Annotation and Computational Geometry in the Streaming
Model*

Joan Feigenbaum! Sampath Kannan
Dept. of Computer Science Dept. of Computer & Information Science
Yale University University of Pennsylvania
feigenbaum-joan@cs.yale.edu kannan@cis.upenn.edu

Jian Zhang $
Dept. of Computer Science
Yale University
zhang-jian@Qcs.yale.edu

May 5, 2003

Abstract

Computing over massive data streams has gained increasing importance in recent years.
Set disjointness is a problem of particular interest because of its linear space requirement.
To reduce the space requirement, we allow annotation to be added to the data stream.
We show that the disjointness problem can be checked by a logarithmic-space verifier if
linear-size annotation is added. We conjecture that linear-size annotation is necessary for
any logarithmic-space disjointness verifier.

Besides stream annotation, we examine streaming space complexity for several prob-
lems in computational geometry. For one of these problems, the diameter problem, we
introduced a small-space approximation scheme.

1 Introduction

With the fast development of computerized techniques for data collection, people and organi-
zations are facing huge amounts of data. For example, sale records are collected everyday in

*This work was supported by the DoD University Research Initiative (URI) program administered by the
Office of Naval Research under Grant N00014-01-1-0795.

tSupported in part by ONR grant N00014-01-1-0795 and NSF grants CCR-0105337, CCR-TC-0208972,
ANI-0207399, and ITR-0219018.

tSupported in part by NSF grant CCR-0105337.

$Supported by NSF grant CCR-0105337.

supermarkets. Phone companies keep track of calling records. Some network routers, such as
the Cisco router with the NetFlow feature [Net98|, are capable of producing network traffic
reports continuously. While the router is routing the packets, the NetFlow feature can produce
summary statistics for each network “fow.”

However, it is not clear how to process and analyze this amount of raw data. People generally
want to optimize their operations based on the information extracted from these massive
data sets. The demand for applications that can perform massive-data processing tasks are
increasing.

There are two commonly used algorithm-design paradigms for these problems, namely sam-
pling and streaming [FKSV02a, FKSV02b]. A sampling algorithm takes a small random
sample from the massive data set and computes some function from this sample. On the
other hand, a streaming algorithm will take time to go through all the input. However, the
streaming algorithm is only allowed little time to process each data element and little total
workspace. It has to go through the data elements in a sequential order, and this order is not
controlled by the algorithm.

Streaming is also a requirement in certain applications in which the data themselves have a
stream nature. That is, the source generates data in the form of streams. It may not be
necessary to place these data in persistent storage. The processing algorithm is required to be
a streaming algorithm.

There has been significant progress recently in the design of streaming algorithms. In this
report, we focus our attention on algorithm design and lower bounds for particular problems.
For those high streaming space complexity problems, we examine approximation schema and
possible annotations in order to lower the space requirement.

One of the problems of particular interest is the set disjointness problem. It is interesting not
only because it has linear streaming space complexity but also because it is the problem from
which people most often derive streaming space lower bounds for many other problems. We
investigate the possibility of stream annotation for disjointness. Besides this, we also consider
streaming algorithms and complexity for certain computational geometry problems.

2 Computational Model and Complexity Measure

An data stream is a sequence of data elements oy,09,...,0, from a finite set M. Unless we
explicitly say otherwise, we will denote by n the number of data elements in the stream and
by m the maximum number of bits required to encode one data element.

A streaming algorithm is an algorithm that computes some function over a data stream and
has the following properties:

1. It accesses the input data in a sequential order.

2. The order of the data elements in the stream is not controlled by the algorithm.

The complexity of a streaming algorithm is measured by the amount of workspace it requires
and the time needed to process each data element. In some applications, the input data stream
is not stored in persistent storage. The streaming algorithm that processes this data stream
is required to go through the stream only once. In other applications, the algorithm may
make multiple passes over the input. In the later case, we also measure the complexity of a
streaming algorithm by the number of passes. Note that multiple-pass access is different from
random access, because, in each pass, the algorithm is still required to access the input data
in the given sequential order.

Because of the streaming nature of the input, it is important that little time be used to process
each data element. Normally, the streaming model requires the processing time for one data
element to be O(logn).

Usually, the stream model also requires sublinear space complexity. If linear space were al-
lowed, the algorithm could keep all the input in memory, and there would be no need for the
notion of “stream.” On the other hand, there are many problems that require linear space. We
will call this set of problems “hard” for the streaming model. In this scenario, approximation
is necessary. Even for some sublinear-space problems, approximation may be used to further
reduce the memory requirement. Unlike the situation in which approximation algorithms are
used for NP-Complete problems, the purpose of approximation here is to trade accuracy for
space.

3 Overview of Results

We investigate algorithms and lower bounds for some streaming problems. We also consider
approximation and annotation. Here we summarize the results:

(1) We show that it is not possible to have sublinear-space streaming algorithm for set dis-
jointness, even if multiple passes are allowed.

(2) Linear-size annotation can reduce the space requirement of a streaming checker for set
disjointness to logarithmic-space.

(3) For geometric problems in the streaming model, we have the following bounds. Here, € is
a constant. Also, note that the Q(n) bound doesn’t mean that the space requirement is linear
in the input size. Rather, the space requirement is linear in the number of points. The total
input size is n - m. In geometric problems, m is normally not independent of n but rather
O(logn). The Q(n) bound is thus for a total input size that is typically O(nlogn).

Problem one pass | multi-passes | one pass e-approximation
Diameter Q(n) Q(n) o)
Closest Pair Q(n) Q(n) Q(n)
K-Promised Convex Hull | Q(n)

(* For inputs in two-dimensional Euclidian space.)

(4) We show that there is an algorithm that approximates the diameter of a set of points in &
4myk—1(1—¢)

-)k=1) space.

dimensional space within a factor of 1 — € using O(m(

4 Related Work

The study of Turing machines with one-way read-only input tapes dates back to the 60’s
[HSL65, HUG9|. These machines are close to the streaming model. In the years since, many
algorithms for streaming computation have been devised. Most of these algorithms solve
statistical problems. There are streaming algorithms for seletion [MP80, MRL98|. Flajo-
let and Martin [FM83| gave an algorithm for estimating the number of distinct elements in
stream. Alon, Matias, and Szegedy [AMS99] showed how to approximate frequency moments.
Feigenbaum, Kannan, Strauss, and Viswanathan [FKSV02a| showed how to approximate L,
differences. Indyk [Ind00] extended their work to compute L, norms and differences for non-
grouped data. There are also streaming algorithms for computing histograms [GKS01] and
wavelet decompositions [GKMSO01].

In database research, the concept of synopsis data structures is playing an increasingly im-
portant role. A synopsis [GM99] is a succinct approximate representation of the data in the
DBMS. Queries can be answered based on the synopsis rather than on the (large) primary
data set. Computing the synopsis and subsequently querying it are very similar to doing a
streaming computation.

Apart from statistics and database queries, Guha, Mishra, Motwani, and O’Callaghan [GMMOOQ0]
showed how to cluster data streams, and Frieze and Kannan [FK99] showed how to approxi-
mate various matrix computations.

5 Preliminaries

In this section, we provide some of the technical background that we use in our results on
stream annotation and geometric algorithms.

Let X, Y, and Z be arbitrary finite sets and f : X X Y — Z be an arbitrary function. Alice
and Bob are two players who want to evaluate the function f. However, Alice knows only
z € X and Bob knows only y € Y. They compute the function f using a communication
protocol P. Communication complexity studies the number of bits that Alice and Bob must
exchange in order to evaluate a particular function f using a particular P [KN97].

Communication complexity is closely related to space complexity in the streaming model.
There is a straightforward way to transform a streaming algorithm with space complexity
S(n) into a communication protocol with communication complexity S(n). If a streaming
algorithm exists for a problem, Alice can simulate the streaming algorithm on her input and

then transmit her memory contents to Bob. Bob can continue the streaming algorithm on his
input. The amount of communication in this scheme is exactly the amount of memory used
by the streaming algorithm. Thus communication complexity lower bounds for a particular
problem are also space lower bounds for the same problem in the streaming model.

As we mentioned in section 1, “set disjointness” is the problem that has been used most often
to derive lower bounds in streaming model.

Given a set U of size n and two subsets z C U and y C U, we can define the following functions
and problems.

Definition 5.1. Set Disjointness: the function disj(x,y) is defined to be “1” when xNy = ¢
and “0” otherwize. The corresponding language, DISJ, is the set {(z,y)|x CU, y CU, zNy =
¢}. In the streaming model, the input (z, y) is given as a stream. FEach of x and y can be
represented by an n-bit string.

Definition 5.2. Equality: the function eq(z,y) is defined to be “1” when x = y and “0”
otherwise. In the streaming model, the input (x, y) is given as a stream.

Definition 5.3. Index: given an input stream consisting of a bit vector S of length n and a
number t € [0, n — 1] appended to the vector, output the bit Sy.

The following communication-complexity lower bounds hold for these problems:
Theorem 5.1. [KS90| The communication complexity of DISJ is ©(n).
Theorem 5.2. [KN97| The one-round communication complezity of the indez problem is ©(n).

Theorem 5.3. [KN97| The deterministic communication complexity of the function eq is
©(n), but the randomized communication complezity is O(logn).

From our discussion about the relationship between streaming-space complexity and commu-
nication complexity, the above bounds translate directly into one-pass streaming-space lower
bounds for the corresponding streaming problems.

Our first result is that the linear-space lower bound holds for DISJ even if a constant number
of passes is allowed.

Theorem 5.4. DISJ requires linear space in the streaming model, even if O(1) passes are
allowed.

Proof. The lower bound for one-pass stream algorithms can be derived by showing that, if
we have a stream algorithm for DISJ that requires at most a certain amount of memory, then
we are guaranteed to have a communication protocol requiring at most the same amount of
communication.

Now, if we allow multiple passes, the above argument still works, except that the communica-
tion will be twice the amount of memory required by the stream algorithm multiplied by the

number of passes. Assume Alice and Bob possess inputs « and y respectively. In the middle
of each pass, Alice sends her memory contents to Bob, and, at the end of each pass, Bob sends
back his memory contents: two communications per pass. Thus the total communication will
be twice of the amount of memory required by the stream algorithm multiplied by the number
of passes.

Given the linear communication complexity of DISJ, it is not possible to have a sublinear-space
stream algorithm that makes a constant number of passes.]

6 Annotation of streams

We next ask whether streaming-space requirements can be reduced by adding some extra
information to the input stream. Intuitively, the entity that generates the data stream may
provide this extra information and help to reduce the resource requirements of the streaming
algorithm. We model this situation with a stream proof system, in which we have both a
streaming verifier and a prover. The prover has unlimited computing power and adds a proof
(or annotation) to the stream. The verifier is a streaming algorithm that checks the proof.

The streaming verifier for a language L can be viewed as a probabilistic oracle machine M
that obeys the streaming restriction and satisfies:

e completeness: For every stream x € L, there exists a proof m,:

2
PrM™ () = 1] > 3
e soundness: For every stream z ¢ L and all proofs 7
1
PriM™(z) =1] < 3

We measure the complexity of this oracle machine both by the space requirement of the verifier
and by the size of the proof.

Our next result is a stream proof system for DISJ.
Recall that we are trying to compute the function disj(x,y) of two subsets z C U and y C U
such that the function has value “1” when z Ny = ¢ and “0” otherwise. Once z and y are
chosen, each element ¢ in the universe U will belong to one of the following 4 categories:

Cl s € x and i € y;

C2 i€z and i &y;

C3 i €z and i € y;

C4 i ¢z and i &y;

Because there are only 4 categories, a bit vector of size O(|U|) can be constructed to show the
categories of all of the elements in U.

Algorithm 6.1. Prover

The prover indicates, for each element in U, which of the above 4 categories
it belongs to. This gives a bit vector p. It then appends p to the end of the
input stream.

The input to the verifier is a stream of the form zyp. Because p indicates the category for
each of the element in U, the verifier can reconstruct two subsets ' and 3’ from p. That is,
z' = {i € Uli € C1 or i € C2 according to the proof p} and ¢y = {i € U|s € Cl or i €
C3 according to the proof p}. The verifier needs to check that x = 2’ and y = y'. For this, it
can use Lipton’s set-fingerprinting technique [Lip90].
Given a multi-set s = {ay,...ay}, where each a; is an m-bits number, the fingerprint of this
multi-set is computed by evaluating the following polynomial at some random location 7.

n

Fy(z) = [(ai +)

i=1
The additions and multiplications are carried out in the field [F, where ¢ is a prime selected
randomly from the interval [(nm)?, 2(nm)?].

Algorithm 6.2. Verifier

The stream verifier checks the following:

1. There is no element of U in category C1. This can be checked trivially
i one pass through p.

2.z =x" andy =1y'. This can be checked by randomly choosing r in F,
and checking that Fy(r) = Fy(r) and Fy(r) = Fy(r).

The verifier accepts if and only if (1) and (2) both hold.

Theorem 6.1. [Lip90| The probability that two sets sy = {ay...ar} and sy ={a1...q;} are
unequal but have the same fingerprints is at most

logn + logm 1
g g n

O();

nm nm?2

where all elements in sy and sy are m-bit numbers, and n = max(k,[).

Note that for a set s = {a; ...a,}, the fingerprint can be computed in one pass, using O(logn)
space.

7

Lemma 6.1. The proof system given by Algorithms 6.1 and 6.2 satisfies the “completeness’
and “soundness” requirements.

Proof. 1t is clear that, if zNy = ¢, a truthful proof will make the verifier accept. On the other
hand, if z Ny # ¢, the prover can cheat with a proof p claiming that elements in category C1
are in other categories. However, in this case, the resulting z’ or ¢’ will not be equal to the
or y in the original input. Such a discrepancy can be caught with high probability, according
to theorem 6.1, by comparing fingerprints.]

Theorem 6.2. DISJ can be verified in O(logn) space if a linear-size annotation is provided.

Proof. The proof has size O(n), because it only needs to encode the category for each element
in U. The only verification that requires working space is the check that ' = z and ¢’ = v.
Because the fingerprint technique needs only O(logn) space [Lip90], the whole verifier needs
only O(logn) space.]

7 computational geometry in the streaming model

In many applications, the input data elements are interpreted as points in space. Geometric
algorithms are used to reveal the relationships among the data elements. A typical example is
clustering, in which similarity among data elements is discovered. In this section, we consider
three geometric problems in the streaming model.

Given an input stream of points, we want to compute:

1. diameter
2. closest point

3. convex hull

As defined in section 2, an input stream is a sequence of data elements drawn from a finite
set. In this section, the streams are sequences of points. We denote by n the number of points
in the sequence and m the number of bits needed to encode each point.

Reductions are used in this section to derive lower bounds. As polynomial-time reductions are
required for proving NP-completeness results, here we need reductions that can be computed
in a streaming fashion. That is, the reduction itself should be a streaming algorithm. Given
an input data stream, it produces another stream [BYKS02].

7.1 Diameter

Definition 7.1. The diameter of a set of points is the mazximum, over all pairs in the set,
of the distance between the points in the pair.

Theorem 7.1. Any streaming algorithm that computes the diameter exactly requires Q(n)
space.

Proof. ~ We reduce the set-disjointness problem to a diameter problem. Consider points in
two-dimensional space that are on a circle. For a given point p;, there is exactly one other
point on the circle such that the distance between it and p; is exactly equal to the diameter
of the circle. Denote this point pi. The distance between p; and all other points on the
circle is smaller than the distance between p; and p,. We call (p;, p}) a pair and map each
element 7 € U onto one such pair. We further make the appearance of one point in the pair
correspond to the appearance of the element 4 in subset z and the appearance of the other
point correspond to the element 7 in y. We will have both points p; and p} only if the element
1 is in both subset x and y.

Given an instance (z,y) of DISJ, we construct an instance of the diameter problem according
to the above principle. We give an example in Figure 7.1

X S)ussaldey
SLNUNIN
.

T10T=
2

o)
N -q
Represents y=1100

,,,,,,,,

Figure 7.1: Reduction from DISJ to Diameter

The solid squares in the figure are the points we put into the diameter instance. The DISJ
instance in Figure 7.1 is z, y, where x = 1011 and y = 1100. We map element ¢ to the pair of
points (p;, p;). If the element ¢ appears in z, the corresponding point p; will be added to the
stream. If it also appears in y, the point p; will be added to the stream too. The diameter
instance contains pi, ps, ps, because z = 1011, and pi, p,, because y = 1100. The dashed
circles in the figure show the location for ps, p4,p). Because zo = 0 and y3 = y4 = 0, these
points are not presented in the stream.

In the example, element 1 is in both x and y. The diameter of the point set constructed is
Ip1p)| and is exactly the diameter of the circle. On the other hand, if zNy = ¢, the diameter of
the point set will be strictly smaller than the diameter of the circle. Thus an exact algorithm
for the diameter problem could be used to solve the set-disjointness problem.]

In the above construction, in order to distinguish the case in which £ Ny = ¢ from the case
in which x Ny # ¢, if the circle has diameter “1,” the algorithm must distinguish 1 from
cos(s=). Because 1 — cos(z) > 1a? — 5;2*, for z = £ and large n, the difference of 53
must be detectable. This means that the encoding of each point has to have precision at least
#. Thus m must be Q(logn). For this reason, the (n) bound doesn’t mean that the space
requirement is linear in the input size, because the input size is Q(nlogn). However, it means

that space linear in the number of points is necessary.

We now give an approximation algorithm for computing diameters in two-dimensional Euclid-
ian space. A common approach toward approximation in streaming model is to divide the
data set into groups. For each group, instead of keeping all the data in that group, we store
only a summary of that data. The final result is then computed from the summaries of the
groups. Our diameter-approximation algorithm takes this approach. We divide the space into
sectors and compute the diameter for the point set using the information from each sector.

To construct the sectors, we locate a point zy and divide the plane into sectors centered at
xg. Each sector has an angle of §. Two sectors are shown in figure 7.2

Figure 7.2: Two Example Sectors

The arcs aa’ and bb' in the figure are the outer boundaries of the corresponding sectors. That
is, all the points in the sector j are included in the area zgaa’. Furthermore, there is at least
one point on the boundary arc. Let u and v be two points in the space. Denote by |uv| the
distance between these two points. We also use the following notation:

zo: the chosen center

R: the maximum distance between zy and any other point

0: the angle we use to define the sectors

DY ., = max |uv| for u € boundary arc of sector 7 and v € boundary arc of sector j

DY

rin = min luv| for u € boundary arc of sector ¢ and v € boundary arc of sector j

10

For each non-empty sector, the algorithm records the farthest point from the center in that
sector. After scanning the input once, it estimates the diameter from these sectors.

Algorithm 7.1. DIAMETER

1. Take the first point of the stream as the center, and divide the plane
into sectors according to an angle 6 = ﬁ, where € s the error
bound. Let S be the set of sectors.

2. While going through the stream, for each sector, record the point in
that sector that is the furthest from the center. Also keep track of the
mazimum distance, R, between the center (the first point) and any
other point.

ij
min

3. Output max{R, max; jes D, . } as the diameter of the point set.

Claim 7.1. The distance between any two points in sector ¢ and sector j is no larger than
max{R, Dz} (Here i could be equal to j.)

Proof. Let u be a point in sector ¢ and v be a point in sector j. Extend zou until it reaches the
arc aa’. Denote the intersection point u'. Also extend zgv until it reaches the arc bb'. Denote
the intersection point v’. Then we have |uv| < max{|zov|, |vu/|} < max{R, |zov|, |u'v'|} <

max{R, D%(m}. []
Claim 7.2. Do, < D, +length(ad’) + length(bt') < D +2R-0

Proof. Let |uv| = DY .. and |u'v'| = foun Since u,u’ € arc aa’ and v,v’ € arc bV,
we observe that there is a path from v to v, namely u ~ u' ~ v’ ~ v. Therefore Dy <
lu'| + D)2+ v’ < D+ 2R - 6. n

We use the same angle 6 for all the sectors. Thus the only parameter in our algorithm that
needs to be decided is 6. It is also related to the estimation error. We now calculate 6 from
the error requirement.

Assume that the true diameter diam is the distance between a point in sector ¢ and another
point in sector j. Let d be the diameter computed by our algorithm. Since the algorithm is
allowed to make an error of €, we need (1 —€) - diam < d < (1 + ¢€) - diam.

On the other hand we have the following inequality:
min

max{R, DY } < max{R, nrlny?és Dy} =d < diam < max{R, Dfﬂ;ax} (1)

11

ij

Depending on the relationship between R and D, . , we have two cases:

Case 1: R > folm In this case, inequality 1 becomes:

R < d < diam < DY

max

To bound the error, we require:

R>(1—e€)DY

max

Take R > (1—e)(R+2R-0) > (1—¢€)(DY. +2R-0) > (1 —€)DiJaz. This leads to

min

eR > (1 — €)2R - 0 and requires the angle # of the sectors to be:

€
<
0_2(1—6)

Case 2: R < D . In this case, inequality 1 becomes:

min"®

< d < diam < DY

ij
‘D max

min

Again, to bound the error, we require:

D;]un > (1 - G)D%aw
Take foun > (1- e)(folm +2R-0) > (1 — €)D¥4,. This requires the angle 6 of the

sectors to be:

p<— ¢ < Din
“2(1—-¢) T 2(1-¢)R

Thus we define the sector size to be:

€

T @)

Theorem 7.2. There is an algorithm that approximates the diameter for a set of points in
two-dimensional Euclidian space within 1 — € and uses O(%m) bits of space.

Proof. Follows directly from our analysis of sector size.]

In]Rk, Claim 7.1 still holds but Claim 7.2 becomes D%aw < D:fun +2vk —1-R-0 and thus
(2) changes accordingly to:

12

N s TR} 3)

The number of sectors in R¥ increases to:

4/l —1(1 — 6))k—1

€

((4)

In general, in k-dimensional Euclidian space, for any 0 < € < 1, our algorithm can approximate
the diameter with e one side error using at most m(k=1=¢) “k_el(l_e))k_1
algorithm suffers from the common problem of the “curse of dimensionality

the space requirement increases exponentially with the dimension.

7.2 Closest Pair

memory space. The
” in the sense that

Definition 7.2. Closest Pazir is the pair of points in the input stream the distance between
which 1s the minimum among all pairwise distances in the stream.

The closest-pair problem and the diameter problem are related. The former finds the minimum
of the pairwise distances while the later finds the maximum. It is not surprising to see the
following:

Theorem 7.3. Any exact streaming algorithm for closest pair requires (n) memory bits

Proof. Again, we reduce from set disjointness. Consider points in 1-dimensional space.
Construct a stream of this type of points from the disjointness instance. Given (z,y) as
instance of disjointness, if the sth bit of x is “1,” add to the stream the point with coordinate
i. If it is “0,” add nothing. For the subset y, if the ¢th bit of y is “1,” the point ¢ — € is added,
and, if it is “0,” nothing is added.

If zNy = ¢, the minimal pairwise distance will be 1 — €. On the other hand, if z Ny # ¢, the
minimal distance will be €. By solving the closest-pair problem exactly, we could thus solve
the set-disjointness problem. [|

Unlike the diameter problem, constant-factor approximation of the closest-pair problem is not
easy. If there were an algorithm that approximated the minimum distance within some factor
¢/, one could always manipulate the € in the stream construction described above. A proper
e could always be chosen to guarantee that approximation would allow us to distinguish the
case of £ Ny # ¢ from the case of z Ny = ¢.

7.3 K-Promised Convex Hull

The last problem we consider is convex hull.

Definition 7.3. The Convex Hull of a set of points is the smallest convex set containing
the points.

13

Definition 7.4. The K-promised convex-hull problem is a convex-hull problem in which
the input point set 1s guaranteed to admit a convex hull with at most K sides.

Once again, the space requirement for K-promised convex hull is (n). The proofis a reduction
from the index problem.

Theorem 7.4. Streaming algorithms for K-promised convex hull require Q(n) space.

Proof. Given a bit vector S of length n, an algorithm that solves the index problem must
return the bit S; for some specified index 4. Consider the points on two concentric circles, one
of radius r and the other of radius r — e. For a point a; on the inner circle, there is a point a
on the outer circle such that the center of the two circles lies on the line a;a}. Call the pair
(a;,a}) a“unit.” We map the bits in S to the units. Namely, if S; = 1, we put the point a) into
the stream. Otherwise, a; is added. We do this for all the bits in S. Note that different bits
are mapped to different units that are distributed evenly along the circles. The result of this
is a stream of points. At the end of the input, the index 7 is revealed, we add another k£ — 1
free points (i.e. points that can be place anywhere besides the circles) to the stream. The
purpose of the k — 1 points is to build a convex set that includes the circles and uses exactly
one point on one of the circles.

S= 0001110011

P R
az ay
R T
P
P 2

Figure 7.3: Convex Hull Using Only One Point on the Circles

Figure 7.3 gives us an example of such a construction. Again, the solid squares are the points
we add to the stream. The example input bit vector is S = 0001110011. The index 7 = 0 and
four free points p1, p9, p3 and pg are placed such that the convex hull of the point set will be
P1, P2, P3, P4 and ag or ajy. In the example, the hull consists of {p1, p2, p3, P4, ao}-

There will be only one point on the hull that is not in the set {pi, p2, p3, ps}. Once the
convex hull is found, we can locate this point and deduce the bit value of S; by calculating
the distance from this point to the center of the circles.

Thus an algorithm that solved the k-promised convex-hull problem could be used to solve the
index problem as well.]

14

As in our construction for diameter, we need certain precision to ensure the computation of the
convex hull and the detection of distance difference e. This again requires m to be O(logn).

8 Open Problems

In section 6, we showed that disjointness can be checked with a logarithmic space verifier if
linear-size annotation is allowed. One open problem in this direction is whether the size of
the annotation can be improved. For example, could logarithmic-size annotation still enable
a logarithmic-space verifier? We conjecture that, for logarithmic-space disjointness verifiers,
linear-size annotation is necessary. On the other hand, annotation in general is complementary
to approximation for small-space streaming algorithms. As shown by our preliminary results,
it may also help to reduce the number of passes an algorithm needs. It would be interesting
to see how annotation could be used in other problems.

In section 7, we provided an algorithm that approximates the diameter of a set of data in two-
dimensional Euclidian space within a factor of 1 —e€ using just O(%m) memory space. However,
the space requirement increases exponentially as the dimension grows. One open problem
here is whether this increase is necessary. Would the same approximation scheme become
applicable in high-dimensional space when dimension-reduction techniques are employed? A
straightforward application of existing dimension-reduction methods does not seem to work
well for this scenario. What would be a applicable dimension-reduction technique for this
approximation scheme?

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approx-
imating the frequency moments. Journal of Computer and System Sciences,
58(1):137-147, Feb. 1999.

[BYKS02] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In SODA, pages 623632,
2002.

[FK99] Alan M. Frieze and Ravi Kannan. Quick approximation to matrices and applica-
tions. Combinatorica, 19(2):175-220, 1999.

[FKSV02a] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate
L' difference algorithm for massive data streams. SIAM Journal on Computing,
32:131-151, 2002.

[FKSV02b] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. Testing and spot-
checking of data streams. Algorithmica, 34:67-80, 2002.

15

[FMS83]

[GKMSO01]

|GKS01]

[GM99)

[GMMO00]

[HSL65]

[HU69]

[Ind00]

[KN97]

[KS90]

[Lip90]
[MPS0)]

[MRL9S]|

[Net98]

P. Flajolet and G.N. Martin. Probabilistic counting. In IEEE Symposium on
Foundation of Computer Science, pages 7682, 1983.

Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. Surfing
wavelets on streams: One-pass summaries for approximate aggregate queries. In

The VLDB Journal, pages 79-88, 2001.

Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and histograms.
In ACM Symposium on Theory of Computing, pages 471-475, 2001.

P. Gibbons and Y. Matias. Synopsis data structures for massive data sets. DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science: Special
Issue on External emory Algorithms and Visualization, A:39-70, 1999.

Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clus-
tering data streams. In IEEE Symposium on Foundations of Computer Science,
pages 359-366, 2000.

J. Hartmanis, R. Stearns, and P.M. Lewis. Hierarchies of memory limited compu-
tations. In IEEE Conf. Record on Switching Circuit Theory and Logica Design,
pages 179-190, 1965.

J.E. Hopcroft and J.D. Ullman. Some results on tape-bounded turing machines.
Journal of the ACM, 16:160-177, 1969.

P. Indyk. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In IEEE Symposium on Foundations of Computer Science,
pages 189-197, 2000.

E. Kushilevitz and N. Nisan. Communication Complezity. Combridge University
Press, 1997.

B. Kalyanasundaram and G. Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM Journal on Discrete Math., 5:545-557, 1990.

R.J. Lipton. Efficient checking of computations. In STACS, pages 207-215, 1990.

J.I. Munro and M.S. Paterson. Selection and sorting with limited storage. Theo-
retical Computer Science, 12:315-323, 1980.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate
medians and other quantiles in one pass and with limited memory. In SIGMOD,
pages 426-435, 1998.

Cisco NetFlow. http://www.cisco.com/warp/public/732/netflow/, 1998.

16

