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Abstract

Compile-time type information should be valuable in
efficient compilation of statically typed functional lan-
guages such as Standard ML. But how should type-
directed compilation work in real compilers, and how
much performance gain will type-based optimizations
yield? In order to support more efficient data represen-
tations and gain more experience about type-directed
compilation, we have implemented a new type-based
middle end and back end for the Standard ML of New
Jersey compiler. We describe the basic design of the new
compiler, identify a number of practical issues, and then
compare the performance of our new compiler with the
old non-type-based compiler. Our measurement shows
that a combination of several simple type-based opti-
mizations reduces heap allocation by 36%; and improves
the already-efficient code generated by the old non-type-
based compiler by about 19% on a DECstation 5000.
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1 Introduction

Compilers for languages with run-time type checking,
such as Lisp and Smalltalk, must often use compila-
tion strategies that are oblivious to the actual types
of program variables, simply because no type informa-
tion is available at compile time. For statically typed
languages such as Standard ML (SML) [19], there is
sufficient type information at compile time to guaran-
tee that primitive operators will never be applied to
values of the wrong type. But, because of SML’s para-
metric polymorphism, there are still contexts in which
the types of (polymorphic) variables are unknown. The
program can still manipulate these values without in-
specting their internal representation, as long as the
size of every variable is known. The usual solution is
to discard all the static type information and adopt the
approach used for dynamically typed languages (e.g.,
Lisp), that is, to represent all program variables using
standard bozed representations. This means that every
variable, function closure, and function parameter, is
represented in exactly one word. If the natural repre-
sentation of a value (such as a floating-point number)
does not fit into one word, the value is boxed (i.e., allo-
cated on the heap) and the pointer to this boxed object
is used instead. This is inefficient.

Leroy [15] has recently presented a representation
analysis technique that does not always require vari-
ables be boxed in one word. In his scheme, data objects
whose types are not polymorphic can be represented
in multiple words or in machine registers; only those
variables that have polymorphic types must use boxed
representations. When polymorphic functions are ap-
plied to monomorphic values, the compiler automati-
cally inserts appropriate coercions (if necessary) to con-
vert polymorphic functions from one representation to
another.

For example, in the following ML code:




fun quad (£, x) = (£(£(£(£(x)))))
fun h x = x * x * 0.50 + x * 0.87 + 1.3

val res = h(3.14) + h(3.84) + quad(h,1.05)

here quad is a polymorphic function with type
Vo.((o — a) *a) — a);
all of the four calls to f inside quad must use the
standard calling convention—passing ¢ in a general-
purpose register. On the other hand, h is a monomor-
phic function with type real — real, so every monomor-
phic application of A (such as h(3.14) and h(3.84)) can
use a more efficient calling convention—passing z in a
floating-point register. When h is passed to the poly-
morphic function quad (e.g., in quad(h,1.05)), h must
be wrapped to use the standard calling convention so
that f will be called correctly inside guad. Suppose
fwrap and funwrap are the primitive operations to box
and unbox floating point numbers, then the compiler
will wrap h into h':
h' = (Ay.fwrap(h(funwrap(y))));
the actual function application quad(h,1.05) is imple-
mented as
funwrap(quad(h', fwrap(1.05))).

Representation analysis enables many interest-
ing type-based compiler optimizations. But since no
existing compiler has fully implemented representation
analysis for the complete SML language, many practi-
cal implementation issues are still unclear. For example,
while Leroy [15] has shown in detail how to insert co-
ercions for core-ML, he does not address the issues in
the ML module system [19, 17], that is, how to insert
coercions for functor application and signature match-
ing. Propagating type information into the middle end
and back end of the compiler can also incur large com-
pilation overhead if it is not done carefully, because all
the intermediate optimizations must preserve type con-
sistency. The major contributions of our work are:

o Our new compiler is the first type-based compiler
for the entire Standard ML language.

o We extend Leroy’s representation analysis to the
SML module language to support module-level ab-
stractions and functor applications.

e We improve compilation speed and code size by
using partial types at module boundaries, by stat-
ically hash-consing lambda types, and by memo-
izing coercions.

o We evaluate the utility of minimum typing deriva-
tions [7]—a method for eliminating unnecessary

“wrapper” functions introduced by representation
analysis.

e We show how the type annotations can be sim-
plified in successive phases of the compiler, and
how representation analysis can interact with the
Continuation-Passing Style [24, 3] used by the
SML/NJ compiler’s optimizer [5, 3].

o We compare representation analysis with the crude
(but effective) known-function parameter special-
ization implemented by Kranz [14].

e Our measurements show that a combination of sev-
eral type-based optimizations reduces heap allo-
cation by 36%, and improves the already-efficient
code generated by the old non-type-based compiler
by about 19%. We have previously reported a
14% speedup using new closure representations for
accessing variables [23]; the two optimizations to-
gether yield a 28% speedup.

2 Data Representations

One important benefit of type-directed compilation is
to allow data objects with specialized types to use more
efficient data representations. In this section, we explain
in detail what the standard bozed representations are,
and what other more efficient alternatives one can use
in type-based compilers.

Non-type-based compilers for polymorphic lan-
guages, such as the old SML/NJ compiler [5], must use
the standard boxed representations for all data objects.
Primitive types such as integers and reals are always
tagged or boxed; every argument and result of a func-
tion, and every field of a closure or a record, must be
either a tagged integer or a pointer to other objects that
use the standard boxed representations. For example,
in Figure la, the value z is a four-element record con-
taining both real numbers and strings; each field of z
must be boxed separately before being put into the top-
level record. Similarly, y is a record containing only real
numbers, but each field still has to be separately boxed
under standard boxed representations.

We would like to use more efficient data representa-
tions, so that values such as z and y can be represented
more efficiently, as shown in Figure 1b. But the inter-
mixing of pointers and non-pointers (inside z) requires
a complicated object-descriptor for the garbage collec-
tor, so we will reorder the fields to put all unboxed fields
ahead of boxed fields (see Figure 1c); the descriptor for



val x = (4.51, "hello", 3.14, "world")
val y = (4.51, 3.14, 2.87)
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this kind of object is just two short integers: one indicat-
ing the length of the unboxed part, another indicating
the length of the boxed part.

For recursive data types such as list z in Figure 2,
the standard boxed representation will box each ele-
ment of z, as shown in Figure 2a. More efficient data
representations are also possible: if we know z has type
(real * real) list, z can be represented more compactly
as shown in Figure 2b or Figure 2c. The major problem
with these representations is that when z is passed to a
polymorphic function such as unzip:

fun unzip 1 =
let fun h((a,b)::r,u,w) = h(r,a::u,b::w)
| h([J,u,w) = (rev u, rev w) .
in (1,0,
end

the list z needs to be coerced from the more efficient
representations (shown in Figure 2b and 2c) into the
standard boxed representation (shown in Figure la).
This coercion can be very expensive because its cost
is proportional to the length of the list.! There are two
solutions to solve this problem:

e One approach—proposed by Leroy [15]—is to use
standard boxed representations for all recursive
data-type objects. In other words, even though we
know 2z has type (realreal) list, we still represent z
as shown in Figure 2a, with each car cell pointing to
an object that uses standard boxed representation.
For example, if pairs such as (4.51,3.14) are nor-
mally represented as flat real vectors, when they are
being added to (or fetched from) a list, they must
be coerced from flat representations to (or from)
standard boxed representations. The type-based
compiler described in this paper also uses this ap-
proach. The LEXP language described later in Sec-
tion 4.1 has a special lambda type called RBOXEDty
to express this requirement.

¢ Another approach—proposed by Harper and Mor-
risett [12]—would allow recursive data types to use
more efficient representations as shown in Figure 2b
and 2c. In their scheme, types are passed as argu-
ments to polymorphic routines in order to deter-
mine the representation of an object. For exam-
ple, when z is passed to unzip, a type descriptor
is also passed to indicate how to extract each car
field. Because the descriptor has to be interpreted
at runtime at each function call, it is not clear how

1And this cost is not necessarily amortized, if the function
takes time sublinear in the length of the list.

efficient this approach would be in practice (see
Section 7).

3 Front-End Issues

The Standard ML of New Jersey compiler is com-
posed of several phases, as shown in Figure 3. The
FElaborator/Type-checker produces typed abstract syn-
tax (Absyn), which is almost unchanged from previous
versions of the compiler [5], except that we annotate
each occurrence of a polymorphic variable or data con-
structor with its type instantiation at each use, inferred
by the type checker. The front end must also remember
the details of each module-level (structure or functor)
abstraction and instantiation in order to do module-
level type-based analysis.

For example, in the following core-ML program,

fun square (x : real) = x * x

fun sumsquare (1 : real list) =
let fun h ([], s : real) = s
| h (a::r, 8) = h(r, a+s)
in h(map square 1, 0.0)
end

the standard library function map (on lists) has poly-
morphic type
VaVB.(a — B) — (a list — B list);
the Elaborator/Type-checker will annotate map with
this polymorphic type, plus its instantiation
(real — real) — (real list — real list).

(1%

Similarly, the polymorphic data constructor, “:”, is also

annotated with its original polymorphic type
Va.(a* a list) — o list,
plus its instantiation
(real * real list) — real list.

To correctly support type-directed compilation for
the entire SML language, all type abstractions and type
instantiations in the module system must also be care-
fully recorded. In ML, basic modules (structures in Fig-
ure 4a) are encapsulated environments; module inter-
faces (signatures in Figure 4b) associate specifications
with component names, and are used to both describe
and constrain structures. Parameterized modules (func-
torsin Figure 4c) are functions from structures to struc-
tures. A functor’s argument is specified by a signature
and the result is given by a structure expression, which
may optionally be constrained by a result signature.

Abstraction and instantiation may occur in signature
matching (Figure 5), abstraction declaration (Figure 5),
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Figure 3: Overview of the new type-based SML/NJ compiler

functor application (see Figure 4c), and functor signa-
ture matching (used by higher-order modules [25, 17]).
We use the example in Figure 4 and 5 to show what
must be recorded in the Absyn during elaboration:

o Signature matching checks that a structure fulfills
the constraints specified by a signature, and creates
a new instantiation structure that is a restricted
“view” of the original structure. The elaboration
phase generates a thinning function that specifies
all the visible components, their types (or thinning
functions if they are substructures) in the original
structure, and their new types in the instantiation
structure. In Figure 5, U is bound to the result of
matching structure S against signature SIG. Sig-
nature matching in ML is transparent [18, 16, 11],
so f and p in the instantiation structure U have
type real — (real x real) and real. The new types
and their old types in structure S (also shown in
Figure 5) will be recorded in the thinning function.

e Abstraction is similar to signature matching; but

matching for abstraction is opaque [18, 16, 11]. In
addition to the thinning function, the elaboration
phase also remembers the result signature. In Fig-
ure 5, V is an abstraction of structure S on signa-
ture SIG. V remembers the thinning function gen-
erated when doing signature matching of S against
SIG, plus the actual signature SIG. During the
elaboration of this abstraction, the type of f in S

Va.a — (a * real)

is first instantiated into

real — (real * real)

in signature matching, and then abstracted into
t— (t*t).

Each functor application must remember its argu-
ment thinning function and its actual instantiation
functor. In Figure 4c, functor F takes SIG as its
argument signature, and returns a body structure
that contains a value declaration r; the type of r is
AtxA.t. When F is applied to structure S, S is first
matched against the argument signature SIG to get



structure S = signature SIG

functor F(A : SIG) =

struct type t = real sig type t struct val r = A.f(A.p)
val p = 3.0 valp : t end
fun f x = (x, p) val £ : t => (t * t)
val q = 4.0 end structure W = F(S)
end
(a) structure (b) signature (c) functor and functor application
Figure 4: Front end issues in the module language
structure declaration signature matching abstraction declaration
ML code | structure S = ... structure U : SIG = S | abstraction V : SIG = S
fstype | S.f: Va.a — (a* real) | U.f: real — (real x real) | V.f: t — (t xt)
p’s type | S.p: real U.p: real Vp: t

Figure 5: Signature matching is trensparent but abstraction matching is opaque

the actual argument instance, say S’; the elabora-
tor then reconstructs the result structure W by ap-
plying F to S’. The component » in W has type
(real * real). The front end records: (1) the thin-
ning function generated when S is matched against
SIG, (2) the actual instantiation of F', which has S’
as its argument and W as its result.

o Functor signatures are essentially “types” of func-
tors. Given a functor signature FSIG defined as

funsig FSIG (X: ASIG) = RSIG,

and a functor F, elaborating functor signature
matching

functor G : FSIG = F

is equivalent to elaborate the functor declaration
functor G(X: ASIG) : RSIG = F(X).

Therefore, for each functor signature matching, the
elaborator records everything occurring in functor
application F(X) plus the thinning function gen-
erated for matching F'(X) against the result signa-
ture RSIG.

Minimum typing derivation

Similar to the Damas-Milner type assignment algorithm
W [10], the old Elaborator/Type-checkerin our compiler
infers the most general type schemes for all SML pro-
grams. As a result, local variables are always assigned
the most general polymorphic types even though they
are not used polymorphically. For example,

fun f(u,v) =
let fun g(x, y, z) = (x=y) andalso (y=2)
in g(u*2.0, v*3.0, utv)
end

function f has type
real * real — bool,
the let-bound function g is assigned a polymorphic type:
Va.(a * a* a) — bool
where « is an equality type variable. But g is only used
monomorphically with type
(real * real * real) — bool.

To avoid coercion between polymorphic and mono
morphic objects, we have implemented a “minimum
typing derivation” phase in our new Elaborator/Type-
checker to give all local variables “least” polymorphic
types. The derivation is done after the elaboration
so that it is only applied to type-correct programs.
Our algorithm, which is similar to Bjgrner’s algorithm
M [7], does a bottom-up traversal of the Absyn. During
the traversal, we mark all non-exported variables: let-
bound variables and those that are hidden by signature
matching. Then, for each marked polymorphic variable
v, we gather all of its actual type instantiations, say
Ti,..., Tn, and reassign v a new type—the least general
type scheme that generalizes 7i,...,7,. The new type
assigned to v is propagated into v’s declaration d, con-
straining other variables referenced by d.

In the previous example, the let-bound function g is
constrained by a new type assignment

(real * real * real) — bool,

[

so the operator can be implemented as the prim-




itive equality function on real numbers, which is much
more efficient than the polymorphic equality operator.
Moreover, because g is no longer polymorphic, no coer-
cion is necessary when applied to monomorphic values.

4 'Translation into LEXP

The middle end of our compiler translates the Absyn
into a simple typed lambda language called LEXP. Dur-
ing the translation, all the static semantic objects in Ab-
syn, including types, signatures, structures, and func-
tors, are translated into simple lambda types (LTY);
coercions are inserted at each abstraction and instanti-
ation site (marked by the front end) to correctly support
representation analysis. In this section, we explain the
details of our translation algorithm, and present solu-
tions to several practical implementation problems.

4.1 The typed lambda language LEXP

The typed call-by-value lambda language LEXP is very
similar to the untyped lambda languages[3, sec. 4.7]
used in previous versions of the compiler: it contains
lambda, application, constants, tuple and selection op-
erators (i.e., RECORD and SELECT), and so on. But now
it is a typed language[22], with types LTY described by
this simple set of constructors:

datatype 1ty = INTty
| REALty
| RECORDty of 1ty list
| ARROWty of 1ty * 1ty
| BOXEDty
| RBOXEDty

A lambda type LTY can be a primitive numeric type
(INTty or REALty); a record type RECORDty[t1,1s,.. ]
whose fields have type #1,%5,...; a function type
ARROWty(t, s) from ¢ to s; or a boxed pointer type.

There are two kinds of boxed types. BOXEDty is a
one-word pointer to an object (such as a record) whose
fields may or may not be boxed. RBOXEDty is a one-
word pointer to a recursively boxed object whose com-
ponents are always recursively boxed; such objects use
the standard boxed representations that are often used
in a non-type-based ML compiler. Section 4.3 discusses
how and where recursive boxing is necessary.

Our typed lambda language is a simply typed lambda
calculus. Every function formal parameter is annotated
by an LTY. Prim-ops and the exception-RAISE oper-
ator are also type-annotated. Types of other expres-
sions (function application, record construction and se-
lection) can be calculated bottom-up from the types of

the subexpressions. To handle polymorphism, we intro-
duce two new LEXP operators: WRAP(t, €) that boxes an
evaluated expression e of type t into exactly one word;
and UNWRAP(Z, e) that unboxes an expression e into type
t.

In ML, a let-bound variable can be polymorphic; but
each use is treated as an instance of the type scheme.
We treat this as a coercion, and we define a compilation
function coerce that produces the right combination of
WRAP and UNWRAP operators. Our coerce is similar to
Leroy’s wrap and unwrap [15]; but ours does not require
that one type be an instantiation of the other. This
generalization is useful in translating the ML module
language into the LEXP language.

4.2 The Definition of Coerce

Coerce is a compile-time operation; given two LTYs £,
and ts, coerce(ty,ts) returns a coercion function that
coerces one lezp with type t; into another lezp with

type t2.

e Ift; and t5 are equivalent, no coercion is necessary,
coerce(t1,t2) returns the identity function.

o If one of t; and t, is BOXEDty, this requires coerc-
ing an arbitrary unboxed object into a pointer (or
vice versa); the coercion here is a primitive WRAP or
UNWRAP operation, written as

coerce(BOXEDty, t5) = Ae.UNWRAP(Z2, €) and
coerce(t;, BOXEDty) = Ae.WRAP(Zy,€).

o If one of t; and t, is RBOXEDty, this requires co-
ercing an arbitrary unboxed object into a pointer
(or vice versa); moreover, the object itself must be
coerced into the standard boxed representation (or
vice versa); this coercion is similar to the recursive
wrapping operations defined by Leroy [15]. It is
defined as

coerce(RBOXEDty, t5) = coerce(dup(tz),t2) and
coerce(t;, RBOXEDty) = coerce(ty, dup(t1)),

where the dup operation is defined as follows:

dup (RECORDty[21, ..., Z,)) =
RECORDty[RBOXEDty, ..., RBOXEDty]

dup(ARROWty(z1,22)) =
ARROWty(RBOXEDty, RBOXEDty)

dup(z) = BOXEDty, for all other LTY z

e If ¢t; and ¢, are record type, i.e.,
t; = RECORDty[ay, ..., a,) and




iy = RECORDty[Tl, ey r,,],

we first build a list of coercions [cy, ..., ¢,] for ev-
ery record field where ¢; = coerce(a;, r;) for i =
1,...,n. Assume v is a new lambda variable that
corresponds to the original record, then the field of
the new record is

fi = ¢i(SELECT(3,v));
the coercion of expression e from #; to ¢, is
(Av : BOXEDty. RECORD[f1, ..., fn])e.

e If t; and t, are function type, i.e.,
t; = ARROWty(a;,r;) and

19 = ARROWty(ag, 7'2),

we first build the coercions ¢, and ¢, for the argu-
ment and the result, that is, ¢, = coerce(az,a1)
and ¢, = coerce(ry,rs); then assume u and v are
two new lambda variables, the coercion of expres-
sion E from t, to ts is

Au : az.(Av : BOXEDty. c3(v))(E(ca(w)))-

4.3 Translating static semantic objects
into LTY

The Absyn is translated into the lambda language
LEXP through a simple top-down traversal of the Ab-
syn tree. During the traversal, all static semantic ob-
jects and types used in Absyn are translated into LTYs.
A signature or structure object s is translated into
RECORDty where each field is the LTY translated from
the corresponding component in s; a functor object is
translated into ARROWty with the argument signature
being the argument LTY, and the body structure being
the result LTY. The translation of an ML type ¢ into
LTY is done using the algorithm described in Figure 6
(see function ty21ty for the pseudo code).

More specifically, given a type t, the translation al-
gorithm ty21ty divides the type variables in ¢ into two
categories:

o Those that ever appear in constructor types, 2

such as a in type (a * a list) — « list, and 3 in
type (8 ref * ) — unit; they are translated into
RBOXEDty (the need for this is explained in Sec-
tion 2);

e All other type variables, such as v in y*y — 17;
they are translated into BOXEDty;

2Record type constructors and function type constructors
(“—") are not counted here.

fun ty2lty(t) =
(mark all type variables in t
that ever appear in a constructor type;
return 1ty(t))

fun 1ty(Va.o) = 1ty(o)
| Ity{h:m, ...y, ln:m}) =

RECORDty[1ty(r1), ..., 1ty(7)]

1ty(ry — m2) = ARROWty(1ty(m),1ty(m))

1ty(int) = INTty

1ty(bool) = INTty

1ty(unit) = INTty

1ty(real) = REALty

1ty(a) = if a is a marked type variable
then RBOXEDty else BOXEDty

| 1ty(¢t) = if the constructor type t is rigid

then BOXEDty else RBOXEDty

Figure 6: Translating ML type into LTY (pseudo code)

A polymorphic type Va;...Ya,.7 is translated by ig-
noring all quantifications. The arrow type constructor
“—” for functions is translated into ARROWty; the record
type constructor is translated into RECORDty, with its
fields ordered properly.

All rigid constructor types,® such as string, o list,
and (real * real) ref, are translated into BOXEDty. All
flezible constructor types are translated into RBOXEDty.

Type abstraction

One main challenge in doing module-level representa-
tion analysis is to deal with flezible constructor type
(also called type abstraction). For example, in the fol-
lowing ML program,

signature SIG =
sig type ’a t
val p : real t
val £ : ’at ->’at
end

functor F(S : SIG) =
struct datatype ’a foo = FOO of ’a S.t
val r = S.£(S.p)
fun g (FOO x) = [x]
end

t is a flexible type constructor (with arity 1) that will
not be instantiated until functor F' is applied. Simple
representation analysis [15] would run into two problems
when compiling F’s body:

3Following the SML Definition and Commentary [19, 18], all
type constructornames defined as type specificationsin signatures
are flexible; all other type constructor names are rigid.




e At the function application S.f(S.p), since S.f is
polymorphic and S.p is monomorphic, a coercion
must be inserted here; but the detail of this coer-
cion is not known because it depends on the actual
instantiation of ¢. For example, if ’a t is instanti-
ated into ’a * ’a when F is applied, S. £ has to be
“unwrapped” from type (’a * ’a) -> (’a * ’a)
into type (real * real) -> (real * real).

e Function g puts the variable z of type ’a t into
a list. This requires recursive wrapping (see Sec-
tion 2). But because t is unknown, this recursive
coercion is also unknown.

We solve these two problems by forcing all objects
with flexible type to use the standard boxed represen-
tations (i.e., as RBOXEDty) and by properly coercing all
structure components (including values, functions, and
data constructor injections and projections) from the
abstract types into their actual instantiations (during
functor application).

In the previous example, the body of functor F' ref-
erences several identifiers defined in the argument sig-
nature SIG. Because S.1is flexible (i.e., abstract) inside
F, the identifier S.p has LTY

It, = RBOXEDty
and the identifier S.f has LTY
It; = ARROWty (RBOXEDty,BOXEDty).
Because S.f and S.p are already recursively boxed, no
coercion is necessary when S.fis applied to S.p.

Similarly, the projection of data constructor FOO
used in the body of F has type ’a foo -> ’a S.t;its
corresponding LTY is

It, = ARROWty (BOXEDty,RBOXEDty),
that is, the value carried by FOO (i.e., the argument &
of function g) is already recursively boxed, therefore, no
recursive coercion is needed when putting z into a list.

When F is applied to the following structure A,

structure A = struct type ’a t = ’a * ’a
val p = (3.0,3.0)
fun f x = x
end

structure T = F(A)

first, the argument structure A is matched against the
signature SIG via abstraction matching, producing a
structure A’ that precisely matches SIG; the compo-
nents p and f are coerced to LTY It, and Ilt; in A’
Then, F is applied to this “abstract” structure A’, pro-
duce another “abstract” structure—the functor body
T'. Finally, T' is coerced back to the more “concrete”

structure T'; for example, T".r which has LTY RBOXEDty
is coerced into a record (7.r) that has LTY

RECORDty [REALty,REALty],

the projection of data constructor T”.FOO which has
LTY It. is coerced into a projection (for T.FOO) that
has LTY
ARROWty (BOXEDty,RECORDty [BOXEDty, BOXEDty]).

Here, coercions of projections and injections for data
constructors can be implemented by recording the ori-
gin type lt, with T.FOO or by using abstract value con-
structors proposed by Aitken and Reppy [1].

4.4 Translating Absyn into LEXP

Now that we have explained how to translate static se-
mantic objects into LTY and how to coerce from one
LTY to another, the translation of Absyn into LEXP
is straightforward. Coercions (built from WRAP and
UNWRAP) are inserted at each use of a polymorphic vari-
able, and at module-level signature matching,.

polymorphic variables: Given a polymorphic vari-
able v in Absyn, the front end has annotated every
use of v with its polymorphic type o plus its actual
instantiation 7. Assume that o and 7 are translated
into LTYs s and ¢, variable v is then translated into
the LEXP expression coerce(s,t)(v).

polymorphic data constructors: Data constructors
are treated just like variables; coercions are applied
to data constructor injections and projections.

primitive operators: Polymorphic prim-ops whose
implementations are known at compile time can
be specialized based on their actual type instanti-
ations. For example, polymorphic equality, if used
monomorphically, can be translated into primitive
equality; integer assignments and updates can use
unboxed update.*

signature matching: Suppose structure S is matched
against signature SIG, and U is the result instanti-
ation structure; then the thinning function gener-
ated by the front end is translated into a coercion c,
which fetches every component from S, and coerces
it to the type specified in U. If S is denoted by v,

4In order to support generational garbage collection [26], most
compilers must do some bookkeeping at each update so that the
pointers from older generation to youngest generation are cor-
rectly identified. Unbozred update is a special operator that as-
signs a non-pointer value into a reference cell; such updates cannot
cause older generations to point to newer ones, so no bookkeeping
is necessary.




then the translation of this signature matching is
simply ¢(v).

abstraction: Abstraction is translated in the same
way as signature matching, except that the result
¢(v) must also be coerced into the LTY for the sig-
nature SIG. Assume that the LTYs for U and SIG
are respectively u and s, then the abstraction of
structure S under SIG is (coerce(u, s))(c(v)).

functor application: Suppose the argument signa-
ture of functor F is SIG and F is applied to struc-
ture S. The front end has recorded the thinning
function for matching S against SIG and the actual
functor instance F’ for F. As before, assume the
result of matching S against SIG is ¢(v), and F is
denoted by the LEXP expression f, and the LTYs
for F and F’ are respectively s and ¢, then the
LEXP expression for F’ is f' = (coerce(s,t))(f),
and functor application F(S) is translated into

APP(f', c(v)).

4.5 Other practical issues

Because of large LTYs and excessive coercion code, a
naive implementation of the translation algorithm can
lead to large LEXP expressions and extremely slow com-
pilation. This problem is severe for programs that con-
tain many functor applications and large structure and
signature expressions.

Since coerce(s,t) is an identity function in the com-
mon case that s = ¢, we can improve the performance
of the compiler by optimizing the implementation of co-
erce with an extra test:

coerce(s,t) =
ifs=t
then A\ f.f

else structural induction

But how can s = t be tested efficiently? We use
global static hash-consing to optimize the representation
for lambda types; hash-consed structures can be tested
for equality in constant time, and hash-consing reduces
space usage for shared data structures.

This optimization was crucial for the efficient compi-
lation of functor applications: without hash-consing, a
one-line functor application (whose parameter is a ref-
erence to a complicated, separately defined signature)
could take tens of minutes and tens of extra megabytes
to compile; with hash-consing, functor application is
practically immediate. Also, general space usage of the

10

compiler is less with hash-consing, as the static repre-
sentations of different functors can share structure.

Management of a global hash-cons table is not com-
pletely trivial; we would like to delete stale data from
the table, but how do we know what is stale? We use
weak pointers (pointers that the garbage collector ig-
nores when tracing live data and that are invalidated
when the object pointed to is collected), a special fea-
ture supported by SML/NJ; this is effective, though it
seems a bit clumsy.

Naive translation of static semantic objects may also
drag in large LTYs that are mostly useless. For exam-
ple, to compile

(Compiler.Control.CG.calleesaves := 3;

Compiler.AllocProf.reset())

we need to know only that variable calleesaves has
type int, and variable reset has type unit — wunit.
However, our translation algorithm will have to include
the type of structure Compiler which may contain hun-
dreds of components. So we extend our lambda type
notation with the following new constructs:

......

datatype 1ty =
| GRECty of (int * 1lty) list
| SRECORDty of 1ty list

Here, SRECORDty is same as RECORDty except that it
is used particularly for module constructs (i.e., struc-
tures). The LTY GRECty is used to type external struc-
tures such as the Compiler structure above; a GRECty
specifies a subset of record fields (and their correspond-
ing LTYs) that are interesting to the current compila-
tion unit. The LTYs for all external structure identifiers
are inferred during the Lambda Translation phase rather
than being translated from their corresponding static
semantic objects. For example, the LTY for structure
Compiler in the above example will be It omp:

ltcomp = GRECtY[(3, iteert), (7, ltanoc)] where
ltetr1 = GRECty[(0, GRECty[(43,INTty)])] and
Hanto. = GRECty[(0, ARROWEy(INTty,INTty))).

Here, we assume that Control and AllocProf are the
3rd and Tth fields of Compiler, CG is the Oth field
of Control, calleesaves is the 43nd field of CG, and
reset is the Oth field of A1locProf.

We also save code size and compilation time by shar-
ing coercion code between equivalent pairs of LTYs, us-
ing a table to memo-ize the coerce(s,t) function. Co-
ercions introduced in the coerce procedure are normally
inlined in the CPS optimization phase, because they
are applied just once. Shared coercions are often not




inlined, because they can cause excessive code explo-
sion. Because shared coercions can be more expensive
than normal inlined coercions, we only use this hashing
approach for coercions between module objects. This
compromise works quite well in practice, because it is
often the large module objects that are causing the “ex-
cessive coercion code” problem. Since module-level co-
ercions are not executed often, the generated code is not
noticeably slower.

5 Typed CPS Back End

Standard ML of New Jersey uses continuation-passing
style (CPS) as its intermediate representation for pro-
gram optimization. The LEXP language is converted
into a CPS notation (cezp) that makes flow of control
explicit. CPS [24, 14] and its use in the SML/NJ com-
piler [4, 3] have been described in the literature.

Previous versions of SML/NJ 3 have used an untyped
CPS language. But now we propagate some very simple
type annotations into CPS. Each variable in the CPS
language is annotated, at its binding occurrence, with
a “CPS type” (CTY). The CTYs are very simple:

datatype cty = INTt | PTRt of int option
| FUNt | FLTt | CNTt

so they are very easy and cheap for the back end to
maintain.

A CPS variable can be a tagged integer (INTt), a
pointer to a record of length k (PTRt(SOME k)), a
pointer to a record of unknown length (PTRt (NONE)), a
floating-pointer number (FLTt), a function (FUNt), or a
continuation (CNTt). The translation frm LTY to CTY
is straight-forward:

fun 1lty2cty 1t =

case 1t

of INTty => INTt
| REALty => FLTt
| BOXEDty => PTRt (NONE)
| RBOXEDty => PTRt (NONE)
| ARROWty _ => FUNt
| RECORDty 1 => PTRt(SOME(length 1))

Because the CPS conversion phase has made implemen-
tation decisions for records and functions, the CTY is
no longer concerned with the details of RECORDty and
ARROWty.

We augment the set of CPS prim-ops with specific
wrapper/unwrapper operations for integers (i.e., iwrap
and iunwrap), floating-point numbers (i.e., fwrap and

5up to version 0.93, released in 1993
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funwrap), and pointers (i.e., wrap and unwrap). For
example, furap “boxes” a floating-point number, pro-
ducing a pointer, and funwrap is the inverse operation.
For m-bit integers represented in an n-bit word with an
(n — m)-bit tag, iwrap could apply the tag (by shifting
and OR-ing), and iunwrap could remove it. For integers
represented by boxing, then iwrap could heap-allocate
a boxed integer.

5.1 CPS conversion

The overall structure and algorithm of our CPS con-
version phase is almost same as the one described by
Appel [3, Ch. 5]. The conversion function takes two ar-
guments: an LEXP expression E and a “continuation”
function ¢ of type value — cezp; and returns a CPS ex-
pression as the result. But now, during the conversion
process we gather the LTY information for each LEXP
expression, and maintain an LTY environment for all
CPS variables. The LTYs are used to make implemen-
tation decisions for records and function calls, and are
also translated into CTYs to annotate CPS variables.

The CPS-conversion phase decides how to represent
each record, and encodes its decisions in the CPS op-
eration sequences it emits. Converting LEXP records
is the most interesting case. Given an LEXP expres-
sion RECORD[uj, ug, ..., Up], suppose the LTY for each
u; is t; ( = 1,...,n), we can represent the record us-
ing any of the layouts shown in Figures 1: with every
field boxed and every integer tagged (Figure la), using
flat records of reals (y in Figure 1b), with mixed boxed
and unboxed fields (z in Figure 1b), or with segregated
boxed/unboxed fields (Figure 1c). The translation of
SELECT expressions must correspond to the layout con-
vention used for records.

CPS conversion also decides the argument-passing
convention for all function calls and returns. In ML,
each function has exactly one argument, but this ar-
gument is often an n-tuple. In most cases, we would
like to pass the n components in registers. The previ-
ous SML/NJ compilers could “spread” the arguments
into registers only when caller and callee were in the
same compilation unit, and the call sites were not ob-
scured by passing functions as arguments. The new,
type-based compiler can use register arguments based
on type information. If the type of f’s argument is
RECORDtyl[ty,. .., ts), and n is not so large that the reg-
ister bank will be exhausted,® we pass all components in
registers (unlike LEXP, CPS does have multi-argument

6We currently use a threshold of n < 10 on 32-register RISC
machines.




functions). Similarly, a function that returns an n-tuple
value will be translated using a n-argument continua-
tion function, for suitably small n. ‘

Finally, the primitive coercion operations, WRAP(Z,e)
and UNWRAP(Z,e), are converted into corresponding CPS
primitive operations. Based on whether ¢ is INTty,
REALty, or other pointer types, WRAP and UNWRAP are
translated into iwrap and iunwrap, fwrap and funwrap,
or wrap and unwrap.

5.2 Optimization and closure conver-
sion

When the CPS conversion phase is finished, the com-
piler has made most of the implementation decisions for
all program features and objects: structures and func-
tors are compiled into records and functions; polymor-
phic functions are coerced properly if they are being
used less polymorphically; pattern matches are com-
piled into switch statements; concrete data types are
compiled into tagged data records or constants; records
are laid out appropriately based on their types; and the
function calling conventions are mostly decided.

The optimizer of the SML/NJ compiler operates on
the CPS intermediate representation. Optimization
phases are almost unchanged, except that they must
correctly propagate the CTYs, which is simple to do;
CPS optimizations are naturally type-consistent. Be-
sides those described by Appel [3], two new CPS opti-
mizations are performed: pairs of “wrapper” and “un-
wrapper” operations are cancelled; and record copying
operations of the form

let val (x,y) = a in (x,y) end
can be eliminated, since now we know the size of a at
compile time.

To represent environments for higher-order functions
with nested scope, the compiler uses our new space-
efficient closure conversion algorithm [23]. Previously,
this phase had to discover which functions are continu-
ations by dataflow analysis [6]; now the information is
manifest in the CTYs.

When the closure analysis phase must build heap
records for closure environments, it can use all the
record representations shown in Figure 1.

The closure conversion algorithm is very cautious
about “optimizing” transformations that extend the
lifetime of variables, since this can cause a kind of mem-
ory leak [23, 3]. The CTY information allows the life-
time of integers (and other constant-size variables) to
be safely extended, a useful benefit.
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6 Performance Evaluation

Type-directed compilation should support much more
efficient data representations. In order to find out how
much performance gain we can get for different type-
based optimizations, we have measured the performance
of six different compilers on twelve SML benchmarks
(described in Shao [22]). Among these twelve bench-
marks, MBrot, Nucleic, Simple, Ray, and BHut
involve intensive floating-point operations; Sieve and
KB-Comp frequently use first-class continuations or
exceptions; VLIW and KB-Comp make heavy use of
higher-order functions. The average size of these bench-
marks is 1820 lines of SML source code.

The six compilers we use are all simple variations of
the Standard ML of New Jersey compiler version 1.03z.
All of these compilers use the new closure conversion al-
gorithm [23] and with three general purpose callee-save
registers [6], and all use tagged 31-bit integer represen-
tations. Other aspects of these compilers are close to
those described by Appel [3].

sml.nrp A non-type-based compiler. No type informa-
tion is propagated beyond the elaboration phase.
Data uses standard boxed representations. Func-
tions take one argument and return one result.

sml.fag The sml.nrp compiler with the argument flat-
tening optimization [14, 3]. If the call sites of a
function are known at compile time, its n-tuple ar-
gument can be flattened and passed in n registers.
This compiler is similar to SML/NJ 0.93 [3].

sml.rep The new type-based compiler that supports
very basic representation analysis (on records).
Floating point numbers still use boxed represen-
tations. Hash-consing of LTY’s (Section 4.5) is not
used (had not yet been implemented) in this ver-
sion.

sml.mtd The sml.rep compiler plus the implementa-
tion of minimum typing derivations.

sml.fib The sml.mtd compiler plus support of un-
boxed floating point numbers. Function call and
return pass floating-point arguments in floating-
point registers. Records of floats are represented
“flat,” as in Figure 1b.” Records that contain both
boxed and unboxed values are still represented as

"Unfortunately, the SML/NJ version 1.03z still uses the old
runtime system [2]. Reals are not always aligned properly, so
memory fetch (or store) of a floating-point number must be im-
plemented using two single-word memory-load (memory-store)
instructions.
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Figure 7: A comparison of execution time
Program sml.nrp | sml.fag | sml.rep | sml.mtd | sml.ffib | sml.fp3
(base) (ratio) (ratio) (ratio) (ratio) (ratio)
Execution time 1.00 0.95 0.89 0.83 0.77 0.81
Heap allocation 1.00 0.90 0.70 0.66 0.58 0.63
Code size 1.00 0.98 0.97 0.97 0.99 1.01
Compilation time 1.00 1.04 1.06 1.09 1.10 1.17
Figure 8: ‘Summary comparisons of resource usage
two layers, with each unboxed value being boxed the older SML/NJ compiler (i.e., sml.fag) that
separately. uses uniform standard boxed representations. This

sml.fp3 The sml.fib compiler, but with three floating-
point callee-save registers [22].

All measurements are done on a DEC5000/240 work-
station with 128 megabytes of memory, using the
methodology described in Shao’s Ph.D. thesis[22]. In
Figure 7 we show the execution time of all the bench-
marks using the above six compilers, using sml.nrp as
the baseline value. Figure 8 compares execution time,
heap allocation, code size, and compile time (based on
the average ratios of all twelve benchmarks). We can
draw the following conclusions from these comparisons:

o The type-based compilers perform uniformly better
than older compilers that do not support represen-
tation analysis. The sml.ffb compiler gets nearly
19% speedup in execution time and decreases the
total heap allocation by 36% (on average) over
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comes with an average of 6% increase in the compi-
lation time. The generated code size remains about
the same.

The simple, non-type-based argument flattening
optimization in the sml.fag compiler gives a useful
5% speedup.

The sml.rep compiler, which supports passing ar-
gument in registers (but not floating-point regis-
ters), only improves the performance of the non-
typed-based sml.fag compiler by about 6%. It
does decrease heap allocation by an impressive

20%.

Minimum typing derivations were intended to elim-
inate coercions; but most of the coercions elimi-
nated by MTD would have been eliminated any-
way by CPS contractions. The only significant




speedup of the sml.mtd compiler over sml.rep is
from the Life benchmark where with MTD, the
(slow) polymorphic equality in a tight loop (test-
ing membership of an element in a set) is success-
fully transformed into a (fast) monomorphic equal-
ity operator—and the program runs 10 times faster.

7 Related Work and Conclusion

Representation analysis, proposed and implemented by
Leroy [15] (for ML-like languages) and Peyton Jones
and Launchbury [20] (for Haskell-like languages), al-
lows data objects whose types are not polymorphic
to use more efficient unboxed representations. Pey-
ton Jones and Launchbury’s approach [20] requires ex-
tending the language (i.e., Haskell) with a new set of
“unboxed” monomorphic types; the programmer has to
explicitly write “boxing” coercions when passing un-
boxed monomorphic values to polymorphic functions.
Leroy’s [15] approach is more attractive because it re-
quires no language extension or user intervention. The
work described in this paper is an extension and im-
plementation of Leroy’s techniques for the entire SML
language. We concentrate on practical issues of im-
plementing type-directed compilation such as interac-
tion with ML module system and efficient propagation
of type information through many rounds of compiler
transformations and optimizations.

Many people have worked on eliminating unnecessary
“wrapper” functions introduced by representation anal-
ysis. Both Peyton Jones [20] and Poulsen [21] let the
programmer to tag some types with a bozity annota-
tion, and then statically determine when to use boxed
representations. Henglein and Jorgensen [13] present a
term-rewriting method that translates a program with
many coercions into one that contains a “formally op-
timal” set of coercions. Neither technique appears easy
to extend to the SML module language. We use min-
imum typing derivations [7] to decrease the degree of
polymorphism for all local and hidden functions. This
is very easy to extend to the module system. Our ap-
proach may achieve almost the same result as “formally
optimal” unboxing. And we have shown that simple
dataflow optimizations (cancelling wrap/unwrap pairs
in the CPS back end) is almost as effective as type-
theory-based wrapper elimination.

Type specialization or customization [9, 8] is another
way to transform polymorphic functions into monomor-
phic ones. Specialization can also be applied to parame-
terized modules (i.e., functors), just as generic modules
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are implemented in Ada and Modula-3. Because of the
potential code explosion problem, the compiler must do
static analysis to decide when and where to do special-
ization. Our type-based compiler uses coercions rather
than specializations; however, because our CPS opti-
mizer [3] always inline-expands small functions, small
and local polymorphic functions still end up being spe-
cialized in our compiler. We believe that a combination
of representation analysis and type specialization would
achieve the best performance, and we intend to explore
this in the future.

Harper and Morrisett [12] have recently proposed
a type-based compilation framework called compiling
with intensional type analysis for the core-ML language.
They use a typed lambda calculus with explicit type
abstractions and type applications as the intermediate
language. Their scheme avoids recursive coercions by
passing explicit type descriptors whenever a monomor-
phic value is passed to a polymorphic function. Since
they have not implemented their scheme yet, it is un-
clear how well it would behave in practice. Because their
proposal only addresses the core-ML language, we still
do not know how easily their scheme can be extended
to the SML module language.

We believe that type-based compilation techniques
will be widely used in compiling statically typed lan-
guages such as ML in the future. The beauty of type-
based representation analysis is that it places no bur-
dens on the user: the source language does not change,
programmers do not need to write coercions, and sep-
arate compilation works cleanly because interfaces are
speficied using types.

By implementing a fully working type-based compiler
for the entire SML language, we have gained experience
with type-directed compiiation, and solved many prac-
tical problems involved in the implementations. Our
performance evaluation shows that type-based compi-
lation techniques can achieve significant speedups on a
range of benchmarks.
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