Finding Fixpoints on Function Spaces

Jonathan Young and Paul Hudak

Research Report YALEU/DCS/RR-505
December 1986

This research was supported in part by National Science Foundation grant
DCR-845145 and Department of Energy grant FG02-86ER25012.

Finding Fixpoints on Function Spaces

Jonathan Young and Paul Hudak
December 1986

Yale University
Department of Computer Science !

Abstract
Recent work in strictness analysis has shown that a natural so-

- lution to the first-order case reduces to the evaluation of a recursive
monotone boolean function with certain arguments, which has been
shown to be complete in deterministic exponential time in' the num-
ber of arguments to the function being analyzed [6]. Clack & Peyton
Jones have suggested an algorithm called frontier analysis which they
claim has a much better running time in the average case [3]. This
paper discusses several different algorithms, including an overview of
frontier analysis and a completely different approach which we call
pending analysis. The pending analysis algorithm is easy to under-
stand and implement and can be shown to have very nice average-case
behavior. Furthermore, this algorithm can be “memoized” with very
little difficulty and permits “pessimizing” - finding a point above the
least fixpoint — in a straightforward manner.

1 Introduction

Strictness analysis determines the termination properties of functions in a
program. If a function will not terminate when some of the actual param-
eters to the function do not terminate, then certain optimizing transfor-
mations (e.g. ‘converting call-by-need into call-by-value) will not change

1This research was supported in part by National Science Foundation grant DCR-
845145 and Department of Energy grant FG02-86ER25012.

the semantics of the program. Several papers recently have shown how to
infer an approximation to strictness of a function by means of abstract in-
terpretation. In particular, the program result is abstracted to the domain
2 = {1, T}, where L C T. The value L in the abstracted domain is in-
terpreted to mean that the program can be proved not to terminate, while
the value T allows both termination and non-termination. In this con-
text, the operators M and LI compute the greatest lower bound (minimum)
and least upper bound (maximum) of two arguments.? Then, constants
are all mapped to T (they all terminate), while strict functions such as +
are mapped to Az y.x My since they diverge if either argument diverges.
The treatment of the conditional is more subtle (Ap ¢ a.p M (c U a)) but
straightforward - see [8,5,2] for the details.

Since the programming languages which are being analyzed usually in-
clude recursion, first-order strictness analysis reduces to the evaluation of
recursive monotone boolean functions (RMBFs). Unfortunately, this can
take as much as an exponential amount of time, where the exponent is
the number of arguments to the function being analyzed [5]. Experimental .
implementations of strictness have shown, however, that in practice the
exponential behavior is not achieved. Instead, for the vast majority of typi-
cal cases, there are compact non-recursive representations for the recursive
strictness functions.

In other words, there is very strong evidence that there exist algorithms
which evaluate strictness — i.e., which evaluate an RMBF at a given point
— in reasonable time for typical programs. This paper presents several
algorithms which attempt to take less than exponential time in the average
case. (All are necessarily exponential in the worst case.) We present Clack
& Peyton Jones’ algorithm for frontier analysis [3,9] and our algorithm for
pending analysis, and then show how to add memoizing and pessimizing to
our algorithm.

It should be noted that we talk about “the average case behavior” of
strictness analysis without attempting a formal definition. In the present
context, the distribution of programs we are asked to analyze is not well
understood nor well defined. We instead appeal to the reader’s intuition

2These operators can also be interpreted as lattice meet and join and, with L=false
and T=true, as boolean and and or.

about the properties of “typical” programs.

Although this work was originally motivated from our previous work
on strictness analysis and similar inferencing problems, it is clearly appli-
cable to any situation requiring fixpoints on finite function spaces. Many
problems in semantic program analysis have this property, and indeed re-
cent work in generalizing attribute grammars to allow circularities [4] has
provided a second formal framework (the first being abstract interpreta-
tion) within which such requirements arise. Note that even traditional flow
analyses such as U-D chaining [1] are also examples of applications of the
algorithms presented here.

2 Formal Problem Definition

In this section we will formalize the problem in mathematical terms.
Definition: 2" is the standard cartesian product of the domain 2 with
itself n times, under the pointwise ordering.
It can easily be seen that the domain 2" is a lattice of size 2".
Definition: A recursive monotone boolean function (RMBF) f is spec- .

ified by an equation f(zi,...,z,) = body, where body is an expression with
syntax:
exp = L |T|exrp, Nexp, |exp; Uexp, | f(ezxps,...,exp,) | z;

The desired semantics of an RMBF f is that f is the least fixpoint of
its defining equation on the boolean domain L T T, with the standard
interpretation of M and U. That is, if we construct from body the functional
G = Af.Ax;...z,.body which maps from (2" — 2) — (2" — 2), then f is
the least fixpoint of G. One algorithm to find this fixpoint is to iterate G
applied to 1, the function which maps all arguments to L:

=0
1t = G(a)
fo= G

Clearly this sequence terminates at a unique fixpoint, since there are a finite
number of such funtions and G is monotonic. It is not hard to prove that
the fixpoint so constructed is in fact the least fixpoint of G (see [11], for
example). We call this algorithm “pumping with bottom.” Unfortunately,
comparing f' with f*! is NP-complete [6], so this is not a particularly
efficient algorithm, being exponential even in the best case.

Definition: RMBF evaluation: Given an RMBF, f(z,...,z,) = body,
and a set of arguments ¥ =< z,,...,z, >, evaluate f(zy,...,2,).

Theorem: RMBF evaluation is complete in (deterministic) exponential
time in the number of arguments [5].

The problem we address in this paper is to find an algorithm for RMBF
evaluation which has efficient average-case behavior.

3 Frontier Analysis

Clack and Peyton Jones [3] have observed that for most programs, the
fixpoint is reached in a small number of iterations and that it is usually a
very simple function. .

One can represent this function by representing all possible argument
tuples as the lattice 2", and then labelling each point in the lattice with a
result, either L or T. Since f is monotonic, all the Ts are above all of the
1s, and Clack and Peyton Jones suggest that a compact representation for
f is the boundary between the L and T regions. They call this boundary
the frontier. In particular, a (L-)frontier is a set of points such that (1)
f = L iff there is a € in the frontier such that Z C ¢, and (2) no two points
in the frontier are comparable. (The dual notion of a T-frontier is defined
similarly.) Because there is a one-to-one correspondence between functions
and frontiers, their algorithm just repeatedly determines the frontiers of
fO, f1,... until there is no change from the previous iteration. If the frontier
has not changed, then the function cannot have changed, and the fixpoint
f has been found. .

Since the objective is to avoid exponentiality in typical cases, they pro-
pose looking for the T-frontier “in parallel” with the L-frontier. That is,
they alternate steps in the construction of the T-frontier and the L-frontier,
and stop when one of the constructions terminates. This introduces a sub-

tlety into their algorithm, since after each fixpoint iteration, the algorithm
may extend the L-frontier downwards from the previous L-frontier but it
must start looking for a T-frontier from the bottom of the lattice again.
(This is clear because G is monotonic. Where fi(z) is .L, f**!(Z) could be
T, so the frontiers move monotonically downwards as we iterate towards
the fixpoint.) The reader is referred to [9] for more details.

It can be seen without too much difficulty that computing the L -frontier
of a function in fact corresponds to computing the simplified disjunctive
normal form (DNF) for that function. Simplified DNF in this case means
DNF in which all clauses include all variables, but some clauses are removed
because they are covered by others. (A clause covers another clause if some
of the positive literals in the first clause are negative literals in the second
clause while the rest of the clauses are the same. Covered clauses can
be deleted because we are restricted to monotonic functions.) Dually, a
T-frontier corresponds to a similarly simplified conjunctive normal form

(CNF).

4 Pending Analysis

We now propose a very different algorithm which builds on the observation
that it is safe to return L from a call which is the second recursive call with
the same arguments.

The “pumping with L” algorithm presented in section 1 in essence finds
the least fixpoint from the “inside-out,” and is guaranteed to terminate.
If we were to use an “outside-in” strategy, however, we would find that
it would not terminate for certain function/argument combinations. For
example, consider f = = f z, an RMBF which we wish to apply to an argu-
ment, T. The semantics above specifies that the answer should be L, but
a naive outside-in strategy will simply loop. The traditional reason given
for this “problem” is that L is the value corresponding to non-termination,
and the evaluation strategy that we have chosen simply refuses to termi-
nate when the answer should be bottom. But we know that we can actually
compute this bottom value explicitly, since we have a finite domain - in
essence we need a way to “flatten” the two-element domain 2. The idea be-
hind pending analysis is to avoid non-termination by detecting circularities

during RMBF evaluation.
; In the rest of this discussion, when we refer to evaluation, we mean
normal-order evaluation.

Definition: We say that f % depends on or calls f § if the (normal-
order) evaluation of f Z results in an expression in which f 7 is the leftmost,
outermost redex.

Definition: While evaluating f Z, if f § occurs as a redex, we will call
“returning v from f §” the action of replacing f § with v.

Theorem: If, while evaluating f # we find that it depends on the value
of f Z again, returning L as the result of the second (nested) call to f Z is
correct with respect to the semantics of RMBF.

Proof: (Informal) Suppose we do this, and the original call to f Z
returns L. Then we didn’t really do any substitution for f Z - it is 1. Al-
ternatively, suppose, after doing the substitution, the original call returned
T. In this case, even if we had returned T from the second call, the orig-
inal call would still have been obliged to return T, too, because all of the
" operators are monotonic.

There is some similarity between this algorithm and that implied by the
“minimum function graph” semantics in [7]. It should also be noted that
the above theorem does not hold on arbitrary function spaces. In particular,
it only holds as stated for “flat” domains — domains with maximum chain
length 1.2

We will now show formally that is is correct to return L for f Z while
evaluating f Z. Let G be the functional of which f is the least fixpoint as
defined above, and let h[v/Z] denote the function which is the same as h
except at %, where it has the value v.

Theorem: Let m and n be arbitrary positive integers and Z € 2".
Then .

G™(GM(Q))(2) = G™(C(Q)[L/2)(#)

Proof: Clearly 3 holds. If
G™(G"(2))(z) = L,

31t is possible, however, to generalize the result to domains having a finite maximum
chain length of k. In this case, we need to actually find the fixpoint of Av. “evaluate f Z,
returning v for f z during this evaluation”. This can be done iteratively in at most k
steps.

then there is nothing to show. So we assume that
GM(G)(E) =T
Similarly, we can assume that
G'(Q)(=z)=T
Let 5 be the largest integer such that
G'(O)z) =1

Now, clearly s < n. So '
G'(2) C G™(Q)
and since G’ (f1)(Z) = L, we also have

&/(0) € 6™(Q)[L/3]

But now

T = G™(G/(Q))(2) C G™(G™(O)[L/z])(2)

SO
GG (Q)[L/a)(E) = T

This shows that it is always correct to return L for f Z when evaluating

fz

5 Memoizing and Pessimizing Pending Anal-

ysis

There are two obvious ways in which to implement pending analysis: by
means of a list (table, etc.) of the arguments pending or by means of
closures. However, if the fixpoint function is also to be memoized in a table
of some sort, then it is not difficult to see that we can dispense with the
table of pending arguments. Instead, we store L in the table at those points
where the function is pending before recursing, while storing the result in

the table afterwards.

It should be clear to the reader that if we occasionally return T instead
of evaluating some call f 7, then we will reach a result which is above the
value of the least fixpoint, f at §. This is especially important in strictness
analysis, when any point above the least fixpoint is a “safe” point from
which to begin program optimizations. Thus, when our algorithm is taking
too long, we can at any time “pessimize” and produce an answer which is
safe, although not optimal, and yet not totally pessimistic as would be the
top element in the lattice. '

6 Implementation and Analysis

Both of the above algorithms have been implemented in T, a dialect of
Scheme[10]. A straightforward implementation of frontier analysis took
about 150 lines of T code, while pending analysis took 9 lines for a func-
tional implementation and 21 lines with caching. Preliminary testing has
shown that pending analysis runs (cpu time) between 5 and 30 times as
fast as frontier analysis, but more benchmarks are needed.

Since we concentrated on correct rather than highly optimized imple-
mentations, many optimizations are possible and desirable for both algo-
rithms. In particular, a representation of the elements in the domain 2"
which could compare two elements efficiently would speed up frontier anal-
ysis, as would an efficient representation of frontiers. Pending analysis, on
the other hand, would benefit from an efficient table lookup package, or,
when memoized, by storing the cache in a vector of length 2".

It is difficult to characterize precisely the runtime behavior of these
two algorithms because we are interested in the average case. Still, since
frontier analysis is actually constructing the simplified CNF and DNF for
the function, it can be seen to behave best when these expressions are small.
On the other hand, frontier analysis expects the fixpoint to be found in very
few iterations — when this is not the case, frontier analysis will not perform
well.

The chief advantage of pending analysis is that it evaluates no further
down the call tree than absolutely necessary. On the other hand, it is not
particularly efficient when the function to be evaluated makes lots of recur-
sive calls but eventually “bottoms out,” and does not take full advantage

of the monotonicity of the function it is evaluating. This problem does not
appear to be too severe in practice.

7 Conclusions

‘We have presented two algorithms for finding fixpoints for recursive mono-
tone boolean functions. Both of them have a behavior which is exponential
in the worst case, but we have argued that by catching and breaking re-
cursive dependencies on pending computations, we can evaluate typical
RMBFs in much less than an exponential amount of time on the average.
In addition, we have shown how to use pending analysis to “pessimize” the
result when the computation has proceeded too far, as well as how to gain
even more effeciency by memoizing (at the expense of the memo storage).

8 Acknowledgements

I am indebted to Simon Peyton Jones for his assistance in understanding
and implementing frontier analysis and for pointing out the correspondence
between “pending” and minimal function graphs. I also thank Paul Hudak
and the Wrestlers for their invaluable assistance in getting the details in this
paper correct, and Neil Immerman for his help with the pending correctness
proof.

References

(1] A.V. Aho and J.D. Ullman. Principles of Compiler Design. Addison-
Wesley, 1977.

[2] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strict-
ness analysis for higher order functions, pages 42-62. Springer-Verlag,
1985. '

- [3] C. Clack and S.L. Peyton Jones. Strictness analysis — a practical ap-
proach. In Functional Programming Languages and Computer Archi-
tecture, pages 35-49, Springer-Verlag LNCS 201, September 1985.

[4]

(8]

[6]

[7]

8]
[©]
[10]

[11]

R. Farrow. Automatic generation of fixed-point-finding evaluators for
circular, but well-defined, attribute grammars. In Proc. SIGPLAN °’86
Sym. on Compiler Construction, pages 85-98, ACM, 1986.

P. Hudak and J. Young. Higher-order strictness analysis for untyped
lambda calculus. In 12th ACM Sym on Prin. of Prog. Lang., pages 97—
109, January 1986.

P. Hudak and J. Young. A set-theoretic characterszation of
function strictness in the Lambda Calculus. Research Re-
port YALEU/DCS/RR-391, Yale University, June 1985.

N.D. Jones and A. Mycroft. Data flow analysis of applicative programs
using minimal function graphs. In Proc. 18th Sym. on Prin. of Prog.
Lang., pages 296-306, ACM, January 1986.

A. Mycroft. Abstract Interpretation and Optimizing Transformations
for Applicative Programs. PhD thesis, Univ. of Edinburgh, 1981.

S.L. Peyton Jones and C. Clack: Finding fizpoints in abstract snier- -
pretation, page to appear. Ellis Horwood, 1987.

J.A. Rees, N.I. Adams, and J.R. Meehan. The T Manual. Technical
Report 4th edition, Yale University, January 1984.

J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, Cambridge, Mass.,
1977.

10

