3)
Yo = Y1+ Arsin(by)

0. = 6

a. = 6y—6;

Given a fixed intersection point, we can now choose “setpoints” A} and A} describing where to
position the contour windows relative to the intersection point. With this information, the states

of the individual contours can be adjusted as follows:

z; = z. — A} cos(6;)
Y = Yo — A sin(6;) (4)

for ¢ = 1,2. Choosing A} = A3 = 0 defines a cross pattern. If the window extends A pixels along
the contour, choosing A} = A} = h/2 defines a corner. Choosing A} = 0 and A} = h/2 defines a tee
junction, and so forth.

A complete tracking cycle for this system would consist of first computing (4) to make the initial

state of the contours consistent, then performing low-level feature detection, and finally computing

(2) followed by (3).




More generally, we define a feature network to be a set of nodes connected by two types of
directed arcs referred to as up-links and down-links. Nodes represent basic and composite features.
Up-links represent the information dependency between a composite feature and the features used
to compute its state. Thus, if a node is a source node with respect to up-links, it must be a basic
feature. If a node has incoming up-links it must be a composite feature. If a node n has incoming
up-links from nodes my, ma, ..., my the latter are called subsidiary nodes of n. Down-links represent
the imposition of constraints or other high-level information on features. A node that is a source
for down-links is a top-level node. If a node n has incoming down-links from nodes my, mo,...my,
the latter are called supersidiary nodes of n. All directed paths along up-links or down-links in a
feature graph must be acyclic. We also require that every top-level feature that is path-connected
to some basic feature with respect to up-links must be path-connected to the same basic feature
via down-links. For example, a corner is a graph with three nodes. The corner feature is a top-level
feature. The two contours which compose it are subsidiary features. There are both up-links and
down-links between the corner node and the feature nodes.

Given this terminology, we can now define a complete tracking cycle to consist of: 1) traversing
the down-links from each top-level node applying state constraints until basic features are reached;
2) applying low-level detection in every basic feature; and 3) traversing the up-links of the computing
the state of composite features. State prediction can be added to this cycle by including it in the

downward propagation.

2.3 Feature Typing

In order to make visual constructions simpler and more generic, we have included polymorphic
type support in the tracking system. Briefly, each feature, basic or composite, carries a type. This
type essentially identifies the minimal information contained in the state vector of the feature.
For example, there are point features which carry location information, line features which carry
orientation information, and fized lines which are line segments which are fixed at one endpoint.
Any visual construction is a mapping from input types to output types. So, for example, a line

feature can be constructed from two point features by computing the line that passes through the
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feature. Conversely, a point feature can be computed by intersecting two line features. As long
as the types match, it is irrelevant how the prerequisite state information is computed. That is,
a point feature can be computed equally well by intersecting line features computed from direct
tracking of edges in an image, or by intersecting line features constructed from other point features.

Feature typing is also polymorphic. For example, tracking two corresponding points in two
images yields a stereo point feature. Likewise, tracking two line features in two images yields a

stereo line feature. More generally, tracking two z’s in two images yields a stereo z.

2.4 Programming Environment

We have constructed our tracking system as a set of classes in C++. Briefly, all features are
derived from a base class called BasicFeature. Basic features are directly derived from this class,
and are characterized by their state vector, and functions which compute state information and
display the feature graphically. There are two types of composite feature which are also derived from
BasicFeature. CompFeature describes a composite feature which has both upward and downward
links. FeatureGroup is a composite feature with only upward links—that is, it does not impose
any constraints on its subsidiary features. Any feature may participate in only one CompFeature,
but many FeatureGroups.

Both CompFeature and FeatureGroup maintain and manage an internal queue of their sub-
sidiary features. Information is propagated up and down the feature network using two functions:
compute_state which computes a composite feature’s state from the state of its subsidiary nodes,
and state_propagate that adjusts the state of a subsidiary nodes based on the state of their super-
sidiary node. The default update cycle for a CompFeature is to call its own state_propagate func-
tion, to call the update function of the children, and then to call compute_state. A FeatureGroup
is similar, except there is no state_propagate function. The tracking cycle is combined into a sin-
gle function track() callable only from a top-level feature. Calling it sweeps information down the
network to the set of basic features, updates of the state of all basic features, and sweeps updated
state information back up the network.

We have found that this programming environment greatly facilitates the development of track-
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Figure 4. Schematic of the initialization example.

ing applications, and leads to clear compact program semantics. As an example, consider a simple

program to locate and track the corners of the disk shown in Figure 4 using the fiducial marks

located near one edge.
First, we declare all of the relevant components.

Video v(1); Edge e; // Open a video device 1 and declare an edge detector

Target t1(sigl); // Target 1 with signature 1 (not defined here)
Target t2(sig2); // Target 2 with signature 2 (not defined here)
Line 11(&e,&v); // Declare a contour tracker in video device 1
Line 12(&e,&v); // Declare a contour tracker in video device 1

Corner ci(&e, &v,UL); // Declare an upper left corner tracker in video device 1
Corner c2(&e, &v,UR); // Declare an upper left corner tracker in video device 1

We then locate the two targets of interest.

if (1((t1.search() && t2.search())) // Make sure we find both targets.
exit(1);

We use the target locations to compute orientation, and the scale to choose an approximate
edge location.

theta = atan2(t1.y() - t2.y(),t1.x() - t2.x()); // edge orientation
xoff = - til.scale()#*sin(theta)*0FFSET; // where we guess
yoff = ti1.scale()*cos(theta)*0OFFSET; // the line is in the image
11i.set_state(t1.x() + xoff, t1.y() + yoff, orientation);
12.set_state(t1.x() + xoff, ti1.y() + yoff, orientation+M_PI);
We then search for the left and right corners along the edge. Each BasicFeature has a default
pattern recognizer that indicates the pattern is found.
If ('(l1i.search(cl) &% 12.search(c2)))
exit(1);

Both corners can be added to a container CompFeature variable:

12




CompFeature p; // Declare a generic composite feature with no constraint functions
p += cl; p += ¢c2; // add features to an internal queue.

Once all features are properly initialized, the main loop of any tracking application is of the

form:

while (...) {
p-track();
. other user code ...

Naturally, any other user code impacts the speed of tracking and so must be limited to operations
that can be performed in a small fraction of a second. In most of our applications, this is a feedback

control computation, or a broadcast of information to another processor.

3 Applications

In this section, we briefly describe several uses of the tracking system and report the performance
we have been able to achieve. These results are excerpted from [24, 13, 10, 9, 8]. All experiments

were performed on a Sun Sparc II workstation.

3.1 Pure Tracking

The following applications are intended to illustrate some of the capabilities of the tracking system.
The first applications, computation of epipolar geometry, illustrates the use of tracking across
two cameras while carrying out complex calculations. The second application illustrates how the

modularity of the system makes it simple to perform comparative experiments.

Tracking Epipolar Geometry The epipolar geometry between two cameras is a useful tool in
many visual applications involving moving cameras. The epipolar geometry as represented by the
FE matrix can be computed by locating n > 8 corresponding points in two images, compiling an n by
nine matrix A, and selecting the eigenvector corresponding to the smallest eigenvalue of AT A [14].
The nine values of the eigenvector are the nine entries in E. Figure 5 describes the feature network

used to implement corresponding epipolar line tracking. We rely on corners as defined in Section
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Figure 5. The feature network used to compute corresponding epipolar lines

Figure 6. Left, the first image with a chosen feature (the cross at the far left) and right, the second image

showing the corresponding epipolar line.
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2.2. We define the class StereoFeature which is polymorphic FeatureGroup which manages two
features in separate video images. Its state is the concatenation of the states of both features in
their respective images. It imposes no constraints on the state of subsidiary features. Next, we
define the class EMatrix to be a FeatureGroup that manages eight or more corresponding features.
It contains a compute_state function that computes the E matrix as described above. Finally, we
define a class Cline that manages a corner and an instance of an Ematrix. It has a compute_state
function that computes the equation of the epipolar line in the second image. The display function
is defined to show the line in the second video image.

Figure 6 shows two images from an experimental run of the system. Using nine corners composed
of features 12 pixels long, we were able to reliably compute and track the corresponding epipolar line
for a tenth feature point (the hash pattern on the lower right of the box) at a rate of approximately
10 Hz. The error in correspondence location was typically less than five pixels. It was interesting to
note that the epipolar line equations are actually quite noisy. However, the computed line “swivels”
about the corresponding feature point. Thus, while the line itself may swing as much as 20 or 30

pixels in some regions, it is extremely stable at the corresponding feature point.

Distraction Resistant Tracking The tracking package includes a contour tracker similar to the
widely reported “Kalman Snake” algorithms [1, 5, 15, 22, 25]. The snake is tracked by localizing
small edges as discussed in Section 2.1. The snake itself is a derivative of CompFeature. The upward
propagation computes the state of the snake based on the state of edges using a simple spline fit.
To determine the position of new search windows, we compute a weighted combination of temporal
prediction and spatial interpolation to arrive at the line parameters, L, of search windows for low
level edge tracking.

Figure 7 displays images immediately after a contour tracker is initialized. Figure 7(a) shows
the cubic spline determined by the knot points shown in Figure 7(b). The silhouette of the gray
ovals are the intended targets for Figure 8.

One difficulty with the method as described is that it can be easily distracted as shown in
Figure 8 and as observed by other authors [4]. In each instance, edges more prominent than

the original edges enter into one or more search windows, effectively distracting them from their
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Figure 7. Initial tracking showing, (a) a cubic spline contour, and (b) the search windows. The short

line segments represent the search window of each tracking component, with estimated edge location (and

consequently, spline knot points) at their midpoints.
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intended targets. Distraction occurs because individual components are simply high-gradient edge
finders, and depend upon high-level models to correct them in the case that they stray. While many
model- or template-based contour trackers, such as those described in [4], might not be distracted
by the high-contrast edges in Figures (a) and (b), they would still fail in cases (c) and (d), where
the change in the shape of the contour is small and/or gradual.

We have implemented an edge detector that combines elements of feature detection combined
with some of the temporal correlation aspects of SSD tracking [24]. The same spline algorithm
is easily instantiated using these edge trackers. Figure 9 illustrates the resulting distraction-free
tracking. By simply maintaining some information about the kind of edges that are tracked (i.e.,
what intensities are observed inside the contour), tracking is improved greatly. Without recourse
to any global models for shape, individual search windows can remain on target, even when what
might be considered more “attractive” edges enter the search space.

Finally, in Figure 10, we show how a book remains accurately tracked even as significant dis-
traction occurs in the background. We note that no specific dynamic models or shape models for
the book have been used. The images were taken approximately 15-20 frames apart, at a tracking
rate of 20Hz for 35 search windows of 40 pixel widths each. Similar results can be obtained no

matter how quickly distractions in the background occur.

3.2 Hand-Eye Coordination

We have developed a system for hand-eye coordination as described in [10, 9]. The system relies
on stereo vision to control the relative pose of an object in a robot end-effector and a static object
in the environment.

The system uses what we refer to as a skill based organization. Primitive skills are vision-based
regulators which provide feedback to attain a particular type of geometric constraint between the
pose of the robot-held object and the target object. For example, a point-to-point positioning skill
uses the projection of a point feature, e.g. a corner. Using information from both objects in two
images, feedback is computed which moves the manipulator to place the feature of its object at the

same location as the corresponding feature of the target object.
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Figure 8. Instances of distraction and consequent mistracking.
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Figure 9. The fix. Some search windows include potential distractors, but they are ignored.
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Figure 10. A contour of a book undistracted by movement of strong edges in background.
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Figure 11. The results of performing point-to-point positioning to observable features (left) and to a setpoint

defined in the plane (right).

Skill composition refers to ways of constructing more complex tasks from simple kinematic
constraints. Two flavors of composition have been developed: kinematic composition, and geometric
composition. The former refers to combining primitive kinematic constraints into more complex
constraints. The latter refers to the combining visual information to arrive at more complex image-
based constructions for achieving kinematic constraints.

Here, we illustrate two aspects of this composition: the use of typing to ensure program cor-

rectness, and the use of polymorphism to aid in the development of image constructions.

Positioning As noted above, point positioning uses an error term defined on two stereo points.
The corresponding function is constructed as an FeatureGroup typed to manage two StereoPoints.
In the simplest case, these points are constructed directly from point features such as corners that
are directly apparent in an image. We have performed several hundred point-to-point positioning
experiments of this type. With a camera baseline of approximately 30cm at distances of 80 to
100cm accuracy is typically within a millimeter of position. For example, Figure 11(left) shows the
accuracy achieved when attempting to touch the corners of two floppy disks. For reference, the
width of the disks is 2.5mm.

Positioning or orienting the robot in a plane is practically useful for systems which use a table
or other level surface as a work-space. Planar positioning is also attractive because there are several

image invariants that can be defined on planar points and lines [17]. In particular, given four planar
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Figure 12. The robot inserting a disk into a disk drive. The slot is about 4mm in diameter, and the disk is

2.5mm wide.

points, no three of which are collinear, the coordinates of a fifth point can be constructed using
ratios of determinants. This construction can be described as a FeatureGroup derivative which
is typed as a point feature. As such it can be used as input to the same point positioning skill
described above and as shown in Figure 11(right).

Positioning and alignment have been combined to perform the insertion of a floppy disk into a
disk drive as shown in Figure 12. In this case, the operation was performed by moving a corner
of the floppy to the edge of the slot, and simultaneously aligning the leading edge of the floppy to
the slot by tracking the corners of the floppy and the outline of the slot in two images. This relies
on information from two points and one fixed line. The relevant image information is supplied by
trackers for the corners of the floppy and one for the macintosh slot. The floppy is tracked by two
corner trackers which are point features. The floppy slot is tracked by locating one end of the slot

and its edges. This tracker is typed as a fixed line.

Alignment of Surfaces of Revolution A locally cylindrical section of a surface of revolution has
the property that the location of the “virtual” projection of the central axis can be computed from
its occluding contours. It follows that an alignment operation using this virtual feature computed
in two images can be used to align the central axis of a cylinder. This combination of image-level
construction and hand-eye coordination has been used to perform the placement of a screwdriver

on a screw (Figure 13). The setpoints are defined by tracking the sides of the screwdriver and
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Figure 13. How tracking was used in aligning a screwdriver to a screw, and the results of a test run.

the sides of the screw to define their central axes. The tracker for the floppy slot defined above is
reused to perform this tracking task. The accuracy of the resulting placement is typically within

2mm (Figure 13, right).

3.3 Mobile Robot Navigation

We are interested developing approaches to mobile robot navigation that utilize visual servoing. Qur
goal is to develop a system which can navigate through its environment by finding and memorizing
trackable features. Motion through the environment will be expressed with respect to the motions
and changes of the trackable features viewed by the system. Navigation and planning will be based
on concatenating the visual records of motion paths and “replaying” them to move the robot toward
a desired objective.

This is a challenging problem because it relies on feature selection as well as feature tracking.
We have implemented feature selection for the SSD tracker as illustrated in Figure 14. However,
this process is relatively slow and at first blush would seem to require global image processing.

We have developed a feature selection “tracker” that evaluates an image region for trackabil-
ity. Feature selection within the tracker is then implemented as a CompFeature that maintains
a FeatureSelect instance as well as one or more SSD trackers. The SSD trackers are used as
“markers” for the best features found thus far. The tracking cycle of this special CompFeature is

to first execute FeatureSelect on its current region of interest. If the region is found to be more
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trackable than the currently tracked features, one of the SSD trackers is initialized on the region.
The SSD tracking cycles are then evaluated, and then the FeatureSelect instance is moved to the
next region of interest. The result is that feature selection sweeps through the image while tracking
is occurring. At the end of a sweep, the markers record the current location of the chosen features.

Currently, we have implemented both tracking and feature selection for this process, and have

simple systems which record and replay motions using tracking information.

4 Conclusions

Our experience has shown that relatively simple tracking mechanisms combined with a well-defined
notion of state composition makes the use of vision in robotics applications cheap, simple, and even
fun. Both undergraduates and graduate students have used the system, and become proficient
after a short “startup” period. Experts can easily develop and debug complex applications in a
few hours time. By proper use of typing, more specialized notions of composition can be easily
defined and supported within the system. The system has proved to be an ideal framework for
comparative studies. It is straightforward to add other types of tracking primitives to the system,
and benchmark them against existing methods on real images or canned sequences.

Clearly, simplified systems like this cannot perform every vision-based task. In particular,
window-based processing of features will only succeed when the observed system is sufficiently
well-behaved to be able to predict its motion through time. However, recent successes in domains
such as juggling suggest that window-based techniques can accommodate highly dynamic systems
[18].

Since the system is almost entirely software, it benefits from every increase in commercial pro-
cessor speed. It is also extremely portable. The tracking system runs on an SGI Indigo with
internal or external video, Sun systems equipped with a variety of framegrabbers, and PC compat-
ibles equipped with digitizer boards. For example, the entire hand-eye system was recently ported
to a robot at the DLR in Oberpfaffenhoffen Germany where it was used in experiments in space
telerobotics [11] |

In summary, we believe that this paradigm will have a large impact on real-time vision applica-
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Figure 14. From top to bottom, the top seven features selected for pure translation, translation and one
scale factor, and translation and two scale factors. As expected, strong corner-like features are chosen when
only translation is important. These features are scale invariant, so the method chooses the more complex

gray-scale patterns in the upper part of the image when both translation and scale are to be computed.
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tions. We are currently continuing to advance the state of the art by considering how to build track-
ing methods that are faster [13] and more robust to occlusion and distraction [24]. We are also con-
tinuing to extend the capabilities of the system toward a complete vision-based programming envi-

ronment. . Information on the current version is available at http: //www.cs. yale.edu/HTML/YALE/CS/AI/Vis
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