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On the compression of low rank matrices
H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin

Abstract: A procedure is reported for the compression of rank-deficient
matrices. A matrix A of rank k is represented in the form A = UoBoV,
where B is a k x k submatrix of A, and U, V are well-conditioned
matrices that each contain a k x k identity submatrix. This property
enables such compression schemes to be used in certain situations where
the SVD cannot be used efficiently. Numerical examples are presented.

1. INTRODUCTION

In computational physics (and many other areas), one often encounters matrices whose ranks
are (to high precision) much lower than their dimensionalities; even more frequently, one is con-
fronted with matrices posessing large submatrices that are of low rank. An obvious source of such
matrices is the potential theory, where discretization of integral equations almost always results in
matrices of this type. Such matrices are also encountered in fluid dynamics, numerical simulation
of electromagnetic phenomena, structural mechanics, multivariate statistics etc. In such cases, one
is tempted to “compress” the matrices in question, so that they could be efficiently applied to arbi-
trary vectors; compression also facilitates the storage and any other manipulation of such matrices
that might be desirable.

At this time, several classes of algorithms exist that use this observation. The so-called Fast
Multipole Methods (FMMs) are algorithms for the application of certain classes of matrices to
arbitrary vectors; FMMs tend to be extremely efficient, but are only applicable to very narrow
classes of operators (see [7]). Another approach to the compression of operators is based on the
wavelets and related structures (see, for example, [3, 2]); these schemes exploit the smoothness
of the elements of the matrix viewed as a function of their indices, and tend to fail for highly
oscillatory operators.

Finally, there is a class of compression schemes that are based purely on linear algebra, and are
completely insensitive the the analytical origin of the operator. It consists of the Singular Value
Decomposition (SVD), the so-called QR and QLP factorizations [8], and several others. Given an
m X n-matrix A of rank k¥ < min(m,n), the SVD represents A in the form

(1.1) A=UoDoV,

with U an m x k, matrix whose columns are orthonormal, V a k x n matrix whose rows are
orthonormal, and D a diagonal matrix whose diagonal elements are positive. The compression
provided by the SVD is perfect in terms of accuracy (see, for example, [5]), and has a simple
geometric interpretation: it expresses each of the columns of A as a linear combination of the k
(orthonormal) columns of U; it also represents the rows of A as linear combinations of (orthonormal)
rows of V; and the matrices U,V are chosen in such a manner that the rows of U are images (up
to a scaling) under A of the columns of V.

In this paper, we propose a different matrix decomposition. Specifically, we represent the matrix
A described above in the form

(1.2) A=UoBoV,
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where B is a k x k-submatrix of A, and the norms of the matrices ¢,V (of dimensionalities n x k,
k x m respectively) are reasonably close to 1 (see Theorem 3 in Section 3 below). Furthermore,
each of the matrices U,V contains a unity k£ x k submatrix.

Like (1.1), the representation (1.2) has a simple geometric interpretation: it expresses each of
the columns of A as a linear combination of k selected columns of A, and each of the rows of A as
a linear combination of k selected rows of A. This selection defines a k x k submatrix B of A, and
in the resulting system of coordinates, the action of A is represented by the action of its submatrix
B.

The representation (1.2) has the advantage that the bases used for the representation of the
mapping A consists of the columns and rows of A, while each of the elements of the bases in the
representation (1.1) is itself a linear combination of all rows (or columns) of the matrix A. In
Section 5, we illustrate the advantages of the representation (1.2) by constructing an accelerated
direct solver for integral equations of potential theory.

Another advantage of the representation (1.2) is that the numerical procedure for constructing
it is considerably less expensive than that for the construction of the SVD (see Section 4), and that
the cost of applying (1.2) to an arbitrary vector is

(1.3) (n+m-—k)-k,
vs.

(1.4) (n+m)-k
for the SVD.

The obvious disadvantage of (1.2) vis-a-vis (1.1) is the fact that the norms of the the matrices
U,V are somewhat greater than 1, leading to some (though minor) loss of accuracy. Another
disadvantage of the proposed factorization is its non-uniqueness; in this respect it is similar to the
pivoted QR factorization.

Remark 1. In (1.2), the submatrix B of the matrix A is defined as the intersection of k¥ columns
with k rows. Denoting the sequence numbers of the rows by 43,49, ... ,%; and the sequence numbers
of the columns by ji, jo,. .., jk, we will be referring to the submatrix B of A as the skeleton of A,
to the k X n matrix consisting of the rows of A numbered 41, s, .. ., as the row skeleton of A, and
to the m X k matrix consisting of the columns of A numbered ji, jo, ..., jx as the column skeleton
of A.

The structure of this paper is as follows. Section 2 below summarizes several facts from numerical
linear algebra to be used in the remainder of the paper. In Section 3, we prove the existence of
a stable factorization of the form (1.2). In Section 4, we describe a reasonably efficient numerical
algorithm for constructing such a factorization. In Section 5, we illustrate how the geometric
properties of the factorization (1.2) can be utilized to construct an accelerated direct solver for
integral equations of potential theory. In Section 6, we present the results of numerical experiments
with the direct solver. Finally, Section 7 contains a discussion of other possible applications of the
techniques of this paper.

2. PRELIMINARIES

In this section we introduce our notation and summarize several facts from numerical linear

algebra; these can all be found in [1].
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Throughout the paper, we use upper case letters for matrices and lower case letters for vectors
and scalars. We reserve @) for matrices that have orthonormal columns and P for permutation
matrices. The canonical unit vectors in C" are denoted by e;. Given a matrix X, we let X* denote
its adjoint (the complex conjugate transpose), ox(X) its k-th singular value, || X||2 its [2-norm and
[|X||F its Frobenius norm. Finally, given matrices A, B, C and D we let

o e [A] e [43)

denote larger matrices obtained by stringing the blocks A, B, C and D together.

The first result that we present asserts that given any matrix A, it is possible to reorder its
columns to form a matrix AP, where P is a permutation matrix, with the following property:
When AP is factorized into an orthonormal matrix @ and an upper triangular matrix R, so that
AP = QR, then the singular values of the leading k x k submatrix of R are reasonably good
approximations of the first £ singular values of A. The theorem also says that the first k£ columns
of AP form a well-conditioned basis for the column space of A to within accuracy ox41(A).

Theorem 1. [Gu & Eisenstat] Suppose that A is an m x n matriz, [ = min(m,n), and k is an
integer such that 1 < k < 1. Then there exists a factorization
(2.2) AP = QR,

where P is an n X n permutation matriz, Q is an m X | matriz with orthonormal columns, and R
is an | X n upper triangular matriz. Furthermore, splitting @ and R,

_ | Qu | Q2 _ | Rui | Ri2
(2:3) @= [ Q21 | Qa2 J ’ and R = [ 0 | Ry ] ’

in such a fashion that Q11 and Ry are of size k X k, Q21 is (m —k) X k, Q12 is k X (I — k), Qo is
(m—k)x(I—k), Riz is kx (n—k) and Ryy is (I —k) X (n—k), results in the following inequalities:

1
(2.4) ok(R11) 2 Uk(A)m,
(2.5) 01(Ry) < 011(A) V1 + k(n — k),
and

(2:6) IR Rizlle < VE(n = k).

Remark 2. In this paper we do not use the full power of Theorem 1 since we are only concerned
with the case of very small € = 044,(A). In this case, the inequality (2.5) implies that A can be
well approximated by a low-rank matrix. In particular, (2.5) implies that

(2.7) |4 - [ g; ] [Ri1| Ria] P*||2 < ey/1+ k(n — k).

Furthermore, the inequality (2.6) in this case implies that the first k£ columns of AP form a well-
conditioned basis for the entire column space of A (within accuracy ¢).

While Theorem 1 asserts the existence of a factorization (2.2) with the properties (2.4), (2.5),
(2.6), it says nothing about the cost of constructing such a factorization numerically. The following
theorem asserts that a factorization that satisfies bounds that are weaker than (2.4), (2.5), (2.6)

by a factor of /n can be computed in O(mn?) operations.
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Theorem 2. [Gu & Eisenstat] Given an m x n matriz A, a factorization of the form (2.2) that
instead of (2.4), (2.5) and (2.6) satisfies the inequalities

1

(2'8) ak(Rll) Z mgk(A)7
(2.9) o1(Ry) < V1+ nk(n — k)O'k.H(A),
and

(2.10) ||R Rizllr < V/nk(n — k),

can be computed in O(mn?) operations.

3. ANALYTICAL APPARATUS

In this section we prove that the factorization (1.2) exists by applying Theorem 1 to both the
columns and the rows of the matrix A. Theorem 2 then guarantees that the factorization can be
computed efficiently.

The following theorem is the principal analytic tool of this paper.

Theorem 3. Suppose that A is an m x n matriz and let k be such that 1 < k < min(m,n). Then
there ezists a factorization

(3.1) A=P, [—é—] As [I|T) PR + X,

where I € CEXE is the identity matriz, P, and PR are permutation matrices, and As is the top left
k x k submatriz of PFAPr. In (3.1), the matrices S € Cm=k)xk gnd T € CF*(n=k) sqtisfy the
inequalities

(3.2) ISl £ VE(m — k), and IT|lr < VEk(n —k),
and the matriz X is small if the (k + 1)-th singular value of A is small,
(3.3) 1X1l2 < 0k+1(A4) /1 + k(min(m,n) — k).

Proof: The proof consists of two steps. First Theorem 1 is invoked to assert the existence of k
columns of A that form a well-conditioned basis for the column space within accuracy ox+1(A);
these are collected in the m x k matrix Acs. Then Theorem 1 is invoked again to prove that k
of the rows of Acs form a well-conditioned basis for its row space. Without loss of generality, we
assume that m > n and that o (A) # 0.

For the first step we factor A into matrices @ and R as specified by Theorem 1, letting Pr denote
the permutation matrix. Splitting @ and R into submatrices Q;; and R;; as in (2.3), we reorganize
the factorization (2.2) as follows,

Qu ] [ Q12 ] [ Qu R ] [ 0| Qi2Ra2 ]
3.4) APr = Ry;1| R 0| R I|R7R .
(34) APr [ Q21 [Rur| Reo] + Q22 (0] B2z} = Q21811 7| Biy' Raa] + 0 | Qa2Ra2
We now define the matrix 7' € C**("=k) via the formula

(3.5) T = Ry} Ru»;
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T satisfies the inequality (3.2) by virtue of (2.6). We define the matrix X € C™*" via the formula

0 | Q2R ] "
3.6 X = | %12t | e
(3.6) [ 0[QuRsyn | ]
which satisfies the inequality (3.3) by virtue of (2.5). Defining the matrix Acs € C™** by
[ QuRu ]
3.7 Ags = |2t |
(3.7) = | QuEn

we reduce equation (3.4) to the form
(3.8) APr = Acs [Il T] + X PR.

An obvious interpretation of (3.8) is that Acs consists of the first & columns of the matrix APy
(since the corresponding columns of X Py are identically zero).

The second step of the proof is to find k rows of Acs forming a well-conditioned basis for its
row-space. To this end, we factor the transpose of Acs as specified by Theorem 1,

(3.9) ALPL =0 [Ru] Rm] .

Transposing (3.9) and rearranging the terms we have

B 1 I o
(3.10) PiAcs = [ 1l ]Q* = [—-*——7—:1—] 1nQ
12 T2 (R11)
Multiplying (3.8) by P} and using (3.10) to substitute for PAcs we obtain
I <
(3.12) PLAPy = [—-—-—.—1—] 1Q* 1| T] + PEX Pr.
T2(1211)

We now convert (3.11) into (3.1) by defining the matrices As € C¥** and § € C("~*)%F via the
formulee

(3.12) As = ~;1Q*) and S= R;z(éi(l)—lv
respectively. O

Remark 3. While the definition (3.5) serves its purpose within the proof of Theorem 3, it is
somewhat misleading. Indeed, it is more reasonable to define T' as a solution of the equation

(3.13) [|R11T — Riallz € ok1(A)V/1 + k(n — k).

When the solution is non-unique we chose a solution that minimizes ||T||r. From the numerical
point of view, the definition (3.13) is much preferable to (3.5) since it is almost invariably the case
that Rj; is highly ill-conditioned, if not outright singular.

Introducing the notation

(3.14) Acs = P, {—g——jl Ag € C™xk and Ags = Ag [Il T] PR € Ckxm,

we observe that under the conditions of Theorem 3, the factorization (3.1) can be rewritten in the
forms

(3.15) A= Acs [I|T) P + X,
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and
(3.16) A=H, [—é—] Agrs + X.

The matrix Acg consists of £ of the columns of A, while Ags consists of k of the rows. We refer to
As as the skeleton of A, and to Acg and Ags as the column and row skeletons, respectively.

Remark 4. While Theorem 3 guarantees the existence of a well-conditioned factorization of the
form (3.1), it says nothing about the cost of obtaining such a factorization. However, it follows
immediately from Theorem 2 that a factorization (3.1) with the matrices S, 7, and X satisfying
the weaker bounds

(3.17) [1Sll2 < Vmk(m — k), and  ||T||z £ /nk(n — k),
and, with [ = min(m,n),
(3.18) 1X]l2 < V1 + k(I - k)ok+1(A),

can be constructed at the cost O(mnl).

Observation 1. The relations (3.1), (3.15), (3.16) have simple geometric interpretations. Specif-
ically, (3.15) asserts that for a matrix A of rank k, it is possible to select k columns that form a
well-conditioned basis of the entire column space. Let j1,...,jk € {1,...,n} denote the indices of

those columns and let X; = span(e;,,...,e;) € C* (thus, X is the space of vectors whose only
non-zero coordinates are zj,,...,z;, ). According to Theorem 3, there exists an operator
(3.19) Proj : C" = Xk,

defined by the formula
(3.20) Proj = Py [ilOiJ P,

such that the diagram
A

(3.21) Ct —L—som
Proj
l Ags
Xk
is commutative. Here, A(g is the m X n matrix formed by setting all columns of 4 except j1,...,Jk
to zero. Furthermore, o1(Proj)/ox(Proj) < /1 + k(n — k). Similarly, equation (3.16) asserts the
existence of k rows, say with indices 41,...,4; € {1,...,m}, that form a well-conditioned basis for
the entire row-space. Setting Y = span(e;,,. .. ye;,,) € C™, there exists an operator
(3.22) Eval : Y, —» C™,
defined by
(3.23) Eval = A, [ —g— ‘ 0 ] Pr.
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such that the diagram

(3.24) c A cm o,
Eval
ARs
Y

is commutative. Here, A}y is the 1 x n matrix formed by setting all rows of A except iy, ...,% to
zero. Furthermore, o) (Eval)/o)(EEval) < /1 + k(m — k). Finally, the geometric interpretation of
(3.1) is the combination of the diagramns (3.21) and (3.24),

(3.25) Ccn A Cm

I’roj l ‘I Eval

.Y[\, —_— Yk
Ag
Here, Ag is the rn x 7 matrix formed by setting all entries of A, except those at the intersection of
the rows ¢, ...,¢ with the columns jy,. .., ji, to zero.
As a comparison, we consider the diagram

A

(326) C‘n —_— Cm

e

Ct 5~ C*
obtained when the SVD is uscd to compress the matrix A € C™*™. Here, Dy is the k x k diagonal
matrix formed by the & largest singular values of A, and Vi and Uy are column matrices containing
the corresponding right and left singular vectors, respectively. The factorization (3.25) has the
advantage over (3.26) that the mappings Proj and Eval leave k of the coordinates invariant. This
is gained at the price of non-orthonormality of these mappings.

4. NUMERICAL APPARATUS

In this section, we present a simple and reasonably efficient procedure for computing the factor-
ization (3.1). It has been extensively tested and consistently produces factorizations that satisfy
the bounds (3.17). While there cxist matrices for which this simple approach will not work well,
they appear to be exceedingly rarc.

Given an m X n matrix A, the first step (out of four) is to apply the pivoted Gram-Schmidt
process to its columns. The process is halted when the column space has been exhausted to a
preset accuracy ¢, leaving a factorization

(4.1) APy = Q [Rui| Ria],

where Pg € C™*" is a permutation matrix, () € C™** has orthonormal columns, R;; € CF*F jg
upper triangular, and Ry € CF*(=F)

The second step is to find a matrix T € Ck*("=k) that solves the equation

(4.2) RiT = Ryp
7




to within accuracy e. When Ry is ill-conditioned, there is a large set of solutions; we pick one for
which ||T|| is small.

Letting Acs € C™** denote the matrix formed by the first £ columns of APR, we now have a
factorization

(4.3) A= Acs [I|T] P.

The third and the fourth steps are entirely analogous to the first and the second, but are concerned
with finding k rows of Acs that form a basis for its row-space. They result in a factorization

I
(4.4) Acs = R, [_TS'_] As.
The desired factorization is now obtained by inserting (4.4) into (4.3):
I
(4.5) A=PR, [—S—] As [I|T) P

For this technique to be successful, it is crucially important that the Gram-Schmidt factorization
be performed accurately. Modified Gram-Schmidt or the method using Householder reflectors are
not accurate enough. Instead, we use a technique that is based on modified Gram-Schmidt, but
that at each step re-orthogonalizes the vector chosen to add to the basis before adding it. In exact
arithmetic, this step would be superfluous, but in the presence of round-off error it greatly increases
the quality of the factorization generated, see e.g. [6].

5. APPLICATION: AN ACCELERATED DIRECT SOLVER FOR INTEGRAL EQUATIONS

In this section we use the matrix compression technique presented in Section 3 to construct
an accelerated direct solver for boundary integral equations with non-oscillatory kernels. Upon
discretization, such equations lead to dense systems of linear equations, and iterative methods
combined with fast matrix-vector multiplication techniques are commonly used to obtain the so-
lution. Many such fast multiplication techniques take advantage of the fact that the off-diagonal
blocks of the discrete system typically have low rank. Employing the matrix compression techniques
presented in Section 3, we use this low-rank property to accelerate direct, rather than iterative,
solution techniques. The method uses no machinery beyond what is described in Section 3 and is
applicable to most integral equations involving non-oscillatory kernels.

For concreteness, we consider the equation

(5.1) u(z) + /1‘ K(z,y)u(y) dy = f(=), forz el,

where I" is some contour and K(z,y) is a non-oscillatory kernel. The function u represents an

unknown “charge” distribution on I' that is to be determined from the given function f. The

method that we present works for almost any contour but for simplicity, we will assume that the

contour consists of p disjoint picces, I' = I'y +- - - +T'p, where all pieces have similar size (an example

is given in Fig. 3). In fact, to simplify the formulas, we will for the most part set p = 3.
Discretizing each contour I'; using n points, the equation (5.1) takes the form

M(Ll) M(l,?) M(1’3) u(l) f(l)
(5.2) MDD | pr22) T (2.3 u®@ | = | f@|,
MGD TG T B3] u(3) @
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(2) (c)

FIGURE 1. Zeros are introduced into the matrix in three steps: (a) interaction
between I'; and the other contours is compressed, (b) interaction with I'; is com-
pressed, (c) interaction with I's is compressed. The small black blocks are of size
k x k and consist of entries that have not been changed beyond permutations, grey
blocks refer to updated parts and white blocks are all zero entries.

where u(®) € C* and f) € C" are discrete representations of the unknown boundary charge
distribution and the right hand side associated with I';, and M) € CP*™ is a dense matrix
representing the evaluation of a potential on T'; caused by a charge distribution on T;.

The interaction between I'; and the rest of the contour is governed by the matrices

(2.1)
M) — [a(12)] a/(13) nx2n o _ | M 2nxn

(5.3) H {M | M ]ec ., and V [W}ec .
For non-oscillatory kernels, these matrices are typically highly rank-deficient. We let k& denote an
upper bound on their ranks (to within some preset level of accuracy £). By virtue of (3.16), we
know that there exist k& rows of H(!) which form a well-conditioned basis for all the n rows. In
other words, there exists a well-conditioned n x n matrix L(!) (see Remark 6) such that

(1)
(5.4) LOFO = {_%s_} +0(e),
where H&) is a k x 2n matrix formed by & of the rows of H() and Z is the (n— k) x 2n zero matrix.

There similarly exist an n x n matrix R(!) such that
(5.5) vORY = [v{| 2*] + 0(e),

where Vég is a 2n x k matrix formed by k of the columns of V(1). For simplicity, we will henceforth
assume that the off-diagonal blocks have ezact rank at most k and ignore the error terms.
The relations (5.4) and (5.5) imply that by restructuring equation (5.2) as follows,

LOpMAOD RO | LW pr2) | L) p(13) } [ (RM)=14(1) } [L(l)f(l) }

(5.6) MEURM MED Vi) me) 7@
MODRD JVitR) Vi) e @

we introduce large blocks of zeros in the matrix, as shown in Figure 1(a).
Next, we compress the interaction between I'; and the rest of the contour to obtain the matrix
structure shown in Fig. 1(b). Repeating the process with I'3, we obtain the final structure shown
9




FIGURE 2. In order to determine the R® and L(®) that compress the interaction
between I'; (shown in bold) and the remaining contours, it is sufficient to consider
only the interactions between the contours drawn with a solid line in (b).

in Fig. 1(c). At this point, we have constructed matrices R® and L(®) and formed the new system

LOpMOH RO | LM a2 RQ) | 1) pr(1.3) RGB) (RM) =141 LM f@)
(5.7) L@ MR RM) T L) a2 p(2) | L2 33T REB) (R@)=14) | = L® fm ,
LOMGURM T LO MBI RE [ LB G RE) (RB)H~14,0) LB fB)

whose matrix is shown in Figure 1(c). We emphasize that the k x k non-zero parts of the off-
diagonal blocks are submatrices of the original n x n off-diagonal blocks. The parts of the matrix
that are shown as grey in the figure represent interactions that are internal to each contour. These
n — k degrees of freedom per contour can be eliminated by performing a local, O(n3), operation for
each contour. This leaves a dense system of 3 x 3 blocks, each of size k x k. Thus, we have reduced
the problem size by a factor of n/k.

Remark 5. For the algorithm presented above, the compression of the interaction between a fixed
contour and its p —1 fellows is quite costly since it requires the construction and compression of the
large matrices H(®) € C"*(P~1n and V() € C@-Unxn, In the numerical examples presented below,
this step is avoided by constructing matrices L(*) and R® that satisfy (5.4) and (5.5) through an
entirely local procedure. We illustrate how this is done by considering the contours in Fig. 2(a)
and supposing that we want to find the transforms that compress the interaction of the contour I;
(drawn with a bold line) with the remaining ones. This can be done by compressing the interaction
between I'; and an artificial contour I',rjr that surrounds I'; (as shown in Fig. 2(b)) combined with
the parts of the other contours that penetrate it. This procedure works for any potential problem
for which the Green’s identities hold. The computational cost for one compression is O(kn?) rather
than the O(pkn?) cost for constructing and compressing the entire H(#) and V),

To sum up: The accelerated solver consists of four steps. For a problem involving p contours,
each of which is discretized using n nodes and having off-diagonal blocks of rank at most k, they
are:

(1) The off-diagonal blocks are skeletonized and the diagonal n x n blocks are updated at a

cost of O(pkn?) using the technique described in Remark 5.
10




(2) The n — k degrees of freedom that represent internal interactions for each contour are
eliminated at a cost of O(pn3).

(3) The reduced kp x kp system is solved at a cost of O(k%p?).

(4) The solution of the original system is reconstructed from the solution of the reduced problem
through p local operations at a cost of O(pn?).

The third step is typically the most expensive one with an asymptotic cost of t(©™P) ~ ck3p3. The

cost of a solution of the uncompressed equations is ¢(U"°™P) ~, ¢n3p3. Consequently;

t(uncomp) ( n) 3

t(comp) ~ 79—
Remark 6. The existence of the matrices L(!) and R() are direct consequences of (3.16) and
(3.15), respectively. Specifically, substituting H(}) for A in (3.16), we obtain

(5.8) PrHO = [_é_] HY.

Speed-up =

where Hf({ls) is the k x 2n matrix consisting of the top k rows of PfH(!). The relation (5.4) now
follows from (5.8) by defining '

(1)_ I O
(5.9) L _[_S I]PL.

We note that the largest and smallest singular values of L(!) satisfy
o1 (LM) < (1 +1ISIIE)*,

5.10
10 on(LM) > (1 +1811E) 7.

Thus cond(L®) < 1+ |S||%, which is of moderate size according to Theorem 3. The matrix R()
is similarly constructed by forming the column skeleton of V().

Remark 7. Equations (5.4) and (5.5) have simple heuristic interpretations: Equation (5.4) says
that it is possible to choose & points on the contour I'; in such a way that when a field generated by
charge distributions on the rest of the contour is known at those points, it is possible to extrapolate
the field at the remaining points on I'; from those values. Equation (5.5) says that it is possible to
choose k points on I'; in such a way that any field on the rest of the contour generated by charges
on I'1, can be replicated by placing charges only on those k points.

Remark 8. It is sometimes advantageous to choose the same k points when constructing the
skeletons of H® and V(. This can be achieved by compressing the two matrices jointly, for
instance by forming the row skeleton of [H®| (V(®)*]. In this case L&) = (R®))*. When this is
done, the compression ratio deteriorates since the singular values of [H (i)l (V(i))*] decay slower
than those of either H(®) or V() as is seen by comparing Figures 4 and 5.

Remark 9. When the solution of equation (5.2) is sought for multiple right-hand sides, the cost
of the first solve is O(mnk). Subsequent solves can be preformed using O(p?k? + pn?) operations
rather than O(p®n?) for an uncompressed solver.

11




(b)

FIGURE 3. The contours used for the numerical calculations with p = 128. Picture
(a) shows the full contour and a box (which is not part of the contour) that indicates
the location of the close-up shown in (b).

Remark 10. The direct solver that we have presented has a computational complexity that scales
cubically with the problem size N and is thus not a “fast” algorithm. However, by applying the
techniques presented recursively, it is possible to reduce the asymptotic complexity to O(N3/ 2,
and possibly even O(N log N). This is a topic of current research.

6. NUMERICAL RESULTS

The algorithm described in Section 5 has been computationally tested on the second kind integral
equation obtained by discretizing an exterior Dirichlet boundary value problem using the double
layer kernel. The contours used consisted of a number of jagged circles arranged in a skewed square
as shown in Fig. 3. The number of contours p ranged from 8 to 128. For this problem, n = 200
points per contour were required to obtain a relative accuracy of e = 10~6. We found that to this
level of accuracy, no H® or V() had rank exceeding k = 50. As an example, we show in Fig. 4
the singular values of the matrices H(®) and V® representing interactions between the highlighted
contour in Fig. 2(a) and the remaining ones.

The algorithm described in Section 5 was implemented in FORTRAN and run on a 2.8GHz
Pentium IV desktop PC with 512Mb RAM. The CPU times for a range of different problem sizes
are presented in Table 1. The data presented supports the following claims for the compressed
solver:

e For large problems, the CPU time speed-up approaches the estimated factor of (n/k)® = 64.
e The reduced memory requirement make large problems amenable to direct solution.

Remark 11. In the interest of simplicity, we forced the program to use the same compression ratio
k/n for each contour. In general, it detects the required interaction rank of each contour as its
interaction matrices are being compressed and uses different ranks for each contour.
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FIGURE 4. Plots of the singular values of (a) V(® and (b) H® for a discretization
of the double layer kernel associated with the Laplace operator on the nine contours
depicted in Fig. 2(a). In the example shown, the contours were discretized using
n = 200 points, giving a relative discretization error of about 10~6. The plots show
that to that level of accuracy, the matrices V(® g C1600%x200 534 H() g (200x1600
have numerical rank less than k = 50 (to accuracy 10~9).

P t(uncomp) |f +(comp) ti(z?tmp) tg:)(l)\:p) Error

8 | 5.6 2.0 (4.6) [1.6(41) [0.05 [81-1077(1.4-107")
16 | 50 4.1 (16.4) |3.1(15.5) | 0.4 2.9-107%(2.8-1077)
32 | 451 13.0 (72.1) | 6.4 (65.3) | 5.5 4.4-107%(4.4-1077)
64 || 8700 65 (270) | 14 (220) |48 —

128 || 30000 || 480 (1400) | 31 (960) |440 |—

TABLE 1. CPU times in seconds for solving (5.2). p is the number of contours.
¢(uncomp) j5 the CPU time required to solve the uncompressed equations; the numbers
in italics are estimated since these problems did not fit in RAM. t(<°™P) jg the
CPU time to solve the equations using the compression method; this time is split

between ti(g?tmp ), the time to compress the equations, and t§§?$p)’ the time to solve
the reduced system of equations. The error is the relative error incurred by the
compression measured in the maximum norm when the right hand side is a vector
of ones. Throughout the table, the numbers in parenthesis refer to numbers obtained

when the technique of Remark 5 is not used.

7. CONCLUSIONS

We have described a “comipression” scheme for low-rank matrices. For a matrix A of dimen-
sionality m X n and rank k, the factorization can be applied to an arbitrary vector for the cost of
(n+m — k) - k operations, after a significant initial factorization cost; this is marginally faster than
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FIGURE 5. Plot of the singular values of X(®) = [H®)| (V(®)*] where H® and V()
are as in Figure 4. The numerical rank of X () is approximately 80, which is larger
than the individual ranks of H® and V),

the cost (n +m) - k produced by the SVD. The factorization cost is roughly the same as that for
the rank-revealing QR decomposition of A.

A more important advantage of the proposed decomposition is the fact that it expresses all of
the columns of A as linear combinations of k¥ appropriately selected columns of A, and all of the
rows of A as linear combinations of k appropriately selected rows of A. Since each of the basis
vectors (both row and column) produced by the SVD (or any other classical factorizations) is a
linear combination of all rows (columns) of A, the decomposition we propose is considerably easier
to manipulate; we illustrate this point by constructing an accelerated scheme for the direct solution
of integral equations of potential theory in the plane.

A related advantage of the proposed decomposition is the fact that one frequently encounters
collections of matrices such that the same selection of rows and columns can be used for each matrix
to span its row and column space (in other words, there exist fixed P, and Pg such that each matrix
in the collection has a decomposition (3.1) with small matrices S and T). Once one matrix in such
a collection has been factorized, the decomposition of the remaining ones is considerably simplified
since the skeleton of the first can be reused. If it should happen that the skeleton of the first matrix
that was decomposed is not a good choice for some other matrix, this is easily detected (since then
no small matrices S and T' can be computed) and the global skeleton can be extended as necessary.

We have constructed several other numerical procedures using the approach described in this
paper. In particular, a code has been designed for the (reasonably) rapid solution of scattering prob-
lems in the plane based on the direct (as opposed to iterative) solution of the Lippman-Schwinger
equation; the scheme utilizes the same idea as that used in [4], and has the same asymptotic CPU
time estimate O(N%/2) for a square region discretized into N nodes. However, the CPU times
obtained by us are a significant improvement on these reported in [4]; the paper reporting this
work is in preparation.

It also appears to be possible to utilize the techniques of this paper to construct an order

O(N log N) (or possibly even order order O(N) (!)) scheme for the solution of elliptic PDEs in
14




both two and three dimensions, provided that the associated Green’s function is not oscillatory.
This work is in progress, and if successful will be reported at a later date.
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