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Abstract

A new type of model neuron is introduced as a building block of an associative
memory. The neuron, which has a number of receptor zones, processes both the
amplitude and the frequency of input signals, associating a small number of features
encoded by those signals. Using this two-parameter input in our model compared to
the one-dimensional inputs of conventional model neurons (e.g. the McCulloch-Pitts
neuron) offers an increased memory capacity. In our model there is a competition
among inputs in each zone with a subsequent cooperation of the winners to Specify the
output. The associative memory consists of a network of such neurons. A state-space
model is used to define the neurodynamics. We explore properties of the neuron and
the network and demonstrate its favorable capacity and recall capabilities. Finally, the

network is used in an épplication designed to find trademarks that sound alike.

Key words - associative memory, neural networks, competitive cooperative neuron,

' CCN, trademarks.

1. INTRODUCTION

Conventional model neurons such as the McCulloch-Pitts neuron use one-dimensional

input from each source (the neuronal activity). These neurons themselves are
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characterized by a one-dimensional parameter set (the synaptic weights). In this paper
we propose a new model neuron which more closely resembles the biological neuron in
structure and functionality. The new neuron employs a competition among inputs to
each of its input zone and a subsequent cooperation among the winners in each of the
zones for specifying the output. For convenience, hereafter we refer to this new model

neuron as CCN (Competitive Cooperative Neuron).

There are two critical aspects to the new model neuron. One is that the input
signals are characterized by a two-dimensional parameter set (representing the
amplitude and the frequency of signals). The other critical aspect of the CCN is that
the neuron receives input signals at several distinct and autonomous zones. In each
zone there is a competition among the inputs with a winner-takes-all protocol. The
winning signal of each zone is passed along to the cell body. There, a threshold
protocol is employed for determining neuronal firing and consequent association of

inputs at the different zones.

The following diagrams illustrate the conventional and new model neurons, and

the way they differ (in Figure 2 we show a CCN with five receptor zones).
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Figure 1: Conventional model neuron
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Figure 2: New model neuron (CCN)

The CCN resembles the pyramidal cell found in brain {Arbib, 1972}. It has a physical
structure resembling a pyramidal cell, and like such a cell it processes both the
frequency and the amplitude of the input signals. We claim that a cognitive neuronal
system which uses the CCN has higher memory capacity compared to a McCulloch-
Pitts neural network (i.e., the network employing CCN has a higher stored-
features/number-of-neurons ratio). We show that the improved capacity is a result of
the two new aspects (two-dimensional characterization of signals and autonomous
receptor zones), as well, of course, of the structural and operational details of the new

model.

In Section 2 we describe CCN in detail. In Section 3 we describe a simple
network of such neurons, and in Section 4 we introduce mathematical notation to
formalize the description of the network in order to analyze its capabilities. The
neurodynamics which affects the neuronal parameters so that learning, association, and

processing efficiency are achieved, are presented in Section 5. In Section 6 we




describe the training and recall processes of the network. In Section 7 we develop
some properties of the neuron and the network including an expression for the memory
capacity. We investigate the capacity of the memory and explain how phantom
memories can emerge. Finaily, in Section 8 we describe a practical appliéation and the
results of an experiment in which we train the network to associate between short
strings that may sound alike.  This application is useful for companies when they
register a new trademark. For a trademark to be considered new, it must not sound like
any existing one. In particular, when naming a new drug, it is very important to avoid

confusion with other drugs.

2. THE NEURON - GENERAL DESCRIPTION

The Competitive Cooperative Neuron consists of a small number of input regions
(receptor zones®), and one output (axon). Each input region collects input signals from
many sources (dendrites). The input signal from each source has two aspects — the
frequency (which encodes the information), and the amplitude (the strength of the
signal). Each region is especially sensitive to a small range of frequencies (band). The
center of this band’ is chosen randomly at first. After each attempt to learn a specific
task (memory), a band that is sufficiently close to the selected (winning) input signal
(in a sense made precise in section 4) is preserved when the neuron fires. This
resembles natural selection, where the fittest configuration is genetically preserved. If
a selected band did not contribute to the improvement in learning the task, a new

random value of the band center may be assigned.

The input to a receptor zone is built up by the superposition of the frequencies
from the different sources (dendrites) to that zone. A receptor zone of a neuron
decomposes the input and detects only the frequencies that are within its band, but only
if the amplitude of the input corresponding to this frequency exceeds a certain
threshold. These thresholds typically change over time in the process of acquiring

memories so that the performance of the network is improved.

Note that the same numerical input frequency value (which encodes the

information) in different regions may represent different modalities. For example, if a

4 We shall use the terms (receptor) zone and (input) region interchangeably.
5 From now on, when we use the term “band” we mean a small, specified range of frequencies around
the center of the band.




neuron associates between names of foods and their taste, then the word “pepper” may
be encoded just like (i.e. with the same frequency as) the taste “sweet”. Since the
inputs arrive from different regions, there is no confusion in the processing. Receiving
inputs from distinct zones allows re-use of frequencies, and therefore increases the

capacity, as we shall discuss later.

Each input region propagates the winning input signal (amplitude and
frequency) to the cell body. The precise nature of the competition determining the
winning input is specified in Section 4. The neuron fires if the combined amplitude of
the winning input signals exceeds a certain threshold. If the neuron fires the output is
arbitrary at first. The neurons that receive this output may or may not detect it. After a
few generations, nature (or in the artificial network case, the designer of the network)
may create cells which have adapted so that they can detect this output signal.
Alternatively the firing neuron can change its output protocol by means of Hebbian
learning. In this paper, we shall define the output to be a vector chosen appropriately
from training data (exemplars). The components of the output vector are the
frequencies of the winning inputs to the neuron. As we shall see, this approach will

simplify the recall process and the implementation of the network.

When activated, neurons can decrease the tolerance level in the contributing
zones (i.e. zones that have furnished a winning input signal), where the tolerance level
is the maximum value of the difference between the band and the winning input
frequency that still results in the neuron firing. When a neuron decreases its tolerance
levels we say that it specializes. We claim that this feature results in an increased
capacity of the network (Section 7). During training, the neuron also decreases the
threshold for the amplitude in active zones, and if the neuron fires it also decreases the
threshold of the cell body. This allows for a clean, but weaker signal to activate a zone

and even cause the neuron to fire.

When a zone is activated by an input signal, it remains active for a short period
of time, during which it ignores subsequent inputs. This is one more aspect in which
the CCN and the biological neuron resemble one another. This means that the input
signals that are required to activate the CCN don’t have to be tightly synchronized.
From the moment the first receptor zone is activated, the neuron waits for the other

signals for a short period of time.




When the neuron is trained and it receives input in some, but not all the regions,
it uses that input to recall the previous inputs to the idle regions. For example, if a
neuron has three receptor zones, and it fired when the input was the vector that
represents the triple (Red, Sweet, Strawberry), then the next time it receives only “Red”
and no input from the other regions, it will fire (“Red”, “Sweet”, “Strawbersy”),

provided that the amplitude of the input signal (“Red”) exceeds the cell’s threshold.

In Section 4, we shall introduce mathematical notation to formalize the

descriptive representation of our neuronal model.

3. THE NETWORK

The basic implementation uses a feed-forward network with one layer of neurons. The
neurons are as described in Section 2. Figure 3 illustrates a simple one-layer feed-
forward network with four neurons and three input sources. Each neuron has three

receptor zones.
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Figure 3: A one-layer feed-forward network with four neurons (CCN)




+ In future work, we shall use a recurrent network. In that case the vector output of each
of the neurons is fed back to that neuron’s input lines, where each element of the output
vector is fed back only to its corresponding input region. We expect that the recurrent
network will be able to recall higher-order memories. For example, if the input “Red”
is associated with “Sweet” and “Strawberry”, then feeding “Sweet” back to the

appropriate input region may result in recalling “White” and “Sugar”.

It is also possible to use a multi-layer feed-forward configuration to achieve
recall of higher order memories. However this involves a more complicated
encoding/decoding scheme for the output of the neurons, which we also defer for later

study.

4. THE MATHEMATICAL MODEL
Let N denote the number of neurons. R(#) denotes the number of receptor regions in

neuron n. For simplicity we assume that all neurons have the same number of receptor

regions, i.e. R(n)=R for n=12,...,N .
Receptor region r in each neuron receives a finite set of signals,
S(r) = {Sl(r), S,(r), S3(r),...} (some of which may be null). Note that S(r) is not a

function of the neuron number, n, since in every neuron, the r-th region receives the

same set of signals S(r) (see figure 3). S,(r), the i-th input to the r-th region of each
neuron is a vector: S,(r) = (E. ), 4 (r)) where F,(r)is the frequency and 4,(r) is the
amplitude of the input signal S,;(r) .

As already noted, R (the number of receptor regions) can take small values
(typically 2-5), and lS(r)|~ (which denotes the number of input signals) is a larger
number, O(10%)-O(10°) in the human brain.

The totality of possible input frequencies is bounded. Then, without loss of
generality, we shall normalize the range of input frequencies F;(r) so that F(r)e [O,l].
The center of the band of input region r of neuron » at time # is denoted by B(n,r,?).

The tolerance level of region r in neuron » is denoted by 7 (n.r.t). T(nri)is a small




We start with a neuron body threshold, V(n,t), that is greater than or equal to the sum

of the region thresholds, i.e. v(n,t)zzr(n,r,t), so that in order for the neuron to fire,
r

either all the zones must be active, or some of them must receive a very strong input

signal.

5. NEURODYNAMICS
We use a state-space model as defined in Haykin, 1999, p 666. The states are vectors
(B(n,r,t), T (n,r,t), r(n,r,t), p(n,r,t)) that describe the state of a receptor zone r in neuron

n at time #. We also have to define the dynamics for the CCN body threshold v(n,t).

Recall that region r (of every neuron) receives a finite set of signals
S(r) = {S,(r),$,(r), $,(r),..} such that S,(r)=(F(r),4(r)) where F(r)is the

frequency and A4, (r) is the amplitude of the i-th input signal S, (r) .

If a CCN fires, the active receptor zones reward the winning inputs by
increasing their effective amplitude and decreasing the effective amplitude of the other

input signals. That is, the change to reduction factors when the neuron fires is:

a+(1- a)p, (n.rt), if i isthe winning input

2
(1-a)p,(n.r.1), otherwise @

p.(nrt +dt)={

where a.e(0,1) is the reduction factor change rate. Note that the first alternative in (2)

increases p while the second decreases it.

When a CCN fires the active receptor zones also decrease the amplitude threshold of

active zones:

t(nr t+dt)= na{Be(n,r.t). 7, } 3)
where B(0,1) is the receptor zone threshold change rate, and Tmin>0 is the minimum
threshold that is required to activate a zone.

Similarly, if the CCN fires the tolerance level of active zones is decreased. If a
neuron doesn’t fire the tolerance level of inactive zones is increased (anti-Hebbian

learning):

If neuron # fires and zone 7 is active:




positive number, typically T(n,7,#)<005. In Section 5 we describe how the center of
the band B(nr,f) and the tolerance level T(mrf) change over time (the

neurodynamics).

We also normalize the amplitude 4,(r)so that 4(r)e[)l]. Each receptor

region can reduce the effective amplitude of the i-th input signal by a factor

P (n,r,t)e[O,l], where p is a function of n (the neuron number), r (the region), and ¢
(the time). We shall call p the (amplitude) reduction factor. We assume that there is a
threshold r(n,r,t)e [0,1], so that a region can detect an input signal S,(r) only if
p,(n.r.1)4 (r)z w(n,r,t)>0. The product pi(n,r,t)A(r) will be termed the effective
input amplitude.

We say that a region 7 in neuron 7 is active at time ¢ if for some input S,(r), we
have F,(r)e [B(n,r,t)-— T (n,r,t)B(n,r,t)+ T(nrt)] and p, (n.r.)4,(r)= r(n,r,t). In
words, the region is active if there is an input signal with effective amplitude that
exceeds the positive threshold and with a frequency that is appropriately close to the
center of the band of that region.

Let I(n,r,t) denote those values of i such that p, (n,r,t)Ai (r)= r(n,r,t)and
E(r)e [B(n,r,t)—T (n,r,t),B(n,r,t)-l— T(n,r,t)] at time . {S, (r)}iel(n’r,t) is the set of input
signals which activate the r-th region in the n-th neuron at time ¢  Let

i':i'(n,r,t):m‘gmax[p‘.(n,r,t)Ai(r)] (ie. choose the input signal from the set

icl{nrt)

{s, (r)},.d(n,r’t) with the greatest effective  amplitude). We say that
W(n,r,t)z(Fi. (r),Ai. (r)) is the winning input of region  of neuron » at time . In the
case that 7 = ¢, there is no winning input, and we take W(n,r,t):(— 10).

Neuron » fires if the sum of the effective amplitudes of the winning inputs

exceeds the neuron body threshold v(n,f). That is, neuron 7 fires at time 7 if

> pede )2 V(o). M
r=1




T (n,r,t+dt):max{;/T (n,r,t) T } 4)

» ~ nip
and if neuron n doesn’t fire and zone r is inactive:

T(nrt+dt)=mn{1+y)T(nr2) T, } Q)
where y€(0,1) is the tolerance level change rate and Tyin, Trmax are the minimum and
maximum values that the tolerance level can take, respectively.

When a CCN fires it decreases the amplitude threshold of the neuron body:
vinr.t+ dt)= mﬂx{5v(n,r,t), Vs ) ©)
where 8(0,1) is the neuron body threshold change rate, and V>0 is the minimum
threshold that is required to activate the neuron.

Finally, when a neuron fires, the center of the band of an active zone takes the

value of the frequency of the winning input:
B(nr,f)= Fu(r) (M
The neurodynamics is Hebbian since positive correlation between an input region’s

activity and the neurons firing is rewarded, while anti-correlation results in diminished

sensitivity to input signals.

6. TRAINING AND RECALL
To train the network, we stimlilate it with the inputs that we want it to memorize. A
“memory” is an R-dimensional feature vector M = (m(1).m(2)..m(R))[0.1f* . Our goal
is to create a network that associates each of the features m(r) with the other features,

m(r) forr'#r. We denote the set of memories by M. For every memory M;eM
where M, :(m i (1).m i (2)...m ; (R))e [0 we define the inputs to each region as

follows:

5()= {(m,- (r)1) i=1} =11 J50)

(0.0) i1

So in the training phase we eliminate noise by defining S, (r)=(00) for i#1. The
neurons in the network receive only the value m, (r) in region r since it is the only non-

null signal. Therefore, there is only one signal that could possibly activate region 7 in




each neuron (that signal is S, (r) according to our definition). We set the threshold of

each zone to be r(n,r,t)*--;? and the neuron body threshold to 1. Since the non-null

amplitudes are unity, we arrange that p(n,r,t)=;{- so that p(n,7.2)4,(r)27(n,r.t) in the

training phase. Given these thresholds the amplitude of each input signal is sufficient
to activate an input zone, however a neuron can be activated only if all of its zones are
active. Note that this is a form of supervised learning since in this training scheme we

eliminated noise from all but one input source of each zone.

A training step consists of a single input A, €M that stimulates the neurons

and the adjustment to the bands and the reduction factors associated with that input.
We expect that after a number of training steps some neurons will be “attracted” to
some memories and fire when such a memory is introduced to the network. That is to

say, for some memory M ; e M, there will be a neuron » such that

max {lB(n,r,t)—mj(rX }ST(n,r,t) (8)

r=11..R

The training stops when the condition in (8) is satisfied for all the memories

M ;eM, or after a specified maximum number of iterations. A trained network can

recall a memory M;eM if there exists a neuron 7 such that
max. {‘B(n,r,t)—m i (rj}< T(nrt).

When a neuron fires, i.e. when max. {‘B(n,r,t)—m j(rX}<T (n,r,t) , each active
r=L4,.,

zone in that neuron decreases the tolerance level T(nr,t). In other words, when a
neuron can recall a memory in M, each region in that neuron will become less tolerant
to deviations from the band center of that region, B(n,r,t). In Section 7 we will show
that a smaller tolerance level in all the neurons results in increased memory capacity of

the network.

In the recall phase, the activation of a single region is sufficient to make the
neuron fire. That happens when the neuron body threshold becomes sufficiently small

so that the amplitude of an input to one of its zones is greater than the neuron body




threshold. An input that activates a single region, results in R recalled features (R—1,

if we exclude the activating input).

7. PROPERTIES OF THE MODEL

Recall our assumption that all neurons have the same number of input regions (R). We

define T=na{l(nrt)} , the largest tolerance level among all the regions of all the
neurons. We assume that the #-th band center in neuron n,‘ B(n,r,t) and the frequency
Fy(n,r,f) of winning input W (n,r,t) are independent and identically distributed with a

uniform distribution over [0,1]. In Appendix B we show that
prob[lFW (n,r,t)—B(n,r,tX<T]: )T -T" )

As a result of independence, we get that

prob [thXR{iFW (nr.t)-B(nr.t) }S T ]=(ZT -T Z)K (10)

-

So (ZT -T Zris the probability that a neuron will fire, given a specific band

configuration, tolerance level, threshold and an input chosen at random.

The memory capacity of the network depends on 7 and R (equation (10)).
Perfect recall cannot occur if two different input signals to a region activate that region.

A necessary condition for perfect recall of any of the input frequencies to region 7 is
lFi (r)-F }.(r1>ZT , Vi, j =1,2,...,|S(r] (recall that |S(r] is the number of all the distinct
inputs to region r in all the neurons). To see this note that if there are i such that
IE. (r)-F j(rj <1T, then there may be a neuron » with a band B(n,r,?) in region r such
that |B(n,r,t)—F,.(r]<T and |B(n.r,t)—FJ.(r1<T . In this case two different input

signals (S, (r) S i (r)) will activate the same region in the n-th neuron,

Since F,(r)e[01], the condition IE. (r)-F ]. (r]>ZT , Vi,j= 1,2,...,]8(1‘} assures
that 1/27 input signals (frequencies) can be detected in region 7.

The frequency re-use mentioned in Section 2 increases the capacity of each cell.
The number of distinct signals that each cell can receive is R/27. Each input signal to a

single region will result in R—1 recalled features from the other regions, which is more




efficient than recalling only one feature from every input (compared with the

correlation matrix memory {Haykin, 1999, p 82}).

When the network is trained, it will need only 1/(27) neurons to recall any one
of the R/(2T) memories. The correlation matrix memory requires R/(27) neurons to
recall R/(2T) memories. This improved performance of our network memory is a
result of the frequency re-use. To get perfect recall of R/(27) memories using only
1/(27) neurons we have to start with at least 1/(27) neurons (two or more neurons can
be activated by the same input, so having 1/(27) neurons may not be sufficient to recall

all the memories).

When the neurons specialize (7(n,r,f) are decreased), the capacity grows,
allowing more inputs to be associated and then recalled. This follows directly from the

fact just observed that the memory capacity is proportional to the inverse of 7.

Decreasing the effective amplitude of a winning input and increasing the
tolerance level in a region when a neuron doesn’t fire may also increase the capacity.
The band of that region, [B(n,r,t)—T (n,r,t), B(nr)+T (n.7.2)] gets wider and allows
for more input frequencies to be detected (see 5). When the effective amplitude of the
winning input frequency becomes small enough, a new input with a different frequency
could become the winner. The neuron may then be able to store and recall a different
memory.

Note: phantom recalls may result were we to encode the winning input
frequency as F,, (nr,t)c[0] instead of F, (n.7,1)=—1 when there is no input to region
r, i.e. recalled memories without any input. This observation is a result of condition (1)
in section 4. In the case where B(n,r,t)e [O,T(n,r,t)) the region r will be activated

when there is no input.

8. AN APPLICATION: TRADEMARKS

In our experiment we use the network of CCN to find homonyms, words that are
spelled differently, but sound alike. The ability to detect such words is very important
for companies seeking to register a new trademark. One criterion for a trademark to be
considered new is that it doesn’t sound like any existing one. Using another

company’s trademark may result in great liability. Trademarks are not subject to




spelling rules. For example, “toysRus” sounds like “toys are us”, but the former cannot
be found in a dictionary. Handling a phonetic encoding of this sort is different from
handling text-to-speech. The latter can benefit from using a database of dictionary
words, which makes the pronunciation task somewhat easier. Building a trademark
dictionary is a plausible idea, but since hundreds of new words are invented every
week, Athe size of the database will increase, which means that maintaining it is
difficult.

During the training phase the network is presented with a list of pairs (rules) of
one or two letter strings which sound alike. (The pairs defining rules, all of which are
listed in Appendix A, should not be confused with the (frequency,amplitude) pairs
introduced earlier.) The objective is to train the network to associate between elements
comprising the pairs in the list. For example, “MN” is associated with “N”, “GH” is
associated with “F”, and “PH” is also associated with “F”. In most cases we treat all
the vowels as if they were the same input. Appendix A contains the complete list of
pairs. We shall refer to these pairs as atomic homonyms. We encode every possible
input as described in Section 4. For example, the pair of strings (GH,F), an atomic
homonym, from Appendix A may be encoded as the two frequency/amplitude pairs
(0.313,1), (0.724,1). In the present example there is no competition, so for simplicity
we omit the amplitude from now on and denote the encoding of (GH,F) by a frequency
pair (0.313, 0.724). Similarly, the encoding of the pair, the atomic homonym (PH, F)
is taken as (0.543, 0.724). Assigning frequencies in [0,1] must be done without
repetition. We submit all the input pairs to the network, and repeat this step until every
input pair has a neuron that fires when it receives this input pair. Then, as we
described in Section 2, such a neuron can associate between the two input values, i.e.

between strings of each pair from Appendix A.

In the next step, a test word is partitioned into one or two letter sub-strings. For
example, the test word “ROCK” will be partitioned in the following ways: R-O-C-K,
R-O-CK, R-OC-K, RO-C-K and RO-CK (these are the valid partitions of the word
ROCK). Then for every partition of the word, we submit the partitioned components
to the network sequentially (see Section 6). If the network associates the input with
other strings, it outputs the other strings. Otherwise, it outputs the input string. For

example, if the input is R-O-CK, the network will recall (i.e. output) R-A-K (where A




is the representation of any vowel). This may be seen from the table in appendix A,
because R does not occur in any pair on the left hand side, O is a vowel, and the pair
(CK,K) occurs in the table.

At the end of the process we get several outputs which we call “tokens” that are
associated with the input (the tokens are strings that are pronounced like the input).
Trademarks that sound alike should have a mutual token. For example, it is easy to see
that ROCK, ROK, and ROCQ are all associated with the token RAK.

In our experiment we assigned a different random value (frequency encoding)
“to each component of an atomic homonym that appears in appendix A. We employed
a set of N=50 neurons, each having R=2 input regions. We trained the network by

submitting 10 input pairs from the list in Appendix A. All the neurons were initialized

with the same tolerance level 7{(n,7,)=0.05 which is smaller than mmlE (r)—Fj(rj
h.J

where the minimum is taken over all the input frequencies to region r at #=0.
Amplitudes were encoded with a default value A=0.5 and the neuron body activation
threshold was set to 1. We trained the network by inputting the input vectors

(£,(1)+0,.FQ)+0,), i=12.10 corresponding to the rules in Appendix A sequentially.
Note that robustness of the processing is enhanced if the input signals have small
variations ), 6; which are random variables with uniform distribution in the range [-
0.005,0.005]. We submitted the first input pair 3 times, then the second input pair 3

times, and so forth. We repeated this process for all 10 input pairs 500 times.

We now list a few observations from our experiment. We only focus on the
functionality of the neurons and not on the partitioning of words as described earlier in
this section, or any other high-level processing. Recall that in Section 2 we described
the recovery time as one of the properties of CCN (as well as of the biological neuron).
That is to say, when a receptive zone is activated by an input signal, it remains active
for a short period of time to allow other zones to be activated too, and therefore, to
permit association between the incoming signals. However, this feature may result in
“false recalls”. To demonstrate this, consider a network with two CCNs. The first
neuron’s band centers are 0.1 and 0.9. The second neuron’s band centers are 0.3 and
0.7. Suppose also that we train that network by inputting two memories, which are

encoded by the frequency pairs M;=(0.1, 0.2) representing the homonyms ‘gh’ and f’,




and M;=(0.5, 0.9) representing the homonyms ‘mn’ and ‘n’. When the neurons receive
M., zone 1 of neuron 1 becomes active®. If the neurons receive M, while zone 1 of
neuron 1 is still active, neuron 1 will fire, since its two input regions become active at
the same time. As a result, neuron 1 will now associate the first feature of M; with the
second feature of My, namely it will associate ‘gh’ with ‘n’ (i.e., false association). To
train a network of CCNs properly we should repeat each input several times and let it

“rest” between different inputs.

The following graphs demonstrate changes to the bands of neurons as a result
of the training process. The inputs are displayed as plus signs and the bands by solid
lines. Figure 4 shows that the band of zone 1 of neuron 1 was initially [0.118, 0.218]
and the band of zone 2 of that neuron was initially [0.858, 0.958]. Some of the inputs
were in these ranges and therefore activated the two zones of neuron 1, causing the
neuron to start firing. Then, according to the neurodynamics (Section 5) the two bands
started to narrow every time the activating input was introduced to the network until

the bandwidth was as wide as the variation of the input frequency (0.005).
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Figure 4: The change in the bands of neuron 1 during training

¢ This zone becomes active because the left frequency 0.1 in M; clearly lies in the band of zone 1 of
neuron 1 which is centered at 0.1.




Figure 5 shows that the band of zone 1 of neuron 3 was initially [0.127, 0.227] and the
band of zone 2 of that neuron was initially [0.222, 0.322]. During the first 300 time
cycles zone 1 was activated when the input 0.175 was introduced, but since zone 2
remained inactive, the neuron didn’t fire and the bandwidth of zone 2 got wider (see
Section 5, equations 4 and 5). At approximately 300 time cycles, the bandwidth was
wide enough to detect the input frequency 0.335. At this point, both zonés became
active every time the input pair (0.175, 0.335) was introduced to the network and the
neuron started firing shortly thereafter. When the neuron started to fire, the bands of its

two zones narrowed.
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Figure 5: The changes in the bands of neuron 3 during training

Finally, Figure 6 shows that neither zone of neuron 6 became active for more than 650
time cycles, so both bands got wider. After almost 700 time cycles the band of zone 1
was wide enough to detect an input signal. In contrast, the width of the band of zone 2
reached its maximum value, but no input signal to that zone was ever in the band of

zone 2.
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Figure 6: The changes in the bands of a neuron that doesn’t fire (neuron 6)

Our application may be interpreted as a process of acquiring a vocabulary of
homonyms. The network starts with no prior knowledge. First, the neurons learn to
detect the atomic homonyms listed in Appendix A (this happens when the distance
between one of the band centers of the neuron and a component of one of the inputs is
less than the tolerance level T(n,r,)). Some neurons learn to associate between pairs of
homonyms. This happens when both regions in a neuron are activated when one of the

memories (input vectors) is presented to the network.
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The following is a list of associated strings that sound alike. For example “mb”

APPENDIX A

is associated with “m”, as in the word “climb”. “A” stand for a generic vowel.

bb=b
bt=t
c=ch
c=k
c=s
c=sh
cc=k
cc=ks
ch=ch
ch=k
ch=sh
ci=sh
ck=k
cq=k
cu=k
cz=ch
cz=z
dd=d
dg=j
di=j
dj=j
ed=d
f=v

f=f
g7
g2g8=g
287
gh=f
gh=g
gh=Silent
gi=j
gm=m
gn=n
gu=g
h=Silent
is=i
j=h
ju=w
kn=n
1d=d
I=f
lk=k
11=1
Im=m
mb=m

mm=m

mn=m
=n
nn=n
pb=b
ph=v
ph=f
pn=n
pp=p
ps=s
pt=t
=
qu=k
re=
rh=r
r=r
s=sh
s=z
SC=S
sc=sh
se=sh
sh=sh
si=ch

si=sh

$s=$
ss=sh
$s=z
st=s
te=ch
th=th
th=t
ti=ch
ti=sh
ts=s
tt=t
V=V
w=Silent
wh=w
wh=h
X=Z
x=ks
y=A
z=s
7z=z

ZZ=18




APPENDIX B

Claim: If x, y are independent and identically distributed random variables with a

uniform distribution over [0,1] then probﬂx— y<T |=2r-17
Proof:

probnx— y<T ]-—-
I—probux—y|>T]=
1—(problx—y>T|+Mobly—x>T])=
1—(probly<x—T]+Pob[x<y-T])=

1- \j'mux(o,x ~THx+ jmax((), y- T)qu) =

/1

" J(x—T)dx+j'(y—T)dy)=
1..\[3;_2-.xt);+(§_ yt];]:

e ()

1-(1-0r+71?)=
2T -T"

The shaded area in the following diagram represents the pairs (x,y) that satisfy lx— y‘ <T.

The area of triangles I and II is (I~—T)2(1i) each. Therefore, the area of the shaded strip

is 1-2-9:1)2@‘ﬂ=z:r—r2






