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Hankel transforms are frequently encountered in applied mathematics, engineering and
computational physics. Their applications include vibrations of a circular membrane,
flow of heat in a circular cylinder, wave propagation in a three-dimensional medium
and many others. However, attempts to use Hankel transforms as a numerical tool (as
opposed to analytical apparatus) tend to meet with a serious difficulty: given a function
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f :[0,00] — R, tabulated at N nodes, it takes O(/N?) operations to obtain the numerical
Hankel transform

/ ” 2f(2)d.(a - )dz, (1)
for N values of a.

Remark 1.1 In recent years, a variety of numerical schemes have been developed for
the rapid evaluation of the Hankel transform based on the observation that the transfor-

mation
z=e", (2)

and
a=c¢e", (3)

converts (1) into a convolution (see, [1], [2], [12], [17]). There are two disadvantages
to this approach: this procedure requires samples on an exponential grid and produces
output on a similar grid. A more serious problem is the fact that the input function
needs to be tabulated at least 7 times that of the Nyquist sampling rate in order to
obtain single precision accuracy (also see, [2] for more precise estimates on the degree of
oversamping required).

In this paper, we develop a procedure for the rapid evaluation of integrals of the
form (1), to any degree of precision, requiring CPU time proportional to N log N. More
specifically, suppose that k = 25, z; = ih,a; = (T?l)_h’ and f: [0, A] = R is a function

tabulated at N equispaced nodes z, z1,...,zN—-1. Then the integrals

olas) = [ 21(z)dolasz)dz, @

are computed for all j = 0,1,2..., N — 1, in O(N log N) operations.

Our algorithm for the Hankel transform is based on several well known facts from
classical analysis. The algorithm decomposes the Hankel transform into a product of
two integral operators, the first of which is evaluated rapidly by a combination of the
fast cosine transform with quadrature formula of the type developed in [10]. The second
operator is evaluated rapidly by a combination of a version of the fast multipole method
with yet another quadrature formula derived in [10]. All calculations are performed to
full double precision accuracy.

In the following section, we summarize several facts from approximation theory and
numerical analysis to be used in the subsequent sections. Section 3 provides the numerical
apparatus for the algorithm, and is divided into three subsections. In §3.1 a procedure
for the accurate evaluation of a cosine transform of a non-periodic function is described.
In §3.2 we design a very high-order end-point corrected trapezoidal rule for integrals of
the form (4). In §3.3 we present an algorithm based on a version of the fast multipole
method (FMM) which computes a trapezoidal approximation to the integrals (4) in O(N)
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operations. In §4 we combine the results of Sections 3.1, 3.2, and 3.3 to construct a fast
algorithm for the Hankel transform. Finally, §5 contains the results of several numerical
experiments, and in §6 we discuss several straightforward generalizations and applications
of the algorithm of this paper.

2 Mathematical and Numerical Preliminaries

In this section, we summarize several well known results from classical analysis and
approximation theory to be used in this paper.

2.1 An expression for the Bessel function Jj

As is well known, for any z € C,
1 L
Jolz) = = fo cos(z cos 6)dd, (5)

where Jo denotes the Bessel function of order 0 (see, for example [3]). It follows imme-
diately from (5) that, for any function f € ¢?[0, A] = R, and any real number a,

A 1 re 1 A ded
,[; f(z)Jo(az)dz = ;r_./_a ﬁfo f(z)cos(uz)dzdu. (6)

2.2 Chebyshev Polynomials

In this section, we summarize several well known facts about Chebyshev polynomials.
The following three classical definitions can be found, for example, in [9].

Definition 2.1 The n-th degree Chebyshev polynomial T,(z) is defined by the following
equivalent formulae:

Tn(z) = cos(narccosz), (7N
To(z) = %.((H\/m?— D) + (e - V&= 1)"). ®)

The proof of the following lemma can be found in, for example, in[3].

Lemma 2.1 Suppose that n > 0 is an integer. Then
1 To(u)du
— =, 9
-1y1—u? - ®)

and, )
1 To(u)du
B — =0, (10)
foralln > 1.




Definition 2.2 The roots {t,,...,t,} of the n-th degree Chebyshev polynomial T, lie in
the interval [—1,1] and

2k—-1 =«
tk=—cos( - 5), (11)

for k=1,...,n. They are referred to as Chebyshev nodes of order n.

Definition 2.3 Given an integer n > 1, we will denote by u,,...,u, the set of polyno-
mials of order n — 1 defined by the formulae

us(t) = [T 222, (12)

ks ti — Uk

for j =1,...,n, where t; are defined by (11).

The proofs of the following two lemmas are well known from classical theory of Cheby-
shev approximation, and can be found, for example, in [6], [5].

Lemma 2.2 Suppose that p > 2, b > 0, and zo are real numbers such that |zo| < b.
Suppose further that {t,,...,t,} are Chebyshev nodes on the interval [zo — b,zo + b).
Then,

(2 Siodly shwsawaecl Do o mmyos, o e (13)

for all |y| > 3b.

Lemma 2.3 Suppose that p > 2, b > 0, and yo are real numbers such that |yo| > 3b.
Suppose further that {t,,...,t,} are Chebyshev nodes on the interval [yo—b,yo+b]. Then,

1 4 1

1
| W - ,,; ﬁ “uUm(¥o) |< 0(5;;)

(14)
for all |z| < b.

2.3 High-order corrected trapezoidal rules for non-singular
- functions

In this section we summarize several results obtained by the authors in [10].
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Definition 2.4 Suppose that a,b are a pair of real numbers such that a < b, and that
n 2 2 is an integer. For a function f : [a,b] — R, the n-point trapezoidal rule TE(f) is
defined by the formula,

Th() = WY fla+ih) - (L3 L0 (15)
with
h=(b=a)/(n-1). (16)

Definition 2.5 Suppose that m,k,i are integers, with m > 3 and odd. Then we define
the real coefficients DT, by the formula

(-]

D:n . m-— m-—
N C RN C)

,aEm-l(% - 1), (17)

or any k,i such that 1 < k < 251, and 1 < i < B51 with the coefficients o], given by
y P p Kl
the recurrence relation

3 —
ay, = 1,
3
a1 = 1, .
2k+1 2\ 2k-1 2k-1 2k—1
ai;m = (k=Fk)af3h +ais + Qpy,0-25
m+1
m+2 __ m 2 m
Ay = g2 —( 2 ) A1

with af; =0, for all k <0, or 1 <0, orm < 1.

Definition 2.6 Suppose that n,m, are a pair of integers withm > 3 and odd, andn > 2.
Suppose further that a,b are a pair of real numbers such that a < b h=(b—a)/(n-1),
and f : [a — mh,b+ mh] — R is an integrable function, and TR is defined in (15). We
define the corrected trapezoidal rule TGm for non-singular functions by the formula

Tem(f) = Tr(f)

m=1

+ B (—f(b+ k) + f(b—kA) + fla+ kR) = fla— KRDAP.  (19)
k=1 .

The real coefficients BT are given by the formula

n_ <= DRBu
Be = g 20 (19)

where By are the Bernoulli numbers, and Dy, is defined in (17).
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The proof of the following two theorems can be found in [10].
Theorem 2.4 Ifm > 3 is an odd integer then for any k such that -2 < k < 251,
18R 1< 1, (20)
where the coefficients B are defined in (19).

Theorem 2.5 Suppose that m,n are a pair of integers with m > 3 and odd, and n > 2.
Suppose further that a,b are a pair of real numbers such that a < b. Then, the end-point
corrected trapezoidal rule Tjm is of order m, i.e., for any f € c™[a — mh,b+ mh] there
exists a real number ¢ > 0 such that

| Tgn(f) - [ fla)de |< = 21)

The following lemma provides an error estimate for the approximation to the integral
given by the trapezoidal rule. It can be found, for example in [3].

Lemma 2.6 (Euler-Maclaurin formula) Suppose that a, b are a pair of real numbers such
that a < b, and that m > 1 is an integer. Further, let By denote the Bernoulli numbers

1 -1 1
'6*,34 = %,Bs = 220

If f € ¢®™™*2[a,b] (i.e., f has 2m +2 continuous derivatives on [a,bd]), then there ezists
a real number £, with a < £ < b, such that

h? Bﬂ (21-1) -1) o h2m+2B2m+2 m
[ 1) d:c—TR(f)+§ FUNE) - SO )) - Tt ), (29)

Bz -— (22)

2.4 The fast cosine transform

The following definition of the discrete cosine transform, can be found for example, in
[19].

Definition 2.7 For a real sequence {fo,...,fn-1}, the discrete cosine transform {F}'}
is defined by the formula

FT = cosx‘?t)

fo+ (=1Y fn-1
T = w7 (2 N-1 ) (24)

2

forall 3 =0,1,...,.N —1.




Remark 2.1 The fast cosine transform is an algorithm, based on the FFT (see, for
example [19]), to evaluate the discrete cosine transform (DCT) in O(N log N) operations.

Remark 2.2 The DCT is a trapezoidal approximation (see Definition 2.4) to the exact
cosine transform. More specifically, suppose that f € ¢?(0, 7] and {F; } is defined in (24).
Then

P~ '.
PJ'Q ~.[0 f(z) cos(j - z)dz, (25)
for all j =0,1,....N—1.

The following well known theorem provides an error estimate for the approximation
to the exact cosine transform given by the discrete cosine transform. The proof follows
immediately from the combination of (24) and Lemma 2.6.

Theorem 2.7 Suppose that f € c*[0,7). Suppose further that h = x/(N — 1), z; = 1ih,
and f; = f(zi). Then the discrete cosine transform is second order convergent, i.e., there
exists some real ¢ > 0 such that

T . c
| FF = [ (@) cos(i-2) I< 7 (26)
forallj=0,1,....N—1.

The following theorem is less widely known. The proof also follows immediately from
the combination of (24) and Lemma 2.6; it can also be found in [5].

Theorem 2.8 Suppose that f € c™[0,7] is an even function (i.e., f(z) = f(-z)). Suppose
further that h = ©/(N — 1), z; = th, and f; = f(z;). Finally, suppose that f(7) =

fi(x)= f'(x) =..= f™(x) = 0. Then the discrete cosine transform is a rule of order
m, i.e., there exists some real ¢ > 0 such that

| F] = [ f(@)cos(i - 2) I< 3 (27)

forall 3 =0,1,....,N = 1.

3 Numerical apparatus

3.1 The corrected fast cosine transform

Remark 3.1 When a function is even, the discrete cosine transform provides a remark-
ably good approximation to the exact cosine transform (see Theorem 2.8). For functions
that are not even, we use end-point corrections to accelerate the convergence of the DCT.
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Definition 3.1 For a finite real sequence {f_(n-1),---;fo,---, fa-1} we define the cor-
rected discrete cosine transform {Ff} by the formula

N-2

; (=f=i+ fi) cos(jv_'é.'_i’;)ﬁ?h’—s, (28)

™

C _ T
Ff = F] + 57—

forall j =0,1,...,N — 1, where {FT} is defined in (24), and {B*N~3} are the correction
coefficients defined in (19).

The following corollary provides an error estimate for the approximation to the ex-
act cosine transform given by the corrected discrete cosine transform (CDCT). It is an
immediate consequence of Theorem 2.5.

Corollary 3.1 Suppose that f € ¢™[—=, ). Suppose further that h = /(N —1), z; =
ih, and f; = f(z;) for all i = 0,%1,...,+N — 1. Finally, suppose that f(r) = f'(r) =
f'(z) =...= f™(x) = 0. Then there ezists some real ¢ > 0 such that

i \ c
| Ff = [ f@)cos(i @) < (29)
forall j=0,1,....,.N — 1.

Remark 3.2 The CDCT requires that the function be tabulated outside the interval of
integration [0 : 7]. However, if a function is odd (or even) this requirement is obviated,
i.e., the function needs to be tabulated only within the interval of integration.

Observation 3.3 Suppose that f € ¢™[0,7] is an even function (i.e., f(z) = f(—=z))
satisfying the conditions of Corrollary 3.1. Then it follows immediately from (28) that

F{ = F], (30)
forallj=0,1,..,N — 1.

Observation 3.4 Suppose that f € c¢™[0,7] is an odd function (i.e., f(z) = ?f(—z))
satisfying the conditions of Corrollary 3.1. Then it follows immediately from (28) that

c_ pT T 2N-3 1]
FE = FF = 2= (2 fi- BV cos (1) (31)

i=1

forallj=0,1,....N - 1.




3.1.1 Rapid evaluation of the corrected discrete cosine transform (CDCT)

Suppose that {f_(n-1),..., fo,..., fa—1} is a finite real sequence. Suppose further that
we define the real sequence { fo, .+ fa=1} by the formulae
f0=f03 fN—l =fN—ls (32)
and, )
fi= fi+ BN(=f=i + £o), (33)

for all ¢ = 1,2,..., N — 2, where the real coefficients 37"~ are defined in (19). Then it
follows immediately from the combination of (28) and (32) that

Nz-:zf;COS 1) f0+( 21) fN l) (34)

forall j =0,1,2,..., N - 1.

Remark 3.5 Given areal sequence {f_(n-1),-- -, fo, - - -, fa-1}, the sequence { fo, . . ., fn_l}
can be computed (using (32), (33)) in O(NV) operations. Subsequently sums of the form
(34) can be computed in O(N log N) operations using the FCT (see Remark 2.1). Thus
the corrected discrete cosine transform {F{} can be computed in O(N log N) + O(N)
operations.

3.2 End-point corrected trapezoidal quadrature rules for sin-
gular functions of the form (—a-‘%(‘%)%f

In this section we develop an end-point corrected quadrature formula to approximate the
definite integral
@ _F(u)
e \fa? = Y%
with @ > 0, and F € c*[—a, a], an even function (i.e., F(—u) = F(u)).
We define the corrected trapezoidal rule T%, by the formula

Fo) oy N _F@) e

F(y;
2 2 Z V*N (y ) ’
¥Gims I=—(N-2) /@ — 2} 1 Vie? = (:)?

where h = a/(N —1),z; =1lh,y; =a—hiforall1 <i<k/2 and y; = a+ h(i — k/2)
for all £/2+1 < i < k. We will use the expression 77, with appropriately chosen v¥
as a quadrature formulae to approximate integrals of the form (35), and the following
construction provides a tool for finding vV, so that the rule is of order 2k — 2, i.e., there
exists a real ¢ > 0 such that

du, (35)

Tk ( (36)

| T s) - [ s I< oy @7
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Remark 3.6 The correction nodes {yi,...,yx} are equispaced nodes on both sides of a,
the location of of the singularity (i.e., half the correction nodes lie outside the interval of
integration). The approach we use in this paper is similar to that of [10]; where a class
of quadrature formulae is presented applicable to functions with end-point singularities,
taking advantage of functional information outside the interval of integration. :

3.2.1 Construction of the quadrature weights vV

For any pair of positive integers k, N (k < N), we will consider the following system of
linear algebraic equations with respect to the unknowns {v{,..., v} }:

k N-2
Tzs-z yp N _ Tzs Tzs‘—z(l‘:)
ey - o[ ~h 3 EELL),  (3)

=1v/la? = (yp)? : Vas =, u2 I=—(N-2) \/a? — 2}

forall 2 = 1,2, ..., k, where h, z;, and y; are defined in (36). In (38) T%;-2 is the Chebyshev
polynomial defined in (7).

The following observation is used in the development of our algorithm for the fast
Hankel transform.

Observation 3.7 The linear system (38) is independent of the length of the interval a
i.e., the quadrature weights v}y ,vY...,u) are only dependent on the number of points N
used in the trapezoidal approzimation to the integral (35).

Thus, by substituting @ = 1 in (36), the unknowns {v}¥,vY,...,v)¥} alternatively can
be determined by solving the system of equations:

Toia2(yp) N 1, [ Toica(u) ity Toi2(z1)
Z 2PN = ( du—h ), (39)
p=1 |l . ypl i h '/-1 v1- u? I=—§-—2) \,4’1 — 312

for all : = 1,2,...,k, where h = 'ﬁ'l-_v zy=1h,yp=1—hpforalll <p < k/2 and
Yyp=1+h(p—k/2)forall k/2+1<p<k.

Remark 3.8 Any polynomial basis can be chosen to construct the linear system (39)
above. Our choice of the Chebyshev polynomials T; as the polynomial basis is simply for
the reason that the right-hand side of of the linear system (39) can be simplified due to
Lemma 2.1.

Hence, we may alternatively solve the following system of equations to obtain the
quadrature weights vV, v, ..., v}

X 1 21— 2(yp) N 1 h =d 1 25—2(31) 4
= —(r —===_1), 0
z; Il y2| p h( I=—{z:N—2) V 1 xlz ) ( : )
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for i =1, and
Z": Tai-2(ys) N _ l(—h NZ—:2 M) (41)
R=93" B Ey 1-2f

for:=2,3,...,k

3.2.2 Convergence of the rule T

The use of expressions T, as quadrature formulae to approximate integrals of the form
(35) is based on the followmg theorem. The proof of the theorem can be found in [10].

Theorem 3.2 Suppose that k, N > 2 are a pair of positive integers. Further, suppose
that h,a are positive real numbers with h = a/(N —1). Also, suppose that the systems
(40), (41) have solutions (v¥,vY,...,ul) for all N. Finally, suppose that F € c*[—a -
kh,a + kh] is an even function. Then the rule T’ is of order 2k — 2, i.e., there ezists
some real number ¢ such that

F(u) < (u) c
T =)~ | J—a® < = (42)

The following theorem easily follows from the combination of (28), Corollary 3.2, and
Corollary 3.1.

Theorem 3.3 Suppose that f € c**[—x, 7] is an odd or even function. Suppose further
f; and fJ are defined in (32) for all  =0,1,...,N — 1. Finally, suppose that

N-1 -
goaba 7 r
-F; N—1(1=0 fJCoS(N_ 1 )3 (43)

Then there ezist real numbers c; such that

| T (% ff(z)JoJ z)dz |< 2,, 5 (44)

for all 3 =0, £1, £2, £3,..., £N - 1.

3.2.3 Approximation of the Hankel tranform using the rule T}
Suppose that we define the trapezoidal approximation g7 to the Hankel transform by the

formula
J51 C

._.h - (45
= (45)
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and the correction g€ by the formula
C k - -_-
g5 =hY vi—te—, (46)

forallj = +1, +2,..., +N—1,for 1 <i < k/2,and y! = j+(i—k/2) for k/2+1 < i < k.
It follows immediately from the combination of (45), (46), and (36) that

T . C;
|65 +9D) = [[ @) ol - 2)de |< =5, (47)
for all j =0, £1, £2, +3,..., £N - 1.

Remark 3.9 It is obvious that g;*-r can be computed for all =0, 1 +£2,..., N —1,in
O(N?) operations, and gJ-C can be computed in O(kN) operations. In the following section
we discuss how to compute sums of the form (45) in O(N) operations.

Remark 3.10 The numerical stability of the scheme developed above, for the approxi-
mation of integrals of the form (35), is dependent on the assumption that the size of the
quadrature weights (1,3, ...,v}) is small. We have observed in [10] that the size of the
quadrature weights can be suppressed (for both singular and non-singular functions) by
using functional information outside the interval of integration. It is observed empirically
that the quadrature weights (v, 13, ..., v}) are always of O(1).

Remark 3.11 The authors have been unable to construct a quadrature rule which is
independent of the number j of points used in the uncorrected trapezoidal rule. However,
this is a minor deficiency since the weights in such cases can be precomputed and stored.

3.3 A fast multipole method in one-dimension for sums of the
j-1
form ;-5 (—y}f’xﬁgm
In this section we consider the problem of computing the sums

=1
J ak

=) (48)

fi=
k=1 /Y] — 2}

for j = 1,...,N, where {z1,...,2n5} and {y1,...,y~n}, {e1,...,an}, and {fi,..., fn}
are sets of real numbers.

Remark 3.12 For the remainder of this section, we shall assume without loss of gener-
ality that z;,y; € [-1,1] fori=1,...,N. :
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Remark 3.13 Sums of the form (48) are a simple reformulation of the trapezoidal ap-
proximation to the Hankel transform, defined in (45).

The fast multipole algorithm of [9] computes sums of a slightly different form than
(48) in O(N) arithmetic operations, described described by the formulae

A
;= 49
fey 9)
for j = 1,...,N, where {z1,...,2n} and {w,...,wn} are sets of complex numbers.

From a physical viewpoint, this corresponds to the evaluation of the electrostatic field
due to N charges which lie in the plane. The two and three dimensional scenarios for
the N-body problem have been discussed in some depth (see, for example, [9]). In recent
years the the analysis and applications of one dimensional problems have been invesigated
in [6], [7], [4]. In [6] the sums

N o

fi= z (50)

k=1 Yi — Tk

for j = 1,2,..., N, are computed in O(N) using a combination of chebyshev approx-
imation techniques, singular value decompositon (SVD) based compression. In [4], an
algorithm is constructed to evalauate the function f

n—1
f®) =3 a;- Pi(t), (51)

3=0

at the nodes to,1,...,,-1, in expending CPU time proportional to O(N) operations. In
fact, an early implementation of the FBT used a version of the algorithm developed in
4]).

In this section we briefly describe an O(N) algorithm for the computation of (48)
which is based on the one-dimensional FMM of [6], and [4]. We assume that the reader
is familiar with [9].

3.3.1 General strategy

We will illustrate by means of a simple example how Chebyshev expansions can be used
to evaluate expressions of the form (48) more efficiently. We will also give an informal
description of how the method of this simple example is used in the construction of a
fast algorithm for the general case.

First we introduce a definition which formalizes the notion of well-separated intervals
on the real line. This is simply the one-dimensional analog of the definition of well-
separatedness in [9)]. 1
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Figure 1: Well-separated intervals on the line.

Definition 3.2 Let {z1,...,zn} and {y1,...,ym} be two sets of points in R. We say
that the sets {z;} and {y;} are well-separated if there ezist points zo,yo € R and a real

r > 0 such that
|z; — 2ol <r V i=1,...,N,

lyi—yol<r V i=1,...,M, and (52)
|zo — yo| > 4r.
Suppose now that {z,,...,zn} and {y1,...,ym} are well-separated sets of points in
R (see Figure 1), that {a;,...,an} is a set of complex numbers, and that we wish to

compute the numbers f(y1),..., f(ym) where the function f : R — C is defined by the

formula
N

f@)=Y -

k=1 .1'2 —_— Ek

Qg

(53)

A direct evaluation of (53) at the points {y1,...,ynm} requires O(NM) arithmetic
operations. We will describe two different ways of speeding up this calculation based on
the following two observations. The observations follow from a combination of Lemma
2.2, Lemma 2.3, and the triangle inequality.

Observation 3.14 Suppose that p > 2 is an integer. Further, suppose that we define
the real coefficients ®,, (representing the far field) by the formula

N
®,, = Z i - Um(zk), (54)
k=1
for allm = 1,2,...,p, where u,, is defined in (12). Finally, suppose that
" p 1
h) =Y =% (55)

m=1 T t?n

forall j = 1,2,....M, where ty,1,,...,t, are the Chebyshev coefficients defined in (11).
Then,

| £4s) = Fiwi) 1< O(35) (56)
forall 3 =1,2,.... M. ¥
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Computation of the coefficients ®; requires O(Np) operations, and a subsequent
evaluation of fi(y1),..., filym) is an O(M p) procedure. The total computational cost
of approximating (53) to a relative precision 1/5” is then O(Np + Mp) operations.

Observation 3.15 Suppose that p > 2 is an integer. Further, suppose that we define
the real coefficients ¥,, (representing the local ezpansion) by the formula
N

U=Y (57)
k=1

2 2
tj—x,,

for all m = 1,2,...,p, where ty,1,,...,t, are the Chebyshev coefficients defined in (11).
Finally, suppose that

F() = Y Umum(j) (58)
m=1
forall j =1,2,..,N, where u,, is defined in (12). Then,
| Fwi) = alwi) 1< O(5) (59)

forallj=1,2,...,.M.

Computation of the coefficients ¥; requires O(Np) operations, and a subsequent
evaluation of fa(v1),..., fa(ya) is an O(M p) procedure. Again the total computational
cost of approximating (53) to a relative precision 1/5? is O(Np + Mp) operations.

Consider now the general case, where the points {z,,...,zx} and {y1,...,ym} are
arbitrarily distributed on the interval [—1,1] (see Remark 3.12). We use a hierarchy of
grids to subdivide the computational domain [—1, 1] into progressively smaller subinter-
vals, and to subdivide the sets {z;} and {y:} according to subinterval (see Figure 2). A
tree structure is imposed on this hierarchy, so that the two subintervals resulting from
the bisection of a larger (parent) interval are referred to as its children. Two Cheby-
shev expansions are associated with each subinterval: a far-field expansion for the points
within the subinterval, and a local expansion for the points which are well-separated
from the subinterval. Interactions between pairs of well-separated subintervals can be
computed via these Chebyshev expansions in the manner described above, and all other
interactions at the finest level can be computed directly. Once the precision has been
fixed, the computational cost of the entire procedure is O(/N) operations. We refer the
reader to the algortithm of [6], or [4] for a detailed description.

3.3.2 A more efficient algorithm

Chebyshev expansions are not the most efficient means of representing interactions be-
tween well-separated intervals. All the matrix operators of the algorithm are numerically
rank-deficient, and can be further compressed by a suitable change of basis. The orthogo-
nal matrices required for this basis change are obtained via singular value decomp051tlons
(SVDs) of appropriate matrices.
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Figure 2: Hierarchy of subintervals.

4 The fast Hankel transform

4.1 Informal description of the algorithm

In this section we outline the procedure we use to rapidly evaluate integrals of the form

A
9(a) = [ f()Jo(az)da. (60)

for all N values of A. More specifically, suppose that A = /(N — 1), z; = th and
f:[0,7] = R is a function tabulated at N zo,zy,...,2n-1. Then

9 = [ £(z)Jo(je)de (61)

is computed for all j = 0,1,2..., N — 1, in O(N log N) operations.

Suppose that we define
F(a) = j: f(z) cos(az)dz, (62)

for all @ > 0. Then it follows immediately from the expression for the Bessel function Jy
defined in (6) that
(@)= [ i
4 oy -a a? —u

Now, given a function f : [0, 7] tabulated at N equispaced nodes, we evaluate the inte-
grals (62) using a fast cosine transform in O(N log N), for N equispaced frequencies a.
Subsequently, using a high order corrected trapezoidal rule (developed in [10]), we eval-
uate the integrals (63) in two stages. First, a trapezoidal approximation to the integral
is made using the formula

du. (63)

(64)




The trapezoidal approximation gz is subsequently corrected with appropriately chosen
quadrature weights v{, 43, ..., ] using the formula

a, = hi "-'l'F—(y-t)—'z—I, (65)
i= a Yi

forall j =0,1,2,...,N — 1, where y; = a; — hi for 1 < i < k/2, andy‘—a,+h(z—k/2)
for k/24+41<:i< k In Section 3.2 we prove that the corrected rule g7 + g¢ is of order
2k — 2, i.e., for all j there exists some real ¢ > 0 such that

| (97(a;) + go(a;)) — g(a;) |< JT (66)

The trapezoidal approximation gr is rapidly computed in O(N) opera.tions using a gen-
eralized version of the 1-D FMM for the smoothly varying kernel TH The correction

to the trapezoidal approximation gc is computed in O(kN) operations using (65). Thus,
the total asymptotic time complexity of the algorithm is O(N log N) + O(N) + O(pN).

4.2 Detailed description of the algorithm

This section contains the detailed description and the complexity analysis of our algo-
rithm for the fast Hankel transform.

Remark 4.1 Without loss of generality, we assume that the function f is tabulated on
the interval [0, 7].

Suppose that f : [0,7] — R. Further, suppose that A = 7/(N — 1), &; = ik, and the
function f is tabulated at the N equispaced nodes points zo, 21, ..., zy—1. Then

- ]0 " f(2)do(j - z)dz (67)

is evaluated for all j = 0,1,2..., N—1, in O(N log N) operations. The function is assumed
to be tabulated at the Nyquist sampling rate.

Algorithm 4.1

Step Complexity Description

1 Comment [Preprocessing: Input Problem size N. Compute the cor-
rection coefficients B* using the formula (19). Compute the correction
weights VJ by solving the system of equations (40), (41). These correction
weights are obtained once and are stored.] :
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2

O(NlogN)

O(N)

O(N)

O(N)

Comment [The fast cosine transform of an even or odd function, i.e., for
a function f tabulated at n points, f(zo), f(21), ..., f(zN-1), compute
the integral FC ~ [J f(z)cos(i- z)dz for all i = 0,1,..., N — 1]

If the function f is even,
| = 7ij
FE = n)_J; cos (7 —7))
3=0
is computed using a fast cosine transform.

If the function f is odd, f is calculated using the formula (33) in O(N)
operations. Subsequently,

N-1 .
FE = WL fla;)cos(527)

=0

is computed using a fast cosine transform.

Comment [The trapezoidal approximation to the to the integral (67) is
computed in O(N) operations using a version of the one-dimensiona fast
multipole method.]

j-1 C
o

:=—%—1) vy =l -

is computed for all j = 0,1,..., N — 1, using the algorithm for the 1-D
FMM (see, section 3.3).

g = h

Comment [The corrections are computed using the stored correction
coefficients]

for all j = £1, #2,..., +¥=1,

Comment [The corrections are added to the trapezoidal approximation,
resulting in an approximation to the Hankel tranfsorm {g;}]

9 =95 +9;, (68)

forall =0,1,...,.N-1.
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5 Numerical Results

In this section we present numerical experiments testing the algorithms of this paper.

Example 1: Corrections for the cosine transform
We considered the following integral (of an odd function),

2

jo o (e aaintpeg sidad (69)
to illustrate the effectiveness of using the correction coefficients ™ (see, 19) for correcting
the cosine transform of an odd function (see, (19)). In Table 1 we present convergence
results of the standard trapezoidal rule, while in Table 2 we present convergence results
using the correction coefficients. In both tables the first column contains the number of
nodes discretizing the interval [0 : 27]. In Table 1, columns 2-6 contain the relative errors
of the standard trapezoidal rule used to evaluate the integral (69) for various values of
b. In Table 2, columns 2-6 contain the relative errors of the corrected trapezoidal rule to
also evaluate the integral (69) for various values of b. We observe empirically that, an
odd function sampled at 4 points per wavelength, can be integrated to double precision
accuracy using the correted trapezoidal rule for non-singular functions. Hence, it is
possible to accurately evaluate the cosine transform of an odd function if the function is
sampled at twice the Nyquist sampling rate.

Example 2: Corrections for the singular kernel
The quadrature weights for the rule T?, (see, (36)) are obtained as solutions of linear
systems (40), (41). The linear systems used for determining these weights are very ill-
conditioned. In order to combat the high condition number, all systems were solved using
the mathematical package Mathematica using 100 significant digits. We considered the

following integral
™ cos(b- u)

a4 pomp
to experimentally demostrate the convergence rate of the quadrature rule Tj_,. In Table
3 convergence results are presented for the rule rule Tj,- using 20 correction weights
(¥],v3,...,v}). The first column contains the number of nodes discretizing the interval
[0 : 27]. Columns 2-4 contain the relative errors of rule to evaluate the integral (70)
for various values of b. It can be observed in Table 3 that the rule T, provides single
precision accuracy for a function tabulated at twice the Nyquist sampling rate, and double
precision accuracy for function tabulated at four times the Nyquist sampling rate.
We have written a computer program in ANSI FORTRAN for the implementation
of the algorithm of this paper. This program was tested on a Sun SPARCstation 10
for a variety of input data. Four experiments are described below, and their results
are summarized in Tables 4-7. These tables contain error estimates and CPU time

(70)
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requirements for the algorithms, with all computations performed in double precision
arithmetic.

The table entries are described below

e The first column in each table contains the problem size N, which was chosen to
be a power of 2, ranging from 32 to 1024.

e The second column contains the time required for the fast cosine transform. In
Examples 3, and 4 this includes the time to interpolate to a finer grid.

e The third column contains the time required for the one-dimensional FMM.

e The fourth column contains the time required for the correction to the trapezoidal
approximation to the Hankel transform.

e The fifth column contains the time required for the the direct implementation of
the Hankel transform.

e The sixth column contains the time required for an FFT of the same size.

e The seventh column contains the relative 2-norm E, for each result.

Two technical details of our implementations appear worth mentioning here:

e The implementation consists of two main subroutines: the first is an initialization
stage in which the elements of the various matrices employed by the algorithms are
stored on disk, and the second is the evaluation stage in which these matrices are
applied. Successive applications of the linear transformations to multiple vectors
requires the initialization to be performed once.

o The parameters for the algorithm were chosen to retain maximum precision while
minimizing the CPU time requirements. We found that by using 20 quadrature
weights for the correction of the trapezoidal approximation (see, 45) we minimized
the CPU time of the algorithm without sacrificing accuracy.

Following are the descriptions of experiments, and tables of numerical results.
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Example 1. The Hankel transform for an even function The purpose of this
example is to demonstrate the performance of the fast Hankel transform for evaluating
the expression

9(a)= [ F(@)Jo(asz)de @
where

f(z) = (cos(b- z) + cos(b.Tx) + cos(-b—:'s—z)) e~ (72)

and b = N The function f is tabulated at the equispaced nodes zo, zi, ..., -1, where
h = =, and z; = th. The Hankel transform (71) is computed for all a; = }%JE for all
J =0,1,..., N — 1. The single precision results are provided in Table 4. The algorithm
is easily modiﬁed to provide double precision results, merely by zero padding the input
vector by a vector of the same size (see, Table 3). The double precision results are are
provided in Table 5.

Example 2. The Hankel transform for an odd function The purpose of this
example is to demonstrate the performance of the fast Hankel transform for evaluating
the expression

27
9(a;) = [ f(e)dola;a)de (73)
where b .
z
f(z) =z - ((cos(b- z) + cos(—— 3 )+cos(—-—))- e""’z), (74)
and b % The function f is tabulated at the equispaced nodes zg, 21, ..., zy—1, where

(5]
ﬂil

= 5%, and, z; = th. The Hankel transform (71) is computed for all a; = K“r'?}'. for all
j=0, 1 .wN = 1. The single precision results are provided in Table 4. The algorithm
is easily modiﬁed to provide double precision results, merely by zero padding the input
vector by a vector of the same size (see, Table 3). The double precision results are are
provided in Table 5. We observe that if a function g is defined as follows

g(u,v) = (COS(b'\/Eu2+v +cos(b \/_u )

b- (uz + -02) —(u2+v2)’

+ COS(——3—)) -€ (?5)

(i.e., the function is rotationally symmetric) then the Hankel transform may be used to
compute the two-dimensional FFT (see, )

2 27 : A
slara) = [ [ glu,v)- e e (76)
for all k = 0,+1,+2,...,+%=1 and all j = 0,+1,+2,. :I:N:;'1 Column 10 contains the

time required by a 2- D FFT to evaluate the integrals (76) Column 11 contains the ratio
of the time taken by the 2-D FFT to the time taken by Algorithm 4.1.
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Table 1: Accuracy of the uncorrected trapezoidal rule for evaluating integrals ™ sin(bz)-

cos(bz) - e=**

Table 2:
2

Table 3: Accuracy of the quadrature rule Tj; for evaluating the integrals [” cos(b -

N

b=4

b=8

b=16

b=32

b=64

32
64
128
256
512

0.223E+00
0.519E-01
0.127E-01
0.313E-02
0.779E-03

0.108E+01
0.220E+00
0.524E-01
0.129E-01
0.320E-02

Accuracy of the

2" sin(bz) - cos(bz) - €%

corrected

0.124E+02
0.104E4-01
0.218E+-00
0.523E-01

0.129E-01

0.330E+02
0.261E+02
0.102E+01
0.216E+00
0.521E-01

0.358E+02
0.677E+02
0.533E+02
0.101E+01
0.215E+00

trapezoidal rule for evaluating the integrals

N

b=4

b=8

b=16

b=32

b=64

32
64
128
256
512

0.359E-04
0.730E-14
0.708E-14
0.665E-14
0.644E-14

0.125E+01
0.346E-11
0.705E-14
0.705E-14
0.749E-14

u)/(7? — u?)idu

0.126E+02
0.119E+01
0.621E-14
0.554E-14
0.598E-14

0.334E+02
0.262E+02
0.115E+01
0.355E-14
0.599E-14

0.376E+4-02
0.679E+02
0.533E+02
0.111E401
0.133E-13

N b=N/2 __b=N/4 ___b=N/8
32 0.165B-01 0.820E-08 0.897E-15
64 0.109E-02 0.334E-07 0.868E-14
128 0.671E-02 0.668E-08 0.208E-13
256 0.784E-02 0.175E-07 0.107E-13
512 0.798E-02 0.242E-07 0.361E-13
1024 0.795E-02 0.257E-07 0.597E-14
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Table 4: Numerical results for Example 1 (single precision)

N

teos tymm teorr taly tair trre  taig/trg E, error

32

64
128
256
512
1024

0.00011 0.00016 0.00016 0.00043 0.00050 0.00011 3.839  0.33351E-07
0.00018 0.00048 0.00034 0.00100 0.00142 0.00019 5.319  0.33688E-06
0.00040 0.00116 0.00080 0.00236 0.00464 0.00040 5.900  0.22484E-06
0.00070 0.00280 0.00170 0.00520 0.01660 0.00082 6.341  0.19274E-06
0.00200 0.00600 0.00350 0.01150 0.05900 0.00260 4.423  0.32146E-06

0.00400 0.01200 0.00700 0.02300 0.22900 0.00760  3.026  0.62221E-06

Table 5: Numerical results for Example 1 (double precision)

teos tfmm teorr talg Ldir L1t talg /111 E> error

64
128
256
512
1024

0.00020 0.00065 0.00030 0.00115 0.00140 0.00020 5.750  0.27881E-13
0.00030 0.00190 0.00080 0.00300 0.00470 0.00038  7.895  0.12463E-12
0.00060 0.00500 0.00160 0.00720 0.01660 0.00084 8.571  0.13597E-12
0.00150 0.01350 0.00350 0.01850 0.06300 0.00280 6.607  0.19605E-12
0.00417 0.03333 0.00667 0.04417 0.23917 0.00833 5.300  0.26481E-12

Table 6: Numerical results for Example 2 (single precision)

N

tcos timm teorr taig tdir tr11 tafg/tjft E; error

tap1 11

t2ng1e/te

32
64
128
256
512
1024

0.00046 0.00016 0.00016 0.00078 0.00086 0.00011  7.091  0.76613E-07
0.00082 0.00050 0.00038 0.00170 0.00214 0.00021 8.173  0.33767E-06
0.00160 0.00116 0.00080 0.00356 0.00588 0.00040 8.900  0.17319E-05
0.00350 0.00270 0.00170 0.00790 0.01890 0.00086  9.186  0.18528E-06
0.00850 0.00550 0.00350 0.01750 0.06800 0.00260 6.731  0.45411E-06
0.02000 0.01300 0.00700 0.04000 0.25200 0.00740  5.405 0.6342E-06

Table 7: Numerical results for Example 2 (double precision)

0.00335
0.01332
0.05268
0.22000
1.42000
8.58200

4.295

7.835
14.798
27.848
81.143
214.55(

N

tcas t!mm tcorr talg td’g’r tf!: tﬂ_fg /t!!t Ez error

tapy st

t2045t/ts

64
128
256
512
1024

0.00080 0.00065 0.00035 0.00180 0.00205 0.00019 9.474  0.10525E-13
0.00160 0.00190 0.00080 0.00430 0.00590 0.00038 11.316 0.85742E-13
0.00340 0.00460 0.00180 0.00980 0.01880 0.00084 11.667 0.10078E-12
0.00750 0.01400 0.00350 0.02500 700 0.00280 8.929  0.90009E-12
0.02250 0.03167 0.00750 0.06167 (0.25583 0.00783  7.872  0.54210E-12

0.01265
0.05190
0.21880
1.55300
8.72167

7.028
12.070
22.327
62.120
141.432




6 Generalizations and Conclusions

It is is well known (see, for example [13]) that a function f € ¢*(0,a) can be expanded
in a series

f&) = 3. Adu(02), (77)

where n > —1, J,, are the Bessel functions of order n, and Ay, As, ..., are the positive zeros
of Jn(Aa). The coefficients A, are given by the formula

jo " 2f(z)Ja(Mez)dz = E;A,(J,',(A,a))z. (78)

Expansions of the form (77) are known as Fourier-Bessel expansions. Fourier-Bessel
expansions are encountered in many areas of computational physics. Among the problems
leading to them are the vibrations of a circular membrane, flow of heat in a circular
cylinder, wave propagation in a three-dimensional layered medium and many others.
The Fourier Transform of a cylindrically symmetric function can be computed with

a single integral instead of a double integral as we show below. We introduce polar
coordinates in both the spatial and frequency domains,

z=rcos(¢) and y = rsin(¢),

u=pcos(a) and v = psin(a),

so that uz + vy = rpcos(¢ — a). If, f(z,y) = g(r) then the transform
Fluw) = [ 7 flz,g)eC=tdzdy,
is just
Go) = [ [ sryeee-ldrdg.
If we change the order of integration,
f_: e~ireces(e=algdy = 2xJy(rp).
Thus, if F(u,v) = G(p) then,
Glp) = 2x /0 ” rf(r)Jo(rp)dr. (79)

In fact, most problems involving Fourier Transforms of cylindrically symmetric functions
can be reformulated in terms of Fourier-Bessel integrals. This leads to a significant
interest in the numerical evaluation Fourier-Bessel integrals. Unfortunately, the direct
evaluation of these integrals, given a function tabulated at N points, requires O(N?)
operations. This makes the procedure numerically unattractive for large N, so that in
practice Fourier-Bessel Transforms are avoided in favour of Fourier Tranforms whenever
possible. i
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