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Associative Memory — A New Model

Haim Bar' and Alexander Ambash®
Department of Computer Science, Yale University,
New Haven, CT 06520

Abstract

A new type of neuron is introduced as a building block of an associative memory. We
define the memory as a network of such neurons, using a state-space model to define the
neurodynamics. We then explore some properties of the neuron and the network and
demonstrate its favorable capacity and recall capabilities. Finally, the network is used in

an application designed to find trademarks that sound alike.

Key words - associative memory, neural networks.

1. INTRODUCTION
The typical intelligent system that is capable of learning and improving its performance
uses memory. The ability to learn and to use the acquired knowledge (experience) to

solve problems is related to several qualities of the memory:

o Capacity — the larger the memory is, the more experience it can accommodate.

. Order relations — in order to evaluate success, compare, and measure input, it is
essential to have the capability to determine whether an experience A is the same as B,
“greater” than B, or “smaller” than B.

. Distribution and locality principles — any data storage device performs better
when the knowledge is distributed in such a way that related pieces of information are

physically close to each other.
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J High connectivity — the system performs better if different regions of the memory
are connected. With the appropriate abstraction level, experience stored in one region
can be used by another region to solve a new problem.

. Hebbian dynamics — learning by repetition, the Hebb principle of rewarding
correlation.

. Parallelism.

. Randomness ~ two identical systems are expected to perform the same. Adding
an element of randomness results in variations, some better and some worse. In nature,
the improved variations tend to survive. |

. Phantom recalls — when an input that has never been received before or no input
at all causes an invalid (spurious) recall, it may result in a chain of other recalls that lead
to a valid, innovative, idea.

In this paper we describe and implement an associative memory model that has
some of these qualities. In Section 2 we describe a new kind of neuron. In Section 3 we
describe a simple network of such neurons, and in Section 4 we introduce mathematical
notation to formalize the description of the network in order to analyze its capabilities. In
Section 5 we define the neurodynamics. In Section 6 we describe the training and recall
processes and in Section 7 we explore some properties of the neuron and the network. In
particular we investigate the capacity of the memory and explain how phantom memories
can emerge. Finally, in Section 8 we describe a practical application and the results of
our experiment in which we train the network to associate between short strings that may
sound alike.  This is useful for companies when applying to register a new trademark.

For a trademark to be considered new, it must not sound like any existing one.

2. THE NEURON - GENERAL DESCRIPTION
We introduce a new model of a neuron. The neuron in this model (figure 1) resembles the
pyramidal cell found in brain {Arbib, 1972}. We will use this analogy to explain its
functionality, capacity and evolution. As we shall see, this neuron is the building block
of an associative memory. Each neuron (cell) can associate between a small number of

features, for instance — smell, taste and color.
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Figure 1: The structure of a neuron
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The neuron consists of a small number of input regions (receptor zones), and one output
(axon). Each input region collects input signals from many sources (dendrites). The
input signal from each source has two characteristics — the frequency (which encodes the
information), and the amplitude (the strength of the signal). Each region is especially
sensitive to a small range of frequencies (band). The center of this band’ is selected
randomly at first. After each attempt to learn a specific task (memory), a band that is
sufficiently close to the selected input signal is preserved when the neuron fires. This
resembles natural selection, where the fittest configuration is genetically preserved.
Similarly, if a selected band did not contribute to the improvement in learning the task, a

new random value is assigned.

The input to a receptor zone is built up by the superposition of the frequencies
from the different sources (dendrites). The receptor zone of a neuron can decompose the
input and detect only the frequencies that are within its band, but only if the amplitude of
this frequency exceeds a certain threshold. These thresholds may change over time in the

process of acquiring memories so that the performance of the network is improved.

Note that the same input (frequency) in different regions may represent different

things. For example, if a neuron associates between foods and their taste, then the word
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“pepper” may be encoded just like the taste “sweet”. Since the inputs arrive from
different (and in many cases completely segregated) regions, there should be no
confusion. Receiving inputs from segregated zones allows re-use of frequencies, and

therefore increases the capacity, as we shall discuss later.

Each input region propagates the deviation of the selected input signal from the
center of the band. The neuron fires if each of the input regions réceives a 'signal that is
close enough to the center of the region’s band. At first, the output is arbitrary. The
neurons that receive this output may or may not detect this output. After a few
generations, nature (or in the artificial network case, the designer of the network) may
create cells that can detect this output signal or the firing neuron can change the output by
means of Hebbian learning. In this paper, we will define the output to be a vector. The
components of the output vector are the selected inputs to the neuron. This approach will

simplify the recall process and the implementation of the network.

When the network is trained, neurons can decrease the tolerance level. The
tolerance level is the maximum value of the difference between the band and the selected
input frequency that still results in the neuron firing. We say that the neuron specializes.
Given an accurate input, it will still be able to recall, but it will be less tolerant to noisy
data. We claim that this feature results in an increased capacity of the network (Section
7.

When the neuron receives input in some, but not all the regions, it uses that input
to recall the previous inputs to the idle regions. For example, if a neuron has three
receptor zones and it fired when the input was the vector (Red, Sweet, Strawberry), then
the next time it receives only “Red” and no input from the other regions, it will fire

(“Red”, “Sweet”, “Strawberry™).
In Section 4, we shall introduce mathematical notation to formalize the

descriptive representation of our neuronal model.

3. THE NETWORK

The basic implementation uses a feed-forward network with one layer of neurons. The

neurons are as described in Section 2. Figure 2 illustrates a simple one-layered feed-

* From now on, when we use the term “band” we mean the small range of frequencies around the center of
the band.



forward network with two neurons and three input sources. Each neuron has three

receptor zones.

In future work, we expect to use a recurrent network in which the output from
each of the neurons is fed back to the neuron’s input lines. Each element in the output
vector is fed back only to the corresponding input region. This allows us to recall higher-
order memories. For example, if the input “Red” is associated with “Sweet” and
“Strawberry”, then feeding “Sweet” -and “Strawberry” back to the input regions may

result in recalling “Sour” and “Blueberry”.

It is also possible to use a multi-layer feed-forward configuration but this involves
a more complicated encoding/decoding scheme for the output from the neurons, which

we defer for later study.

Figure 2 a one-layered feed-forward network with two neurons

input source

23 ° input scurce ¥

4. THE MATHEMATICAL MODEL

Let N denote the number of neurons. We shall denote the number of receptor regions in

neuron n# by R(n). For simplicity we assume that all neurons have the same number of
receptor regions, i.e. R(n)=R forall n=12,.,N.

Input region r in each neuron receives a set of signals,
Sr) = {Sl(r), S,(r),S, (r),...} (some of which may be null). Note that S(r) is not a

function of the neuron number, n, since in every neuron the r-th region receives the same
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set of signals S(r) = {Sl (r),S,(r), S, (r),...}. S;(r), the i-th input to the r-th region of
each neuron is a vector: S,(r) = (E. (r), 4 (r)) where F;(r)is the frequency and A, (r) is
the amplitude of the inpu't- signal S,(r).

As already noted, R (the number of receptor regions) can take small values

(typically 2-5), and IS(r) (the number of input signals) is typically O(10%)-0(10°) in the

human brain.

Without loss of generality we shall normalize the range of input frequencies F,(r)
so that F,(r)e[0,]]. The center of the band of input region r of neuron n at time ¢ is
denoted by B(n,7,t). In Section 5 we describe how the center of the band, B(n,r,1),

changes over time (the neurodynamics). The tolerance level of neuron 7 is denoted by

T(n). For simplicity we assume that all the neurons have the same tolerance level —

T(n)=T forall n=112.,N. Tisa small positive number, typically 7 <0.05.

We also normalize the amplitude 4,(r}so that 4 (rje[)l]. Each region can

reduce the effective amplitude of the input signal by a factor 0< p{r,7,t)<! where p is a
function of » (the neuron number), r (the region), and the time (/). We shall call p the
(amplitude) reduction factor. We assume that there is a threshold 0<7<! so that a

neuron can detect an input signal S,(r) only if p(nr.t)-A(r}>7r>0. The product

pln,r.t)- A(r) will be termed the effective amplitude.

We say that a region r in neuron » is active at time ¢ if for some input i,
ISiS]S(r}[ E(r)e[B(n,r,t)y-T,B(n,r,t)+T] and plnri)-Alrizz. In words, the
region is active if there is an input signal with effective amplitude that exceeds the
positive threshold and with a frequency that is sufficiently close to the center of the band
of that region.

Let I(nr,t) denote those values of i such that pnrt)-A{r)>7and
E@me [B(n,r,t)—-T L B(n,r,t)+T ] at time 7. {S,.(r)}iel(n’,,,) is the set of input signals
which activate the r-th region in the »n-th neuron at time ¢ Let

i'=i'(n,r,t)=0rgmm[p(n,r,t}-A,(r)]' (i.e. we choose the input signal from the set

icl{n.rt)



{S, (r)}id(n,r,,) with the highest effective amplitude). We say that W(n,r,7) = F.(r)is the
winning input of region r of neuron » at time z. Note that the amplitude 4, (r)is omitted
since the information is frequency encoded. The amplitude is used only to select the
winning input.

In the case that /= ¢, there is no winning input and we take W(n,r,f)=~1.

Setting the input frequency to —1 will not allow phantom recalls, as we shall explain in
Section 7. In the future we intend to study the network when it does allow for phantom

recalls to emerge.

We assume that B(m,r,t) and W(n,r,tf) are independent and identically
distributed with a uniform distribution over [0,1]. Neuron # fires if all of its input regions

are active at the same time. That is,

neuron 7 fires if _I{)ZQXR{l W(n,r,t)—B(n,r,t)' }<T . (1)

5. NEURODYNAMICS
We use a state-space model as defined in {Haykin, 1999, p 666}: The states are RxN

matrices, B{t)= [B(n,r,t)]rﬂl«--R where N is the number of neurons and R is the number of
n=12..N

regions in each neuron. A matrix B(f) describes the band centers of all- the neurons as
they evolve over time.

Recall that region r receives a set of signals S(r) = {Sl (), S,(),S,; (r),...} such
that S,(r) = (E,(r), 4, ) whe?e F,(r)is the frequency and 4, (r) is the amplitude of the
i-th input signal S,(r). Band dynamics are defined as follows: for every element

B(n,r,?) in the matrix B(f) we define the change in the band over time by:

dBin,r 1) fi’" sp(F,{r) - Bln,r.1))- p(n,zr,t) - A,(r) @
dt P lE(r ~B(n,r,t)|

In words, band 7 in neuron 7 is “attracted” to every input signal received by that region,

(F.(r),A.(r)), with a force that is proportional to the inverse of the squared distance

between F,(r) (the frequency of i-th input to region #) and the band of that region,



B(n,r,t). Also note that the force with which the i-th input signal “attracts” the band is
proportional to the effective amplitude of that signal.

For reasons of stability in the case that region 7 in neuron n becomes active
(namely, there exists W(n,r,t)= F.(r)#-1 such that ]W(n, r,t)—-B(n,r, t)[ < T), we
define:

dB(n,r,t) _ 0

7 ®)

Equation (2) resembles the description of the motion of an object in a gravitational field.
The inputs are analogous to the stars, and the bands of all the neurons to much smaller

objects in space. The input signal S,(r) has a “gravitational constant” p{n,r.f})- 4,(r).

Equation (3) guarantees that if some band B(n,r,f) is close enough to an input
frequency F(r) from the set S(r), that band will not change. In our celestial analogy
this situation corresponds to a small object getting so close to a star that it cannot escape

the gravitational force.

The reduction factor of the winning input signals also changes over time by

means of Hebbian learning. Formally, the amplitude dynamics is defined as follows:

n+(1-n)- pln,r.1) if neuron n fires and region r is active

4
(l - 77)~ pln,rt)  if neuronndoesnot fireand regionr is active )

pln,r.t+dt) :{

where (<n<! is a small learning rate parameter. When a region ‘becomes active, the
reduction factor of the winning input W{nr,t) is increased if the neuron fires and

decreased if the neuron does not fire.

6. TRAINING AND RECALL
To train the network, we stimulate it with the inputs that we want it to memorize. A
“memory” is an R-dimensional vector M =(m(l),m(Z),",m(R))e[OJ]R. Our goal is to create
a network that associates each of the features m(r), with the other features,

mir'), forr'#r. We denote the set of memories by M. For every memory M ,eM

we define the inputs to each region as follows:



_ (mj(r),l) i=l
Sf(’if{(o.o) i¢1},-=y.z4sml

In the training phase we eliminate noise by defining S,{r}=(0,0) for i=1. The neurons in
the network receive only the value m,(r] in region r since it is the only signal with
positive amplitude. Therefore, there is only one signal that can activate region r in each
neuron (that signal is S,({r) according to our definition). S,{r] is the only input that

“attracts” the r-th region in all the neurons.

A training iteration consists of a single input A/, € M that stimulates the neurons

and the adjustment to the bands and the reduction factors that follow that input. We
expect that after a number of training iterations some neurons will be “attracted” to some
memories and fire when the memory is introduced to the network. That is to say, for

some memory M ;€ M, there will be a neuron » such that

max {tB(n,r,t)—mj(r)l }<T )

r=11. R
The training stops when max. {‘B(n,r,t}—mj(r)‘ }<T for all the memories M, eM, or

after a specified maximum number of iterations. The network can recall a memory

M ;eM if there exists a neuron » such that max. {lB(n,r,t) -m j(r)u< T.

If after a number of training iterations max. {lB(n,r,t)—mj(r)]}<T for all the

memories M, €M, each neuron in the network decreases the tolerance level to 7'<T .

In other words, when the network can recall all the memories, each region in each neuron
will become less tolerant to deviations from the band of that region, B{n,7.t). In Section
7 we will show that a smaller tolerance level in all the neurons results in increased

memory capacity of the network.

In the recall phase, the activation of a single region is sufficient to make the
neuron fire. Since we defined the output to be a vector of the winning inputs during the
training phase, an input that activates a single region, results in R recalled features (R—1,

if we exclude the input).
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7. PROPERTIES OF THE MODEL

Recall our assumption that all neurons have the same number of input regions (R) and
the same activation t_ovlerance level (7). With the assumption made in Section 4 that the
winning input W{n,r.f) and the r-th band in neuron n B{n,rt), are independent and

identically distributed with a uniform distribution over [0,1], we get

probHW(n,r,t)—B(n,r,t)I<T Jz )T -T" (6)
See Appendix C for proof.
As aresult, we get that
! 2
prob Lﬂ?ng {[W(n,r,t)—B(n,r,t)l }< T J: (ZT -7 )(Q 7)

So (ZT -T Z)R is the probability that a neuron will fire, given a specific band configuration

and a specific input.

Therefore, we shall choose the total number of neurons to be (—C—— where

)7 -1 f
C=1. This is highly redundant, but it increases the probability that for every input vector

(every memory) there will be a neuron that fires.

The memory capacity of the network depends on 7 and R (equation (7)). A

necessary condition for perfect recall of all the input frequencies to region r is
lE(r)—Fj(r)[>2T Vi, j:I,Z,...,IS(r)] (recall that ‘S(r)l is the number of all the distinct
inputs to region r in all the neurons). To see this note that if there are ij such that

IE.(r)—Fj(;){<ZT , then there may be a neuron n with a band B{n,r.f) in region r such
that [B(n,r,t)—F,.(r)l<T and IB(n,r,t)—Fj(r)|<T . In this case two different input signals
(8,{r).S,{r]) will activate the same region in the n-th neuron.
r . )
When the condition IE.(r)—Fj(r)l>ZT Vi, j =I,2,..,|S(r)[ holds, 7a input signals

(frequencies) can be detected in region 7.
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The frequency re-use mentioned in Section 2 increases the capacity of each cell.
The number of distinct signals that each cell can receive is T Each input signal to a

single region will result in R~1 recalled features from the other regions, which is more
efficient than recalling only one feature from every input (compared with the correlation

matrix memory {Haykin, 1999, p 82}).

When the network is trained, it will need only —?!]—, neurons to recall any one of the

R . : . . . R R
- Mmemories. The correlation matrix memory requires 7 neurons to recall T

2T

memories. This improved performance of our network memory is a result of the

frequency re-use. However, to-get perfect recall of % memories using only é—; neurons

) 1
we have to start with more than —27 neurons.

When the neurons specialize (7' is decreased), the capacity grows, allowing more
inputs to be associated and then recalled. This follows directly from the fact just

observed that the capacity is proportional to the inverse of 7.

Decreasing the effective amplitude of a winning input in a region when a neuron
doesn’t fire may also increase the capacity. The band of that region, B{n,r.1), is attracted
to input signals with a force that is proportional to the effective amplitude. When the
effective amplitude of the winning input frequency becomes small enough, a new input

with a different frequency will be the winner. "The neuron may then be able to store and
recall a different memory.

Note: were we to encode the winning input as W(n,r,t)e[O,I] instead of
Win,rt)=-1 when there is no input to region r may result in “phantoms” - recalled

memories without any input.

8. AN APPLICATION

In our experiment we used the network to find homonyms, words that are spelled
differently, but sound alike. The ability to detect such words is very important for

companies seeking to register a new trademark. One criterion for a trademark to be



considered new is that it doesn’t sound like any existing one. Using another company’s
trademark may result in great liability. The application that is required to handle a
phonetic encoding of this sort is different frorh text-to-speech applications. The latter can
benefit from using a database of dictionary words, which makes the pronunciation task
somewhat easier. Trademarks however, are not subject to spelling rules. For example,
“toysRus” sounds like “toys are us”, but the former cannot be found in a dictionary.
Building a trademark dictionary is a plausible idea, but since hundreds of new words are
invented every week, the size of the database will increase, ‘which means that maintaining

it becomes more difficult.

During the training phase the network is presented with simple rules, which
associate between pairs of one or two-letter strings. For example, “MN” is associated
with “N”, “GH” is associated with “F”, and “PH” is also associated with “F”. In most
cases we treat all the vowels as if they were the same input. Appendix A contains the
complete list of rules. We encode every possible input as described in Section 4. For
example, the pair (GH,F) may be encoded as (0.313, 0.724) and the pair (PH, F) by
(0.543, 0.724). We submit all the input pairs to the network, and repeat this step until
every input pair has a neuron that fires when it receives this input pair. Then, as we

described in Section 2, the neuron can associate between the two input values.

In the next step, a word is parsed into one or two letter sub-strings. For example,
the word “ROCK” will be parsed in the following ways: R-O-C-K, R-O-CK, R-OC-K,
RO-C-K and RO-CK (these are the valid partitions of the word ROCK). Then for every
partition of the word, we submit its components to the network, one at a time. If the
network associates the input with other strings, it outputs the other strings. Otherwise, it
outputs the input string. For example, if the input is R-O-CK, the network will recall R-

A-K (where A is the representation of any vowel).

At the end of the process we get several “tokens” that are associated with the
input (the tokens are strings that are pronounced like the input). Word marks that sound
alike should have a mutual token. For example, it is easy to see that ROCK, ROK, and
ROCQ are all associated with the token ROK.

In our experiment we assigned a random value to each string that appears in

appendix A. We started with a set of neurons, each having two random bands. All the

oy



neurons have the same activation tolerance level 7" which is smaller than qulf*}-—ﬂl
. 1.

where F;, F; are all the possible input frequencies. We trained the network by feeding the
input vectors one at a time. In Appendix B the distribution of the inputs is shown in
figure 3. The points in [0,_1]2 that correspond to the inputs are selected randomly and
never change. Figure 4 shows the initial distribution of the neurons. Figure 4 illustrates

that in their initial state the neurons are distributed uniformly.

We repeated the training phase 800 times. Figure 5 shows the distribution of the
neurons after 800 epochs. The first thing that we observe when looking at figure S is that
most input vectors (memories) attracted several neurons. The attracted neurons can be

used to recall one feature when they receive the other. For example, the sound “k”

corresponds to the value 0.17 along the vertical axis. The strings “c” and “ck”

correspond to the values 0.450 and 0.490 respectively, along the horizontal axis. There
are neurons that fire when the input to the first region is 0.450 and there are neurons that
fire when the input to the first region is' 0.490. They all output 0.170 which represents the
sound “k”. As a result, if a person or a company is considering an application for a
trademark using the string “hard roc café” the network will detect that it’s similar to
“hard rock café”. These two strings have a mutual token in which “k” is used instead of

(19 ‘)7

or “ck” in the words “roc” and “rock”.

Figure 5 shows that the network organized itself so that many of the neurons lay
within 7 from at least one component of a memory M. Essentially, it formed a grid of

neurons that is fitted to accept not only the input vectors (E(I),E(Z}) and (FZ(I)F;(Z)) but
also (F,(I}FZ(Z}) and (FZ(I)E(Z)) The neurons learn to expect the input values

Fr) j=12; izl,Z,....lM] .

In our application, this result may be interpreted as the process of acquiring a
vocabulary of homonyms. The network starts with no prior knowledge. First, the
neurons learn to detect the atomic homonyms (this happens when the distance between
one of the bands of the neuron and a component of one of the inputs is less than 7).
Some neurons learn to associate between pairs of homonyms. This happens when both
regions in a neuron are activated when one of the memories (input vectors) is presented
to the network. We expect that over-training the system will prevent the network from

learning new associations. Every neuron that fires when the a memory is introduced to

)



the network cannot be changed (according to condition (3) in Section 4) and therefore,
cannot learn to associate between other homonyms. We would like to stop the training
process when every “memory” has at least one neuron that fires when the network

receives this memory as input.
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The following is a list of associated strings that sound alike. For example “mb” is

APPENDIX A

associated with “m”, as in the word “climb”.

bb=b
bt=t
c=ch
c=k
c=s
c=sh
cc=k
cc=ks
ch=ch
ch=k
ch=sh
ci=sh
ck=k

fi=f
g7j
82=g
88
gh=f
gh=g
gh=S
gi=j
gm=m
gn=n
gu=g
h=S§
15=1
=
ju=w
kn=n
1d=d
If=f
lk=k
1I=1
Im=m
mb=m

mm=m

=m
mn=n

nn=n

s=z
sc=s

sc=sh
se=sh
sh=sh
si=ch

st=sh

sS=$
ss=sh
$8=Z
st=s
te=ch
th=th
th=t
ti=ch
ti=sh

ts=s

Y



APPENDIX B

The first graph shows the distribution of the input vectors. The second graph
shows the initial distribution of the bands in all the neurons. The third graph shows the

distribution of the baﬁds after 800 epochs.

Figure 3 The distribution of the inputs.
The points in [0,1]? that correspond to the inputs are selected randomly and never change.
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Figure 4 The initial distribution of the neurons.

In their initial state the neurons are distributed uniformly.
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Figure 5: The distribution of the neurons after 800 iterations.

Most inputs attracted several neurons to their T-neighborhood. The network organized itself so that many
of the neurons lay within T from at least one component of an input vector F. The neurons learn to expect
the input values {F,;} j=1,2; i=1,2,...,.N.
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APPENDIX C

Claim: If x, y are independent and identically distributed random variables with a

uniform distribution over [0,1] then Pf‘obﬂx— y<T ]: T -T*
Proof:

PI‘ob”x—y[<T]=

I—PPobﬂx—yl>T]=
I—(Pl‘ob[x—y>T}+PI‘0bb1—x>T]):
1=(robly <x—T]+Poblx<y-T])=

1—(jmax(0,x—T)k+jmm(0, y—T)qj’J:
1_[j(x_m+rj(y_m):

{6 5]
e o o))

1-(-27+1%)=
)T -T*

The shaded area in the following diagram represents the pairs (x,y) that satisfy |x— y[<T .

The area of triangles I and II is QLTTXI:Z) each. Therefore, the area of the shaded strip




Facial Expression Recognition Performed by a Feed-forward
Neural Net with Backpropagation

Brian Pasley' and Daniel Brambila
Yale University, Computer Science Department
New Haven, CT 06520

Abstract

In this experiment we attempt to create a neural network, which can recognize the six
basic emotional facial expressions. We implemented a feed forward backpropagation
neural network, using training exemplars, in order to produce emotional classifications.
The results were positive for a subset of these six emotions, but negative when all
emotional categories were included for training. The possibility of improving
performance was explored by preprocessing the images to reduce irrelevant information
and implementing an additional hidden layer in the network to maximize feature
detection. These supplementary techniques resulted in insignificant improvements for
the entire emotional set. Failure of the net to learn all six emotional categories appeared
to be due to two particular emotional categories, surprise and fear, that share very similar
features. More effective image preprocessing may improve the ability of the hidden
neurons to extract salient components and form a more accurate mapping of facial
features of emotion.

1. INTRODUCTION

Recognizing emotional facial expressions is thought to be a biologically innate human
ability (Matsumoto, 1998). Indeed, emotional facial expressions appear to be
consistently recognized and expressed across culture and ethnicity (Matsumoto, 1998),
suggesting a degree of universality. The observation of brain areas that appear to be
specifically involved in face processing (Kuskowski & Pardo, 1999) along with the
striking consistency and speed with which faces and emotions are recognized suggests

l’ bpasley@aya.yale.edu
* daniel.brambila@yale.edu



specialized brain processing for faces. Studies comparing object and face perception
have suggested that these two classes of stimuli are processed differently by the brain,
Objects appear to be perceived based on their isolated features, while faces appear to be
processed not on isolated features, but rather holistically as “undecompos_ed wholes.”
(White, 1999). In other words, face perception appears to involve all major features of
faces (mouth, nose, eye areas) viewed as a while rather than as separate components.
This perceptual strategy has interesting parallels with a method of pattern classification
used in many neural network applications. Feedforward neural networks often consist of
an input and output layer, as well as one or more hidden layers of units (neurons). There
are, in general, far fewer hidden neurons than input neurons which results in a nonlinear
transformation of the input data that maps input into a “feature space” (Haykin, 1999, pp.
199) represented by the weights and interactions of these hidden neurons. Sucha
nonlinear mapping results in a holistic representation of the input data since features are
not individually extracted for processing, but rather processed according to their
configuration as a whole (Cottrell & Metcalfe, 1991). Using this biologically motivated
strategy, we implement a neural net to classify six basic emotional expressions. In
addition to exploring the validity of the holistic processing strategy, there are also
practical applications for a successfil automated expression classifier. Many lines of
psychological research use facial expressions as stimuli, which initially require subjective
classification into the emotional categories. An automated classifier such as a neural net
trained on the pixel values of the image would be a useful assistant in supporting these
subjective classifications.

2. EXPERIMENT ONE
2.1 Images as Input
A set of grayscale images of facial expressions was used as input. Images came from a
database of face images used in previous psychology experiments (Pasley, 2000). These
images were subjectively categorized as happy, sad, fearful, disgust, angry, and surprise
by human observers. In order to minimize excessive and irrelevant information, each
image was cropped to exclude the ears and to include only the region between the
forehead and chin. To limit the number of inputs and make network training time
reasonably short, each image was resized to 30 x 38 pixels, retaining the average height
to width proportion of the face. Inputs were encoded by reading in the value of each
pixel, x (ranging from 0 to 255 for grayscale intensity) and normalized by dividing by
255,



Figure 1: Grayscale values (after normalization) for respective pixels.
Each value is then used as input into one input neuron.

2.2 General BPN structure

Based on its generalized success in pattern recognition and its parallels to biological
holistic face perception, a standard three-layer fully connected feed forward network with
backpropagation was implemented as a computer program using an adapted neural
network library (CMU, 1994; Masters, 1993). In standard backpropagation learning,
training patterns are collected and thought of as ordered vector pairs (a;, b;), where each a;
represents an input vector and b; represents the associated output pattern vector. This
procedure is repeated for each layer in the network. Once the training exemplars have
propagated throughout the net (feed forward) to produce an output, the error between the
actual and desired output is computed, and the network propagates this information in the
reverse direction, using the error to adjust the relative weights in the hidden and output
layers. (See Haykin, 1999, section 4.3 for additional detail.) The error was computed
with the following expression:

1
5 Z (d; - 0;)°, whered; is the degired output for neuron

i and o; is the actval output value for that neuron.

A backpropagation net is useful because it does not retain specific memory input
patterns. Rather, it continually encodes the characteristics of a given input to produce the
desired output. After many such training inputs, backpropagation nets typically develop
the ability to generalize their classification decisions to entirely novel exemplars.



3 or 6 output units

Figure 2: General BPN structure with experiment specific parameters (Skapura,
1995)

2.3 Network structure and Output

In this experiment, the BPN consisted of an input layer with 1,140 neurons (one for each
pixel value, 30 x 38 pixels), a hidden layer whose number of neurons varied during
different trial networks, and, during the initial experimentation phase, an output layer of 6
neurons. Output was encoded such that each individual output neuron corresponded to
one of the six basic emotions. Thus, high activity (0.9) of one output neuron and low
activity (0.1) of the remaining neurons signified the classification decision of the
network.

010)0] 10]0)

Figure 3: In this 6 neuron output layer, the shaded circle indicates an
active output neuron, while all other neurons are inactive. This output
encoding then signifies which of the six emotional categories was
classified.

In order to determine optimum network architecture, the number of neurons in the
hidden layer was varied across 3 different trial networks summarized as follows:
6 outputs: 40, 80, and 160 hidden units



The following sigmoidal activation function was used on the hidden and output layers
in order to allow differentiation of nonlinear input patterns.

1
1+e

A set learning rate of 0.3 and a momentum of 0.3 were used in order to maximize the
search for local minima in the error surface, so as to elude false absolute minima during
training.

2.4 Imitial Training

The net was trained using a set of exemplar images (36 images per emotion category).
Using six categories, none of the network versions were able to learn the correct
recognition of training exemplars.

2.5 Initial Testing and Results

The net was tested after each epoch using five novel test images. The weights were not
changed during these test runs, so the next training epoch continued as if these novel
images had never been seen. Because the network never sufficiently learned the training
exemplars, however, testing at this point was uninformative. The failure of the net to
learn the emotional categories left the goal of Experiment 1 unfulfilled, so, as a result, a
second experiment was conducted to explore this failure.

3. EXPERIMENT TWO
3.1 Training Set Reduction
One explanation for the failure of the net to learn expression discrimination may have
been the result of highly similar categories within the training set. For this reason, we
reduced the set to subsets of three and four categories, respectively. These subsets were
deemed the easiest to differentiate:
3 category net: disgust, happy, and surprise
4 category net: disgust, happy, anger, and fear

3.2 Image Preprocessing and Revised Network Structure

An attempt was also made to reduce the noise within each individual image. Self-
organizing feature maps (SOMs) are a form of neural network known to have desirable
properties for feature selection. The nonlinearity of the SOM as well as its sensitivity to
the spatial distribution of inputs makes it an ideal tool to process data such as faces.
Spatial sensitivity would presumably retain information crucial to a holistic perceptual



strategy. Unfortunately, preprocessing the images using an SOM tool in Matlab was
prevented by memory limitations. The large number of inputs, 1140 (due to the 30 x 38
image size), demanded more memory than was obtainable on available machines. Rather
than reduce the image size further and risk falling below the minimal resolution for
human face identification (Samal, 1991), we decided on an alternative approach. Noise
in each image was reduced using Adobe Photoshop filtering to adjust each image to a
similar contrast and brightness level. It was hypothesized that this would normalize the
distribution of the input data, a heuristic commonly used to improve backprop
performance (Haykin, 1999, section 4.6)

In addition to image preprocessing, a second hidden layer was added in order to
increase the ability of the hidden feature space to handle nonlinear input data.

3.3 Training and Testing
New nets were trained and tested in the following layer-hidden neuron-output
combinations:
One hidden layer: 3 expression categories and 4 expression categories using 20,
40, or 80 hidden neurons
Two hidden layers: 4 and 6 expression categories using hidden layers of 20x10,
40x20, and 80x40.

Thus, the new reduced image sets (3 or 4 categories per set) were used to train
and test the network architecture of Experiment One (1 hidden layer), while the new
architecture (two hidden layers) was trained on the new 4 category set and the old 6
category training set.

3.4 Results

Networks trained on the reduced training sets showed better overall performance than
those trained on the full set. Trained on the three expression image set, the single hidden
layer network with a limited number of hidden neurons (20 or 40) converged relatively
quickly (see figures 4, 5) and showed very good generalization to novel images (for the
40 hidden neuron net, 93% success on test images). To a lesser extent the single hidden
layer network with 80 hidden neurons showed generalization success when trained on the
four expression image set (see figures 6, 7). All other networks failed to display
satisfactory training performance (>80% correct). (see figure 8 for example results of the
unsuccessful 1140x80x40x6 network.)



4. CONCLUSION AND FUTURE DIRECTIONS

The failure of the trial networks to converge with the complete exemplar set (6
categories) is likely the result of a combination of close similarities between certain .
emotional expressions and insufficient noise reduction in the training images. Network
convergence was observed with the reduced training sets that examined easﬂy
distinguished expressions according to subjective human opinions. Although fear and
surprise were never isolated into their own training set durmg the current experiment, it is
possible that network classifications confused these two expressions. Networks trained
relatively well on image sets that included only one of these expressions (i.e., the 3
expression image sets included surprise but not fear, while the 4 expression set included
fear but not surprise). This confusion of classification is not surprising considering the
similarities between fearful and surprised facial expressions. For example, fear and
surprise are both characterized by an open mouth with raised eyebrows and wide eyes. In
differentiating the two expressions, a holistic perceptual strategy might recognize the
subtle differences between the relative positions of the corners of the mouth (slightly
drawn back as in a grimace during a fearful expression) and the eyes (slightly wider in a
surprise expression). The recognition of these subtle differences, however, would require
high resolution or well-defined input to make use of slight changes in form. Such
resolution was greatly compromised in the present study due to the reduction of image
size to 30 x 38 pixels. Larger images and successful implementation of an SOM
preprocessor might achieve the necessary resolution to allow hidden layers to form
appropriate feature mappings.

Based on the success of further attempts to build an automatic emotional
expression classifier, it would be interesting to test the net on its ability to recognize
multiple emotions in a single face. Often humans express combinations of emotions in a
single face, such as a nervous smile, or an angry surprise. A test set of images could be
created that combined smiles with fearful or sad eyes or that combined surprise faces
with fearful or happy eyes in an attempt to gauge the ability of the net to recognize the
existence of more than one emotional category within the same face. Applications such
as this would be very beneficial to many lines of research that use such stimuli and that
require standardization of subjective opinions about emotional valence.
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Figure 4 : Neural network classifying three emotional expressions (happy, disgust,
surprise) clearly converges at 700 epochs.
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Figure 5: The neural network with 3 outputs learned the trajniné exemplars within
1000 epochs. This network performed very well as it correctly classified over 93% of
the test exemplars.
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Figure 6: Compared to the network classifying 4 emotional expressions, this network
performed slightly worse in correctly classifying both the training and testing exemplars.
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Figure 7: With 4 outputs, the nets failed to converge completely.
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Musical Analysis and Prediction with
Dynamically Driven Network Architectures

Brian Carp v
Yale University , Department of Computer Science
New Haven, CT 06512

Abstract

We attempt to combine the benefits of dynamically driven recurrent networks and tapped delay
line memory to achieve probabilistic prediction of musical lines with minimal training.
Synaptic weights are modified using gradient descent and momentum to minimize the error in
predicting time sequences. The trained network outputs its prediction of the next note in the
sequence. Results indicate an accuracy of prediction within one to two notes on average, after
at least twenty epochs of training with a small data set.

1. INTRODUCTION

1.1. Scope of the Project

The notion of taking a systematic approach to musical analysis and composition has been
around for centuries. However it is generally assumed that there is a certain amount of
creativity and unpredictability involved in music, and that the listening experience is in many
ways characterized by the balance between anticipation and surprise. This project
demonstrates, on a simple level, that patterns in music can in fact be generalized, and that a
neural network can be trained to recognize a pattern and predict the movement of a simple
melody.

Since the range of musical examples is so large, the scope of this project is limited to the
tonal framework of sixteenth-century counterpoint. Species counterpoint, which is based
primarily on the work of J. J. Fux, plays a central role in Western art music and introduces many
of the fundamental concepts of the popular song. It is considered to be one of the most
simplistic approaches to musical analysis and composition and by no means subsumes all tonal
music. Rather, it is a scaled-down approach to analysis that represents a reduction of complex
musical structure to simple melodies and harmonies. The study of counterpoint is above all the
study of voice leading, and is more or less restricted to the domain of melodic motion.

This project uses of the simplified melodic lines of species counterpoint, called the cantus
firmus, and trains a dynamically driven recurrent network to predict certain notes that fit basic
patterns in an unfamiliar melody.

brian.carp @yale.edu



1.2. Design Concepts

Music to large extent is built on the relationships between notes, both on a local scale (notes
in succession) and on a global one (the “shape” of the melodic line). Music theorists generally
believe that what makes a note sound wrong or out of place to the listener is it’s incompatibility
with the notes that precede it or the notes that define global characteristics of a melody to which
other notes are expected to conform. Abstracted away, these constraints can be used
theoretically to predict which note should follow given a sequence of notes that precede it.
Therefore, we need a network architecture with some form of memory that would allow it to
represent its previous inputs and use those memories in a computation that predicts the next
note in a sequence. .

Recurrent networks that respond temporally to an externally applied input signal have
feedback loops which enable the network to maintain representations of their state, which make
them ideal devices for nonlinear prediction. The recurrent architecture provides the beneficial
effects of global feedback which, when combined with the local feedback of the tapped input
delay line, provides a suitable framework for learning patterns and relationships in a musical
line.

2. NETWORK DESIGN

2.1. Architecture

A network devoted to the supervised learning of the rules of counterpoint must be able to
generalize patterns on both a local and global scale, and to map similar inputs to a range of
outputs with regard to these contextual influences. There are two standard tools which lend
themselves to such a task, namely temporal processing units and recurrent network
architectures.

2.1.1 Recurrent Network Architecture

The basic model therefore is a simple recurrent network, also known as an Elman network.
An Elman network includes recurrent connections from a layer of hidden neurons back to the
input layer via an array of unit delays (Fig. 2.1). The hidden neurons therefore define the state
of the network and maintain some record of its activity, which allows the network to learn
global patterns that extend over a long period of time (Haykin, 1999).

Input Layer Hidden Layer Output Layer

o
<

Figure 2.1 The structure of the Elman network



2.1.2 Temporal Processing Units
Alternatively, the use of time delays on the inputs to a feedforward network allows for the

analysis of local temporal relationships. Tapped delay lines, the most common form of “short-
term memory” in network architecture, consists of depth D unit delay operators which delay
inputs for zero to D discrete time units (Fig. 2.2). This allows the network to make a
computation based on current as well as relatively recent inputs and thus internally characterize

external temporal relationships.

2.2, Structure of the Neural Network

The network is composed of 3 layers: an input layer (I), a hidden layer (H), and an output
layer (O). There are recurrent connections from each of the neurons in the hidden layer to the
input layer through context units. All other connections are feedforward. The output layer has
one neuron which outputs the predicted value of the next note in the sequence. The input layer
consists of the sequence input (single value), the recurrent connections from the hidden layer,
and the delayed inputs coming off of a tapped delay line. The tapped input delays range from
zero to three in number, which corresponds to a maximum short-term memory of three notes.

The network was tested separately with hidden layers consisting of 5 and 10 neurons.
Neurons in the hidden layer were given hyperbolic tangent activation functions, while the
output neuron uses a pure linear function. The network learns using the standard back-
propagation method of gradient descent and using the generalized delta rule:

Awy(n) = aAw(n - 1) + n8j(n)yi(n)

where Awj(n) represents the change in the synaptic weight from neuron i to neuron j at time
step n, 1 is the learning rate parameter, §;(n) is the local gradient, y; is the input signal to neuron

j, and o is the momentum constant.

®

e
=0

Figure 2.2 Ordinary tapped delay line memory




3. MELODIC FORM

3.1. Simple Melodies: Cantus Firmi

3.1.1 Explanation of Counterpoint Theory
The study of counterpoint is the study of voice leading, which involves the relationships

between two or more melodic lines such that they create meaningful harmonic motion. All of
species counterpoint is built around a single melodic line, which is called the cantus firmus. The
principles governing the cantus firmi are fundamental to the study of counterpoint and to our
ability to make any meaningful generalizations about tonal music.

Obviously some form of “music” can be generated by constructing a sequence of random
notes; however we are concerned with meaningful note progressions and melodies. Of course
“meaningful” is a subjective idea, but the theory of counterpoint explicitly defines which
progressions and harmonies are to be considered. Specifically, notions of consonance and
dissonance are based on what sounds “stable” or “pleasing” to the ear, and are partly based on
the physics of sound and overtones. They are practical as well: singers have much more
difficulty leaping up or down dissonant intervals, or singing a dissonant harmony, because they
often have to internalize a note (“hear it in their head”) before they may sing it aloud

Thus, melodies are limited by constraints that include not outlining dissonant intervals,
compensating large leaps with step-wise motion in the opposite direction, etc., most of which
are based on what sounds pleasing to the average listener as well as the preferences and
limitations of singers. There are other principles that restrict the size, general shape, continuity,
and balance of cantus firmi, along with rules about the use of leaps, use of repetitions,
beginnings and endings, and unresolved melodic tension (Salzer and Schachter, 1989).

3.1.2 Normalization of Input Data
Here is an example of a cantus firmus, taken from Salzer and Schachter’s Counterpoint in

Composition, pg. 11, and transposed into the key of C:
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Figure 3.1 Example of a typical cantus firmus
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In the interests of simplicity all of the examples are set in the same key (C Major). Without
loss of generality we can transpose the all of the melodies into the same key since the
relationships between the notes will remain the same. The goal is for the network to predict
notes based on these relationships, not based on absolute pitch. Thus we simplify the problem
by normalizing the input data. All cantus firmi begin and end on the tonic, which in this case is
C.

3.2. Numeric Representation

40 cantus firmi were selected to make up the complete set of tonal melodies that the
network would be expected to handle. Of these 10 were selected at random to form a training
set for early experimentation.



The notes of the cantus are represented numerically as an offset from the tonic note, middle
C. Therefore, ‘C’ translates to a value of 0, ‘D’ to a value of 1, and so on; an octave above middle
C would have a value of 8. For the sake of computation it is preferred to have values between
-1 and 1, so each note value is reduced by a factor of 10. Thus, the cantus firmus above would

be represented by the following sequence:
0.0 0.1 0.2 0.5 0.4 0.0 0.1 0.3 0.2 0.1 0.0

The full set of coded sequence is included in Appendix A. The example above is listed under
index eight in the Appendix.

4. TRAINING

4.1. Elman Network

An Elman network was created in MATLAB to simulate this network, initially with five
hidden neurons. Weights and biases were initialized according to the Nguyen-Widrow
initialization algorithm by default. The network was trained with a set of ten cantus firmi
chosen from the data set. The mean-squared error was calculated after each epoch of the
training sequence. Results indicated that on average, the network began to level off after about
25 epochs at a mean-squared error between 0.04 and 0.05, which indicates that the prediction
was typically of by full tenths (i.e. not values).

Increasing the number of hidden neurons to 10 only improved performance slightly, if at
all. Network performance (as revealed by averaged mean-squared error values) would
typically level off after 25 to 50 epochs, but approach different values of the average mean-
squared error ranging from 0.02 to 0.05. Since these values are squares, they represent
differences in the range of 0.15 to 0.2, which according to our encoding indicates predictions that
are off by 1.5 to 2 notes, on average. :

However, the predictions of the Elman network were substantially better than random
guessing. A process that randomly picked values between -0.5 and 0.5 (the range of the data
set) had an average mean-squared error close to 0.14 (Figure 4.1).

4.2. Heuristic Function

A simple observation of the data set is that melodic progressions tend to start at the tonic
(0.0) and approach a fifth above (0.5) before returning back to the tonic, mostly in step-wise
fashion. We can therefore design a simple heuristic estimation that follows a perfect arch and
compare it’s predictability to that of the Elman network. The results indicate that the heuristic
performs with a mean-squared error of 0.438. Experiments with the 10-neuron Elman network
show that the network can outperform simple heuristics designed to predict the melodic line, as
indicated by the graph in Figure 4.2.

Furthermore, the histogram of the error vectors in Figure 4.3 indicates that the network
predicts notes with about the same error as the heuristic, though often does better. Random
guessing produces a fairly well-distributed error, often in the range of 0.1 or higher. This means
that random guessing on average will be off by three notes or more.
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Figure 1 The Elman network’s performance plotted against that of the heuristic function.
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Note Values

Histogram: 10-neuron Elman Network

Timestep

Figure 4.4 The output of the network is plotted against its input vector.
While the network fails to predict the closing of the musical line, it appears to
have learned to compensate for leap s in the melodic passage.
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4.3. Analysis

The averaged error values are mostly useful for describing the overall performance of the
network, but give no indication of what the network may or may not have been able to learn. If
we plot the melodic line of cantus eight (the example from above) against the predictions of the
network and the heuristic, we can deduce some information about what the network has been
trained to do.

Figure 4.4 shows the predictions plotted against the cantus. It is apparent that the network
has not learned about endings; in all of the examples the cantus returns to the original note
(value 0.0) after about ten timesteps, but the network has failed to learn this trend. On the other
hand, the network makes fairly accurate predictions each time. the cantus leaps. In all of the
cantus firmi a large leap in the melody will be compensated by step-wise motion in the opposite
direction. This is a local relationship which the Elman network seems to have learned, as
indicated by timesteps 4, 7 and 9. Timestep 7 in this example is particularly telling: it appears
that the Elman network makes an “intelligent” prediction in direct contrast to that of the
heuristic. (See Figure 4.4).

5. NETWORK MODIFICATIONS

The Elman networks were modified to include tapped delay lines on the inputs, which
could possibly improve performance by giving the networks more direct information about
their previous inputs.

Training of both the 5-neuron and 10-neuron networks indicate improved performance
with a tapped input delay of depth one, and further improvements with tapped input delay of
depth two. Depth-three tapped delay lines seemed to hinder the performance of the networks,
and statistically did worse during simulations. Figure 5.1 and 5.2 show the performance curves
of the networks plotted against the additions of tapped delay lines.

6. CONCLUSION

The results of the demonstration indicate that Elman networks can in fact be trained to
recognize patterns in melodic sequences and often make accurate predictions about the next
note in a simple melody. The general performance, measured by average mean-squared error,
reaches a stable point at which the network is making predictions that are off by only one or
two notes in the average case. The performance graphs show that the neural network will make
better predictions than random guessing, and often better than simple heuristic predictions,
after seeing only a fraction of the data space. Closer analysis reveals that an increased number
of neurons in the hidden layer do not specifically improve network performance; if we compare
Figures 5.1 and 5.2 we see that the 5-neuron network with tapped input delays achieves a much
lower mean-squared error than the 10-neuron network with the same modifications. In general,
the use of one or two input delays increased the accuracy of predictions on average, though the
use of excessively long delay lines seemed to decrease it.

Further testing using larger data sets, more layers, and longer training times may reveal
more precise limits on the ability of a neural network to predict musical lines. The project could
also be extended to make predictions about sequences with the addition of harmonic
complexity, although that is outside the scope of this particular investigation.
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There are two formidable sources of error in this experiment. The first is the limited range
of input presented to the network. The fact that the network on average learned to predict
notes without being off by more than one or two is not necessarily impressive given a five to ten
note range. The second is that is it difficult to determine the extent to which the network is
simply memorizing sequences rather than finding real patterns. Increasing the size and range
of the data set could reduce both of these sources of error.

Another subtle point is that the network may have just learned to average values rather
than find real patterns. The predictions were often in the middle range, which statistically
would reduce the error as much as possible if no real pattern-matching were performed.
Indeed, when the network was given a starting note and then fed its own predictions, it
produced a sequence of notes that fluctuated in the middle range, rather than produce any
meaningful composition. Of course we would not expect a network of this scale to perform a
high-level task such as musical composition, so this thought process merely reaffirms the fact
that our expectations cannot be too high. Given these standards, we may conclude that the
network does an impressive job at predicting melodic lines.

Moreover, in studying the subtleties of Figure 4.4, we may conclude that the neural
network has learned an important rule of music strictly by example. Plots of other input vectors
confirm this; on a given leap in the input the network almost always predicts compensatory
step-wise motion. Thus, without being given any explicit information the network successfully
discovered an important rule of melodic motion.
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APPENDIX A - ENCODED CANTUS FIRMI

* Cantus firmi transposed from examples in Salzer and Schachter, 1989; Jeppesen, 1992; and

some original compositions.
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Musical Key Identification by a Neural Network

Daniel Dormont
Department of Computer Science, Yale University
New Haven, CT 06520
May 5, 2000

Abstract

A musician with fairly simple training has no trouble identifying the key of most
pieces of music. Even without a printed score with a key signature, there are reasonably
casy ways to make this determination. However, this human intuition cannot easily be
transferred to a deterministic computer algorithm. Our objective is to train a multi-layer
feed-forward neural network with a Hebbian-style learning rule to learn to understand the
subtleties that could not be found in a more straightforward algorithm and produce more
accurate results. Unfortunately, the network did not perform as expected, and the end of
this paper attempts to provide some explanation for this situation.

1. Introduction

The key of a piece of music is generally determined by the underlying sequence
of chords that follows underneath the melody. In many cases, the key of the piece is best
identified by examining its final chord. However, this approach is by no means
complete. First, from the “piccardy third” technique of the Baroque period onwards, the
composer would often intentionally modulate to a different key on or just before the final
chord. Variations of this sort became increasin gly common over the centuries. Second,
short melodic fragments (for example, ten notes long such as the ones fed to the network
in this project) are generally in a key of some sort, and it should be possible to dissect this
key from such a short fragment, even if the chords are not actually provided. Although
this problem is not one that requires a computer to solve, and therefore no attempts, to the
best of my knowledge, have been made to apply a neural network to this particular
problem, it is my objective that this could provide insight into the potential for applying
neural networks to the study of music, which is one of the less well-understood areas of

human cognition.

2. Architecture of the Network

2.1 Representation of the inputs and outputs:



For this network, I chose the most obvious method of representing notes: a vector of
twelve values (one for each of the twelve pitches in Western music), with a value of one
or zero specifying whether the pitch was sounding at that time. The output is a similar
vector: all values should be épproximately zero except for the one specifying the chosen

key.

2.2 Construction of the network:

This network is fed vectors of input data one note (or chord) at a time. It is a feed-
forward network with a number of layers equal to the number of notes it is fed, which for
the moment is ten. Each of these layers contains twelve neurons. Each layer is fully-
connected to the next, so all neurons receive all outputs from the preceding layer. All of
these synapses are excitatory. In addition, each layer is fully laterally connected among
its neurons. These synapses are inhibitory. The intention of this"design is that at each
layer, the neurons representing the notes that were playing at that time would produce
stronger output, shutting out noise that might be coming in from other notes in the

previous layer.

2.3 Activation:

Each neuron adds in all of its weights, both from the feed-forward and lateral
Synapses, and passes them through the standard sigmoid logistical function. This
function was chosen because it limits the value of the output of the neuron, while being
monotonically increasing so that results more consistent with expected progressions as

established by the weights will produce stronger outputs.

3. Training

3.1 Learning rule:
We use a modified Hebbian learning rule. That is:

win+1) = wij(n) + eta * xj(n) * yi(n). This rule produces two very useful results:

1. The general theory behind this network is that the synapses between the layers should
encode sequences .of notes that fit more or less well together into patterns so that

sequences that make sense are reinforced and those that do not are weakened. Then,



experimental data should fit into the patterns modeled after pieces of traim'ng data
that were in the same key, so the network should produce the same result.

2. We also want to make sure that in the output for each layer, we reinforce only the
correct pitches. In other words, the more musically distant a pitch is from a particular
chord, the harder it should be for a layer which is transmitting that chord to produce
that pitch. To this end, the application of the Hebbian rule will increase the strength
of inhibitory synapses between more dissonant pitches within each layer, and

decrease the strength of the synapses between more consonant pitches.

3.2 Training procedure:

The melodies are fed in to the first layer one note (or chord) at a time, and the -
outputs for its neurons are calculated. The synapses leading into the first layer, as well as
the lateral synapses within it, are then adjusted according to the Hebbian rule as described
above. This is the first epoch. As each subsequent set of inputs is presented, the outputs
are calculated one layer ahead, and the weights are adjusted for all layers which have
been reached so far. When the end of the melody is reached, we see the result from the
output layer which should now be the correct key. The training set should contain
examples from all twelve keys in different modes (major, minor, etc.) although
experimentation may show that this network is, in fact, only suited for work in one

particular mode.

4. Experiments

It was my intention that I my program be able to translate MIDI sequencer input
into inputs to my network as described above. These sequences would of course be short,
probably snippets of recordings of actual pieces. I would train the network using very
straightforward examples such as Bach harmonized chorales. Iwould then input more
complex examples, hoping that the nodes corresponding to the most prevalent key would
show strong output, and that secondary possibilities would show weaker output.
Unfortunately, though I attempted several approaches, I did not develop a good way of
feeding in MIDI data. This required me to code input sequences by hand, which



prevented me from inputting non-trivial examples and hence obtaining an interesting

result,

5. Conclusions

In my fairly extensive searches of the Internet, I have only discovered one
published paper by a computer scientist using a neural network model for a musical
application. Professor Michael Mozer of the University of Colorado has developed a
neural network for automated music composition called CONCERT. He fed it a wide
range of traditional pieces with the hope that it would learn to generate melodies and
harmonies of a similar style. He used a recurrent network trained on a variation of the
back-propagation network which, given a melodic sequence, was supposed to predict the
next note in the sequence. His attempt was not successful. Althopgh in very simple
cases, Prof. Mozer was able to coax CONCERT into producing output that he considered
reasonable, it failed when he tried to train it to understand broader compositional
structure such as that of a Bach chorale. Mozer blames this result on the failure of the
back-propagation algorithm to produce a network which can encompass both fine-grained
and coarse-grained patterns, and proposes some adjustments that he imagines will
improve the situation, though he confesses to not having pursued the issue. In his online
description of the paper, he concludes: “overall results cast doubt on the promise of note-
by-note prediction for composition.”

Sadly, I suspect that a similar fate may be in store for many artificial intelligence-
oriented approaches to processing music. A former CS 477 student attempted to create a
neural network that could compose Jazz improvisations, using an approach somewhat
similar to Mozer’s. He met a similar fate. I have discerned from conversations with
biologists that very little is understood about how the human brain processes music. It
would be out of line to conclude that present algorithmic techniques in neural networks
are insufficient for the understanding of music. Perhaps a complete redesign of the
network using a new strategy would produce more successful results. However, this
experience suggests that music is an area of greater complexity than computer scientists

may appreciate.
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Neural Network Modeling of Neural Disease

Matthew Dubeck! and Matthew Kerner2
Yale University, Department of Computer Science
New Haven, CT 06520

Abstract
A Hopfield network is used to simulate the effects of neural disease on biological

memory. The net is trained with patterns and subsequent recall is tested. Both one—shot
and continuous Hebbian learning are investi gated and compared. The network is
modified to simulate neural damage in various ways, including neuron and synapse
deletion, and then reevaluated. A gradual decline in network function is observed with
varying rates of decay, depending on disease mechanism. Structural and functional
damages are differentiated.

Keywords — neural networks, neurodegenerative diseases, Alzheimer’s, Hopfield
network, biological computing, Hebbian learning, noise reduction.

1. Introduction

The operation of neural networks mirrors that of biological neural activity; thus it
can be a valuable tool in the study of the human brain. This is especially true when it
comes to experiments that would be unacceptably invasive or prohibitively expensive
with a living subject. Neural networks have been used in various studies of neural
disease with much success (see Ruppin et al., 1996, for a survey of studies).

Our study bears the most resemblance to those of the mid to late—80s, particularly
those by Ralph Hoffman. These initial experiments used a small Hopfield network to
simulate some neural diseases. Our implementation extends these early studies in some
interesting ways. For one, we use many more neurons in our net than Hoffman did. This
allows us to encode more interesting fundamental memories (at least to the human eye),
and to explore a more complicated dynamical system. Furthermore, we have simulated
more diseases than was attempted in early studies. Not only are some of these diseases
different from those in the literature, but many are interesting from the perspective of a
computer scientist as well as that of a physician. Finally, we explore two learning
models, a one—shot learning calculation and a dynamic learning process.

One of the most debilitating effects of neural disease is memory degradation.
Much current research involves the study of actual patients with memory—related neural
diseases such as Alzheimer’s disease. However, this type of research can often be costly
and ethically questionable. By creating an artificial memory using a neural network, we

1 matthew.dubeck@yale.edu
2 matthew.kemer@yale.edu



simulate damage and repair without debilitating a patient or spending prohibitively to
investigate our hypotheses. Once developed and explored in the model, the operation of
the diseases can be confirmed through medical experiments with actual patients. This
combination of experimental physiological studies with computational modeling has
been done particularly well by Hasselmo et al. (see review of work Ruppin, 1996). We
seek to extend this work by inducing memory loss or dysfunction and measuring the loss
in overall memory performance' of two different learning algorithms. N

In line with previous studies, a Hopfield network was chosen as the subject for
our experiments. A Hopfield net stores fundamental memories, or key patterns, and
recalls those key patterns when presented with a noisy version as input.

After configuring the network in such a way that it correctly identifies all of the
key patterns without noise, we measure the performance of this net on a variety of noisy
inputs. Subsequently we damaged it in various ways, all simulating the effects of neural
diseases such as Alzheimer’s or Multiple Sclerosis on a portion of the human brain. We
measured the performance of the damaged net, and compared the data with our original
set. We explored the damage threshold at which the net cannot function reasonably well,
and measured the performance decrease that corresponds to the progress of each disease.

For the one—shot training algorithm, the differences between global and local
information in the network are highlighted by the simulation. In addition, the differences
between diseases that alter network structure as compared to network function become
evident.

For the continuous learning algorithm, we observe a nuanced result that indicates
a critical mass of information present in the neural net. When destroyed, the network
capacity decreases at a greater rate than before. The hill-climbing nature of the network
is emphasized by slight increases in performance resulting from initial minor damage.

2. The Model

A Hopfield network models a neurodynamical system consisting of a number of
fully connected neurons without direct feedback. The synapses each contain a synaptic
weight, and the neuron operates with the signum activation function. That is

N
yi®) =sgn( X x(t=1)w, -T) ()

—y J
i#]

where y,(#) is the output of neuron j at time t, sgn is the signum function, N is the
number of neurons in the network, x;is the output of the ith neuron, and wj is the weight
on the synapse from neuron i to neuron j (see paragraph below for a discussion of
threshold T). If the weighted sum of the inputs to the neuron is exactly zero, then the
neuron’s output remains what it was prior to the calculation.



The work of Homn et al. (1993) suggested that all neurons have a uniform positive
threshold T based upon the probability of a neuron firing in the aggregate fundamental
memories. The number of active pixels, and hence neurons, in the fundamental
memories were counted and then divided by the total number of pixels in all the
fundamental memories to generate a probability p. This probability represents the
likelihood that a pixel is active (or that a neuron is firing). Horn et al. (1993) indicated
that the optimal value of the threshold T is determined by the following equation:.

T___p(1-p;(1—2p) : @)

Ideally, the individual neurons update and fire concurrently and continuously, but
given our simulation environment, we choose to update them asynchronously. That is,
we repeatedly select a single neuron whose output gets updated using the snapshot of the
network state at that time as input. The network reaches a stable state when all of the
neurons’ outputs are aligned — that is, none of the neurons will change state if selected
for update.

We have chosen to implement one efficiency heuristic, modifying the natural
asynchronous updating paradigm. Instead of selecting a neuron at random from the
entire set of neurons on each iteration, we choose a neuron at random from the subset of
neurons not converged at that iteration. Each of our iterations produces some

constructive change in the network state.
At time t=0, we set the neuron states according to an input vector, and allow the

network dynamics to cause state change over time. Once the network has settled into a
steady state, we extract the state vector and evaluate performance.

The learning model for a Hopfield network is based upon Hebbian dynamics.
Hebb proposed that neurons modulate their synaptic strengths based on the degree of
correlation between their firing times (Haykin, 1999). This theory explains the
connection between correlation and memory — if one neuron is found to be consistently
in agreement with another neuron that acts as an input to it, a memory develops that

encourages this correlation in the future.
The baseline learning algorithm is a one-shot calculation of a static synaptic

weight matrix for the network. The weights on a N—neuron network are represented as
an N by N matrix W, calculated using the Hebbian outer product formula:

M
w=-"L3 ge-m1 3)
N ooy

Here, I is the identity matrix, o« isa weight scaling constant determined experimentally



at 38.0, M is the number of exemplars, and &, is the ith exemplar in vector form. This

yields a symmetric matrix W (i.e. W=W?7 ) that is installed on the network (each row
is a vector of weights for one neuron). Instantiating the weights in this manner is a
discretization of a continuous learning process into a single approximate calculation.

Our second learning algorithm is a dynamic implementation of Hebb’s rule.:
Exemplars are presented to the network during successive epochs. At each iteration, the
exemplar is presented to the network through an external input. This input is added to
the summation calculated in equation (1) above, much like the input from an additional
synapse. Specifically, the external input is: '

Fi=¢k,(e>0) @

i

where F ," is the external input to a neuron i, g, isthe ith exemplar, and e isa

constant scaling the strength of the exemplar during learning. This constant was
determined to be optimal at a value of 1.5 by experimental simulation. During each
presentation, the synaptic weights of the neurons are modified using the following

formula:

W (=W (= 1+ (5~ p)(S ~p) )

i ij

y Is an activity scaling factor, which was determined to be optimal at 10.0 by

experimentation. S ¢ is setto 1 if and only if neuron k has been firing for the last five

iterations, or is set to —1 if neuron k has been passive for five consecutive iterations. If
either neuron i or j has not been stable for five iterations, no weight update is performed
for this synapse on this iteration. Given a stable synapse for five iterations, the weight
will vary directly with correlation, reflecting Hebb’s hypothesis. See Ruppin et al., 1995
for further discussion of this algorithm.

Of the two learning algorithms, the continuous version more accurately resembles
a biological network, where weights are continuously updated according to the local
Hebbian dynamics. The appeal of the one-shot learning algorithm is its speed.

3. Input Data

We have chosen the arabic numerals, partly because its data elements are
recognizable to the human eye (see Appendix A for data set enumeration). Ten patterns
is a reasonable limit on the number of fundamental memories. This is convenient, as the
network recall is perfect only when the data is orthogonal and uncorrelated. Without



these conditions, cross—talk between different exemplars begins to inhibit the functioning
of the network.

We represent the decimal digits 0 - 9 in a grid of bits, with a 1 representing a
black pixel, and a -1 representing a white pixel. The size of this grid was determined
largely through trial and error. Our original choices of 3 x 5 and 4 x 6 grids were found
to be too small. The inputs were too similar, and fundamental memories did not
converge to themselves. We settled on a 10 x 10 grid, leaving us enough room to vary
the size, position, thickness, and shape of each fundamental memory enough that the
crosstalk is negligibly low. _

The data set was originally designed for the one—shotlleaming algorithm. We
found that this algorithm was able to successfully identify all ten data elements.
Furthermore, it lent itself to fundamental memories with reasonably high activity levels.
Using the p index as a guide, our data set for this algorithm has a firing probability of
31.2%. _

On the other hand, when using the continuous learning algorithm, the network
had difficulty learning this data set. We hypothesized that the network had a smaller
memory capacity when learning with the continuous algorithm, so we redesigned the data
set to have a smaller p, specifically 16.6%. After repeated tests, we concluded that a
network of our scale that is trained with the continuous learning algorithm cannot
accommodate more than five fundamental memories. The five that we chose were based
on experimentation (see Appendix B for data set enumeration).

4. Diseases -

Once the baseline network had been established, a series of different "diseases”
were inflicted upon the network to investigate its performance and recall. The forms of
damage were chosen from a variety of sources, resembling actual biological diseases in
many cases.

The first disease, neuron elimination, deletes entire neurons from the network by
eliminating all synapses in and out of a neuron. This effect can be seen in advanced
stages of diseases such as Alzheimer’s and Multiple Sclerosis when neuron cells die.

The second disease, synaptic crossing, while not biologically motivated, offers an
interesting perspective on the dynamics of the network. Two incoming synapses of a
neuron have their weights exchanged. Note that this disease may create a direct feedback
loop in the network, a symptom that has been observed in Multiple Sclerosis patients.

The third disease, asymmetric synaptic elimination, simulates a common effect of
Alzheimer’s disease by deleting synaptic connections throughout the cortex. Simulations
of this effect have been widespread and popular, and are generally accepted as an

accurate simulation of neurological disease.
The fourth disease, symmetric synaptic elimination, deletes some fraction of the



incoming synapses equally for each neuron. While not biologically probable, this is an
interesting variant on the previous disease.

The fifth disease, neuron seizure, simulates a symptom of Schizophrenia in which
neurons fire spontaneously. This is postulated to be the cause of some schizophrenic
conditions, such as hallucinations and phantom voices.

The final disease, impulse jumping, simulates this further. Synaptic connectioris
are chosen at random and their weights are set to a constant positive value. This change
short—circuits connections at random, producing an excitatory effect on the network.

5. Results

When running simulations on the network trained with a one~shot calculation,
each atomic trial consisted of presenting the fundamental memories with some noise
introduced. This noise was created by flipping the initial states of 10% of the neurons,
on average. The network was then presented with this input. We measured the amount
of noise remaining after convergence, and compared it with the initial figure, yielding the
percentage of noise reduction.

For each stage of each disease, we ran 1000 atomic trials. Each of these trials
used a different random seed, so we could gather statistically meaningful measurements
from the outputs.

As the disease "progressed,” the percentages of neurons that were damaged was
increased, and we ran another 1000 atomic trials. By repeating this process ranging from
5% to 95% damage at 5% intervals, we traced the gradual decrease in the performance of
the network.

The baseline undamaged network running the one—shot learning calculation
correctly identified the fundamental memories when presented with them. Furthermore,
when presented with "dirty"” versions of the fundamental memories, randomly corrupted
up to 10%, the network reduced the noise and converged to a state with only 3.5% error
on average. Although this is not perfect, it shows considerable improvement from the
noisy input. It is believed that the the interrelation of data created crosstalk in the stored
memories, resulting in plateaus in the basins of attraction that could not be overcome.



Error Remaining vs. Neuronal Damage
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Fig 1 — Percentage of error in recall versus relative damage in a Hopfield network simulating
biological memory recall with the one-shot training computation. Note that neuron seizure fails
above the 50% mark. The noise internal to the simulation at this point prevents it from
converging in any reasonable amount of time.
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Fig 2 — Percentage of noise eliminated versus relative damage in a Hopfield network simulating
biological memory recall with a one~shot learning computation.

As final data, we retained 20 data points for each disease, each of which is an
average over 1000 atomic trials, each of which consists of 10 individual memory tasks.
These data are shown in Figure 1. Figure 2 represents these same trials, but instead of
showing the noise remaining, it shows the percentage of noise reduction on average.

It is interesting to note the various slopes of decline in the performance of the
network infected with the different diseases. Most notable is the comparison between
the effects of neuron elimination and synapse elimination. In these two diseases, the
number of synapses that are eliminated are equal on average. Neuron elimination
removes them locally; while synapse elimination removes them in a globally dispersed



manner. Figure 3 demonstrates the differences between these diseases at a greater

Tesolution.
Synaptic Deletion vs. Neuronal Deletion
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Fig 3 — Percentage of noise eliminated versus relative damage showing the greater performance
degradation suffered from neuronal elimination than from asymmetric synaptic elimination.

Not only does the network suffering from neuron elimination perform less well than the
network suffering from synapse elimination, but the difference grows as the disease
advances.

Our metrics are in percentiles, and may at first seem dissimilar to the
measurements reported in the literature on neural simulation. For example, Ruppin uses
the metric of overlaps in his studies. Overlaps quantify how close the state of the
network is to the desired output at any iteration, or upon convergence. This is analogous
to Hamming distance, which is simply the number of bits in the binary vector
representing the network state that differ from the desired state vector.

In fact, our metrics are nearly identical to these. Since we have 100 neurons in
our network, a percentage of error is exactly the Hamming distance between the desired
state and the stable state.

When running simulations using the continuous learning algorithm, the data was
presented over the course of ten epochs. In each epoch individual memories were chosen
in random order, and presented to the network repeatedly. At each presentation, the
network ran until convergence while adjusting synaptic weights as in equation 4. It was
found that the network performed better if the early epochs presented each data pattern
only once or twice, while later epochs presented each pattern as many as ten times.

After the learning phase, the network was infected with the diseases listed above.
As with the one—shot network, each disease was simulated at different levels of
development, ranging from a healthy network to one with a relative damage metric of
40%. Furthermore, each simulation was run with a noise level ranging from pristine to



50% corruption. Each simulation was averaged over fifteen iterations to gather
statistically valid data. Due to the computational requirements of the learning algorithm,
it was infeasible to increase the sampling of this network.?

The continous—learning network performed as summarized in Figure 4 below.
The ability of this network to reduce noise far surpassed that of the one—shot network. In
fact, when presented with patters corrupted up to 10%, the continous—learning network
returned exactly the memories that it had learned, and this performance degraded very
slowly up until the 25% mark. However, the network had significant difficulty learning
all five patterns exactly, and always contained some corruption in its stable states.

Interesting to note is the improvement in performancé caused by relative damage
of under 20%, particularly with asymmetric synapse deletion and neuron seizure. This
improvement holds across the spectrum of noise. Other related studies have found
similar results, particularly Ruppin et al., 1995.

Also worth noting is the stairway-like structure of the performance surface,
particularly in synaptic crossing and symmetric synapse deletion.

3 24 hours of continuous simulation on six different machines was required to gather the data presented
on the network with the continuous learning algorithm.
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6. Conclusions

From these experiments, we draw several conclusions about the functioning of
memory recall in the face of neurodegenerative disease. In the case of the one-shot
network, it is surprising that three of the diseases operate in close approximation to each
other: symmetric synapse elimination, asymmetric synapse elimination, and'ifnpulse
jumping. The former two diseases have an inhibitory effect on the operation of the
network, although the latter is excitatory. We would expect to see some difference in the
performance of the network when damage is uniform, as in the symmetric disease, as
opposed to the asymmetric variation. We believe that the network responds in a similar
manner to any changes affecting the synapses alone. The initial rate of degradation is
relatively small compared to other diseases, but accelerates as the disease progresses. We
conclude that a critical mass of synaptic information is necessary to maintain normal
network operation, and the loss of this information speeds the network’s degradation.
This conclusion agrees with much of Ruppin’s work that indicates a 25% damage
threshold. (see for example, Horn, Ruppin, et al, 1993)

Furthermore, the performance of the network with seized neurons is almost equal
to that of the healthy network throughout the feasible range of the experiment. We
conclude that the disruption caused by the firing of random neurons is functional in
nature, not structural. As a result, the noise elimination capacity built into the network
c¢an compensate, although it becomes overloaded at a certain point. It is intuitive that this
threshold would be roughly 50%: for every correction, there would be a corresponding
introduction of noise, returning the network to the same distance from a stable state.

Synaptic crossing exhibits a slower and more gradual degradation than many of
the other diseases we simulated. We conclude from this that the process at work is one
of gradual confusion, rather than one of catastrophic structural damage. The weights
themselves are preserved in this disease — it is just their location in the network that
changes. Although this is biologically far fetched, it hints at the ability of a network to
gradually modify its stable states as weights migrate throughout the network.

We see the diffuse quality of the information in the net through its graceful
decline as it suffers from diseases. Prior to a damage threshold of 20%, where
performance begins to slope downward at a greater rate for the majority of the diseases,
this net is able to function in approximately healthy condition. A few trials showed an
increase in noise reduction as some minor random degeneration occurred. This can be
attributed to the hill-climbing nature of a neural network as it converged (hill-climbing
algorithms often benefit from randomized influence). Overall, the network is
surprisingly resilient at accomplishing its task when damaged.

While the network shows a capacity for dispersed information storage and
retrieval, it also shows that some important information resides in the relation of weights



within each neuron. This is clearly shown by the decrease in network performance as
neuron elimination sets in. This decrease is more pronounced than that of any other
disease. We see that not only does the neuron itself fail to function, but the network as a
whole loses a key part of its information. It is likely that this is especially true for a
Hopfield network, since each node contributes to the inputs of every other node,
globalizing any local damage. ’

The results of the continuous—learning model present more questions than those
of the one—shot model. Particularly interesting is the presence of peaks and valleys in the
performance surface as the disease and noise levels increase significantly. This suggests
that various spurious memory elements are introduced and deleted as information in the
network is corrupted. This would correspond with some clinical observations of
biological neural disease, such as Schizophrenia, in which patients experience voices or
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hallucinations.
For the majority of the diseases, the threshold at which performance begins to

decrease at a greater rate is just below the 20% damage mark. This is in line with our
results from the one—shot network experiment, and suggests that a similar critical mass of
information is stored with both approaches.

The unexpected relationship between symmetric synapse deletion and asymmetric
synapse deletion occurs again, with asymmetric deletion demonstrating a gradually
curved surface that contrasts with the bumpier surface produced by symmetric synapse
deletion. We conclude that the locality of some of the synaptic information plays a large
role in keeping the network memory consistent. When that locality is disrupted, as in
symmetric synapse deletion, the network falls in and out of spurious configurations. As
the locality is undisturbed in asymmetric synapse deletion, this behavior is less evident.

Despite the encouraging results from this study, it suffers from several
shortcomings. We could test combinations of these diseases, or use additional
mathematical tools to create higher fidelity models. For example, the literature suggests
some enhancements over a basic Hopfield network that can illustrate some key aspects of
neural disease. Instead of treating all of the neurons in the network as though they are in
close proximity, many newer studies have simulated the physical distance between
different neurons. (Reggia et. al., 1996) This gives researchers a clear criteria for
designing diseases that are local in nature, but that affect a global network. Ruppin, in
particular, has developed this idea and created simulations of a wide variety of
interconnected structures.

One of the more intriguing ideas is that a network can dynamically compénsate
for damaged synapses. Various studies have looked at both global and local
compensatory mechanisms that hide the damage done to synaptic connections.
Unfortunately, as in Alzheimer’s, the temporary improvement quickly leads to an even
more drastic drop in network performance once the compensatory mechanism is
saturated. (Hommn et al., 1993) We considered simulations along these lines, only to



conclude that our continous~learning algorithm had to be refined before our simulation
could support this feature. :
Allin all, neural networks offer a unique opportunity to researchers who wish to
study brain function without participating in ethically questionable and financially
draining clinical experiments. Many of the symptoms and effects of neural diseases have
been successfully replicated in the computer lab, and offer a clear, detailed view of the
mechanisms at work. Further research certainly remains to be done in this exeiting field.
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Appendix A - Data Set Enumeration

Our fina] data set for the one—shot calculations follows. The final data set includes
enough differentiation in the sizes, thicknesses, positions, and shapes of the individual
fundamental memories that convergence to those states is possible in a healthy net.-

Initial state 0: Initial state 5:
XXXXXXXX XXX XX
XX XX XXXX X XXXX
X X X X X X
X X X X XX XXX
X X . X X
X X XXX XX
XX X X XXXXX
XX X X
XXXX X XXX
XXXXXXXX
Initial state 1: Initial state 6:
XX XX
XXXXX
XXX
XXX
XXX XXXXXX
XXX XXXXXX
X XX X X
XXX XXXXXX
X XX X X XX
XX XXX XXXXXX
Initial state 2: Initial state 7:
XXX XX XXXXXXXXXX
XXXXX X X
X X X X
XXXXX X X
XXXXX X X
X X X X
XXXXX X X
XXXXX X X
X X
X X
Initial state 3: Initial state 8
XXXXX
X X X X
XXXXX XXXXX
XX XXX X X X X
XX XXXXX
XXXXX
XX XXX
X X
XX XXX
XX XXX
Initial state 4: Initial state 9:
XXXXX
X X XX XX X X
X X X X XXXXX
XXXXX XXXXX
XXXXX X X
X X X X
X X
X X




Appendix B — Continuous Learning Data Set

Our final data set for the continuous Hebbian learning algorithm follows. It was
necessary to rescale the digits in order for the network to learn any of the patterns.
Interestingly, if the data sets are swapped between one—shot and continuous learning,

recall is significantly worse.

Initial State 0:
Initial state 4:

1 1 1
1 1 1 1
1 1 1 1
1 1 11111
101 1
11111 %

Initial State 1:

1
1 Initial State 7
1
1
1 11111
1 1
1 1
1
Initial State 2: i
1
11111
1
1
11111
1
1

11111




v Appendix C - Convergence Trace
Below is a state—by-state diagram showing the convergence of a noisy input ’9’ to the
output in a healthy network using a one—shot learning calculation.

Corrupted input Hopfield net interim state:
{9) Hopfield net initial state: X
X

XXXXX XX X X
XX XX XXXXX X
XX XX X XXXXX
XXXXX X

X XX

XX
X X X
X X X

_ Hopfield net interim state:
Hopfield net interim state: X

X XXXXX
XXXXxX XX X X
XX X X XX XXX X
X X X X X XXXXX
XXXXX X
X X X
XX
X X
X X X Hopfield net interim state:
X .
Hopfield net interim state: XX XXX
X X X X X
XXXXX XXXXX
X X XX XXX XX
X X X X X X
XXXXX X X
X
XX
X
X X X Hopfield net interim state:
X
Hopfield net interim state: XX XXX
X X X X X
XXXXX XX XXX
XX XX XX XXX
XX XX X X X
XXXXX X X
X
X X
X X X Hopfield net converged state (9
iterations):
Hopfield net interim state:
X XX XXX
XXXXX X X XX
XX X X XX XXX
XX X X X XX XXX
XXXXX X X
X X X
X X

Init Correct: 91, Incorrect: 9, Wrong %:

X X 9.0
Correct: 100, Incorrect: 0, Wrong %: 0.0

Hopfield net interim state:
X




Neural Network Models for Face Recogniﬁon

Robert Dugas' and Jesse Grauman?
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Abstract

We tested three neural network models for the purpose of recognizing faces. All three
designs use variations on the backpropagation network (BPN) paradigm. The first design
uses the actual images to identify the faces, while the other two models first preprocess
and compress the inputs; one by using another BPN, and the other by using principal
component analysis. We trained the networks to identify twenty images of faces and
tested their effectiveness in identifying variations of the training images, as well as in
correctly classifying other images as unfamiliar. We found that while preprocessing
using principal component analysis provided a moderate improvement in identification
rate, preprocessing using the BPN did not. We discuss the implications of these findings
for the use of the BPN design as a feature detector.

Keywords — neural networks, face recognition, backpropagation network, neural

modeling

1. INTRODUCTION
1.1 Background

Despite the ever-increasing capabilities of modern computers, computational
modeling of seemingly basic neural tasks continues to confound researchers in artificial
intelligence. Tasks which the human brain performs without conscious effort, such as
navigating obstacles or understanding speech, prove difficult to recreate computationally.
This project uses a computational neural network to explore one such task, that of face
recognition.

The specific task we have chosen to approach is the identification of a finite set of
faces from an exemplar set. In this problem, a network is first trained to identify each
face in a set of unique exemplars. Once it can identify these faces, it is presented with
slightly different images of the same faces, perhaps varying in pose or facial expression.
The network is then tested on its ability to positively identify these images as being the
same faces used for the exemplar set. In addition, it is presented with images of
unfamiliar faces and tested on its ability to “reject,” or fail to identify, these faces.

Successfully implemented, such a model has a variety of interesting applications.
Police sketches, for example, could be mapped to possible suspects from a database of
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photographs. Job interviewers and test administrators could obtain reliable identification
of subjects. Security systems could grant or deny access to individuals based on whether
or not they could identify them as being in a company database. Beyond these
applications, a successful model might be able to deepen our understanding and
appreciation of the human brain’s face recognition capabilities.

Part of the reason that face recognition—and vision in general—is so problema*lc »
for computers is that an 1mage of a face is merely represented as a large matrix of
intensity values, many of which are similar across many faces. Thus, it stands to reason
that in order to accurately identify faces—particularly variations of the original images
from an exemplar set—it is helpful to preprocess the image of a face in order to extract
its salient features. Presented with a much smaller and more variant “feature vector”
rather than the original intensity matrix, a network should find it easier to identify the
variations of the training images. This is due to the fact that their features are more
highly correlated with those from the images used for training.

1.2 The current project
In this study, we compare the performances of three different neural network

designs that we created for face recognition. All three use the backpropagation network
(BPN) paradigm. In the first design, the images are not preprocessed; the network is
simply trained to identify each of the pixellated images in the training set and then tested
accordingly. This network was used as a control in order to test the effects of the
preprocessing in the other two. In the second design, the training images are compressed
into feature vectors using a BPN in a scheme developed by Golomb et al. (1991, cited in
Skapura, 1996). The preprocessed images are then used in order to train another BPN
used to identify the faces. In the third design, we preprocessed the images using principal
component analysis and then used the principal components to train a BPN to identify the
faces.

We hypothesized that the two networks that used preprocessing would outperform
the control (first) network in identifying the variations of the training images. We
believed that in extracting the features of the training images, these two networks would
Create more generalized exemplars than simply by using the original pixellated images.
While two images of the same face might differ somewhat in the actual pixel values, their
feature vectors, we hypothesized, would remain relatively similar to each other.

After a series of experiments, our hypothesis was partially confirmed. The design
using principal component analysis to extract features did show some improvement over
the control in identifying variations of the training images. However, the design using
backpropagation for preprocessing did not improve over the control, and was actually
deficient to it in some respects. This caused us to question the validity of
backpropagation as a tool for feature extraction from i images.



2. EXPERIMENT
2.1 Data Set

Our set of training images consisted of 20 grayscale JPEG images of faces, taken
from the face recognition database of AT&T Laboratories, Cambridge (http://www.cam-
orl.co.uk/facedatabase.html). The original images were 92 x 112 pixels; in order to meet
realistic speed and memory requirements, we used an image manipulation programto .
scale the images down to 30 x 36 pixels. The database contained 10 different images of
each person, and we tried to choose the most géneric one for our training set-—one where
the subject was facing forward, without any exaggerated fac1al expressions, and if
possible, in medium lighting.

In order to test the effectiveness of our identification network, we chose three
other sets of images. The first consisted of “easy variations” of the training set—20
images, one of each face, each of which was slightly different from its corresponding
picture in the exemplar set, such as small tilts of the head and slight but noticeable
changes in facial expression. The second, a set of “hard variations,” contained images of
the same faces that differed more substantially from those in the trainin g set. These
variations included pictures taken with or without glasses, more pronounced tilts of the
head, and exaggerated facial expressions. These two sets were used to test whether our
identification networks would be able to correctly identify these faces as being very
similar to the faces used for training. The training images, as well as the easy and hard
variations, are shown in Figure 1. Finally, the third set, which included images of 20
other individuals, was used to test whether our networks would correctly identify these
unfamiliar faces as not corresponding to any of the exemplars.

Since the images were 30 x 36 matrices of intensity values, they were represented
in our networks as vectors containing 1080 elements, and the elements were normalized
to range from O to 1 before being fed through the network.

2.2 Network Parameters

All networks described in the following section were built using the neural
networks toolbox in the MATLAB programming environment.
2.2.1 Control Network

Because our main goal in this project was to test the effects of preprocessing on
face recognition, we first needed a control network that would attempt to identify faces
without using any preprocessing. This network, a fully-connected BPN, contained 1080
input nodes, 20 output neurons, and no hidden neurons. The activation function used for
the output neurons was the sigmoidal logistic function:

Yi=1/1+exp(-v)
For training, each exemplar consisted of one of the face images as its mputs and a 20-
element bit vector as its output. For each of the 20 inputs x;, the trained output was a bit




Figure 1. Set of training images and variations.

vector in which only bit i was set to 1, while the rest were set to 0. Thus, the network
was trained to output a unique bit vector for each training image.
2.2.2 Preprocessing using Backpropagation

Our second network design used a BPN in order to preprocess the images. We
modeled this network after one built by Golomb et al. (1991) in their design of a neural
network to classify faces by gender. In this unique design, a BPN is used to map an
image to itself, The input layer contains 1080 nodes, as does the output layer of neurons,
which uses the linear activation function Yj=V;. The hidden layer contains a much
smaller number of neurons—40 in this case—and uses the logistic function. These
neurons are designed to act as feature detectors. Each exemplar uses the basic 1080-
element image vector as both its input and its output. Thus, in training, the purpose is to
Create an autoassociative network in which each of the 20 training images reproduces
itself.

The outputs of interest in this network, however, are not the reproduced images
but the 40 outputs of the hidden layer. These outputs represent a feature vector that can
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be used to regenerate the original images. In order to extract these outputs for each
training image, we created a feedforward network whose architecture, including the
weights, was identical to that of the first two layers of the trained autoassociative
network.

In order to identify the preprocessed inputs, we created a second network which
consisted of 40 input nodes and 20 output neurons, which used the logistic function. This
network was trained to map each feature vector created by the first network to a unique
bit vector as in the control network.

2.2.3 Preprocessing using Principal Component Analysis

Our third network preprocessed the pixellated images using principal component
analysis, another way of compressing a large input into a much smaller one. In this
method of compression, the inputs are multiplied by a matrix whose rows are the
eigenvectors of the inputs covariance matrix. The result is a set of input vectors whose



No preprocessing Preprocessing using | Preprocessing using
(Control) BPN' principal component
analysis

Identification of 77% 69% 90%

easy variations

Identification of 57% 49% 61%

hard variations

Rejection of 89% 77% 88%

unfamiliar images

Table 1. Comparison of Results (shows avg. % correct over 10 simulations)

Rejection of |
~ Unfamiliar
Faces

ldentification
of Hard
Variations

ldentification
of Easy
Variations

5 10

O No preprocessing (control)
M Preprocessing using BPN

Preprocessing using principal
component analysis

15 20

Avg. # correct (out of 20) over 10
simulations

Figure 4. Comparison of Results



components are orthogonal and represent the components of the original inputs that
contribute the greatest amount to the variance of the original inputs. In our
implementation, all components that contributed less than 1% to the total variance were
eliminated. The result were principal component vectors that consisted of 19
components, a significant reduction from the original data.

To identify these inputs, we created a second network similar in design to our
other two identification networks. This network had 19 input nodes, one for each
principal component, and 20 output neurons which used the logistic function. It was
trained to map each training example’s principal component vector to a unique bit vector
as in the control network. |

2.3 Method
In each of the three designs, we trained the networks to identify the 20 images in

the training set. For the two designs in which preprocessing was used, we first
preprocessed the training inputs, either using the BPN or principal component analysis.
For the preprocessing, the BPN was trained for 2000 epochs. We then trained the
identification networks using the feature vectors produced by the preprocessing. We
tested the trained networks on both the “easy” and the “hard” variations of the training
faces, as well as on the 20 additional unfamiliar faces. For the networks in which
preprocessing was used, the same preprocessing techniques used for the original inputs
were applied to the new inputs. We recorded the number of correct identifications of the
easy and hard variations, as well as the nuinber of correct “rejections”—that is, negative

identifications—of the unfamiliar images.
3. RESULTS AND DISCUSSION

We defined a positive identification of an input with training image x; as occurring
if output neuron 7 had an activation of 0.5 or greater, while all other output neurons had
activations of less than 0.5. Failure to meet both of these criteria was defined as a
negative identification—a decision that an input did not represent a face used for the
original training set.

All of the networks were able to accurately identify the images in the training set.
Thus, the results we cite here concern the accuracy of the networks in identifying the
variations of the inputs, as well as their accuracy in rejecting the unfamiliar inputs. The
results showing the performances of all three models can be seen in Table 1 and in Figure
4. Percentages shown represent the average performance of the networks over ten
simulations. Our first observation was that the control network performed surprisingly
well, identifying 77% of the easy variations, 57% of the hard variations, and correctly
failing to identify 89% of the unfamiliar images. However, preprocessing the data using
the BPN did not provide the improvement in accuracy we had anticipated. Instead, the



performance of this network was actually worse than that of the control, as its accuracy
rate was 8% less than the control’s for the easy and hard variations, and 12% less for the
unfamiliar images. Using principal component analysis to preprocess the data, however,
did improve accuracy in identification of the easy variations. When the identification
network was trained on the principal component vectors, it was able to identify 13%
more of the easy variations than the control. Although its performance was comparable
to the control’s in the other two tests, the improvement in identification of easy‘va.riations
was an encouraging one, as it indicated that there was a benefit to preprocessing the
inputs. :
In speculating as to why the preprocessing used by the BPN did not work as
expected, we noted that over the course of a number of simulations, the accuracy rates of
this model varied widely when compared to the accuracy rates of the other two models.
One reason for this might be the random assignments used to initialize the variables for a
BPN. This caused significant variations in the feature vectors produced by the hidden
layer. Similarly, because the mechanism by which the BPN produces its feature vector
has a “black box” kind of framework, it is virtually impossible to tell whether the
network is actually extracting features, and if so, which ones. Conversely, using
principle components analysis to extract features is a more rigorous mathematical method
known to produce orthogonal components that are not correlated with each other, and

thus are useful as a feature vector.
4. CONCLUSION

In order to further investigate the extent to which preprocessing images can help
face recognition in neural networks, it would be useful to repeat the above study using
larger data sets. Presumably, this would create a more difficult task for a network which
did not use any preprocessing, and the improvements created by preprocessing would be
more significant. In addition, it would be useful to investigate the performance of a
network trained on a few separate exemplars for each face it desires to identify. This
would likely increase the robustness of the network because it would learn to identify a
more generalized version of an individual’s face. Given the numerous applications for
face recognition, it would be beneficial to continue to study the effectiveness of
preprocessing and neural networks in this domain.
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