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Distributed Graph Marking

Paul Hudak

YALE UNIVERSITY

Abstract

Three new algorithms are presented for marking a distributed directed graph, each
demonstrating the feasibility of a system-wide, decentralized marking process. The algorithms
are couched within a distributed processing model in which a graph is arbitrarily partitioned and
distributed among the local stores of any number of autonomous processing elements that
communicate only by messages. A class of functional graph mutations are shown to be able
to execute concurrently with the algorithms without destroying their distributed nature, as long
as certain invariants are maintained during execution. A class of mutations is also identified that
precludes concurrent execution in a distributed manner. Two of the marking algorithms are
especially practical and useful, one using a stack to coordinate local marking, the other behaving
locally like a copying garbage collector. In all cases a tree structure known as the marking-tree
is used to coordinate inter-processor marking, to allow cooperation by the mutator, and to detect
termination. Applications include standard garbage collection, as well as more dynamic processes
such as run-time deadlock detection and irrelevant task deletion.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems -- distributed applications, network operating systems; D.1.3
[Programming Techniques]: Concurrent Programming; D.4.4 [Operating Systems]:
Communications Management — message sending, network communication; G.2.2 [Discrete
Mathematics]: Graph Theory -- graph algorithms, network problems

General Terms: algorithms, languages

Additional Key Words and Phrases: distributed algorithms, garbage collection, graph reduction

1. Introduction

Many computations can be modeled as the transmutation of a directed graph (which we will
refer to as the computation graph). This is not only true for many LISP implementations, but
also for data-flow and functional programming systems, in which the computation reflects a
graph reduction semantics; that is, a program is represented as an expression graph whose
nodes are incrementally overwritten with their ultimate value, eventually replacing the root of
the graph with the result of the overall computation. A common need among suci) systems is the
ability to search through the computation graph, visiting each node exactly once to perform a

particular operation. We refer to this process as marking, recognizing that the operation




performed on a particular node may be quite simple, such as with garbage collection, or

arbitrarily complex.

The homogeneous nature of graph reduction makes it an attractive avenue for highly parallel
computation, since the graph may be partitioned and distributed among an arbitrary number of
processing elements, each performing part of the overall reduction [14, 16, 22, 30]. The highly
parallel computation that results introduces additional problems that make the ability to
effectively mark the computation graph even more useful, especially if it can be accomplished in
concert with the main computation (i.e., in such a way as to allow the transmutation process to
continue while the marking takes place). For example, eagerly invoked computations that
subsequently become irrelevant may require termination (‘“irrelevant task deletion” [2, 12, 15]),
deadlocked portions of the computation graph may exist (“run-time deadlock detection” (8, 15]),

and tasks may require migration or prioritization (“load-balancing” [18]).

Despite the usefulness of a distributed marking process, no such algorithms have appeared in
the literature -- in fact, the apparent intractability of the problem has prompted a remarkable
number of alternative solutions. Most of these alternatives have been motivated from a need for
garbage collection, and have included reference counting techniques, as well as strategies that
subdivide the graph space into small regions within which separate garbage collections take place.
There are various reasons why each of these alternatives is inferior in some way to a system-wide,
effectively distributed scheme, and this has motivated our current work. A distributed scheme is
also quite interesting theoretically, in that it provides an intriguing view of the complex

interactions that exist between parallel processes.

We present in this paper three new algorithms that effectively distribute the graph marking
process. The first is used primarily to introduce the concept of a marking-tree, a key
mechanism used by our methods. The second algorithm could be classiﬁ‘ed as a distributed
version of the mark phase of a conventional mark-sweep garbage collector, and the third could be
viewed as a distributed version of a copying collector. The schemes exhibit the following

behavior:

e They accomplish a single, system-wide marking of the computation graph from a
given root.

e They are effectively distributed, having no centralized data or control.




e They allow a certain class of graph mutations to be executed concurrently with them.

e Although mutually exclusive access to nodes in the graph is required, the mechanisms
to accomplish this are simple and do not result in excessive contention.

Related Work

Sequential graph marking techniques are imbedded within every garbage collection system of
the “tracing” variety. We assume the reader to be familiar with conventional techniques such as
described in [17]. Starting with Steele’s paper in 1975, a flurry of articles appeared proposing
several versions of  “paralle]”, ‘“real-time”, or ‘“on-the-fly” garbage collectors

[3, 8, 13, 18, 19, 21, 25, 29, 32]. The motivation behind these schemes is to conduct garbage
collection simultaneously with the main computation, so as to avoid the annoying pause in
execution characterized by conventional collectors. This is accomplished by having the collector
either execute in parallel with the mutator, or by snterleaving its operations with those of the
mutator. Steele also briefly discusses an extension of his work to a multiprocessing environment
(with shared memory). Dijkstra et al. [8] provide a correctness proof for their Aalgorithm, as have

others [10, 11, 18, 19].

Other than Steele’s work, little has been done to implement garbage collection in
multiprocessor or distributed processing systems. Lamport discusses a version of Dijkstra’s
algorithm in which synchronization is forced between multiprocessors using a shared memory [20].
Almes introduces a multiprocessor scheme [1], but again relies on a centralized data structure to
coordinate the collection. Bishop proposes dividing the memory into regions and performing
collections separately within each region -- reference counting is then used between regions [4].
Reference counting has also been proposed in [16] and [26]. All of these schemes either rely on a
centralized structure to coordinate marking (thus introducing a bottleneck), or use'some form of
reference counting (precluding the collection of circular structures). We demonstrated the first
effectively distributed algorithm for garbage collection in [15] -- the distributed marking strategy
described there is further discussed and extended in this paper, where we present two alternative

algorithms as well as additional insight into the nature of the problem.

In a non-garbage-collection setting, there have appeared several distributed graph algorithms
using a model in which a network of processors is isomorphic to a given graph (one node per

processor, one arc per communication channel). Chang [5] describes various algorithms using this



model, and demonstrates the usefulness of graph algorithms for deadlock detection [8]. Dijkstra
and Scholten [9] describe a technique for detecting the termination of “diffusing computations,”
and Misra and Chandy [23, 24] use Dijkstra's technique to describe distributed algorithms for
finding knots and shortest paths in a graph. We have generalized this work by decoupling the
processor network from the graph structure, using a model in which the graph is arbitrarily
partitioned and distributed among any number of processors. Furthermore, we are interested in
dynamic graph structures whose connectivity constantly changes during execution of the marking

algorithms that we propose.

The remainder of this paper is organized as' follows. The next section establishes a model of
distributed computation and other concepts needed for our discussion. Section 3 presents the
concept of parallel graph mutations. In Sections 4, 5, and 8 we present our three marking
algorithms in turn, establishing the concept of a marking-tree and its adaptability to various
environments. The algorithms are first presented alone, then discussed in relation to parallel
mutations. In Section 7 we discuss the general nature of parallel graph mutations, and reveal a
class of mutations for which no distributed cooperation can be found. Section 8 concludes with a

comparison of the schemes and a discussion of problems and related issues.

2. Basic Concepts and Terminology
We wish to express our algorithms in as general a setting as possible. The model that we use

represents a class of distributed processing systems in which:

1. There are an arbitrary number processing elements or PE’s.

2. Each PE has only local store which is used to hold a portion of the computation
graph. (Collectively the local stores may be viewed as a single heap upon which the
computation graph is distributed.)

3. There is a global addressing scheme whereby one node in the graph may reference
any other in the system.

4. The PE’s are interconnected by an arbitrary communication network.
5. Communication between PE’s occurs by spawning tasks from one processor to

another. A task is the smallest specifiable unit of processor activity.
We do not wish to restrict any more than necessary the internal architecture of a PE, in
particular the task scheduling mechanism. For the moment we assume only that tasks spawned

for execution on a particular PE reside in a “task pool”, and unless otherwise stated we assume



unlimited concurrent execution of any tasks within this pool. The correctness proof that we
provide for Scheme A, in fact, places no restriction on the order of task execution; highly-parallel

execution within the PE's themselves is not precluded.

The computation graph (or just “graph”) is the graph to be marked, and a node is an
element of that graph. We will use variables as names for nodes, but for convenience we often

write “node n” to indicate “the node referenced by n”; context should make the meaning clear.

Tasks are specified in terms of primitive constructs for manipulating the computation graph
and spawning or executing other tasks — these constructs are described below using an Algol-like
syntax. The specification of a task looks like that for a procedure, except that the keyword
task-procedure is used. The lexically first argument in a task’s parameter-list shall be used to
determine the PE upon which the task is intended to execute. An instance of a task may either
be spawned or executed. The statement spawn f(x,y) causes an instance of the task f to be
added to the task pool of the PE containing node x. No waiting is done for the completion of
the task; rather, execution continues immediately with the next statement. On the other hand,/
the statement execute f(x,y) creates an instance of the task f for immediate execution.
Execution continues with the statement following the execute statement only after the task has

finished executing.

For reasons that will become apparent later, it is necessary for tasks to be able to gain
exclusive access to a node. For this purpose we adopt a simple locking protocol in which only
one task may lock a node at a time; the effect of a task t executing the statement
while-locking n do S is:

if node n is unlocked

then lock n, execute S, and unlock n

else unlock all nodes locked by t
and re-spawn t.

With this interpretation deadlock is not possible, since when the construct is nested, the entire
task is re-spawned and all outer nodes unlocked if an inner node is found locked. In the special
case where task execution is nested (i.e., where one task executes another), all nodes are

unlocked as above, but only the outer-most task is re-spawned.

At times it will be pecessary to have more control over locking than that provided by



while-locking. For this purpose the statement lock n attempts to lock node n, returning true
if successful, false otherwise. Similarly, unlock n is the converse operation, and always succeeds.
Note that if while-locking n fails to lock n, the task executing it is re-spawned, whereas lock n

would simply return false. If the current task is t then a non-nested version of while-locking n
do S is:

if lock n
then € S; unlock n >
else spawn t

where «...> is an abbreviation for begin...end, and which we will often use for clarity and

conciseness.

Despite the need for these locking mechanisms, we will make a concerted effort to minimize
their use. For example, one of our implicit goals is that any task that we create for marking has
the property that no node (or other structure) is left locked while marking is continued on some

other PE. This is consistent with our desire for an effectively distributed algorithm.

We assume that the computation graph has a unique node called the root from which all
active nodes may be reached. Let proc(n) denote the PE containing node n. The following

functions are used to manipulate the graph:

e children(n) returns the set of nodes that are descendants of n in the computation
graph.

e connect(a,b) adds a reference to b in children(a). Similarly, disconnect(a,b)
removes a reference to b from children(a).

e replace-child(n,old,new) has the effect of removing old from children(n) (if it is
there) and replacing it with new.

o select-child(n) returns an arbitrary element from children(n), and nil if
children(n) = O.

e Given a node n in the computation graph, and an arbitrary subgraph g that is not
part of the graph, splice-in(n,g) has the effect of splicing in g below node n. That
is, the elements of children(n) become references to nodes in g, and some nodes in g
are made to point to elements of the original children(n).

e unmarked(n), transient(n), and marked(n) return true if node n is unmarked,
transient, or marked, respectively, and false otherwise (the meaning of these terms
will be explained later). Similarly, clear(n), touch(n), and mark(n) make node n
unmarked, transient, and marked, respectively.

We say that a node n is reachable if there exists a sequence of nodes <root, n,, nyy ... , Dy

n> such that n, € children(root), ... n, € children(n,,), ... ,n € children(n,).



3. Parallel Graph Mutations
A mutator is any process that changes the connectivity of the computation graph. In our
model the transmutation of the graph is distributed, and each PE may be viewed as an

autonomous mutator.

Given any marking process, an important question to ask is what type of graph mutations, if
any, may execute concurrently with it? Dijkstra and others have asked this question in the
context of a sequential garbage collector executing in parallel with a sequential mutator. Their
work has shown that the mutations must be executed cooperatively with the collector, so as not
to invalidate the marking process. Our model is one of highly-paralle! marking executing in

parallel with highly-parallel mutations, so it is not surprising that we have found similar results.

The approach we have taken is to determire a small set of primitive graph mutations that can
simulate a given class of computations on a graph. We consider first the functional mutator
primitives shown graphically in Figure 3-1, which are collectively sufficient to perform graph
reductions for the evaluation of any functional program. This rather strong statement can be
supported by noting that any functional program may be translated into a combinator
expression (as described in [31]), and that the graph reduction associated with each of the
common combinators (as well as the reductions associated with standard primitive functions such
as arithmetic operators) can be simulated with our set of primitive mutations. We demonstrate

this for the combinators S, K, and Y in the Appendix.

There are three mutations in the set: delete-reference removes an arc from the graph,
add-reference adds an arc between the first and third node in a sequence of three nodes, and
expand-node adds new nodes to the graph by splicing in an arbitrary subgraph that is not
already part of the graph. For simplicity we assume that the nodes a, b, and ¢ in Figure 3-1b
are distinct, recognizing that a=b, b=c, or a=c are special cases that are easily handled.! All of
the mutations are viewed as indivisible operations, requiring the use our locking constructs in the

formal specifications of their behavior to be presented later.

In the following three sections we introduce the three marking algorithms in turn. In each

'For example, we should allow a node to add a reference to itself.
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Figure 3-1: Functional Mutator Primitives

section we first concentrate on marking as a single distributed process, and then discuss the

feasibility of parallel execution with the set of functional mutator primitives just described.

4. The Marking-Tree

By way of introduction, consider for 3 moment a stack implementation of a sequential marking
process: The root is marked and pushed onto the stack, then nodes are repetitively removed
from the stack for the purpose of propagating marking to each of their children in the graph.
The stack is used primarily as a place-holder for nodes that have been marked but whose
descendants have not yet been examined, and the eventual emptiness of the stack indicates that
marking is complete. In most of the “on-the-fly” garbage collectors, the stack (or other linear
structure) serves another role, that of a shared data structure to allow the mutator to cooperate

with the marking process so as to not interfere with it.

A linear structure such as a stack could naively be used in a distributed system either as a



centralized structure or somehow distributed. In either case problems arise, since a centralized
stack (such as used in [1]) causes an intolerable communications bottleneck, and it is difficult to
ascertain the emptiness of a distributed stack, since a single PE’s portion of the stack may

become empty at one point, only to have more nodes added subsequently.

The key idea behind the algorithms to be presented is the use of a tree structure to coordinate
the marking process. This tree is referred to as the marking-tree, and may be viewed roughly
as a spanning trec of the reachable nodes of the computation graph. Just as a linear stack
reflects the nature of sequential marking, the marking-tree reflects the parallel nature of
distributed marking. Just as a sequential mutator may cooperate by adding nodes to a stack (the
stack’s emptiness meaning sequential marking is complete), a distributed mutator may add
branches to the marking-tree (the tree’s total collapse indicating distributed marking is

complete).

4.1. The First Algorithm (Scheme A)

The first algorithm that we present (Scheme A), relies exclusively on the marking-tree to
coordinate marking. There are only two types of tasks involved in the entire scheme. A
mark-A task is used to initiate marking on the root, which has the effect of propagating
marking “forward” through the graph by spawning more such mark tasks on descendant nodes.
For every mark-A task spawned there is eventually one return-A task spawned that
propagates “backward” in the graph; one of these eventually reaches the root indicating that
marking is complete. (The suffix -A is to distinguish these tasks from similar ones used in

Schemes B and C, which are explained later.)

To best understand Scheme A it is helpful to be able to refer to the “mark state” of a node;

that is, its relationship to mark-A and return-A tasks:

1. An unmarked node is one to which marking has not yet propagated (although a
mark-A task may be pending with it as target). Initially, all nodes are unmarked.

2. A transient node is one to which marking has propagated, and from which a
mark-A task has been spawned on each of its children.

3. A marked node is one of two types:

a. A previously transient node with the added characteristic that all of the
mark-A tasks spawned from it have “returned” (via a return-A task), and
that it has recursively spawned a return-A task on its parent in the
marking-tree.
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b. A node added to the graph by the expand-node primitive, in a way to be
described shortly.

Eventually all reachable nodes become marked.
Dijkstra [8] refers to a node’s mark state by attributing a “color” to each node, where white,
gray, and black nodes correspond roughly to our unmarked, transient, and marked nodes,
respectively. Our meanings are subtly different, however, due to the distributed system context;

indeed, the meanings will be different for each of the marking algorithms that we propose.

A return-A task may be spawned as soon as all marking has completed “below” a node. To
facilitate determining when and where to spawn the return-A task, each node is augmented
with two fields, one containing a pointer to its parent in the marking-tree (mt-par), and one to
maintain a count of the number of active mark-A tasks that have been spawned on its children
(mt-cnt). Intuitively, once a node n has been marked, then when mt-cnt(n) reaches zero, it is

safe to spawn a return-A task on mt-par(n).

" The formal specifications for mark-A and return-A are shown in Figure 4-1. We assume
that each PE continually executes tasks from its task pool in arbitrary order and with unlimited
concurrency (including, of course, the special case of completely sequential execution). Initially
all nodes are unmarked and their mt-cnt is zero. Marking is started by spawning the task
mark-A(root,rootpar), where rootpar is a dummy node that return-A uses to detect
termination; that is, eventually the task return-A(rootpar) will be spawned, which will set the

global flag done to true, indicating that marking is complete.

4.2. Parallel Mutations

Consider now the functional mutator primitives of Figure 3-1 as an arbitrary number of them
execute concurrently with Scheﬁ:e A. To see that cooperation is needed at all, consider the
following dilemma: Suppose we have a graph a — b — ¢, and the marking process has just
spawned a mark-A task from a to b. Next a series of mutations occur, connecting a to ¢ and
disconnecting ¢ from b (leaving b — a — c). At this point ¢ is only accessible from a, but since
marking has already propagated beyond a, ¢ will never get marked. The mutator needs to
cooperate with the marking process in such situations, but it is not sufficient for the mutator to

simply mark c at the time it adds the reference from a to ¢, since there may be an arbitrary



11

task-procedure mark-A(n,par);
while-locking n
do if unmarked(n)
then begin touch(n);
mt-par(n) := par;
for each x € children(n)
do << spawn mark-A(x,n);
increment(mt-cnt(n)) >>;
if mt-cnt(n) =0
then << mark(n);
spawn return-A(par) >>
end
else spawn return-A(par);

task-procedure return-A(n);
while-locking n
do if n = rootpar then done := true
else begin decrement(mt-cnt(n));
if mt-cnt(n) =0
then << mark(n);
spawn return-A(mt-par(n)) >>
end;

Figure 4-1: Scheme A: relying exclusively on the marking-tree

pumber of nodes accessible from ¢ that need to be marked as well. There must be some way to
splice in extra marking activity; it will be shown that the marking-tree provides a convenient

way to do this.

Interference by the mutator can be stated in terms of violations of the marking state of nodes.
By studying the definitions of marking states given earlier, we see that there are several
properties that must be maintained, but there are two in particular that the mutator primitives

of Figure 3-1 could violate. Specifically:

1. For each transient node, there must be at least one mark-A task spawned on each
of its children (and the mt-cnt must reflect this).

2. A marked node may never point to an unmarked node.
The first invariant preserves the meaning of a transient node, ensuring the integrity of a mark-A
task. Similarly, the second invariant preserves the meaning of a marked node; that is, if all of
the mark-A tasks spawned from a node have “returned”, then none of that node's children

could be unmarked; they must be “at least transient.”
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mark state of node a

unmarked transient marked
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mark state tomm=oes #mmm——o- Attt + / \
of node b transient | no | no | coop | b |
| coop | coop | w/ bl \ /
tm—————- - B +
marked | no | no | no | cl/
| coop | coop | coop |
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Figure 4-2: Cooperation by the add-reference primitive (Scheme A)

Now consider the mutator primitives in turn. The delete-reference primitive cannot violate
either of the invariants, so no cooperation is needed. However, the add-reference primitive can
violate both of them. To see this, consider all combinations of mark states of nodes a and b,
just as the reference is being added from a to c; the nine combinations are shown in Figure 4-2.
If node a is unmarked, no violations are possible (and thus no cooperation is needed) since
marking has not propagated to a yet. If node b is marked, still no cooperation is needed, since
the second invariant tells us that node c is either transient or marked. This same invariant
discounts the situation where a is marked and b is unmarked, so that leaves three other
combinations. If a and b are both transient, again there is no problem, since according to the

first invariant, there is at least one mark task spawned on c. Finally:

1. If a is transient and b is unmarked, then the first invariant may be violated. This
can be prevented by spawning the task mark-A(c,a) (and incrementing
mt-cnt(a)).

2. 1f a is marked and b is transient, then the second invariant may be violated. This
can be prevented by ezecuting the task mark-A(c,b) (and incrementing
mt-cnt(b)).

Note that in the second case it is necessary to ezecute the mark task so that ¢ indeed becomes

transient or marked. The first case only requires spawning the task to maintain the invariant.

The resulting “cooperating mutator primitives” may be expressed textually as shown in Figure
g

4-3 by using the while-locking construct to effect indivisibility. The function select-child is
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used to enforce the constraints on the graph needed by delete-reference and add-reference.”
Note the cooperative action taken by the add-reference task, as outlined above. Also, recall
from the definition of while-locking that if c is already locked when execute mark-A(c,b) is

reached, then the outer-most task is re-spawned, which in this case is the original add-reference

task.

task-procedure delete-reference-A(a);
while-locking a do
<< b := select-child(a);
disconnect(s,b) >>;

task-procedure add-reference-A(a);
while-locking a do
<< b := select-child(a);
while-locking b do
begin ¢ := select-child(b);
if transient(a) and unmarked(b)
then << spawn mark-A(c,a);
increment(mt-cnt(a)) >>
else if marked(a) and transient(b)
then << execute mark-A(c,b);
increment(mt-cnt (b)) >>;
connect(a,c)
end >>;

task-procedure expand-node-A(a,g);
vhile-locking a do

begin if marked(a) then mark(g)
else clear(g);
splice-in-subgraph(a,g):
if transient(a)
then for each x € children(a)

do << spawn mark-A(x,2);
increment (mt-cnt(a)) >>;
end;

Figure 4-3: Cooperating Mutator Primitives for Scheme A

A similar solution takes care of the cooperation needed by the expand-node primitive, and is

2Normally the semantics of a particular graph-reduction strategy would select the nodes involved.
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also shown in Figure 4-3. Here the functions mark and clear have been extended over
subgraphs; g is first marked or cleared depending on the mark state of a. This implies that just
after g is spliced into the computation graph, the second invariant is still valid. However, if a is
transient the first invariant might have been violated, but is easily corrected by spawning mark
tasks on a's children, as shown. Finally, we note that the subgraph g may itself be distributed; it

does not have to reside solely on proc(a).

4.3. Remarks

The specifications for the mutator primitives as presented do not consider the fact that the
nodes involved in a mutation may reside on different PE's. This is easily handled by extending
the behavior of the while-locking construct so as to work properly across processor boundaries.
A more detailed specification would involve re-specifying the primitives using the lock and
unlock constructs, and subdividing the tasks into a collection of sub-tasks, each performing a
portion of the mutation on one PE. The specifications as given here are still logically correct,
and since the details of an alternative specification are not central to the main thesis, they are

not included (the interested reader may find them in [14]).

Also; the highly-parallel nature of our model of computation requires that locking be used to
prevent the mutator primitives from interfering with each other (i.e., to maintain their
indivisibility). We suspect that these same locking mechanisms are crucial to effecting the
cooperation necessary to accomplish parallel marking. Previous work with “on-the-fly” garbage
collectors avoided locking by assuming the mutations to be indivisible operations of a sequential

computer, something that we are unable to do in our highly-parallel distributed model.

Finally, although the ideas were developed independently, the marking-tree could be viewed as
a mechanism for detecting the termination of a diffusing computation as identified by Dijkstra

(9], the diffusing computation being the marking process itself.

4.4. Performance
Scheme A is useful in demonstrating how the marking-tree can be used to coordinate the
overall marking process. The scheme is fairly straightforward, and relatively efficient, in that

each arc in the computation graph is only traversed twice, once by a mark-A task and once by a
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return-A task. In terms of inter-processor communication, it is obviously superior to the use of
a centralized stack. Since locking is used, there exists the potential problem of excessive
contention with a parallel mutator, but Scheme A does quite well in this regard in that the mark
and return tasks never nest the locking of nodes, and never leave a node locked while marking is

continued elsewhere.

There is, however, a significant space overhead: the space for the marking-tree itself
(embedded within the computation graph), and space for the task pool.3 Consider first the extra
space required of each node in the computation graph. The mark state of a node can be
determined from the status of mt-cnt and mt-par, and a single bit is required to realize locking.
In most systems the number of children of a node is bounded, and mutations can only add a
fixed number of branches from a node in the marking-tree -- two bits for mt-cnt is typically
sufficient. On the other hand, a full pointer is generally required for mt-par. Consequently the
extra space for the marking-tree required of each node is on the order of one full word plus about

three bits.

A less tangible form of overhead is the room required for the task pool? (we may assume for
analysis purposes that the mutator tasks are managed in a separate pool). Each entry requires
one bit to distinguish between the two task types, plus room for the arguments (a mark-A task
requires two arguments, a return-A task one). The total number of tasks spawned is twice the
number of arcs traversed in the graph. The required size of the pool, however, depends on the
maximum number of tasks that could exist simultanecously, which unfortunately depends on
statistical properties of the computation graph. The worst case is quite bad, and occurs in the
following situation. Suppose the maximum number of children of a node were n. Construct an
p-ary tree of depth k, and then modify each leaf so that it has n pointers to the root. The task

k

pool of the PE containing the root could then have n +1 entries.

A refinement of Scheme A that improves the worst-case is to modify the spawning mechanism

so that before a PE adds a task mark-A(x,y) to its pool, it first checks to see if a task of the

3These overheads might still be tolerable for some applications.

“Which presumably would be implemented as a queue, stack, linked list, or some other appropriate structure.
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form mark-A(x,z) is already there.5 If so, it would ignore the new task and spawn return(y).
The worst-case number of entries in the task pool is then the number of nodes in the
computation graph resident on that PE; this situation is analogous to the number of pushes

required of a stack in a conventional garbage collector.

4.5. Correctness Proof

In [14] we give a detailed correctness proof for Scheme A operating in parallel with a “random
mutator”, in which an arbitrary number of functional mutator primitives are continuously
spawned to random spots in the computation graph. The proof is accomplished independently of
a particular task scheduling strategy. It is shown that marking will not only occur correctly, but
that it is guaranteed to terminate given a fair scheduling policy in a finite system. We use a
form of Owicki's axiomatic proof technique for parallel programs [27] that we have extended to
include the while-locking construct and task spawning mechanisms, in conjunction with simple
axioms of temporal logic [28]. This combination of proof techniques allows us to prove the
invariance of certain properties concerning the mark states of nodes, in addition to certain
liveness properties dealing with the global behavior of the marking process. The proof is long

and tedious, and is therefore presented in summary form below.

We use spawned(t) to assert that task t has been spawned, and completed(t) to assert that task
t has successfully locked all desired nodes and has completed execution. Tasks are referred to by
specifying a form and quantifying over some set of nodes (as in “(Vx) completed(return-A(x))").
The form “return-A(mt-par(x))” refers to the unique return-A task that is eventually spawned as
a result of the mark-A task that initially touched x (assuming that x was initially unmarked in

the computation graph).

OP (read “always P") means that P is always true, and <>P (read “eventually P”) means
that P is true now or will become true at some time in the future. The assertion P — Q is read
“P leads to Q” and is equivalent to O(P = <>Q). The formal specification of the fair

scheduling axiom is:

SImplementing the pool as a priority queue whose elements are ordered by the first argument of the mark task is
one possible implementation for this.
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fair scheduling: (Vt) spawned(t) — completed(t).

Definitions:

rootpar a special node such that children(rootpar) = {root} and -3 x | rootpar €
children(x).

CcG the finite set of nodes reachable from the root (the computation graph).

FL the finite set of free nodes from which expand-node-A acquires nodes (the
free list).

GAR the finite set of nmodes not in CG or FL at the moment marking begins
(garbage).

MT,, i>0 the set of nodes x such that there exists a sequence of nodes <rootpar, x,, ... ,
X, ;» x> such that rootpar = mt-par(x,), x; = mt-par(x, ), X; ; = mt-par%x) (or
rootpar = mt-par(x) if i=1).

MT MT, UMT,U .. U MT _ (the marking tree).

Note that CG and FL are dynamic structures (they change as mutations are performed to the

computation graph), whereas GAR is fixed.

The initial conditions are:
e (Vn) mt-cnt{n) = 0 A unmarked(n)
e spawned(mark-A(root,rootpar))

o there exists a “generator” that continuously spawns new delete-reference-A,
add-reference-A, and expand-node-A tasks on random nodes in CG.

Note that once the generator spawns a task on a mode m, it is possible that n will become
unreachable from the root; that is, it will no longer be a member of CG. Such tasks are called

irrelevant, and we wish to show correct behavior of the marking process even in their presence.

The detailed proof involves establishing a set of program invarignts that are always true, and
a set of resource invariants that establish properties of a node that must be true whenever the
node is unlocked. The proofs are conducted for each of the tasks in isolation, and are then shown

to be inter ference- free. We finally prove two theorems:

Theorem 1: Liveness

<>done. That is, marking eventually terminates.
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Proof:

(1) By the initial conditions and fair scheduling we know
<> completed(mark-A(root,rootpar)).

(2) Now consider a task mark-A(x,y) at the moment node x is locked: (a) If x is
already marked or transient, a return-A(y) task is immediately spawned. Otherwise,
(b) new mark-A tasks are spawned on each child of x, and the number of such
tasks that have not “returned” is retained in mt-cnt(a). (It is necessary to prove the
invariance of this over execution of all mutator tasks.)

(3) The “call-graph® of the tasks in (2b) must form a finite tree whose nodes
comprise precisely the marking-tree. The leaves of this tree either have no
children or all the mark tasks spawned from it are of form (2a) (i.e., they
encountered already-marked nodes). By fair scheduling then, each leaf’s mt-cnt
eventually drops to zero, spawning a return-A task on its parent.

(4) From (3) a recursive argument follows, showing that the root must also
eventually spawn a  return-A task om it  parent; that is,
<>spawned(return-A(rootpar)) from which we derive <>done.

O

Theorem 2: Safety

done = ((V x € CG) marked(x)) and (V x € GAR) unmarked(x).
That is, once done is true, all nodes in the computation graph must be marked,
and all nodes unreachable from the root prior to marking are still unmarked.

Proof:

(1) The only task that could set done to true is return-A(rootpar), and since root
is the only child of rootpar, then this task must be return-A(mt-par(root)), meaning
that the root is marked. Thus (Vx€MT) completed(return-A(mt-
par(x))) A marked(x) since MT, = {root}.

(2) If for each node x in MT,, return-A(mt-par(x)) has been spawned, then clearly for
each node y in MT, ,, y must be marked and return-A(mt-par(y)) must have been
spawned and completes.

(3) Using (1) as a basis and (2) as an induction rule, it then follows that (VxeMT)
marked(x) A completed(return-A(mt-par(x))). '

(4) Now consider n € children(root). If n € MT, then by (3) it must be
marked. If it is not in MT, then it cannot be unmarked (since a marked node can:
never point to an unmarked node) nor can it be transient (since that would imply
it is in MT). Thus it must be marked. An inductive argument follows, proving
that all elements of CG are marked.

(5) To prove that all nodes in GAR are white, we simply note that there is no way
for any of the tasks to even access such nodes, so their mark state could not change.
Since they are initially unmarked, they must still be unmarked.

o
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5. Using a Stack to Coordinate Local Marking

Our second marking technique is a refinement of Scheme A based on the following observation:
The primary purpose of the marking-tree is to coordinate the overall marking process -- therefore
why not use it only as an inter-PE data structure, and use a stack to coordinate local marking

internal to each PE? Indeed this idea works, as explained below.

5.1. The Second Algorithm (Scheme B)

We again wish to present the most general solution, and therefore do not restrict a PE’s task
scheduling mechanism. Our only assumption is that each PE asynchronously executes a local
stack-based marking process local-mark in parallel with all other task activity. Within a given
PE, the mutator tasks as well as the tasks responsible for marking cooperate with local-mark
through four shared variables:

e A stack on which push, pop, top, and stack-empty operate in the obvious way.

e local-root, a pointer to a local node that serves as the only local node in the global
marking-tree. Its value is nil only when the stack is empty and all mark-B tasks
spawned from the PE have “returned”.

e mt-count, the number of mark tasks spawned from the PE.
e mt-parent, a pointer to the parent of local-root in the marking-tree.

Since these data structures are shared (locally), we define the functions push, pop, increment,
and decrement to be indivisible operations. Furthermore, we introduce a binary semaphore
mutex on each PE for which the primitive functions P and V operate in the conventional way.

Let “[ S]” be shorthand for “< P(mutex); S; V(mutex) >".

The new mark and return tasks (called mark-B and return-B, respectively) as well as the
procedure local-mark are shown in Figure 5-1. Marking is initiated by spawning the task
mark-B(root,rootpar). A task mark-B(n,par) behaves similar to a mark-A task, except
that once having touched node n, it is pushed onto the local stack for further marking. Also, if
there is already a local-root node on the current PE, return-B(par) is immediately spawned.
On the other hand, if local-root is nil, then it takes on the value of n. Note the mutual
exclusion constraints placed on the manipulations of local-root; this is to prevent interference by
some other mark-B task. return-B simply decrements mt-count, or sets done if marking is

complete.
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task-procedure mark-B(n,par);
while-locking n
do if unmarked(n)
then begin touch(n);
push(n);
[ if local-root = nil
then << mt-parent := par;

local=-root :=n >
else spawn return-B(par) ]

end
else spawn return-B(par);

task-procedure return-8(n);
if n = rootpar then done := true

else decrement(mt-count);

procedure local-mark();
while true do )
begin while not stack-empty() and lock top()
do << n := pop();
. for each x € children(n)
do if local(x)
then if lock «x
then if unmarked(x)
then << touch(x); push(x) >>
else no-op()
else << spawn mark-B(x,n);
increment(mt-count) >>
else << spawn mark-B(x,n);
increment (mt-count) >>;

mark(n);
unlock n >>;
[ if stack-empty() and mt-count = 0 and local-root # nil

then << spawn return-8(mt-parent);

local-root := nil > ]

end;

Figure 5-1: Scheme B: Local marking with a stack
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The pro‘cedure local-mark continually tries to propagate marking from nodes removed from
the stack. The top node is first locked (if possible), and its children are examined in turn. If a
child is pon-local or cannot be locked, a mark-B task is spawned on it. Otherwise, if it is
successfully locked and is unmarked, then it is touched and pushed onto the stack. After each
attempt to trace nodes removed from the stack, local-mark checks to see if local marking is
complete (indicated by an empty stack and mt-count = 0). If so a return-B task is spawned on
mt-parent if it has not been done already (local-root is set to nil to indicate that this has been

done).

5.2. Parallel Mutations

As with Scheme A, we assume unlimited concurrent execution of the functional mutator
primitives. Correct marking behavior can again be achieved if proper cooperation is observed,
although for the moment we restrict the expand-node primitive so that the new subgraph
resides on the same PE as the node below which it is being spliced. We shall return to the more

general case in Section 5.3.

First define an unmarked node as before, a transient node as one that resides on a local stack,
and a marked node as one whose children are either marked or have a mark task pending on
each of them. The latter definition subsumes previously transient nodes as well as new nodes
added by expand-node. We assume that a proper set of invariants to be maintained by the
mutators reflects the preservation of a node's mark state, and thus exists implicitly given the

above definitions.

Figure 5-2 shows the nine combinations of mark states for nodes a and b for the
add-reference primitive as it would execute concurrently with Scheme B; note that all
combinations are possible. In the case where a is marked and b is unmarked, marking must still
be active on the processor containing node a, since b being unmarked implies that at least one of
the mark-B tasks spawned from a has not yet executed, so the mt-count of proc(a) is greater
than zero. This allows cooperation with a even though it is marked, but if we are to rely on this
property then its validity must be maintained. Hence if a is marked and b is transient, we must
ezecute the task mark-B(c,b) to avoid the possibility of a marked-unmarked arc for which

marking might not be active on the PE containing the marked node.
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mark state of node 2

(on
stack)
unmarked transient marked
tm—————- tomm—————— tmm————— +
unmarked | no | no | coop | 3
| coop | coop | w/al \\
mark state o= Ho——me— ommemme + \
of node b transient | no | no | coop | b |
(on stack) | coop | coop | w/ bl \ l
tm—————— mm————— mm—————a + /
marked | no | no | no | c
| coop | coop | coop |
+ +

Figure 5-2: Cooperation by the add-reference primitive (Scheme B)

Figure 5-3 shows the resulting cooperating mutator primitives for Scheme B, where
mt-count(proc(n)) denotes the mt-count on the PE containing node n. delete-reference

again requires no cooperation, and the cooperation required of expand-node is now trivial.

5.3. Remarks

In the quest for the most general solution we have not limited the degree of concurrency within
a PE. This has resulted in the need for mutual exclusion constraints on the shared variables that
underpin the local marking process. A more conventional (and perhaps more realistic)
implementation might incorporate sequential processors for each PE, or even a “dual processor”
arrangement in which one is devoted to marking, the other to the main computation. In either

case, the mutual exclusion constraints would be greatly simplified.

Recall that the expand-node primitive was restricted as to where the new subgraph was
allocated. If we were to remove this restriction while still using the specification of
expand-node shown in Figure 5-3, then a situation could arise in which a node n in the new

subgraph that is allocated on a different PE could point to an unmarked node, yet proc(n) has
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task-procedure delete-reference-B(a);
while-locking a do
<< b:= select-child(a);
disconnect(a,b) >>;

task-procedure add-reference-B(a);
while-locking a do
<< b := select-child(a);

while-locking b do

begin ¢ := select-child(b);
if marked(a) and unmarked(b)
then << spawn mark-B(c,a);

increment (mt-count(proc(a))) >>
else if marked(a) and transient(b)
then << execute mark-B(c,b);
increment (mt-count(proc(b))) >>;

connect(a,c)

end >>;

task-procedure expand-node-B(a,g);
while-locking a do
<< if marked(a) then mark(g)
else clear(g);
splice-in-subgraph(a,g) >>;

Figure 5-3: Cooperating Mutator Primitives for Scheme B

no local marking activity.8 This would invalidate the property that add-reference depends on
for proper cooperation. There is an alternative specification of expand-node that avoids this
problem, based on the following strategy: Consider expand-node(a,g). If a is unmarked, clear
g and proceed with the mutation. If it is marked but there is no marking activity on proc(a),
then mark g and proceed, since none of a's children could be unmarked. Otherwise, clear g,
perform the mutation, and then spawn mark tasks on all of a's children using proc(a) as a base.

The details of this more complex strategy are left to the reader.

®For example, consider a — b — ¢, where all three nodes reside on separate PE's, a is marked, and b and c are
unmarked. Suppose expand-node-B(a) results in 3 — new — b — ¢ where new is on a fourth PE (thus new is
marked). Now if an add-reference mutation were to occur using the three-node sequence new-b-c, there might not
be any marking activity on the participant PE's.
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5.4. Performance

In terms of contention for resources, the tasks responsible for marking in Scheme B meet our
earlier goal of never leaving a node or other structure locked while marking is continued on some
other PE. Given the same statistical properties of a computation graph, Scheme B exhibits

improved performance over Scheme A in the following ways:

1. No extra room is required for each node in the graph, other than two bits to encode
mark state and one for locking.

.2. The only marking-tree structure on a PE is the set of values local-root, mt-count,
and mt-parent, a total of three full words per PE.

3. Entries in the marking pool are primarily due to arcs in the graph that cross
processor boundaries - almost all local arcs cause entries to the stack instead. Tasks
are also spawned if local-mark() fails to lock a child of a node popped from the
stack — how often this occurs depends on statistical properties of the graph and how
active the mutating process is. Finally, note that the second argument of a mark-B
task is only used to determine the processor to which a return-B task is spawned,
and can therefore be shortened to just that processor name.

4. The entries on the stack are much smaller than a corresponding entry in the task
pool; that is, each entry is smaller than a full word, since they are all local pointers.
Also, these entries only appear once on the stack, as opposed to the two entries in
the pool (one for mark-B and one for return-B).
Scheme B is an efficient, practical algorithm for distributed graph marking. Its primary short-
comings are the overhead for management of stack space, which is no more difficult than the
analogous problem encountered in any other stack-based marking algorithm, and the

management of the task pool, which must be dealt with anyway to realize the highly-parallel

nature of the mutator.

8. Copying Nodes to Coordinate Local Marking

Our final algorithm (Scheme C) is similar to Scheme B in that each PE executes a local
marking process in parallel with all task activity, and a global marking-tree is used to coordinate
inter-PE marking. It is different in that the local marking process is a variation of a copying
garbage collector rather than a stack-based marking algorithm. A nice feature of the resulting

scheme is that memory is compacted; indeed the scheme becomes a full-blown garbage collector.

Although garbage collection and memory compaction are not our chief concerns, the popularity
of copying collectors makes Scheme C a worthwhile development and demonstrates the utility of

the marking-tree. The specifications for Scheme C are relegated to Appendix II, and the reader
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who is interested in a copying-style marking process is encouraged to read that section, although

no new information is added there that is crucial to the remainder of our discussion.

The degree of contention for shared resources, as well as the task pool space requirements of
Scheme C, are essentially the same as for Scheme B. The mark state of a node is determined by
whether or not the node has been “copied” and its relationship to the pointer that sweeps over
copied nodes. The chief difference in space, of course, is that Scheme C requires room for both

fromspace and tospace, thus twice the normal amount.

Scheme C is a practical distributed marking strategy, especially if used in situations in which a
conventional copying collector would appear attractive (with the advent of large address-space
architectures and efficient paging mechanisms, copying collectors have become fairly popular in
modern LISP implementations). The scheme is also interesting in that it accomplishes a true
parallel compaction of memory, which no other algorithm heretofore has accomplished. This
includes the scheme proposed by Steele [29], where during compaction the mutator may create
pew nodes that place “holes” in the free area, and the scheme proposed by Baker [3], in which

the executions of the mutator and collector are interleaved rather than executed in parallel.

7. “Uncooperative” Graph Mutations

Are there mutations for which no degree of cooperation can guarantee proper marking? To
answer this first requires defining what is meant by “cooperation”, for clearly the mutator could
simply wait until marking is complete, and then perform the mutation. Disallowing cooperation
of this sort (i.e., where the mutator waits for further action by the marking process), there are

still mutations for which defining an effective form of distributed cooperation appears intractable.

SRNARS

Figure 7-1: Examples of “uncooperative mutations”
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For example, consider the simple mutation shown in Figure 7-1a as it executes concurrently
with Scheme A. If a were unmarked and b marked, inserting an arc from b to a could violate
the second invariant established in Section 4.2. This itself is not catastrophic, except that in such
a situation there is no guarantee that any marking activity exists on the PE’s containing nodes a

and b, thus precluding any form of cooperation!

Another example of an “uncooperative” mutation is the one shown in Figure 7-1b. To see that
this mutation cannot always cooperate with Scheme A, consider once again all combinations of
the mark states of nodes a, b, and ¢, as shown in Figure 7-2. Note that the invariant violations
due to the a/b mark state combinations unmarked/transient and transient/marked can be
prevented by similar measures as before. However, the combination unmarked/marked
(indicated by a question mark) appears to be intractable given our current marking strategies. In
this situation adding the arc from b to ¢ may violate the second invariant; that is, c may be
unmarked. As above, no cooperation can remedy this since there is no known marking activity

on the participant PE’s.

mark state of node a

unmarked transient marked

$m————— pm—————-— to—————- +
unmarked | no | no |impos- | a

| coop | coop | sible |
mark state At $omm———- Rttty +
of node b transient | coop | no | no |
| w/ b | coop | coop |

tmm————e tmmmm——— tmmmm——— + p=—>c
marked | ? | coop | no |
| | w/ a | coop |
pmm————— D tmm————e +

Figure 7-2: Difficulty with the new add-reference primitive (Scheme A)

Even though the above mutations appear unnecessary for evaluating functional programs, they
are (at least in a graph-theoretic sense) more general than the previous set of primitives. This
can be seen by noting that the original set of primitives is not capable of the mutation of Figure

7-1b, whereas the latter mutation together with delete-reference and expand-node can
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generate all mutations created by the original set (the mutation of Figure 7-1a is a special case of

Figure 7-1b, so it is sufficient to restrict our attention to the latter).

In previous parallel marking strategies for sequential computers (i.e., those proposed by
Dijkstra and others), these “uncooperative” mutations do not arise because there is a centralized
data-structure (such as a stack) that coordinates all marking; cooperation is easily induced by
modifying this structure accordingly. There s a solution to our dilemma analogous to solutions
in sequential systems, but it does not fit nicely into our distributed model of computation. The
solution takes advantage of the fact that there is one source of marking activity that is always
known: the marking activity at the root; that is, if marking is still active, the root must still be
transient. To effect cooperation for the mutation of Figure 7-1b in the case where node a is
unmarked and node b is marked, we simply execute a mark-A task on node ¢ from the root!

The full specifications for the resulting primitive are shown in Figure 7-3.

task-procedure new-add-reference(a,b,c)
while-locking a do
while-locking b do
begin if unmarked(a) and transient(b)
then << spawn mark-A(c,b);
increment(mt-cnt (b)) >>
else if transient(s) and marked(b)
then << execute mark-A(c,a);
increment (mt-cnt(a)) >>
else if unmarked(a) and marked(b)
then while-locking root do
<< execute mark-A(c,root);
increment(mt-cnt(root)) >>;
connect (b, ¢c)
end;

Figure 7-3: A solution to the uncooperative mutation

This solution is not entirely satisfactory since, as mentioned, it is not effectively distributed in
that all occurrences of this situation result in a mark-A task being spawned on a single, global
node known to all (i.e., the root). This may be tolerable if the use of this primitive were
minimized, or if it can be shown that the particularly troublesome mark state combinatioﬁ is

rare.
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An interesting alternative solution has been proposed by Jerry Leichter at Yale University.
Observe first that if no delete-reference mutations were to occur, there would be no need for
the other mutator primitives to exercise cooperation, except for those that add new nodes to the
graph. Define a new mutation kill-reference(a,b) that does not actually delete the reference
from a to b, but merely flags it as “killed”. Then modify the mark tasks such that when a killed
arc is traversed, it is also deleted (hence the marking process cooperates with the mutator,
instead of the other way around). This strategy provides a distributed solution for our
uncooperative mutations, but has two disadvantages. First, some nodes get marked that are
actually known not to be part of the computation graph; and second, extensibility is impaired in
that children(n) may increase arbitrarily as references from n are alternatively added and

deleted.

8. Conclusions

Scheme A is a simple, effective algorithm for distributed graph marking. It is useful in
demonstrating the nature of the marking-tree, but suffers from two inefficiencies; namely, each
node in the graph requires space for marking-tree data, and the task pool space requirements are
extreme. Schemes B and C improve on these inefficiencies through the use of a stack and dual
address space, respectively, to coordinate local marking, while using the marking-tree to
coordinate the overall marking process. Both schemes eliminate the marking-tree data stored in
each node, and drastically reduce the space required for the task pool. The space for the pool
becomes directly proportional to the number of inter-processor references, and will not be extreme
if locality of reference is a dominant feature of programs (as empirical studies [7] seem to
indicate), and if the graph distribution strategy reflects this locality. Scheme C has the

advantage of compacting memory, but at the expense of using a dual address space.

All three algorithms may execute concuwrrently with a certain class of distributed graph
mutations without affecting the distributed nature of the marking process or the mutations
themselves. Such a set of graph mutations must at least have the following property:

Given a marking strategy M and a set of primitive mutations P = {p,, p,, ... P}
define system S to be the parallel execution of M U P. If it is possible for a
mutation p. to reach a state from which S would result in improper marking, then
it must be possible for p; to locate a local source of marking with which to invoke
a proper form of cooperation.
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Note that the mutations are considered collectively, since their interaction is crucial. Using this
property as a guideline, a slightly broader class of mutations may be executed with Scheme A
than with Schemes B or C. The reason for this is primarily that a transient node under Scheme
A is closer to being “fully marked” than a transient node under Schemes B or C; that is, under
Scheme A a transient node has not only been “touched”, but also mark-A tasks have been
spawned on each of its children. As a result, more cooperation is generally required; compare
expand-node-A to expand-node-B or expand-node-C. On the other hand, there are more
available sources of marking with which the mutations may cooperate. Recall that because of
this we did not restrict expand-node-A as we did expand-node-B and expand-node-C -- the

latter tasks are thus weaker in functionality than the former.

A final point worth noting is that none of our algorithms place any restrictions on the order of
task execution. Furthermore, despite the need for locking mechanisms, none of the tasks
responsible for marking leave a node or local variable locked on one PE while markiug is
continued elsewhere; indeed, none of them ever nest the locking of nodes (this is not true of the
mutator tasks, some of which require nesting simply to ensure their own proper behavior).
Finally, although the local marking processes of Schemes B and C need to nest the locking of
local nodes only, they never leave one node locked while waiting for another to become unlocked.

All of these factors contribute to our algorithms’ distributed nature.
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Appendix
I. Examples of Functional Graph Mutations

Figures 10-1, 10-2, and 10-3 show how three common combinator reductions can be simulated

with the set of functional mutator primitives shown in Figure 3-1.

f f f g x
expand-node three add-reference mutations
introduces d and e yield final graph

Figure 10-1: Sfgx = fx (g x)

aED aED aE.D

>
>
»

add-reference two delete-references

Figure 10-2: Kxy = x
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\ = bZD\ = byl ]

f f

expand-node add-reference

Figure 10-3: Yf=f(Y )

II. The Third Algorithm (Scheme C)
As with a conventional copying collector, memory in each PE is divided into two contiguous
be pointers to

The

regions; the fromspace and tospace. Let from,,.,, from to,,r, and to

right’ right

the boundary cells for these spaces, such that from; . < from and toj,,, < to

right right’

tospace has three pointers associated with it: fs-left points to the first free node available from
the left boundary of tospace (initially fs-left = to,.,), and fs-right is the analogous pointer to
the first free node available from the right side of tospace (initially fs-right = toright)' Thus
fs-left and fs-right form the boundaries of the free-space; if fs-left = fs-right there are no
free nodes available. The third pointer is cnode, and references the current node in tospace

which is being traced by the local copying process. Initially cnode = to,,,.

The value of unmarked(n) is true if n is in fromspace, and false otherwise. We assume that
a node’s presence in fromspace or tospace can be determined by looking at the address of the
node, so this predicate can be evaluated without looking at the node itself. Given that node n is
in fromspace, copy(n) returns a new node in tospace that is identical to n. New nodes are
allocated by copy starting at fs-left, which is then updated accordingly. Also, a forward pointer
to the new location is left in the old location. The function moved(n) returns true if node n
(which must be in fromspace) has been copied into tospace (and false otherwise), and

forward(n) returns the reference to the new node.

The functions allocate-from-right-side-of-tospace and allocate-in-fromspace are used

by the expand-node primitive to access free nodes with which to build the new subgraph (we
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assume that an error handler is invoked if there is no free-space available). To avoid interference
between various tasks accessing shared variables, the above two functions as well as copy,
increment-by-2 (which adds two to its argument) and decrement are defined as indivisible

operations. As with scheme B, we also assume a binary semaphore mutex exists on each PE.

Figure 11-1 shows the specifications for Scheme C. Each PE executes the procedure
local-copy, which is analogous to local-mark in Scheme B, and the local pointers local-root,
mt-count, and mt-parent serve precisely the same roles as in Scheme B. Marking is started in

the normal way, by spawning a mark-C task on the root.

A complication to our new strategy is that once a node is copied into tospace, the old
references to it (i.e., pointers to fromspace) must be updated. Thus for each mark-C task that
is spawned, not only does one return-C task eventually get spawned, but also one update task.
We wish that all update tasks complete before marking terminates, so each of them spawns a
second return-C task, which is accounted for by incrementing mt-count by two whenever a
mark-C task is spawned. With this in mind, compare mark-C to mark-B; nodes are copied
into tospace instead of pushing them on the stack, and the old reference is updated as described

above.

The procedure local-copy is analogous to a conventional copying collector, and otherwise has
a strong resemblance to local-mark. As nodes are copied into tospace, the pointer fs-left
increases. The pointer cnode is used to sweep over the copied nodes since their children have
not been traced; cnode is in essence trying to “catch up” to fs-left. Once the node reference by

cnode is successfully locked, its children are examined in turn:

1. If the child is not local, then a mark-C task is spawned on it and mt-count is
incremented by two.

2. If the child is local but has already been moved, then the reference to it in cnode is
simply updated with the forward pointer.

3. If the child is local, has not been moved yet (i.e., is unmarked), and is successfully
locked, then it is copied into tospace.

4. If the child is local, has not been moved, but is already locked, then it is treated as a
non-local node as in (1) above.

local-copy also continuously checks to see if local marking activity has ceased, in which case it

behaves precisely as local-mark in the same situation.
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task-procedure mark-C(n,par);
while-locking n '
do if moved(n)
then << spawn update(par,n,forward(n));
spawn return-C(par) >>
else begin spawn update(par,n,copy(n));
[ if local-root = nil
then << local-root := n;
mt-parent (= par >>
else spawn return-C(par) |
end;

task-procedure update(n,oldchild,newchild)
while-locking n
do << replace-child(n,oldchild,newchild)
spawn return-C(n) >>;

task-procedure return-C(n);
if n = rootpar then done := true
else decrement(mt-count);

procedure local-copy();
while true do
begin while cnode # fs-left and lock cnode
do << for each x € children(cnode)
do if local(x)
then if moved(x)
then replace-child(cnode,x,forward(x))
else if lock «x
then << replace-child(cnode,x,copy(x));
unlock x >>
else << spawn mark-C(x,cnode);
increment-by-2(mt-count) >>
else << spawn mark-C(x,cnode);
increment-by-2(mt-count) >>;
unlock cnode;
increment(cnode) >>;
[ if cnode = fs-left and mt-count = 0 and local-root # nil
then << spawn return-C(mt-parent);
local-root := nil >> ]

end;

Figure 11-1: Scheme C: Local marking using a “copying collector” strategy
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Parallel Mutations

As with the prior marking schemes, we assume unlimited concurrent execution of the
functional mutator primitives. Correct marking behavior can again be achieved if proper

cooperation is observed.

First define a node n as unmarked if it resides in fromspace, transient if it has been moved to
tospace but has not been traced (i.e., cnode < n < fs-left), and marked if it is in tospace and
has either been traced (n < cnode) or was allocated from the right end of the free-space (n >
fs-right). An additional requirement for a marked node is that we guarantee that all of its

references to fromspace get updated properly.

mark state of node a

(moved
(moved) and traced)
unmarked transient marked

tmm————— tmm————— tmm————— +
unmarked | no | no | coop | )
N\
| coop | coop | w/ al \
mark state $ommmmm—- tomm———— o + / \
of node b transient | no | no | coop | b |
(moved) | coop | coop | w/ b | \ l
b ———— tom—m——— tom————— + /
marked | no | no | coop | c“
(moved | coop | coop | w/ bl (unmarked)
and traced) +------- tmm————e - +

Figure 11-2: Cooperation by the add-reference primitive (Scheme C)

Figure 11-2 shows the nine mark state combinations for the add-reference primitive.
Cooperation is only needed when a is marked and ¢ is unmarked (remember that ¢'s being

unmarked can be determined without locking it). Either of two situations can then arise:

1.1f b is unmarked, then marking must still be active on proc(a); spawning
mark-C(c,a) and incrementing the appropriate mt-count is sufficient cooperation.

2.1f b is transient or marked, both a's and b’s reference to ¢ must be updated. This
can be accomplished by first executing mark-C(ec,b) (since marking must still be
active on proc(b)), updating the appropriate mt-count, and updating the value of
c with the pointer to the new node.
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The reader should convince him/herself that this cooperation is sufficient to maintain the
meaning of a node's mark state as defined above. Figure 11-3 shows the specifications for the
three new cooperating mutator primitives -- note again that delete-reference requires no

cooperation.

task-procedure delete-reference-C(a);
vhile-locking a do
<< b := select-child(a);
disconnect(a,b) >>;

task-procedure add-reference-C(a);
while-locking a do
<< b := select-child(a);
vhile-locking b do
begin ¢ := select-child(b);
if marked(a) and unmarked(c)
then if unmarked(b)
then << spawn mark-C(c,3);
increment-by-2(mt-count(proc(a))) >>
else << execute mark-C(c,b);
increment-by-2(mt-count(proc(b)));
¢ := forward(c) >>;
connect(a,c)
end >>;

task-procedure expand-node-C(a,g);
while-locking a do
<< if marked(a) then allocate-from-right-side-of-tospace(g)
else allocate-in-fromspace(g);
splice-in-subgraph(a,g) >>;

Figure 11-3: Cooperating Mutator Primitives for Scheme C

We restrict expand-node as was done for Scheme B; the more general unrestricted version has
a solution similar to that outlined in Section 5.2. expand-node is specified in Figure 11-3 in
such a way as to allocate space for g from the right side of the free-space if a is marked (since
there is no need for cnode to scan it), and in fromspace if a is unmarked or transient. The
latter strategy is a simple way to effect cooperation; that is, the new graph g will subsequently
get moved to tospace, but only if it should. Indeed, if a is unmarked, the expand-node

mutation may be an srrelevant task, meaning that g will not get copied, which is what is desired.
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