A block matrix generalization of the Jacobi rotation method for computing the eigendecomposition
of a symmetric matrix is presented. This Blocked Classical Jacobi (BCJ) algorithm selects for
block rotation at each step the off-diagonal block(s) of largest mass. The BCJ algorithm exhibits
substantially shorter runtimes than another blocked Jacobi method, but is slower than a scalar
Jacobi algorithm on random matrices with 7.i.d. uniform elements. A probabilistic analysis of the

BCJ selection method is presented. Timings and other data are presented from experiments on
random matrices.

A Blocked Jacobi Method for
the Symmetric Eigenproblem

David E. Foulser

Research Report YALEU/DCS/RR-680
February 1989

This research supported by the Office of Naval Research under grant N00014-86-K-0310.

1 Introduction

The class of Jacobi rotation methods [4,7,10,12] for computing the sym-
metric eigenvalue decomposition

A=UDUT (1)

of an n x n real matrix A, where U is orthogonal and D is diagonal, has
generated substantial interest in recent years, particularly in the context
of parallel computer architectures. Algorithms have been developed for
systolic processor arrays as well as for more general purpose parallel com-
puters. These methods differ principally from the original method of Jacobi
in that they choose a fixed sequence of matrix elements for the necessary
orthogonal rotations. Jacobi’s method performs a rotation to zero out the
largest off-diagonal element at each step; the sequence of rotations is data-
dependent.

This paper presents a novel block matrix or “hypermatrix” adapta-
tion [2,3,16] of the original algorithm, which we label the Blocked Classical
Jacobi (BCJ) algorithm. The matrix A is treated as a smaller m x m matrix
of b x b submatrices; computations work on entire submatrices rather than
on scalars. Furthermore, the sequence of submatrices to be rotated is cho-
sen to locally maximize the reduction of A to diagonal form by selecting the
off-diagonal blocks of largest mass. BCJ reduces serial runtimes compared
with other blocked Jacobi methods on a particular class of inputs.

For computers with a hierarchical memory system, in which succes-
sively larger yet slower memories are located at increasing distances from
the arithmetic processor, many numerical calculations are efficiently struc-
tured in terms of block algorithms [3,8,15]. Rather than computing with
scalar quantities, block algorithms operate on small square or rectangular
submatrices of data. The resulting “surface-to-volume” effect of a single
block data transfer followed by several computations allows a fast processor
with local memory to achieve nearly full utilization even when supplied by
a significantly slower bus or main memory.

The blocked organization of BCJ reduces the overhead cost of deter-
mining the maximum off-diagonal elements. It also makes BCJ especially
well-suited for implementation on multiprocessors with a hierarchical mem-
ory system (e.g., [8]). As well, BCJ is suitable for parallel implementation.

However, the significantly shorter runtimes of the sequential Jacobi suggest
that it is to be preferred over all blocked methods on this class of inputs.
The organization of the paper is as follows. Section 2 gives a brief review
of serial Jacobi methods for the symmetric eigenproblem. Section 3 gives
the motivations for BCJ and presents the algorithm as implemented in this
study. Section 4 lays out the numerical experiments with BCJ, including
timings and numbers of iterations to convergence. Section 5 presents the
analysis of the block selection method using the theory of order statistics,
and discusses the implications for the experimental data. Concluding re-
marks and indications for parallel implementations are presented in section
6. Section 7 contains the proofs of two probabilistic results from section 5.

2 Review of Serial Jacobi Methods

The Jacobi method of solving (1) constructs a sequence of orthogonal ro-
tations U1 = U(el,il,jl,A(O)), Ug - U(92,i2,j2, A(l)), y such that U =
UiU, - - - diagonalizes A (that is, UTAU is diagonal), 0 < 6; < /4, and
lim; ., 6; = 0. In practice the computation is terminated after a finite
number of rotations, leaving U = U U, ..., Uy. The rotation U, is selected
to zero out the matrix elements in positions (4,,4,) and (j,,%,).

Given (4,) = (4,,7,), the rotation angle 6, is computed so that A®) =
UT A-1U,, according to

o aff _(cu su)T aly™ afy™V (cu 31/) (2)
a o) \=s o) \af™ o) \=s 0/’

13

with af-;-') = ag'{) = 0; here A(®© = A. The cosine ¢, and sine s, of the angle
6, may be calculated by [9]

=¥ — i) (2al), TV #£0, (3)

then solving for ¢ in

2 _ _ _ sign(r)
24 2r =1 (t_ ITI+W) (4)

and substituting in

o =(1+t)2 5, =ct (5)

2

U, is set to the identity matrix, except in rows and columns z, and j,,
where it is zero everywhere but in the 2 x 2 principal submatrix; there it is

(c,; «Zu) If az(;—l) = 0 then ¢, is set to 1 and s, to 0, for 8, is obviously
—s, ¢,

0.

There are several methods for choosing the rotation index pair (z,j).
The classical Jacobi method selects (7,) at each step to locally minimize
the resulting off-diagonal Frobenius norm by choosing (¢, j) as the location
of the largest off-diagonal element. However, the effort of determining the
location of the maximum element (O(n?) operations) exceeds the work in
calculating and applying the orthogonal rotation U, (approximately 18n
operations neglecting symmetry). For this reason the method is rarely
used on computers.

The cyclic-by-rows ordering of elements ((z,7) = (1,2), (1,3), ..., (1,n),
(2,3), ..., (2,n), ..., (n — 1,n)) is more amenable to automatic compu-
tation. However, the successive index pairs are almost always dependent
(sharing a row or column), and thus not suited for parallel computation.
Parallel orderings have featured other index pair selections chosen for data
locality and utility on a systolic processor. The Brent-Luk and Sameh or-
derings [4,13] have many desirable features. They preserve data locality and
are amenable to systolic or other parallel implementations, they converge
faster than the cyclic-by-rows ordering, and they rotate each off-diagonal
element exactly once in a “sweep.” A particularly useful feature is that
at each step, the n/2 independent rotations (operating on n/2 mutually
distinct pairs of rows and columns) may be carried out simultaneously.

3 Algorithm BCJ

We now develop a blocked analogue of the classical Jacobi algorithm for
the symmetric eigenproblem (1) that performs more work in selecting the
index pairs yet requires less run-time than a blocked Brent-Luk ordering.
BCJ also generalizes to computation of the singular value decomposition of
a rectangular matrix. The new Blocked Classical Jacobi (BCJ) method
selects the largest off-diagonal block(s) for rotation, in order to locally
minimize the off-diagonal mass of A. Through a suitable choice of the
block size, the extra computations to determine the off-diagonal block of
maximum mass are offset by a reduced number of iterations; BCJ is more

3

efficient on a serial computer than the blocked Brent-Luk Jacobi method.

BCJ is also highly parallel in nature. Where several processors are
available to solve a single eigenproblem, the K > 1 largest independent
off-diagonal blocks may be selected for simultaneous rotations, leading to
a straightforward parallel implementation.

At each iteration, BCJ selects an off-diagonal block submatrix (z,7)
for rotation and computes a block orthogonal rotation matrix U,, which it
then applies to help reduce A to block diagonal form. The block orthogonal
rotation can be chosen as a sequence of scalar Jacobi rotations or from the
eigendecomposition of the small block matrix; we use a full scalar Sameh
sweep on the small block matrix. (However, there is no restriction that the
small block matrix must be diagonalized, only that its off-diagonal mass be
reduced. Computations by Bischof [1] on the SVD indicate that the extra
effort of completely diagonalizing the block matrix at each step may be
wasted.) The method then proceeds by selecting another block element of
A to rotate. A final processing step of Sameh sweeps forms the eigenvalues
and eigenvectors from the block diagonal elements of A. On an m x m block
matrix, a BCJ “sweep” is (m? — m)/2 two-block by two-block rotations.

The precise block algorithm for carrying out BCJ to compute the sym-
metric eigendecomposition (1), with D overwriting A, is as follows. Assume,
for ease of exposition, that the block size b divides the matrix size n exactly,
so that n = mb. K > 1 independent off-diagonal blocks may be selected for
simultaneous rotation. The iterations continue until a tolerance criterion
TOL is met. The method begins with U = I, v = 0, and continues

1. Compute the squared masses {M;;}7_,;, with

b 2
M;; = Z (aﬁilnw,u—nws) ’

r,s=1
2. Select K independent rotation pairs (ix, jk),1 < k < K with
Mikjk = ma’X(MUIZ ¢ {il’ see ’ik—l}7j ¢ {jla ce ’jk—l})'

3. Compute K block rotations {U(k, ix, jx, A®)}E, to reduce the block
off-diagonal mass of A (as indicated below).

4. Apply the block rotations of step 3 to U and to A®, forming A®+1),

5. If the block off-diagonal mass of AtV is not less than TOL times the
block diagonal mass, then set v := v + 1 and go to step 1.

6. Diagonalize the diagonal blocks of A (until the off-diagonal mass is
less than TOL times the diagonal mass) and update U.

Step 3 of our BCJ implementation uses a single scalar Sameh sweep to
reduce the off-diagonal mass of the two-block by two-block submatrix. This
sweep includes b(2b — 1) pointwise rotations performed sequentially. Step
6 uses successive Sameh sweeps to diagonalize the block diagonals of A®).

The BCJ algorithm is to be compared against the “block Brent-Luk”
algorithm, which omits step 1 and replaces step 2 by selecting m/2 block
index pairs according to the Brent-Luk ordering. A block Brent-Luk sweep
also involves (m? — m)/2 two-block by two-block rotations. It is impor-
tant to note that the two methods under comparison differ only in their
index selection methods. In figure 5 we also display timings for the Sameh
ordering of the scalar Jacobi and the Eispack (TRED2/TQL2) methods.

4 Experimental Results

Several numerical experiments were conducted to compare the efficiency of
BCJ and blocked Brent-Luk symmetric eigensolvers on matrices of random
data. The test matrices were generated as matrices of uniform random
deviates from (0,1]; in each case 10 tests were run to give non-parametric
error bounds to within 10%. All computations were carried out with a
tolerance of TOL = 1078. Table 1 summarizes the run times of the two
methods on problems with various values of n, m, b, and k. Comparable
average Eispack times from TRED2/TQL2 are 1.46, 0.26, and 0.05 seconds
for n = 64, 32,16, respectively. Comparable average times for the Sameh
ordering of scalar Jacobi sweeps are 6.34, 0.79, and 0.11 seconds, for n =
64, 32, 16, respectively.

Figures 1-4 display iteration counts and relative efficiencies of the two
algorithms. Figure 6 shows the average runtimes for the four methods with
their optimal b values, for n = 16,32,64,128. Table 2 shows the number
of scalar rotations required by the Jacobi, BCJ, and BBL methods for the

BCJ execution times | Blocked Brent-Luk times

BCJ BCJ BCJ| B-L B-L B-L
N B| MIN AVG MAX | MIN AVG MAX
64 21|26.04 2693 28.68|44.96 79.39 136.12
64 42211 2548 29.98| 30.02 63.13 146.09
64 8| 31.48 39.97 66.47| 38.19 145.70 424.32
64 16| 58.36 107.90 253.24 | 97.38 242.68 513.49
32 2| 3.60 4.09 4.71 3.70 8.04 15.39
32 4| 3.71 5.20 7.66| 5.34 9.14 19.00
32 8| 591 13.50 23.14| 9.41 16.55 31.36
16 2| 0.51 0.72 0.83 | 0.45 2.47 14.23
16 4| 0.52 1.40 7.11 0.62 1.04 2.36

Table 1: Multiflow Trace/7 (compiler version 1.5.3) execution times (sec.)
for BCJ, blocked Brent-Luk, TOL = 1078, 10 trials.

Jacobi BBL | BCJ
N B| AVG AVG | AVG
16 2(4) 640 1381 | 5668
32 2 3072 4128 | 11242
64 4| 14029 | 26691 | 91422
128 8| 62669 | 147510

Table 2: Multiflow Trace/7 (compiler version 1.5.4): Average number of
scalar rotations for Jacobi, BCJ, and BBL, TOL = 1078, 10 trials.

same problems as in Figure 6. It is clear that the Eispack and scalar Jacobi
methods yield superior speeds and that the execution time is dependent
on the number of scalar rotations. Data for figures 1-4 and table 1 were
computed using version 1.5.3 of the Multiflow Trace compiler; table 2 and
figure 6 rely upon version 1.5.4.

These experiments show that the extra work of finding the largest in-
dependent off-diagonal blocks is offset by faster algorithmic convergence of
BCJ, which makes the present method competitive with the blocked Brent-
Luk technique. However, the block rotations require more scalar work than
the scalar method; a block rotation seems to contribute less toward diago-
nalizing the matrix than an equal number of scalar rotations performed in
the Sameh order. \

5 Algorithmic Analysis

An important factor in determining the efficiency of the algorithm is the
block size. BCJ has the following computational work per iteration (n =

mb):

Step Computations
1 2n?
2 O(m?logm)
3 6K(2b)(2b—-1)/2
4 18nK(2b)(2b — 1)/2
5 2n?
6 2n%b+ O(nb?)

The work for step 1 is actually completed in step 5, where the block
masses are computed, so that after the first iteration step 1 contributes no
work. Step 2 can be done in O(Km?) operations, which is an improvement
if K = o(logm). Step 6 is performed once at the end of the calculation
and has asymptotically negligible work if b = o(n); for very large b step 6
dominates the total work.

A moderate value of b should be preferable in order to maximize the
sum of off-diagonal block masses. Indeed, Figure 1 reflects this behavior.
For small b, the overhead of determining the largest block exceeds the work
of diagonalizing A. As b increases, the maximal off-diagonal squared block
mass will approach the average block mass, reducing the effect of each
block rotation, and consequently lengthening BCJ computations. Figure 3
shows that for several matrix sizes n, increasing the block size b increases
monotonically the number of sweeps of BCJ, as expected. Furthermore,
the example of Figure 5 indicates that with relatively few blocks, two large
off-diagonal masses are likely to be dependent.

We now examine BCJ’s behavior with a brief review of relevant order
statistics theory [6,11], which describes the behavior of sorted random vari-
ates in terms of the probability distributions of the individual elements.
Given independent and identically distributed random variables X;, X,
..., Xn, the N order statistics X{ y, X3, ..., X}y are the random vari-
ables associated with the lowest ranked to highest ranked X;.

A particular instance of the theory is instructive with regard to BCJ,
which starts with the (n? —n)/2-sized upper triangular array from an n xn

8

symmetric matrix A© of uniform random variates. Let Y; be one of (n? —
n)/2 #id uniform variates on the interval (0,1], and set X; = ¥;?. Then an
average off-diagonal element of A(®) has squared mass E[X;] = 1/3, while
the maximum has mean squared mass E[X{2_,) /3 (n2—n) pl=1-2/ (n? —
n+2). Selecting the maximum off-diagonal element, rather than an average
element, increases the reduction to diagonal form of an individual rotation.

Assuming further that each X;, 1 < i < (m? —m)/2, is distributed as
the sum of b? squares of uniform random values from the interval (0, 1],
as is M;; in the first step of our blocked experiments, it is clear that the
central limit theorem applies to the block mass distributions. For large b,
one may represent the off-diagonal squared block mass as a normal random
variable with mean p = b%/3 and variance o2 = 4b?/45 (corresponding to
the sum of b% uniform random variables).

The maximal order statistic for these large blocks tends toward a stan-
dard limiting distribution, from which we may determine the moments.
Although the example employs sums of uniform variates, the proposition
holds for any blocks that have asymptotically normal squared mass.

Proposition 1. Let {)(',~}(’”2_’")/2 be iid normal variates with mean pu and

=1
variance o%. In the limit as m — oo, the expected largest variate 1s
E[X{n2em)j2me-m)j2l = B+ 0 \/ 2log((m? — m)/2) (6)

+0 <log logm/4/log m>

o (1) —T"(1)?
2log((m? —m)/2)

and the variance 18

Var[X (2 myj2,(m2—myj2] = © (7)

+0 (log logm/(log m)z) ,

where T'(-) and T"(-) are the first two derivatives of the gamma function,
respectively. (Note that T(1) — I'(1)? = 1.64.)

Thus the expected largest squared mass is about 24/log m standard de-
viations above the mean, with asymptoticlly vanishing variance. Cohen [5]
has derived similar results for generalized matrix products. The proof of
Proposition 1 is left to section 7.

BCJ operates by maximizing the mass of the selected off-diagonal blocks.
This works well when the ratio (¢ + 20+/logm)/u is large while the addi-
tional cost to determine the largest block is low. Both cost and benefit
decrease with increasing blocksize.

For certain values of b, BCJ inherits the fast convergence of the classical
Jacobi method without paying a large cost for maximal selection. If b is
chosen ‘approximately b = (log n)'/% and K = m/2, the work of computing
and selecting the independent maximal blocks is O (n?(logn)!/ 3) per iter-
ation, as is the rotation work, so that the two are of comparable sizes. For
larger block sizes b, the block selection cost is asymptotically negligible. If b
grows as y/log n, then the largest squared block mass is a constant multiple
of the average squared block mass, while the extra cost of determining the
maximal off-diagonal blocks is of smaller order.

Figure 1 clearly indicates the benefits of choosing a moderate blocksize,
as the average solution time initially decreases as b grows. However, the
use of a large b produces longer runtimes.

The selection of K > 1 maximal independent off-diagonal blocks (step 2)
forms a more complex sum of conditional order statistics, which we now
examine. Let X;, 1 < ¢ < M, be iid random variates with density f(z)
and distribution F(z). Denote by X3} the maximal order statistic. Now
fix a particular subset of size M; of the remaining variates (excluding the

selected maximum and others), and let X37), be the maximal variate in
the subset. It is clear that X3? ,, < Xj}. Inductively define X;rt! 5, “
from X3f . as the maximal order statistic in a chosen subset of M4
variates selected from the previous subset of size M}, (excluding the previous

maximum and others). We call X3f /. the k™ conditional mazimal order
statistic of the {X,}fill

Proposition 2. For M; > M, > --- > M. > 0, the probability distribution
of the k** conditional mazimal order statistic is

k k _
Pr {X}'{,ﬁ’_“,Mk < x} = ;F(;E)Me H (-M;A—if]—]\'/_r—:) . (8)

=1
J#

Letting pp, = E[X}y,] be the unconditional mean of the maximum on

10

2| 4|10 6| 7
5/ 9| 2| 3
3| 4| 4
8| 4
4
Figure 5: Conditional maximum selection X4 = X3 = 10, X(o3) =
Xiksz,e = 5aX(5,6) = Xf53,6,1 =4.
M; observations, we have
K - N M;
E[X; = ; —_]. 9
[Ml,...,MK] ;uMi g (M] — Mz) ()
J#i

We briefly indicate the formulation of the first step of BCJ in terms of
Proposition 2. In BCJ, K maximal off-diagonal blocks are selected in K
stages from an m X m upper triangular array of (m% — m)/2 1id random
variates. Independence of the selected locations requires striking out the
row and column of the maximum. At stage i, 1 < ¢ < K, the maximal
variate will be drawn from a subset of (m"'g_%) blocks in the strict upper
triangle of the array and then two rows and columns of the array will be
struck out, corresponding to the row and column indices of the selected
maximal element.

For instance, in the 6 by 6 example of Figure 5, the first maximum is 10
(row 1, column 4). Thereafter rows and columns 1 and 4 are struck from
the array (to preserve independence) and the second conditional maximum
is selected; it is 5 (row 2, column 3). Note that larger elements that are
dependent upon the first maximum may be ignored in the selection of the
second maximum. Finally, rows and columns 2 and 3 are struck from the
array and the final maximum of 4 (row 5, column 6) is selected.

The selection of the K maximal independent off-diagonal blocks (which
forms the more complex sum of conditional order statistics discussed above),
determines on average a smaller sum of off-diagonal masses than K suc-
cessive iterations choosing the single largest block. However, it is observed

11

in Figure 4 that the number of sweeps to convergence initially declines as
K increases. This probably reflects the amortization of step 5 costs over
additional blocks. As expected, BCJ requires slightly more iterations to
converge as K reaches its upper limit of m/2 (e.g., b = 2,4).

Figure 2 presents in graphical form the ratios of the average BCJ and
blocked Brent-Luk execution times on a Multiflow Trace/7 computer. The
efficiency ratio shows the speedup of BCJ, with improvements up to a factor
of 3.6 due entirely to improved index selection. Examination of Table 1
shows that, for almost all cases, BCJ runtimes have lower deviations from
the mean.

Asymptotically, b = Q ((log n)Y/ 3) guarantees that the work of selecting
the maximal blocks will be at most comparable to the other arithmetic
operations. However, assuming normality of initial data and intermediate
results, the optimal b so that largest blocks are substantially larger than
average (b2 = O(by/logm?), from eq. (6)) is b = O(y/Iogn). For b =~
(logn)*, 1/3 < a < 1/2, BCJ should be asymptotically faster than a
blocked Brent-Luk method. The numerical experiments show speedups for
problems of moderate size.

In general, the distribution of the elements of A*) will be more complex
than described here and the order statistic argument must be specialized
to include the distributions of intermediate results, in order to rigorously
prove rates of convergence. However, the improved performance of the new
algorithm is consonant with the analysis performed here.

In cases where the matrix has few large elements or is close to diagonal,
one expects BCJ to acheive shorter runtimes than indicated by these ex-
periments on uniform random data. For instance, the method may prove
useful in adaptive signal processing algorithms that rely on eigenvalue de-
compositions [14].

6 Conclusions

The improved index selection process of BCJ produces a substantial overall
reduction in the program running time, compared to a blocked Brent-Luk
algorithm. In particular, the extra work of determining the largest off-
diagonal blocks is offset by fewer iterations needed for convergence; the
overhead is negligible for large problems. Furthermore, because the algo-

12

rithm employs blocked data concepts, it is appropriate for computers with
a hierarchical memory system. The concentration of work on the relatively
small and numerous block elements is advantageous for parallelization of the
algorithm. However, it seems that the block rotation strategy of BCJ and
BBL reduces the convergence rate of both methods, leading to significantly
longer run-times. A block rotation contributes less toward diagonalizing the
matrix than an equal number of scalar rotations performed in the Sameh
order.

The selection of parameters b and K is important to the efficiency of
BCJ. A moderate value of b gives the lowest run times (though not the
lowest number of block sweeps). The extra benefit of increasing K falls off
rapidly for small n.

Nearly all stages of the algorithm are amenable to efficient parallel com-
putation. Step 1 can be computed independently on m? processors; step 2
on various combinations of processors and interconnections; step 3 on K
large-grained or Kb fine-grained processors, depending on whether the block
rotation is parallelized or not; step 4 on up to bKn processors; step 5 on
m? or more processors; and step 6 on K or more processors.

This investigation of BCJ was prompted by the use of a blocked Brent-
Luk method in the Saxpy Computer Corp. mathematical subroutine li-
brary. It appears that a BCJ method could be more efficient than the
BBL approach chosen there. It is possible that BCJ would show improved
performance on more nearly diagonal or sparse matrix problems.

7 Calculation of Distributions of the Max-
imal and k* Conditional Maximal Order
Statistics

Proof of Proposition 1. David [6] presents the limiting distributional behav-
ior of the maximal order statistic X}; ., which depends upon the well-known
distribution
A(z) = exp(—e™) —0 <z <00 (10)
in the case of #d 0-1 normal variates. We now carry through the analysis
for general #1d normal variates.
Let ¢,,2(z) = (0v/27)! exp(—(z—p)?/20?%) be the normal density func-
tion and let ®,,2(z) = [#..2(y)dy be the normal distribution function

13

corresponding to mean p and variance o2, respectively. For large z,

1-®,2(z) o

¢uo’2(x) ~ T — /”" (11)

based on a change of variables from the case 4 = 0 and o = 1. Thus
Theorem 9.3.5 [6] applies and

lim Pr{(X}, — l)ndu2(l.) < 2} = A=) (12)

n—00

holds uniformly for every z € (—o0,o0), where l,, is selected so that ®,,,2(l,) =
1-1/n.
According to (11),

1 o’ 1 —(l, — p)?
—_——] - ~ . 13
n 1 ¢U02(I7L) ln _ I,L o /—“27r eXp (202 ()

The asymptotic form of [, is then

l.,=p+o (y/Zlogn _ (loglogn + log47r)) + O(1/logn). (14)

V8logn
Using the relation ng,,2(l,) = (I, — p)/o* + O(I;1), we see that
lim Pr{(X} — L.)(In — p)/o? <o} = A(2). (15)

It follows directly from (15) that

I'(1)o? .
- +o(1;1) (16)

= u+a\/2logn+0(loglogn/\/logn) (17)

where I(1) (Euler’s constant) is the mean associated with A(z). The vari-
ance vanishes asymptotically according to

L) - T'(1)?

EX7] = L+

Var[X7] = o (In — p1)? ”
21“"(12) lggl:;(lf +0 (loglogn/(logn)*), (19

14

where I'"(1) — I(1)? is the variance associated with A(z). (Here we have
used I'(-) and T"(-) to represent the first two derivatives of the gamma
function, respectively.) O

Proof of Proposition 2. Let {XXJk,Mk =z|X; < y} denote the event that
the maximal order statistic on M) observations 1s z, conditioned on all
observations X; in the subset of size M}, being bounded above by y. Then
the density of the k*® conditional maximal order statistic obeys the relation

Pr {Xﬁl,...,Mk = -”3} (20)

N /:’ Pr{Xif s, =) Pr{Xip m, = 21 X < y} dy,

where

d (F(z)\M*
Pr{XX/IkMkZﬂXiSy}: {E(T%> , Too<TSY<o0 (91)
' 0, —co<yYy<r<oo

is the probability distribution of the maximal order statistic on M} bounded
observations.

Define Vi(z) = Pr {XX,}“I’“"Mk < a:} Then Vi(z) = F(z)M1. Inductively
assuming that Vi(z) = Y5, a; 1 F(z)M: gives a recurrence relation on the
a;k Of

M, .
a;r = aik—lmLM’ 1< <k, (22)
and R
M;
g =S aipg 23

where a;; = 1. Consideration of the £k — 1 degree Lagrangian polynomial
interpolating the points (M;,1), 1 < ¢ < k, establishes that

k M.
ax =] (————J) (24)
7=1 MJ - Mi
i

The distribution is thus

Pr{Xit o <z}=> F@)™] (_MT%) . 0 (25)

i=1 i=1
J#

15

References

[1]

[5]

[6]
[7]

8]

[9]

[10]

[11]

C. Bischof. Computing the Singular Value Decomposition on a Dis-
tributed System of Vector Processors. Technical Report TR-87-869,
Department of Computer Science, Cornell University, Ithaca, New
York, September 1987.

C. Bischof and C. Van Loan. Computing the singular value decompo-
sition on a ring of array processors. In J. Cullum and R. Willoughby,
editors, Large Scale Eigenvalue Problems, pages 51-66, Elsevier, 1986.

K. A. Braun and Th. Lunde Johnsen. Hypermatrix generalization of
the Jacobi and Eberlein method for computing eigenvalues and eigen-
vectors of Hermitian or non-Hermitian matrices. Computer Methods
in Applied Mechanics and Engineering, 4:1-18, 1974.

R.P. Brent and F.T. Luk. The solution of singular-value and symmet-
ric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Stat.
Comput., 6(1):69-84, 1985.

J. E. Cohen. Subadditivity, generalized products of random matrices
and operations research. SIAM Review, 30(1):69-86, 1988.

H.A. David. Order Statistics. J. Wiley and Sons, 2nd edition, 1981.

P.J. Eberlein. On the diagonalization of complex symmetric matrices.
J. Inst. Math. Applic., 7:377-383, 1971.

D.E. Foulser and R. Schreiber. The Saxpy Matrix-1: A general-
purpose systolic computer. IEEE Computer, 20(7):35-43, 1987.

G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins
Press, 1983.

C.G.J. Jacobi. Uber ein leichtes verfahren die in der theorie der
sacularstorungen vorkommendern gleichungen numerisch aufzulosen.
Crelle’s Journal, 30:51-94, 1846.

S. Karlin and H. Taylor. A Second Course in Stochastic Processes.
Academic Press, 1981.

16

[12] D.J. Kuck and A.H. Sameh. Parallel computation of eigenvalues of real

matrices. In Information Processing 1971, pages 1266-1272, North-
Holland, 1972.

[13] A.H. Sameh. On Jacobi and Jacobi-like algorithms for a parallel com-
puter. Math. Comp., 25:579-590, 1971.

[14] R.O. Schmidt. A Signal Subspace Approach to Multiple Emitter Loca-
tion and Spectral Estimation. PhD thesis, Stanford University, Novem-
ber 1981.

[15] R. Schreiber and B. Parlett. Block reflector computation and applica-
tions. In R. Glowinski and J.L. Lions, editors, Computing Methods in
Applied Sciences and Engineering, North Holland, 1986.

[16] C. Van Loan. The block Jacobi method for computing the singular
value decomposition. In C. Byrnes and A. Lindquist, editors, Compu-

tational and combinatorial methods in systems theory, pages 245-256,
North-Holland, 1986.

17

(10 trials)

Average solution timel(sec)

200

100

S0

2

5 10 15
Block size b

Figure 1. Average BCJ solution time for N=64, T@OL = 10D-8
on a Multiflow Trace/7 computer

20

70

60

S0

(10 trials)
N w o
o o o

Average number sweeps

—
o

5 10 15
BlocK size b

Figure 2. Average BCJ sweeps, TOL = 10D-8, K=n/2b

(10 trials)
w

Y

N

Average efflclenc

—

n=64

n=32

n=16

5 10 15
BlocK size b

Figure 3. (Avg. Time BlockK Brent-LuK)/(Avg. Time BCJ)
ToL = 10D-8, K=n/2b

20

40

w
o

(10 trials)
N
o

—
o

Averoge number of sweeps

b=8

L — b:q —]

——b=2

(

0 5 10 15 20

K = Number of blocKs rotated slmultoneously

Figure 4. Average number of BCJ sweeps, n = 64, T@L = 10D-8

Figure 5 appears on page 11.

300

(10 trials)
—_ — N N
o al o a
o o o o

Average solution time(sec)

a
o

Avg. Times for BBL, BCJ, Jacobl, and ElspacK
T T T T I I 1 I] T T T T | 1 T T T

I

B=4
B=2

1 | 1 1 ' 1 1 | 1 I 1 1 1 1 l

S 10 15

Matrix size n

Figure 6. Average solution time for N=16..128, T@OL = 10D-8
on a Multiflow Trace/7 computer

