Abstract.

We present expressions for absolute and relative errors in individual components of the so-
lution to systems of linear equations. We consider three kinds of linear systems: non-singular,
underdetermined of full row rank, and least squares of full column rank. No assumptions regarding
the structure or distribution of the perturbations are required.

Our expressions for component-wise relative errors allow the following conclusions: For any
linear system there is at least one solution component whose sensitivity to perturbations is propor-
tional to the condition number of the matrix; but — depending on the relation between right-hand
side and matrix — there may exist components that are much better conditioned. For a least squares
problem, the sensitivity of the components also depends on the right-hand side and may be as high
as the square of the condition number. Least squares problems are therefore always more receptive
to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underde-
termined linear systems of full column rank, the problem of finding the minimal-norm solution can
be formulated so that the same analysis as for least squares problems is applicable here as well.

Finally, we define component-wise condition numbers that measure the sensitivity of the so-
lution components to perturbations. They have simple geometric interpretations and can be com-
puted and estimated as efficiently as the conventional condition numbers.
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1 Introduction

Most people would probably believe that there is nothing left to be done when it comes to error
analysis for the solution of linear systems of equations and linear least squares problems, especially
where perturbation analysis without regard to a particular algorithm is concerned. So, why yet
another paper on the subject?

We want to demonstrate that a careful perturbation analysis is capable of providing a realistic
assessment of the error and reliable measures of the sensitivity of the solution to perturbations in
the data.

In particular, we derive expressions for the errors in individual components of the solution vector.
These expressions give rise to realistic and efficiently computable error bounds. The derivations of
the error expressions require no restrictions on the structure or distribution of the perturbations.
Without any knowledge of the underlying algorithm, we can therefore obtain a great deal of infor-
mation about the sensitivity of individual solution components to perturbations in the data — much
more, in fact, than what is provided by conventional perturbation results.

1.1 Motivation

Consider the solution of a system of linear equations Az = b with non-singular coefficient matrix A.
The computed solution Z, which is usually different from the true solution z, can be viewed as
the true solution to a perturbed system (A + F)Z = b+ f. Let’s assume we do not know which
algorithm was used for the computation of Z, so we have no knowledge about the structure of the
perturbations F' and f.

Only very infrequently, e.g. [4, 15], does one try to assess the error in individual solution
components. The conventional way of assessing the error in Z, as compared to the true solution z,
is to estimate an upper bound on the norm-based! relative error ||z — z||/||z||. The most commonly

used first-order bound is I — 2]
r—z| -
Tz S &(A)(pa +pr),

where the condition number k(A) = ||A||||A~!|| > 1 acts as an amplifier for the relative perturbations
in the data pg = ||F||/||A]| and py = ||£||/||b]]- This norm-based bound has led to a rule of thumb:
If, for instance, k(A) is about 103, and the size of the relative perturbations is about 10=7, then the
computed solution Z can be expected to be accurate to 7 — 3 = 4 significant digits.

In many situations this type of error assessment is just fine — unless, however, the individual
components of the solution have physical significance as, for example, in statistical applications [21].
Consider the linear system Az = b, where

(Y -0 -0

Suppose the computed solution is = ( l ) , where € is a very small positive number. Then Z can

be viewed as the true solution to the perturbed system

A+F=A= ((1) ‘1)) b+ f= (i)

1The following inequalities hold for any vector p-norm and induced matrix norm; see Section 2 in [12], for instance.
In this paper we use the two-norm.




Because A4 is the identity matrix, K(4) = 1, and the above error bound tells us that ||Z — z||/||z]|<e.
So the error in the solution seems to be no more than the error in the data, which is all we are
entitled to. However, the second component of the computed solution has component-wise relative
error?
To— I3 _ €= 0 =1

2 T e T 7
and is thus totally wrong. Therefore, a small bound on the norm-based error does not guarantee
accuracy in individual components of the computed solution.

Of course, you could argue now that this should have been anticipated. Since z; is zero, hence
small in magnitude, one should not expect to compute it correctly in the first place. Accordingly,
we could account for it by estimating the error in each component Z; of the computed solution via
1Zi —zi] _ 12 -=]| ll=Il
< < k(A)T=(pa + m),

|z |z Ixsl(
provided z; # 0. The amplifiers for the relative perturbations are now the condition number, as
well as the size of an individual component relative to the whole solution. This modification yields
a correct assessment for the errors in individual solution components of the above example.

Unfortunately, we have not really fixed the problem. The condition number k(A) can still
severely over estimate the error in some solution components, as the following 4 x 4 linear system
demonstrates.

0.4919  0.1112 -0.6234 -0.6228 0.4351

A= —0.5050 -0.6239  0.0589  0.0595 b= —0.1929
0.5728 —0.0843  0.7480  0.7483 |’ - 0.6165

—0.4181 0.7689  0.2200  0.2204 —0.8022

The first three columns of A are nearly orthogonal while the last two columns are almost identical.
Both the two-norm condition number x2(A) and Skeel’s condition number [19] are larger than 103.
Note that the matrix is not ill-scaled.

But the ‘component-wise condition numbers’ that we will introduce in this paper turn out to be
<11, <11, >10% >103.

This means that the first two components of z are well-conditioned and the remaining two are
ill-conditioned, regardless of the perturbations. To illustrate this, compare the ‘exact’ solution
computed with 16-digit arithmetic

zT = (1.000075414240576 —.5000879795933286 —.0242511388797165 .02624513955005858) ,

with the solution computed with 4-digit arithmetic, which can be viewed as the solution to a per-
turbed problem,
zT = (1.000 —.5003 —.0589 .06090).

As predicted by our component-wise condition numbers, the first two components are accurate to
almost four digits, whereas the last two have no accuracy whatsoever. As far as we know no other
existing condition numbers can predict the well-conditioning of the first two components of this
system.

Therefore, the conventional norm-based bounds are apparently not able to estimate the accuracy
of individual components correctly. We hope to have now provided enough motivation for the need
to study component-wise relative errors and the sensitivity to perturbations of individual solution
components.

2Whenever z; = 0 while Z; # 0, the component-wise relative error has z; instead of z; in the denominator.



1.2 Overview

Given a linear system Az = b of full column rank and a perturbed system (A + F)Z = b+ f, we
derive expressions for the error in individual components of the computed solution Z. Our work is
more general than that of Skeel [19] on component-wise perturbations and that of Stewart [22] on
stochastic perturbations because we make no assumptions about the perturbations F and f, either
their size, structure or distribution. '

In particular, we show that there is always one component of the solution vector whose sensitivity
to relative perturbations is proportional to the condition number of the matrix; but - depending
on the right-hand side — there may exist components that are much better conditioned. Therefore
the conventional upper bounds on norm-wise relative errors are as tight as possible, and if they are
pessimistic it is because they represent an inadequate means of measuring the error.

We derive condition numbers for individual components for the solution of a linear system, which
we call ‘component-wise condition numbers’. We thus associate with a linear system Az = b not a
single condition number but a set of condition numbers. Our work, although developed indepen-
dently, can therefore be considered a continuation of Stewart’s work on collinearity in regression
problems [21]. The singular value decomposition, often used to determine the conventional condi-
tion number of a matrix, provides a basis for the column space but does not relate this basis to
the columns of the matrix. In contrast, Stewart’s condition numbers are designed to expose the
most linearly dependent columns of a matrix. They are embedded in our component-wise condi-
tion numbers, whose purpose is not only to recognise linearly dependent columns but also to reflect
the relationship between matrix and right-hand side. We provide a geometric interpretation for
Stewart’s condition numbers and demonstrate that they are ‘inherent’ in the inverse of the matrix.

All of our results also hold for the solution of linear least squares problems min, ||Ay — b|| of full
column rank. The set of component-wise condition numbers for a least squares problem contains
those for a linear system as a subset, hence the sensitivity of some solution components may be much
lower than the condition number. In particular, we show that there is a component of the solution
vector whose sensitivity to relative perturbations equals at least the product of condition number
and tan 6, where 6 is the angle between the right-hand side and the column space of the matrix; the
sensitivity can be as high as the product of tanf and the square of the condition number. Least
squares problems are therefore always more receptive to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underdeter-
mined linear systems of full column rank, the problem of finding the minimal-norm solution can be
formulated so that the same analysis as for least squares problems is applicable.

The expressions for the errors in the solution of least squares problems and underdetermined
linear systems can be used, for instance, to obtain perturbation results for the computation of left
and right inverses of matrix.

In Section 2 we present the basic ideas contained in this paper. We derive them from first
principles, keeping technical details to a minimum. Section 3 and Appendix 2 contain a detailed
perturbation theory for the solution of linear systems of full column rank, and Section 4 extends
it to the solution of least squares problems of full column rank. The treatment of full rank least
squares problems is extended to the solution of underdetermined linear systems of full row rank
in Section 5. In Section 6 we discuss the efficient computation and estimation of component-wise
condition numbers. In particular, we show how to compute them via updating QR decompositions,
and how to estimate them by means of conventional condition numbers estimators. A short summary



of the paper is followed by Appendix 1, where expressions for the left-inverse of a matrix are derived
in order to justify our choice of condition numbers as a natural measure of sensitivity.

Although we concentrate on component-wise relative errors, expressions for component-wise ab- -
solute errors are also included; the corresponding condition numbers can be computed as easily as
those for conventional norm-based errors.

1.3 Summary of Notation

We give a brief summary of frequently used notation for easy reference. This notation is also
introduced in the body of the paper whenever it appears for the first time.

The norm ||- || represents the two-norm, and e; stands for the ith column of the identity matrix I,
whose order will be clear from the context. The column space of a matrix 4, {c : Az = c}, is
represented by R(A) and its nullspace, {z : Az = 0} by Ker(A). The subspace in real n-space "
that is orthogonal to the space span{vi,...,v;} spanned by n x 1 vectors vy, ..., vi is denoted by
spant {vy,..., v}

The columns of a n x m matrix A are denoted by a;, and if A is of rank m the rows of its
left-inverse A' are denoted by r7,

il |

A=(ay ... an), Al =

Wy

The singular value decomposition (SVD) of a n x m matrix A, n > m, is represented as A =
UZVT, where U is a n x n orthogonal matrix, V isa mxm orthogonal matrix, and the m x n diagonal
matrix ¥ has as its diagonal elements the singular values of A in descending order o7 > ... > o, > 0.
The two-norm condition number of a full-rank matrix 4 is denoted by x(A) = ||4]| ||A]].

If z solves the least squares problem miny ||Ay — b|| then the residual is denoted by r = b — Az.

2 The Basic Ideas

We start out by illustrating the ideas that led us to pursue a component-wise perturbation analysis;
this is done by studying perturbations in the right-hand side only. We also restrict ourselves to the
solution of full-rank least squares problems until Section 5 where the results are extended to the
solution of underdetermined linear systems of full row rank.

As for notation, || - || represents the two-norm, and e; stands for the ith column of the identity
matrix I.

2.1 Motivation

The first theorem gives a simple geometric interpretation of the components of the solution z to a
full-rank least squares problem miny ||Ay — b||. An individual solution component can be expressed



as a product of three factors: the length of a row in the left-inverse A!, the length of the right-hand
side and the angle between the two.

Theorem 1 Given a n X m matriz A of rank m, denote by r¥ the rows of its lefi-inverse At,

T\
n

Al = (AT A)~14T =
m

Then the components z; of the solution x to the least squares problem miny ||Ay — b|| are given by
zi=rib=|lrill[bllcosfi, 1<i<m,

where B; is the angle between r; and b.

Proof: The vector z solves min, ||Ay — b|| if and if only it solves the normal equations AT Az = ATb.
So z = A'b, which implies z; = rf'b = ||r;| ||b|| cos B;, where g; is the angle between r; and b. B

Already in [20] Stewart recognised the importance of the ||r;|| for the purpose of detecting almost
linearly dependent columns in A. In fact, it turns out that length and angles associated with the r;
indicate the sensitivity of individual components of the solution z to perturbations in the right-hand
side.

Theorem 2 Given a matriz A of full column rank, let z # 0 solve miny ||Ay — b|| and let Z solve
miny || Ay — (b + f)|-

Denote by ; the angle between r; and f. Then
& = zi+ ] f = zi + ||rill | £]] cos 9.

If z; # 0 and & = ||f||/]|b]| then

T —z;

1
= € cos VY;
z; cosB; ¥

b
- ﬂ-% ”Tz'u (1Al ||l €5 cos ;.

Proof: According to Theorem 1,
zi=r{(b+ f)=rlb+r] f=zi+ 17 f =2+ ||ril| | f]) cos v,
where 1; is the angle between r; and f. Since 0 # z; = ,Tb = ||r:]| ||b]| cos B; we have

7 T
Zi—z; _rf 1 |l i
z;  rTb cosf; ||b|| cos ¥i.

3

The theorem states that the absolute perturbation ||f|| cos ¢; in #; — z; is amplified by ||r;||. In
the first expression for the relative error, the perturbation €; cos; is amplied by 1/ cos 8;. That
is, the ‘more orthogonal’ b is to r;, the smaller is cos 8;, and the larger is the amplification of the



relative perturbation. Therefore, the component-wise relative error is likely to increase, the more
orthogonal r; is to the right-hand side.

Comparing the two amplifiers we see that the amplifier ||r;|| in the absolute error only refers to
the matrix and ignores b, while the amplifier 1/ cos B; in the first expression for the relative error
describes a relationship between the matrix and the right-hand side.

The second expression for the relative error in Theorem 2 is more conventional and perhaps
easier to interpret. It consists of the relative perturbation ¢; cos 9;, amplified by three factors: the
magnitude of z; relative to ||||; the term |[|A]|| ||r;||, which describes the condition of the matrix and
will be studied more closely in Section 2.2; and the term Tl'ZlheH?ﬂ’ which is common to all components

and describes the relation between matrix and right-hand side. If we denote by x(A) = ||A|| [|A]|
the condition number of the matrix A then ||A]|||r;|| can be bounded by

L=lef || = llef ATA|l < lle] AT AN = (Al Im:l] < #(4),
A lower bound for "J—qlhli#;“, provided z # 0, is

Jel _ 1 1 1
A 1A LAt = k(A)”
AT l2T = TFAN T2 = ()

In case of a linear system Az = b,

[1ell llAz(|
= <1,
Al Al =

otherwise it can be unbounded since b may be almost orthogonal to all rows of At.

Therefore, the component-wise relative error tends to be large for those components z; whose
size is small in comparison to ||z||, or whose matrix condition number ||A||||r;]| is large, or whose
right-hand side is nearly orthogonal to all rows of At. The three amplification factors in the second
expression for the relative error in Theorem 2 provide a clear separation of the factors responsible
for the loss of accuracy in the computed solution: relative magnitude of the solution components,
matrix condition, and relationship between matrix and right-hand side.

In Sections 3 and 4 we show that the same quantities that determine the sensitivity to right-hand
side perturbations also determine the sensitivity to perturbations in the matrix. First, though, we
relate them to more established ways of measuring sensitivity.

2.2 Relation to Singular Values

The goal of this section is to compare the amplification factors for the usual norm-based errors with
those for our new component-wise errors.

Because the two-norm condition number k(A) = ||A|| ||A!|| equals the ratio of the extreme singu-
lar values of A, we can relate the ||r;|| to the singular values of A and obtain the following well-known
inequalities.

Theorem 3 Let A be a n x m matriz of rank m with singular values o1 > ... > o, > 0, and denote
by rT the rows of At. Then

1 1
m < — < 01, om < min =— < \/moy,.

[l k- {lrell



If |Irmaz|| = maxg ||rk|| then

Al Irmazll < IAIIAY] < VllAll lIrmas]l-

Proof: The singular values of the left inverse At are 1/0;, Section 5.5.4 in [12], hence 1/0; < ||r;]| <
1/om, giving the first set of inequalities.

Let A= UZV7 be the singular value decomposition of A. The last row el VT of VT is a vector
with unit two-norm in ®™, so at least one of its components, say the jth, must be of magnitude
1/y/m. Hence the jth row r; of Al satisfies

- - - 1 1
lirll = NWUEETE) ™ VT ¢j]| = IS(ETE) " Vel 2 | E(ETD) 7 VT e5] 2 T

yielding the second set of inequalities.

The last set of inequalities comes from ||rmaez|| < ||AY|| = 1/0m. W

Applying Theorem 3 to the second expression for the component-wise error in Theorem 2 shows
that there must exist a component Z; for which

|Ze—2el o 1 |l ll=[l

> k(A) +— €] cos Yi|.
EY vm [|Al|||<]] £

Therefore, the sensitivity of z; to right-hand side perturbations is proportional to the condition

number of A whenever the right-hand side has an appropriate direction, that is, whenever ]]'.iqﬂ{?ﬂ

is not too small.

We briefly take a closer look at this last condition. When Az = b and b is a singular vector
associated with the smallest singular value o, of A, ||ATb||/||b]| = 1/om = ||At]], then

o _ 1 g I
Al ~ =) 4 fapgey Ml = gz st

According to the expressions for the errors in Theorem 2, the sensitvity of all solution components
to right-hand side perturbations is then solely determined by their relative magnitude.

The existence of a row of A! whose norm approximates 1/o,, well, as evidenced by Theorem 3,
underlies the rank-revealing QR factorisations, which first appeared in [11, 13], and are further
analysed and refined in [20, 10, 6, 21]. In the simplest case, the goal of a rank-revealing QR
factorisation is to determine the most linearly dependent column of a matrix A. To this end one
performs the QR factorisation AP = QR, where @ has orthonormal columns, R is upper triangular
and the permutation matrix P is chosen so as to minimise the trailing diagonal element (R)m of R.
Then the inverse of this element, 1/|(R)mm| = |lef, R=!|| = ||rL||, is as large as possible, and thus
close to 1/o,.

While Theorem 3 states that at least one ||rj|| approximates the smallest singular value well, the
following corollary indicates that each ||r;|| cannot stray too far away from some singular value.

Theorem 4 Let A be a n x m matriz of rank m with singular values oy > ... > oy > 0, and let
|1AllF = 4/ i a?j denote the Frobenius norm of A.



If the ||r;|| are ordered by increasing norm, ||r;,|| < ... <||rj.|l, then

m

1 1
2l = A" = S5+t s Z—<Enr,n 1<k<m-1.
i=1 m

i=1 i=1

Proof: The equality results from the invariance of the Frobenius norm under orthogonal transfor-
mations, Section 2.5.3 in [12].

The inequalities are obtained by applying the proof of Theorem 4.3.26 in [17] to the singular
values of A!. m

Remark 1 It is important to realise that the looseness of the inequalities in Theorem 3 depends on
how close the right singular vector mairiz of A is to a permutation matriz: if A = ULVT is the
SVD of A then

sl = NUSET D)1V eif| = [BETS)" 1V el

Thus, if V is a permutation matriz (this includes diagonal matrices) then we can find indices that
achieve the bounds in Theorem 3 since ||r;|| = 1/ok for some k.

2.3 Conventional Error Bounds

In this section we present a rather unconventional way of deriving bounds on the norm-based relative
error, by making use of the theorems from the previous sections.

An expression for the absolute norm-based error in the infinity-norm is available from Theorem 2,
12 = zlleo = max {||ri[| ||7]| | cos %s}.

Dividing this by ||z|| results in a mixed-norm relative error

112 = 2l e
e e Al g el cos 9l

where €, = ||f||/||b]|- Denoting by x(A) = ||A]| ||A?|| the condition number of A, we obtain an upper
bound for the norm-based relative error from Theorem 3,

le=sll sl Bl
T SVRR S VR e

In case of a linear system Az = b, ||b]| < ||A|| [|lz|| and the bound simplifies to

s s,

In this last form, the upper bound agrees with the conventional bounds. Its amplification factor for
the perturbations consists of the condition number k(A) of the matrix but ignores the relationship
between matrix and right-hand side.

Theorem 3 also comes in handy for the derivation of the lower bound

12— 2l| _ Iz = zllo i 18]
> =m A €] cos i |} > k(A e,
El ey - e kAl gy el eosvild 2 Z2+(4) mingy
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Figure 1: Angles Associated with Columns.

where p = max; {[|r|| cos 1}/ maxg [|re|.

To summarise, we have derived lower and upper bounds on the norm-wise relative error for
perturbations restricted to the right-hand side,

llal] 12— =|| _ el
7 e < e < Y™ e
In the absence of knowledge about the value of cos ¥; we have to assume the worst case g = 1, which
implies that the norm-based error bound is tight. Therefore the conventional upper bounds are as
good as possible — given that one has chosen to measure a norm-based error. We have therefore
shown that, if the norm-wise bounds give unsatisfying information, it is not because the bounds are
loose but rather because an unsatisfying way of measuring the error was adopted in the first place.

When Az = b and b is a singular vector associated with the smallest singular value o, of A4,
ATB[I/|Ib]l = 1/om = [|AH||, then ||A]| ||z]|/[]b]] = x(4) and

Iz - ||
—p < —— < /me.
vm el
In this special case the norm-wise relative error is of about the same magnitude as the perturbation
in the right-hand side and does not depend on the condition number of A, an observation already
made by Chan and Foulser [7].

2.4 Geometric Interpretation

We have seen so far that individual components of the solution z to a full-rank least squares problem
miny || Ay — b|| can be expressed as z; = ||r;|| ||b]| cos 3;, where 7] is the ith row of At and ; is the
angle between r; and b; that ||r;|| and 1/ cos ; determine the sensitivity of z; to perturbations in b;
and that at least one 1/||r;|| approximates the smallest singular value of A well.

Now we want to give a geometric interpretation of the ||r;|| in terms of the columns in the original
matrix A. This will allow us to determine how exactly the linear independence of the columns of A
and their relationship to b affects the sensitivity of individual solution components to perturbations.

As for notation, the column space of a matrix A is represented by R(A) and its nullspace by
Ker(A). The subspace in real n-space ®" that is orthogonal to the space span{vy, ..., v;} spanned
by n x 1 vectors v, ..., v is denoted by span*{vy,...,v;}.

We first show that the size of the ||r;|| reflects the linear dependence of the ith column of A on
all others.



Theorem 5 Given a n X m mairiz A of rank m, denote by a; its columns, and by r7 the rows of
its left-inverse Al,

: T
A=(a; ... am), Al=(4TA) 14T =

Then R((AN)T) = R(A) and

1

— 1<i<m,
llai|| cos a;

lImill =

where —--;-7( <a; < %w is the angle between r; and a;.

Proof: Because A has full column rank, AT 4 is non-singular, and Az = A(ATA)"!z = (4172,
where z = AT Az, which implies that R((A1)T) = R(A).

The ith diagonal element of I = A A satisfies 1 = rTa; = ||ri| ||a;|| cos @i, where ¢; is the angle
between r; and a;. Hence cosa; > 0,80 —37 < a; < 7, and ||ri| = m%gm
Because e = r] A, r; is orthogonal to all columns of A except for a;, that is r; € span,ﬁ“#,-{ak},
see Figure 1. Theorem 11 and Corollary 5 of Appendix 1 show that the ith row ¥ of At has the
same direction as the residual in the least squares approximation of column a; by the remaining
columns: if A; contains all columns of A except for a; then
1 1
Fedals L

where —d; = A;z — a; is the residual for the solution z to the least squares problem min, ||4;y — a;]|.
In other words, a; is the projection of a; onto the orthogonal complement of R(A4;), and r; has the
same direction as a;.

With regard to the length of r;, it follows that
1 1

&l ~ las||cosa;”

llrsll =
T

This means, the better the remaining columns A; approximate a; the smaller is the residual ||a;||
and the larger is ||r;||. That is, the more linearly dependent a; is on the other columns, the larger
is [|ri|.

The relationship between the length of r; and the norm of the residual is already known. In [21]
Stewart uses a different argument to show that
lasll = min| Ay — asf) =
sl — v ly (3] Mt ”7‘,'”.
Our contribution here is to provide more justification for the choice of r; as an indicator of sensitivity.
Because r; is a multiple of the residual a;, the residual is inherent in A and thus represents a most
natural choice for sensitivity measure.

Our geometric interpretation of the rows of the left-inverse justifies the use of rank-revealing QR

factorisations to determine the most linearly dependent column of a matrix. If the permutation
matrix P for the QR factorisation AP = QR is chosen so that the trailing diagonal element |[(R)mm |
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of R is minimal, then the residual 1/||rZ|| = 1/||eZ. R~!|| = |(R)mm| is minimal. This implies that
the last column of AP is the column that can be best approximated by all other columns and so is
the most linearly dependent among all columns.

The individual components of the solution z to a least squares problem miny ||Ay — b|| can be
expressed as
b|| cos B;
= el 18] cos ; = NPl cosBi
Z; ”7',” ” “cosﬂi “ai"COS a;
The denominator of z; indicates the linear dependence of column a; on all others, while the numerator
indicates the contribution of the right-hand side b in span;:'#{ak}. In detail, for fixed b, the smaller
the contribution of a; outside the space spanned by the other columns, the larger is z;. Or, the
smaller the contribution of a; outside the space spanned by the other columns, the more z; has to
make up for the weakness of a; in the direction spani'#{ak}. Moreover, the shorter a; is, the larger
z; has to be because it has to make up for the shortness of a;.

We can also apply the geometric interpretations to the errors resulting from perturbations f in
the right-hand side. The expression for the absolute error from Theorem 2,

lI£1] cos ¥4

Fi— oy = g%

llai]| cos @;’

contains a large amplification factor ]Ia_[[?I:Ta. if column a; is short or lies almost in the space spanned

by the other columns. The relative error

T —x 1

z;  cosf;

€) COS Y;

contains a large amplification factor 1/cosf; if b lies almost in the space spanned by the other
columns or in Ker(AT) = Ker(A') (in the latter case the right-hand side of the normal equations is
zero). Note that the amplification factor for the absolute error only reflects the linear independence
of the matrix columns, yet ignores their relation to the right-hand side.

2.5 Implications for Column Scaling

A diagonal column scaling D of the least squares problem miny || Ay — b|| to min, [|(AD)z — b||, where
D = (d;j) is a non-singular diagonal matrix, changes only the lengths of the columns but not the

angles, so
bl cosp

v ||diia;|| cosa; ™

In case of a column equilibrated matrix AD, Section 3.5.2 in [12], and [24, 25], where the diagonal
matrix D is chosen so that all columns of AD have identical length, the condition number of AD
comes from the largest angle a4, of A, as

= m
——— <Il4D| (4D} < Y,
max s

according to Theorem 3. This bound already appeared in a different form in [21].

Van der Sluis has shown that a column equilibrated matrix A has the lowest condition number
among all matrices of the form AD [24]. This would suggest that one solve only linear systems and
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least squares problems with column equilibrated matrices so as to minimise the condition number
in
Iz —=|| 114
< Vm(4) T
el ATl

However, the condition number occurs in an upper bound!

An examination of the first expression for the component-wise relative error in Theorem 2 shows
that none of the angles change when the columns of A are multiplied by non-zero scalars. In
particular, if we consider instead the system (AD)z = b, where z = D~!z, then the computed
solution Z satisfies a perturbed system ADZ = b + g. Postmultiplication of A by D corresponds to
premultiplication of A by D—!, which changes only the lengths of the rows r7 in A' but preserves
the angles f; between b and r;. Hence the amplification factor 1/ cos f; remains invariant under
column scaling.

Therefore, if perturbations are restricted to the righi-hand side, then column scaling is only
beneficial if it manages to decrease the relative perturbations €, cos ; in the component-wise relative
error (this could occur, for instance, if column scaling brings about a different choice of pivots in
Gaussian elimination).

2.6 Summary

The main result of Section 2 is the pair of expressions for the component-wise relative errors in a
full-rank least squares problem when perturbations are restricted to the right-hand side (Theorem 2).

Suppose z # 0 solves the least squares problem miny ||Ay — b||, and Z solves the corresponding
problem miny [|Ay — (b + f)|| with a perturbed right-hand side. The relative error in an individual
component of Z can be expressed as

T; — T;

1
= €p COS Y;
z; o ﬂi b '/’i ’

where f3; is the angle between b and the ith row of Af, 4; is angle between f and the ith row of Af, and
€ = ||fI|/I|bl]. Thus, the component-wise relative error consists of a relative perturbation €, cos 1;,
amplified by 1/cosf;. This amplification factor is large if b is almost orthogonal to the ith row
of A'; that is, if b lies almost in the space spanned by the other columns or in Ker(AT) = Ker(A?).

Because f; depends only on the direction but not the length of the ith row of Af, column scaling
of A is only beneficial if it manages to decrease the relative perturbations ¢; cos ;.

We also gave a second expression for the relative error

Zi-zi_ bl J=ll
- All||rs]| €s cos
2 ANl 2 VAl e cos ¥,

which provides a clear separation of the factors responsible for the loss of accuracy in the computed
solution: relative magnitude of the solution components ||z||/a:,, matrix condition ||A||||r;||; and

relationship between matrix and right-hand side WI*I_HZH > m, where k(A4) = ||A]|||AY|| is the
matrix condition number. In case of a linear system Az =

1Ll llA=||
<1,
A=l ~ Tl =

otherwise there is no bound as b may be almost orthogonal to all rows of Al.

12



The component-wise relative error tends to be large for those components z; whose size is small
in comparison to ||z||, or whose matrix condition number ||A|| ||r;|| is large, or whose right-hand side
is nearly orthogonal to all rows of AT. Moreover, Theorem 3 shows that there must be at least one
component zj for which [|A[| [|r|| > £(A4)//m. In the special case when Az = b and b is a singular
vector associated with the smallest singular value of A,

llol] 1 13|
= s and IA 7'“ < la
TAT =T~ =(A) A= 14
and the sensitvity of all solution components to right-hand side perturbations is solely determined
by their relative magnitude.

In the next section we derive expressions for component-wise relative errors when perturbations
in the matrix are also allowed. For simplicity we start with linear systems, and consider least squares
problems separately in the subsequent section.

3 Perturbation Results for Linear Systems

We derive expressions for component-wise errors in a linear system of full column rank when both
matrix and right-hand side are perturbed. From these expressions we derive component-wise condi-
tion numbers for the individual components of the solution. The expressions for the component-wise
errors are used in turn to derive upper bounds for the norm-based errors that are essentially equal to
the conventional upper bounds. We conclude that the norm-based bounds are as tight as possible.
If they turn out to be pessimistic then this is because one has chosen to measure the norm of the
error instead of the error in individual components.

3.1 Component-Wise Errors

A computed solution Z to a linear system Az = b can be viewed as the exact solution to a perturbed
system (A + F)Z = b+ f. We will determine how the error in the components of z is affected by
the perturbations F' and f.

The first theorem investigates the effect of perturbations in the matrix.

Theorem 6 Given a matriz A of full column rank and b # 0 such that Az = b, let the computed
solution Z # 0 satisfy (A+ F)z = b.

Denote by +; the angle between r; and FZ. Then

- || FZ|| cos ¢
P =L — .
llai]| cos a;
Ifz; #0 and €4 = “-LLF"'-fr!-" then
ZT; — x4 1 |IF1:||
— - COSs
z; cosﬂ, ||b|| v

z
= __”z“ Al l|73]| €4 cos ;.
3
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Proof: In Theorem 2 we set f = —FZ to get

) i} 1 ||Fz| )
T
I;=x;— ',Fx = 2 ] ———_ cos i
( cos B; ||bl| v

| Fz|| cos %5
llail] cos a;

i

Dividing the whole equation by z; gives the expressions for the component-wise relative error.
|

The first expression for the component-wise error says that the more b lies in span;g'#{ak}, the
more sensitive is z; to relative perturbations. However a large 1/ cos §; does not necessarily imply
that b has little contribution in a;. In fact, if b = a; and 1/ cos ¢; is large then 1/ cos §; will also be
large — in this case cos f; reflects the linear dependence of the columns of A.

We interpret the second expression for the component-wise relative error in Theorem 6 as follows:
the first term, ||z||/z;, represents the relative magnitude of z;; the second term, ||A|| ||r;]| = ﬂa_.'H%cl:IsTu’
represents the linear dependence of the ith column of A on all other columns; and the last term
€4 cos 1; represents a relative perturbation for the matrix in the context of the given linear system.
The component-wise relative error tends to be large for those components z; whose size is small in
comparison to ||Z||, or whose associated column is short in length or nearly linearly dependent on
the other columns. The two amplification factors in the second expression for the relative error in
Theorem 6 provide a clear separation of the factors responsible for loss of accuracy in the computed
solution: relative magnitude of solution components and linear dependence of matrix columns.

In comparison to the error from right-hand side perturbations in Theorem 2, the error from matrix
perturbations in Theorem 6 does not contain the term “-zthH;", which describes the relationship
between matrix and right-hand side. According to Theorem 3 we conclude that there always exists
a component z; whose sensitivity to relative perturbations in the matrix is on the order of x(A).
This is in contrast to right-hand side perturbations, where b has to lie in a certain direction for the
sensitivity to be proportional to the condition number.

Before resolving this apparent contradiction (in particular, when the perturbations are due to
backward errors from algorithms, which can be shuffled back and forth between matrix and right-
hand side), we first give an expression for the component-wise relative error for a linear system when
matrix and right-hand side are perturbed simultaneously.

Corollary 1 Given a matriz A of full column rank, and b # 0 such that Az =b. Let T # 0 salisfy
(A+F)z=b+f.

Denote by yF,; the angle between r; and FZ, and by v;; the angle between r; and f. Then
+ Wfllcos ¥y — |IFZ|| cos ¥rs

T =z;

|lai|| cos a;
Ifz; # 0 and
Gl i
lIl]° 1Al [Iz|]
then
T —z; 1 _ )
z; - ”b“ coS ﬁi [”Fx” cos ¢F,t - ”f” cos 'd)fﬁ]
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l |l [ 1L }
Allllri]] |ea cos¥pi — 7=——€3 cos 9y ;

The second expression for the relative error allows us to state that, in general, for every linear
system there exists a solution component whose sensitivity is proportional to the condition number,
because the term that could avoid this, y: ) = multiplies only the right-hand side perturbations
but not the matrix perturbations. In addition, the following theorem shows that for any Z # 0 the
perturbations can always be allocated to the matrix.

The following theorem helps to resolve the discrepancies in the réles of right-hand side and matrix
perturbations. It also justifies the representation of the matrix perturbation in the form e4 = AFf =
The bounds on the norm-based relative error [12, 23], usually contain the term p4 = ||F||/||Al| as
the representative for the matrix perturbation. But €4 < p4 and, as it turns out, €4 constitutes the

smallest possible matrix perturbation.

Theorem 7 Given a mairiz A of full column rank and b # 0 such that Az = b, and a computed
solution Z # 0, let Fiin, be the perturbation of smallest Frobenius norm among all perturbations F
that satisfy (A+ F)Z = b (Fin also has smallest two-norm among all such perturbations).

Ifzi #0 and emin = || Fnin|l/||A]] then
Zi—zi _ A= _1

z; [18]]  cosB;

where 1; is the angle between Fp;nZ and r;.

€min€OS V;,

If €res = ||b — AZ||/||b|| is the relative residual then

I 1 |l=ll ll=ll
€min = T €res T €res <€ < =€
AN (A I = S e

Proof: If f = b— AZ is the residual then Fp;n is given by, [18] and Theorem II1.2.16 in [23],

=T
z
F, min = -£T -
and satisfies 1Fdl}
f=—=FninZ and | Frminll = “1:“
where the second equality comes about because F;, has rank one. Substituting || f|| = || Fminl| “-"’”

into the first expression for the component-wise relative error from Theorem 2 yields the expression
for the error.

The relation between €nin and €., comes about as €.e; = || f]|/||8]] and || Fminl| = ||IF1l/IIZ]]. ®

The proof of Theorem 7 makes clear that, given Az = b and Z, the smallest matrix perturbation

satisfies _
|Fminll _ _IIF3
(14| (1Al [Iz(]

which is exactly the matrix perturbation ¢4 in Theorem 6.

(A + Fms‘n)‘E =b, €min =
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Moreover, for a given computed solution Z one can define two perturbations: the minimal matrix
perturbation €,,;,,; and the relative residual €,.,, which reflects the relationship between matrix and
right-hand side. If the magnitude of the computed solution is not totally off, i.e. if ||z|| = ||Z]|, then
€min is of the same order of magnitude or smaller than €,.5. According to Sections 2.1 and 2.2, €,
is much larger than €, whenever b lies nearly in the direction of a singular vector associated with
the smallest singular value of A (provided the directions of z and z are not too different).

Regarding the interpretation of error bounds and the determination of amplification factors, one
must therefore be careful about deciding whether to allocate the perturbations to the matrix or
to the right-hand side. We continue this discussion in the context of norm-wise error bounds in
Section 3.4.

In Theorem 7 the relative errors in the different components differ only in cos v;/ cos §;, while
the term || A|| ||Z||/]|5]| is common to all components. Because 1/cosf; > 1,

|2 — =il Al
> . .
Ixil = ”b" emtn’cosd)tl’

so all components of r are sensitive to matriz perturbations if ||A||||Z||/]|b]| is large. In particular,
if b lies along the direction of a singular vector associated with the smallest singular value of A
then [|A]|||Z]|/]|b]| & k(A). Together with the results from Section 2.3 this implies that the solution
components are extremely sensitive to matrix perturbations exactly when they are insensitive to
right-hand side perturbations.

The expressions for the component-wise errors in this section contain not only the data A and b,
but also the result Z. In Appendix 2 we show how to express the relative errors entirely in terms of
the data; although the perturbations take a slightly different form, the magnification factors for the
perturbations continue to be 1/ cosa; and 1/ cos ;.

3.2 Examples

Now we give two examples to illustrate the previous results. The first example demonstrates that a
matrix with perfectly conditioned columns may give rise to a linear system with extremely sensitive
solution components.

Example 1 If A is an orthogonal matriz then “Jéll_ = 1 and, according to Theorem 6, ||Z||/z;

a;|| cos a;
is the sole term responsible for error magnification. Thus, as we already know from the norm-wise
bounds, a solution vector with small as well as large components suffers from large error amplification
in the small components. '

This also comes out if we consider instead the angles

1 1 _ 1 = 1 _ 1
cosa;  |lail|cosa; ~ cosfBi  z; ' ||bljcosBi T =z’
where the next to last equality comes about because ||b|| = ||z||.

In contrast to the first example, the second one shows that even a very ill-conditioned matrix
may have robust solution components. It is a generalisation of the example presented in Section 1.1.
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Example 2 Consider a 4 x4 orthogonal matriz A= (a1 az a3 as) and define a one-parameter
family of matrices by

AM) = (a1 a2 a3 p=z(Aas+ad)).
We see that A(0) = A, a well-conditioned matriz, and that A(co) is a singular matriz. For all ),
[JA(AD)|| £ 2. When X < oo, the inverse is given by

af

A= %
| af -l |

1+ X2a]
from which we can compute

cos aj = ||ay|| cos ay = cos @z = [|az]|cosaz =1
cos a3 = ||as|| cos(az) = cos ag = ||ay|| cos(as) = -\71_1'_7
Thus as A — oo the matriz A()\) becomes increasingly singular. Its condition number behaves like

O(}). Note that the matriz A(}) is column equlibrated, so the ill-conditioning is a result of small
angles rather than short columns.

Consider a linear system A(M)z(\) = b, where the right-hand side is independent of X and can
be represenied as b = mya; + Tay + T3a3 + T4a4. Then

T3 — /\14

cos B = n cos By = T2 cos B3 = cos B =4
BTN TN T BIVIT R =Tl

The solution vector is given by
zAN) =(nn 7 m—AIrg VI+ Ay )T

The values of z1 and z3 are independent of A, and so are ||a;|| cosa; and cos B; for j = 1,2. So the
sensitivity of the components z; and z, depends solely on their size relative to z. If, for instance,
|z1] > |z;| for i # 1 then Corollary 1 says that the error in z, is not amplified — independent of the
values of A and the condition number of A()).

3.3 Condition Numbers and Column Scaling

For a linear system Az = b with full-rank coefficient matrix A and non-zero right-hand side b,
Corollary 1 presents two different expressions for the component-wise relative error in the computed
solution Z: suppose Z # 0 satisfies (A + F)z = b+ f, and

& = 1Kl 4= _lIF=||
Tiall” [ZUNIE
then
Ty — T 1 —
P ~blcos B (IFZ|| cos i — || f]| cos ¥y,4]
1zl el
= == l4||lInll lea COSYPp; — ———€3 COS Y
z 4l AL °° ¥+
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Sections 2.2 and 3.1 explain that under certain circumstances the factor “-AJ”—H—“ causes the sensi-
tivity of large solution components to right-hand side perturbations to be independent of matrix
conditioning. We now ignore TZLHE_[ because it does not affect the sensitivity of the solution to
perturbations in the mairiz.

The term ||A[| ||=:]| = [|4]| |leF At|| < ||A|| ||At|| represents a condition number ‘restricted to’ z;.
Already in 1970 van der Sluis [25, 26] realised the need to distinguish the conditioning of individual
components of z and the fact that the conditioning depends on the relative size of a component. He
introduces the notion of ‘ith column condition number of A’, ||A~!||||a;||, and derives the similar
looking norm-wise relative error bound (here f=0)

llz ==l _ 1Fl —
A7 |las
uzn < g 2147 Wl

He also acknowledges the importance of angles on the conditioning of the matrix: if each column
is well separated from the space spanned by the other columns then the solution components are
likely to be insensitive to perturbations, page 251 in [26].

According to van der Sluis’s bounds one naturally concludes that column equilibrated matrices
(all of whose columns have identical norm) should give rise to solution components with identical

sensitivity to perturbations. Yet, the amplification factor W in the first expression for the

component-wise relative error is independent of column scaling. So essentially the conclusions of
Section 2.5 remain valid when, in addition to the right-hand side, the matrix is also perturbed: the
component-wise relative error decreases under column scaling only if column scaling manages to
reduce the perturbation ||FZ|| cos¥r; — ||f]| cos ;. Note that we could have also expressed the
error as

T;— x5 1 ”F.’E“
= - cosp; — €pcos sl ,
Z,‘ coS ﬁi [ ”b” ¢F,t b !bj,;

in which case the amplification factors for the relative perturbations ||Fz||/||b|| and €5 remain invari-
ant under column scaling. However, when f = 0 we know from Theorem 7 that

IF=] _ flo~ Azl _ [1A] 2],
161l 1L T “
where ||| ||Z||/]|b]| can be as large as k(A). This means that the perturbation ||FZ||/||b|| may be
proportional to the condition number of the matrix. Finally, Lemma 1 of Appendix 2 states that

the amplification factors for the error (#; — z;)/z; remain invariant under column scaling when
perturbations are restricted to column ¢ of the matrix.

Although the amplification factors in the second expression for the error above do change under
column scaling, they have the advantage of representing easily computable a posteriori error esti-
mates: we show in Section 6 how to estimate ||A||||r;|| efficiently with available condition number
estimators.

Due to the deliberations in this and the previous sections we feel justified in introducing a new
set of condition numbers.

Definition 1 Let Az = b be a linear system with n x m matriz A of rank m and b # 0, and let
Z # 0 be the computed solution. Denote by rT = el Al the ith row of the left-inverse of A and by f;
the angle between b and r;, 1 < i< m.

The quantities

1Ez .

]’ ALl 1<i<m,
1
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are called ‘component-wise condition numbers for the linear system Az = b’. We also refer to them
as ‘condition numbers for z;’.

The validity of this definition is also justified by earlier work of Stewart [21], page T2, who
introduces the ‘collinearity indices’ &; = ||a;|| ||ri||. The squares of the collinearity indices are known
as ‘variance inflation factors’ in statistics [21]. From Theorem 5 we see that x; = 1/cosa;. They
represent the scaling-invariant version of ||A|| ||r;]| and appear as amplification factors in the error
expressions of Appendix 2. The main difference between our and Stewart’s condition numbers is
that the collinearity indices are designed to reflect the linear dependence of the matrix columns,
while our component-wise condition numbers measure the conditioning of the linear system: matrix
plus right-hand side.

3.4 Conventional Error Bounds

As we did already in Section 2.3, we now relate our component-wise results to the conventional
norm-based upper bounds on relative errors.

Corollary 2 Given a n x m matriz A of rank m and b # 0 such that Az = b, as well as Z # 0 with
(A+F)z=b+f, let
_ A _ _lIF=]|

€4= .
~ el 1Az
Then

Iz — 2 I,
< T <“_‘A)[nAnu IR A]

where py; = ||ri|| cos s,/ max ||re]l, prs = ||ri|| cos ¢ri/ max ||rk||, and ¢;; and Yr; are the
respective angles between the ith row r; of At with f and Fz.

el 2]
f"“)ma" A2l 44 ~ [zl cA#+

Proof: Multiplying the last equation in Corollary 1 by z; and applying the infinity-norm gives

4] }

II_A—IMQ’ costhy; — €4 COSYF;
112 = 2lleo [ el 1 ] [ N ]
en <A e+ ) S 5O |amene e

12 = zlloo = [|Z]| max {IlAII Il

yielding the upper bound

The lower bound is obtained from Theorem 3

12 = 2llo _ el Jizl
=l 2 f’“"’““”‘ AN 45~ Yo <A#Fs |

The mixed-norm error is replaced by the two-norm error by means of the inequalities ||y]|lc <
lyll £ v/mllylleo for any m-vector y, Section 2.2.2 in [12]. m

We arrive at the same conclusion as in Section 2.3, where only perturbations in the right-hand
side were allowed. Without knowledge about cos Y, and cosy; the norm-based bounds are as
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tight as possible. In fact, under weaker conditions we have derived essentially the same upper bound
as the one commonly found in the literature for non-singular linear systems. In Section II1.2.3 in
[23], for instance, one finds that, subject to the condition ||A~1F|| < 1,

=z (4) _1IFl
el S Tos(@)pa AT PA=1gD

while Corollary 2 gives

Iz —=|| |E]
”z" < \/— (A)” ” (pA + fb) .

In this last, commonly used form the norm-based bound ignores any relationship between matrix
and right-hand side.

Chan and Foulser [7] intended to remedy this ignorance of the right-hand side by modifying the
bound as follows. Let

A=UzVT, where U= (u; ... u,), 01202>...20,>0,

be the SVD of a non-singular matrix A with singular values ¢; and right singular vectors u;. Accord-
ing to Theorem 1 in [7], if AZ = b+ f and P; is the orthogonal projection onto span {tup_x41, .. ., Un}

Iz — 2|l o on-tks1 (”Pkbll)_l
< €p.
ll=Il Tn il

Chan and Foulser [7] conclude that if, for some k, a large fraction of b lies in span {un—g41,...,Un}
and if 0,_k41 = 0, then z ‘is relatively insensitive to perturbatxons in b’. For instance, if b = u,
then P,b = b,

|z — =||
<e
ll=Il ’

and we conclude that z is insensitive to perturbations in b.

The interpretation of Theorem 1 given in [7] is valid if f represents the input error in the data b.
However we do not agree with the application of Theorem 1 in the case when f represents a backward
error chosen to satisfy AZ = b+ f. As we discussed in Section 3.1, f depends on the size of Z. From

Theorem 7 we know that F;, = —g-; is the perturbation of smallest two-norm and Frobenius
norm satisfying (A 4+ Fnin)Z = b, and that :

I —z; Allllz 1 Allllz
el ML L VA

When b = u, the common term ||A]|||Z||/||b]| is approximately o /0y, and the sensitivity of all
solution components is proportional to the condition number. A slightly different argument based
on the second statement in Theorem 7,

o WFminll _ 1
= Al T A

implies that for b = u, we have €, ~ k(A4)€min, and the ill-conditioning is merely hidden in the
perturbation €;. Consequently, all components of z are extremely sensitive to perturbations if A is
ill-conditioned, which disagrees with the interpretation by Chan and Foulser.
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3.5 Summary

The main results in this section are expressions for the component-wise errors in a linear system
of full column rank when perturbations are allowed in both the matrix and the right-hand side
(Corollary 1).

Suppose A is a matrix of full column rank and b # 0 such that Az = b. Let z # 0 satisfy
A+ F)z=b+f.If

TR I
18| Al 1=l
then the relative error in an individual component of Z can be expressed in two ways,
Z;—z; 1 _
= —_——[IF - X
z; IIbl[ cos B: [1Fz|| cos r; — || fIl cos ¥y,s]
1E] llall
= ——||A4ll|Irs R | hd | 1,
. 1Al I3l |€a cos ¥ AT < by,

where ,.;1‘ is the ith row of the pseudo-inverse At, §; is the angle between b and r;, and Yr,i and ¥y ;
are error angles.

In the first expression, the amplification factors ]m]clo—sﬁf are invariant under column scaling.

Hence the component-wise relative error decreases under column scaling only if column scaling
manages to reduce the size of the perturbations.

In the second expression, the perturbations are amplified by two terms: ||Z||/z; represents the
relative magnitude of z;, and ||A|| ||ri|| represents the dependence of the ith column of A on all other
columns. Hence the component-wise relative error tends to be large for those components x; whose
size is small in comparison to ||Z||, or whose associated column is short in length or nearly linearly
dependent on the other columns.

Theorem 7 demonstrates that any Z # 0 can be viewed as the solution to a linear system whose
perturbations affect only the matrix and leave the right-hand side clean. Hence the amplification
factor for each z; is at least ||A||||r;]|. According to Theorem 3 there always exists a component z}
for whom || A[| ||r&|| is on the order of k(A). Thus any linear system contains a solution component
whose sensitivity to relative perturbations is proportional to the condition number of the matrix.

The quantities

] ,
ey 4l leTAY, 1<i<m,
3

are called component-wise condition numbers for the linear system Az =b.

4 Perturbation Results for Least Squares Problems

We saw in Section 2.1 that, provided the matrix has full column rank, perturbations in the right-hand
side have the same effect for both linear systems and least squares problems. However this is not
true for perturbations in the matrix. A perturbation F in a linear system (A+ F)Z = b represents a
‘linear disturbance’, and it does not interact with the right-hand side. In contrast, a perturbation F
in a least squares problem miny ||(4 + F)y — b|| represents a ‘quadratic disturbance’, because the
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perturbed problem is equivalent to the linear system (A+F)T(A+F)z = (A+F)Tb. In addition, the
perturbation F causes a second quadratic disturbance if the right-hand side is perturbed separately.

As in Section 3 we derive expressions for component-wise errors in a least squares problem when
both matrix and right-hand side are perturbed. There exists a component of the solution vector
whose sensitvity equals at least the product of condition number and tan#, where 8 is the angle
between the right-hand side and the column space of the matrix; the sensitivity can be as high as
the product of tan § and the square of the condition number. Least squares problems are therefore
always more sensitive to ill-conditioning than linear systems.

Finally, from the expressions for the component-wise errors we derive an upper bound on the
norm-based error that is essentially equal to the first-order term in the conventional bound.

The perturbation results in this section can be applied to the computation of the left-inverse by
expressing it as the solution X = A' to the least squares problem miny ||AY — I||, and computing
one column of X at a time. Norm-based perturbation results for pseudo-inverses can be found, for
instance, in Section III of [23].

4.1 Component-Wise Errors

Now we consider perturbations in the coefficient matrix of a full-rank least squares problem min,, ||Ay — b||.
The following theorem shows that the component-wise errors in a least squares problem consist of
the errors in a linear system, plus a further term.

Theorem 8 Given a matriz A of full column rank, let z # 0 solve miny ||Ay — b|| and let  # 0
solve miny ||(A+ F)y — (b+ /)|

Let '
T=eTAl,  F=df(ATA)™Y,  F=b+f—(A+F)3#0,

then

= _ . _ IFZllcostpp; — |Ifllcostpyi  ||1FTF|| coswy,
1 = &y — + 2 2 ’
||as|| cos a; |lai||? cos? a;

where Yp; is the angle between FZ and r;, Py, 1s the angle between f and r;, w; is the angle between
r; and 7, and wy; is the angle between FTF and g;.

T
Ifz; #0 and eqr = IIAFI rlr' then

it ke S Il COS w;
T T
Il Jel
Lt i B g ag? e cosos

where

| |z

Fz||cosYpi — || fl| cos ¥y ,i] = —=— ||A|| l|mil] |€a cos v — €} COS Yy ;
”b” COSﬂ, [” “ i ” ” ! i] " ” " 3” A Fi = ”A” ” “ f

is the component-wise relative error in a linear system solution from Corollary 1.
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Proof: The vector z solves miny ||Ay — b|| if and only if

I A ry_ (b
AT 0 J\z)~\0)’

where r = b — Az, and the inverse of the coefficient matrix equals

I A\™'_ [I-4AAt (ahT

AT o - At —(ATA) )
Moreover the vector Z solves
I A+ F Ty _[(b+f . I A _(b\_[(Fz-f
A+F)T 0 z)=\Lo )0 ° AT o0)\z)~ \o FTs |-

We can now apply Theorem 2 to the above system, whose right-hand side perturbation equals
- (Fz r. ‘f) If ¢F = T (AT A)~! then

13

FTf

Zi=z;—rT(FE—f)—rFi=2; — T (Fz - f) + ¢ FTF

because FT# = —AT#. Expressing the inner products in terms of cosines and norms gives
s = o IFzlcosyr;— |Ifllcospy; _ |l7l|cosws
! ) las]| cos a; |lai]] cos a;
_ IIFZ|| cos ¢r,i — || f]] cos ¥y,

+ llgsll 1F 77| coswqs,

! llai]| cos a;

where ¥, is the angle between r; and F'Z, 1;; is the angle between r; and f, w; is the angle between
r; and 7, and w,; is the angle between ¢; and FTF.

The second expression for the relative error follows from

”‘1:‘” ”FTF” - ﬂ?ﬂ "q'“ ”A”2 ”F” ”FTF“ .
zi z; Al Izl 14T 117

The above theorem contains as special cases the perturbation results derived before. If Z happens
to solve the linear system (A + F)Z = b+ f then ¥ = 0, and, as the first expression for the relative
error shows, the errors reduce to those in a linear system from Corollary 1. If F happens to be zero
then AT# = 0, so cosw; = 0 and the errors reduce to those due to pure right-hand side perturbations
from Theorem 2.

Theorem 8 provides two expressions for the component-wise relative error, they differ in the form
of the additional term due to the least squares nature of the problem. We will now examine them
in turn.

The perturbation in the first expression for the relative error in Theorem 8 is cosw;. As argued
above, cosw; is zero whenever F is zero. The perturbation is amplified by 1 / cos B;, which indicates
how linearly dependent b is on the space span;4;{ax}. The term ||7]|/||3]; is independent of 7, hence
present in the relative error of each solution component. If § is the angle between b and R(A) then we
show in Section 4.3 that H =sinf < 1, where r = b — Az is the exact residual. Thus, if ||7]| = ||7||
then [|7]|/||8]| controls the influence on the relative error from the additional term due to the least
squares problem. This term has a greater influence on the error when the distance of b to R(A) is
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large: R(A) = R((A")T) by Theorem 5, so if b is almost orthogonal to r7 = e7 At then cos §; ~ 0
and 1/ cosB; is very large. The advantage of the first expression for the component-wise relative
error in Theorem 8 is the invariance of its amplification factor under column scaling. However it
seems to be difficult to get a handle on cosw;.

That is the reason why Theorem 8 contains an alternative expression for the component-wise
relative error. Although individual factors in the alternative expression change under column scaling,
we find them easier to interpret. The relative perturbation €4, coswgy; in the least squares term is
amplified by three factors. The first factor represents, as in the error for linear system solution, the
size of the component z; relative to ||Z||. The second factor ||g;|| ||A||? has the bounds

({1142 < gl AN = llef (AT AT HIAIP < IATA) AP = £*(4),

where we have made use of the inequality ||g;]] > ||r]|? from Corollary 6 in the Appendix and the
fact that || AT A|| = ||4||>. From Theorem 3 we know that there exists a row r; of A" whose norm
approximates A' to a factor of \/m. Hence there exists at least one component z; for which

1
2s 2 .204).
lgell 141 > —x*(4)

The third factor multiplying the relative perturbation, n:ﬂ%n, describes the relationship between
matrix and right-hand side. It will be examined by considering instead the exact quantity ﬂlhr'H;ﬂ'
A few paragraphs ago we introduced the angle 6 between b and R(A), so

Il

— =siné,

l1ell

This implies the equality
el _ Azl
lAltli=l - A=l
Since ||z|| = [|AT Az|| < ||Af|| [|Az|| we get the bounds

1 lIr[l
——tanfd < ——— < tané.
K(A) ~ All=ll =

Combining all the bounds for the exact quantities shows that for some z;

1 lirll 2

—k(A)tan 0 < = [laell 1 4]1% < £°(4) tand.
m 1Al 1=l

Consequently, whenever ||7|| ~ ||| and ||Z|| = ||z||, there exists a solution component whose sen-

sitivity equals at least the product of condition number and tan#, and it may be as high as the

product of tan# and squared condition number.

Given a computed solution Z to a linear system, Theorem 7 shows how to construct minimal-size
perturbations F', and gives expressions for the corresponding component-wise relative errors. In
the case of least squares problems, unfortunately, we do not know how to construct minimal-size
perturbations for a given computed solution Z. Therefore the analogue of Theorem 7 for least squares
problems below is not nearly as strong. When the exact residual r = b — Az = 0 the expression
below equals the one in Theorem 7.

Theorem 9 Given a matriz A of full column rank, let z # 0 solve miny ||Ay — b||. Denote the
computed solution by T # 0, the ezact residual by r = b — Az, and the ‘computable residual’ by
re = b— AZ.
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Ifz; # 0 then
T s 212
B-n__ 1 VI,
z; cos f3; 18]l

where v; is the angle between r. — r and the ith row r; of Al.

Proof: According to Theorem III.5.5 in [23], the computed solution Z solves the least squares problem
miny ||(A + Fo)y — b||, where
(re — r):ET
Tz
When » = 0 then Fy equals F,;, from Theorem 7.

Fy =

We want to substitute Fy into the second expression for the component-wise relative error in
Theorem 8. To this end, note that by construction of Fy, FoZ = r. — r. Moreover, FY 7 = 0 because

F=b—(A+Fo)z=r.— Foz =,
and
0=(A+Fo)'r=ATr+ FJ7=FIF
due to ATr = 0 and the first part of the proof of Theorem 8.
Theorem 8 gives therefore
Zi—zi _ 1 |lre—rl
zi cos Bi  [|bll

where ¢; is the angle between r;. At last, ||[r.—7||2 = ||rc||2—||r||? as rTr. = rT(A(z—2)+7) = |7
|

We can now define the set of condition numbers for least squares problems, it contains the set
of condition numbers for linear systems.

Definition 2 Let z # 0 solve the least squares problem miny ||Ay — b|| with n x m matriz A of
rank m. Let T # 0 be the computed solution with residual ¥ # 0. If ¢; = e] (ATA)™! and r] = eT At
then the quantities

|z T .
B e, A A, 1<i<m,
=i VE

are called component-wise condition numbers for the least squares problem min, ||Ay — b||. We also
refer to them as condition numbers for z;.

4.2 Example and Conventional Error Bounds

We now modify Example 2 for linear systems to illustrate that a least squares problems with a very
ill-conditioned matrix may have extremely insensitive solution components.

Example 3 Consider a 4 x4 orthogonal matriz A= (a1 az a3 a4) and define a one-parameter
family of rectangular matrices by

AN = (a2 a3 F=p(Aaz+ag)).
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We see that A(0) is a perfectly conditioned matriz, and that A(co) has two linearly dependent
columns. When X < oo, the left-inverse is given by

rT al
[A()\)]'r = r%' =| o 2z\aT
- 2 - - 4 ’
r¥ V1+A2qT

[Irll =1, lIr2ll = lIrs]l = V1 + A2

from which we can compute

and
1 0 0\ /T 1 0 0
[ANTAN]) ' =[0 1 s =(L)=|0 142 aIFR
0 7117, 1 qF 0 =MWT+22 1422
with

laall =1, llg=ll = llgsll = V(1 + A2)(1 + 222).

Thus as A — oo the matriz AT(A)A()) becomes increasingly singular, and its condition number

behaves like O(A?).

Consider a least squares problem miny ||A(X)z()) — b||, where the right-hand side is independent
of A and can be represented as b = T1a; + T2a2 + T3as + T4a4. Solution vector and residual are given
by

N =(m -y VI+tXn)', r=mna.

The value of z; is independent of A, and so are ||r1]|, ||q1|| and cos By = 72/||b||. Hence the sensitivity
of z1 depends solely on its size relative to x, and the distance ||r||/||b]| = |71|/||b]| of b to the column
space of A. If, for instance, |z1| > |zi| and |11| < |5 for i # 1 then Theorem 8 says that the error
in z, is not amplified — independent of the values of A and the condition number of A(\)T A(D).

At last we derive a norm-wise upper bound from the second expression for the component-wise
error in Theorem 8, which turns out to be almost identical to the well-known first-order bound.

Corollary 3 Given a matriz A of full column rank, let z # 0 solve min, ||Ay — b|| and let Z # 0
solve miny ||(A + F)y — (b+ f)||. Suppose r=b—Az #0andF=b+ f—(A+ F)Z #0.

Ifmax {J, 1} < € then

2= ellos [0 (U1 U3 . I 7l
=l s [(A)(IIAllllrll+lll) Il 2<A)nAnuxu]

where

I~
——tanf < — | < tan#
x(4) = 14l =l =

and 0 is the angle between b and R(A).

Proof: Multiplying the second expression for the relative error in Theorem 8 by z; gives

_ _ b I )
o=zl =||x||m.ax{|A lIrsll [ea cos s — el ¢]+— il 1 4l[2ea,r cos gy b,
°° 2 4l T ANTNEL @ Y| F ey Nl 1Al ear coswy,s
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where

S N - |
11l JAT=l” 4" = AT

are all bounded above by ¢. The proof follows from these inequalities and dividing by ||z||. The
upper and lower bounds on riri—r were derived in Section 4.1. m

The upper bound on the norm-wise error from Corollary 3 resembles very much the first-order
bound on page 229 in [12], where, subject to the condition that € < x(A4),

'—'—z_—z” [ (4) (IIAIII Illl T +1) +n2(A)tan0] + 0(€?).

If one refrains from replacing WH—H by its upper bound tan§ then the norm-based conventional
bounds are essentially tight. Unfortunately the justification is not as strong as that for linear systems
because we do not have clean lower bounds on the norm-based error. In related work, Van der Sluis
[27] has shown that for any least squares problem there exist perturbations that render the upper
bound on the norm-based error proportional to the square of the condition number.

4.3 The Residual

In this section we briefly examine the error in individual components of the residual r = b— Az. To
this end denote by P = AAt = A(AT A)~! AT the orthogonal projector on the column space R(A)
of A, and by Pt = I — P the orthogonal projector on the orthogonal complement of R(A). Hence,
if r = b — Az is the residual of the least squares problem miny ||Ay — b|| with solution z, we can
write r = PLb.

Remember that the residual of the computed solution Z is represented by 7 = (A+ F)z — (b+ f)
and that it is different from the ‘computable residual’ b — AZ.

Theorem 10 Given a matriz A of full column rank, let z # 0 solve miny ||Ay — b|| so that r =
b— Az #0, and let Z solve miny ||(A+ F)y— (b+ f)|| so that F =b+ f — (A + F)z # 0.

2] zZ
= Ale;, p; = Pe;, pf‘:P'Le,-, r= ( ) s r= I
Zn Zn

Z = zi— |l (IF2| cos ¢ri — ||f]| cos ¢1,4) + llpill I7]] cos vs
=z — Il (I1F 2|l cos ¢r,i — 11| cos b1,:) — llwill || FTF|| cos v,

where @F; is the angle between FZ and p}, ¢;; is the angle between f and pi, v; is the angle
between p; and 7, and v, ; is the angle between FT7 and w;.

Let

then

Let r-
A1 _IFz|| _ _IE77

€ = = €Ar = TomTTo
llell” EEN T AT
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If z; # 0 and +; is the angle between p} and b then

Z— 2 1 _ [pil| _
= —||Fz|| cos dF; + cos @t i + ———— ||7|| cosy;
P [15[T cos 7: [ & cos gri + 1l cos b5 + =y Il cos s
T A b
L0 [t |{‘ L (eacosérs = Al o cos 7, = a4l cos v

Proof: The proof proceeds in a manner similar to that of Theorem 8. From the proof of Theorem 8

T (OO (e @1,

which implies
(& )(2)=()-(F) = (

F=r—PLY(Fz - f) - (ANTFTF.

8 W

Note also that ]Ip;L”2 = 1 — ||pi||?>, due to the symmetry and idempotence of the orthogonal
projectors P and P+ = I — P, Section 2.6.1 in [12]. m

We start by examining the first expression for the relative error in Theorem 10. The first
amplification factor contains the angle v; between b and R+ (4). If b is close to R(A) then all v; are
large and cos9; are small. Hence, a large 1/ cosv; signals a small component z; of the residual 7.

As already mentioned in Section 4.1, the factor ||7]|/||b|| approximates ||r||/||b|| = sin 6, where 6
is the angle between b and R(A). For the sake of completeness we briefly derive this well-known
relation. On one hand, the properties of orthogonal projectors imply that

lirll* = 116 — Az||> = ||(Z = P)bI|* = ||o]|® - | Pb||?,

2
I i (L2
llell 1L
On the other hand, the definition of an angle between two subspaces, Section 12.4.3 in [12], implies
that the angle 6 between b and R(A) satisfies

and thus

T Pz (Pb)TPz
cos f = max
=20 B IP=]l ~ =0 I 1P=]]

Substituing b for z and using the Cauchy-Schwartz inequality leads to the bounds

1P _ IIPHE _  (PBTP: _ \Pb|[IP=] _ [IPY]
el = HellllPell = =0 [lell1|P2I] = MBIl lIP=ll — (1Bl
and cos 8 = ||Pb||/||b||- Finally,
el _ 1 — cos?§ =sin 6.

[ .

Therefore, ||7]|/||8]| can be expected to be large when b is far away from the column space of A.
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As for the third amplification factor, an analogous derivation shows that ||p;|| = cos 7;, where 7;
is the angle between e; and R(A4), so

_lpll _cosm

= cot 7;.
1-[[m[? ~ sinm

Hence, when e; is close to R(A) then the angle 7; is small, and cot7; is largé. Like the first
amplification factor this one also signals a small z;.

Now we consider the second expression for the relative error in Theorem 10. The first amplifi-
cation factor ||7]|/2; represents the magnitude of z; with regard to the whole vector r, which means
that small components of r tend to be more sensitive to perturbations than large components.

Furthermore, we know that there always exists a row wf of Al for which [Jwi|| > 7—]|A7|| and

[lwil] ||A]] > V—IC(A) Hence there always exists a component of the residual whose sensitivity to
perturbations is proportional to the condition number of A. This also shows up in the remaining

amplification factor for particular right-hand side vectors. There always exists a column pJ' for

which N N
L 11 S s O O

i Il_fl Va bl S VA [l VAl

o} “HAII lell o L el ANl _ 1 fAlll=l
I =AMl el vm el
As demonstrated in Section 3.1, if b is close to a singular direction of A associated with a small
vector then the factor ||Al| ||z||/||]| is close to the condition number x(A4).

[P =

Therefore,

We conclude that at least one component of the residual in a full-rank least squares has a
sensitivity proportional to the condition number of the matrix. Note that it is now the columns
of Al that determine the sensitivity of the error rather than the rows.

From the expressions in Theorem 10 one can derive an upper bound on the norm-wise relative
error in the residual.

Corollary 4 Given a matriz A of full column rank, let z # 0 solve miny ||Ay — b|| such that r =
b— Az #0, and let Z solve miny ||(A+ F)y— (b+ f)|| such that 7 =b+ f — (A+ F)z # 0.

Ifmax{#%l,%lll} < € then

7= rllso [y puy IAIIEL . lE] Ty P NI
s [”P =8 O T * (A)ubn]< [(A)(I u*su)“]

The second upper bound is almost identical to the first-order bound (5.3.9) in [12]

”FTZI—I,;LI < €(26(A) + 1) min {1, m — n} + O(€?).

The term min {m — n,1} accounts for the possibility m = n where, since A has full rank, » = 0 and
PL=o.
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4.4 Summary

In this section we have shown that the errors in individual components of a full-rank least squares
problem miny ||Ay — b||, when perturbationa are allowed in the matrix and right-hand side, consist of
the linear system errors plus a term whose influence depends on the relation between the right-hand
side vector and the column space of the matrix (Theorem 8).

Given a matrix A of full column rank, let z # 0 solve miny ||Ay —b|| and let £ # 0 solve
miny ||(A+ F)y — (b+ f)||. Furthermore, let # = b+ f — (A + F)z # 0 and ¢; be the ith row
of (AT A)=1. If z; # 0 the component-wise relative error can be expressed as

Zi —zi =l _ 7l

=L —— — . A 2 .
g + z; ”A””.’Z‘“ ”q:“ “ ” €Ar coswq,,,

. . . . . FTH
where L is the component-wise relative error for linear system solution, € Ar = HJA"'H'HIA"H’ and wy;
represents an error angle.

There exists at least one component z; of the solution vector for whom

1 1Kl 2 2
k(A)tand < ae]| ||All° < k°(A) tané,

where 0 is the angle between b and R(A). If ||7]| = ||r|| and ||Z|| = ||z|| then these bounds are also
valid for the term lHr [lill 14]12. :

The quantities

z : i -
H 1Al leE" A, ”—J:”%HHAIPIIJ(ATA) N, 1<i<m,

are called component-wise condition numbers for the least squares problem min, ||Ay — b||.

The expressions for the component-wise error in the residual demonstrate that there exists at
least one component of the residual whose sensitivity is proportional to the condition number of the
matrix (Theorem 10).

As in the case of linear system solution, we use the expressions for the component-wise errors
to derive the conventional norm-based error bounds for the solution and the residual. We conclude

that the conventional bounds are essentially as tight as possible but our justification is not as strong
as for linear systems.

5 Underdetermined Linear Systems

In this section we discuss the solution of linear systems Az = b when A is a n x m matrix, n < m,
whose rank is m. Since this system may have infinitely many solutions, we want to compute the
solution of minimal norm.

5.1 Minimal-Norm Solution

Any solution z of Az = b can be uniquely represented as the sum of its constituents in the nullspace
and row space of A, z = zK + z® with 2% € R(AT) and zX € Ker(4). If At = AT(AAT)~! is the
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right-inverse of A then A'A is the orthogonal projector onto the row space of A, Section 5.5.4 in
[12], and z® = At Az.

Note that the component z® in the rowspace is the same for all z. For suppose that were not
the case, then there would exist £ and y with

Az=b, Ay=b, z=zR+4+2K y=yR4yK, yR+#2R
and z®, y® € R(AT). These conditions imply that
0=A(z —y) = A@@® — y®) + A(=¥ — y¥) = A(zF - oF).

Hence z® — yF is in both R(AT) and Ker(4). But this is only possible if % — y® = 0 due to the
orthogonality of the spaces R(AT) and Ker(A), Section 2.6.2 in [12]. So z® must be unique.

Since z® is already in the row space of A, an orthogonal projection onto the row space leaves

z® unchanged, z® = At Az = A'b, and z = zX + Ats. According to the orthogonality of Ker(A)
and R(AT), ||lz||> = ||z¥||? + ||=®||?, which is minimised for zK = 0. Therefore zF = Atb is the
minimal-norm solution to the linear system Az = b.

5.2 ‘Duality’

In the previous section we established that the minimal-norm solution z® to a linear system Az = b
of full row rank must lie in the rowspace of A, so there is a vector y such that ® = —ATy. Hence
zF satisfies

R4+ ATy =0, Az® =,

In other words, zF is part of the solution to the non-singular linear system
I AT R\ _ (0
A 0 y /) \b/)"

Now remember that the solution z to the least squares problem miny || Ay — b|| of full column
rank satisfies
r+Az¢=b, ATr=0.

In other words, z€ is part of the solution to the non-singular linear system
I A r\_ (b
AT 0 z¢€ )~ \o/)"

Therefore the solution of the full row-rank linear system and the solution of the full column-
rank least squares problems constitute ‘dual’ problems: the norms of r and = are minimised, so r
corresponds to z® while z€ corresponds to v.

Thus a sensitivity analysis of the component-wise errors for the underdetermined system yields

results similar to those of Chapter 3 for the least squares problem, and we will only give a brief
sketch here. The exact solution z® and the computed solution Z®, satisfy the linear systems

(4 9)(7)=0) i “87)(F)=(2)):
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Hence ’
R\ _ (zR I-AtA At FTy
) \y/) \ AT —4T) )\ Fzh-f
R = 2R _ pLrTy_ AY(FzR - §).

Like the residual r in the least squares problem, the sensitivity of the components of z% depends on
the rows of the projector PL; and like the solution z€ in the least squares problem, the sensitivity
of zR is also governed by the rows of Af.

and

The perturbation results can be applied to the computation of the right-inverse by expressing it
as the minimal-norm solution to the linear system AX = I, where I is the n x n identity matrix.

6 Computation and Estimation of Component-Wise Con-
dition Numbers "

In this section we discuss how to compute and to estimate the component-wise condition numbers
for linear systems and least squares problems, defined, respectively, in Sections 2.5 and 4.1.

Let z # 0 be the solution to the least squares problem min, ||Ay — b|| with n x m matrix A
of rank m. If Z # 0 is the computed solution with residual # # 0 then component-wise condition
numbers are

lzl [L] ,
ERR L a4 el 1<i<m,

where
T = e,TAt, q:-r = e,T(ATA)'l.

The condition numbers for a linear system form a subset of those for a least squares problem.

Numerical issues in the computation of the ||r;||, due to the potential ill-conditioning of A,
are addressed in [20], and in the context of statistical errors in [21]. Now let us consider the
computational requirements.

The matrix two-norm ||A|| can be bounded by the one-norm ||A[|; = max;<i<m ||a;|| via, Sec-
tion 2.3.2 in [12],

1
Zall4ll < f141l < Vm||Allx.

The computation of the m vector norms ||a;|| for ||A||; requires a total of O(mn) operations. The
relative sizes ||Z||/|z;| can be estimated a posteriori from the computed solution Z in O(m) operations.

The term '-" 77 can be estimated a posteriori from the computed residual r. = b — A% in O(mn)
operations. This leaves the computation of the ||r;|| and ||gi]|.

If a factorisation of A is available then upper bounds on the ||r;|| can be determined in O(n?)
operations, as shown in Section 6, and an estimate of the ||g;|| can be obtained by making use of the
inequality ||g;|| > ||r;||? from Corollary 6 in Appendix 1.

In the following sections we discuss how to compute the ||r;|| from the QR decomposition of A,

how to compute them in the special case where A is bi- or tridiagonal, and how to estimate them
from a decomposition of A.
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To sum up, if A~? or a factorisation of A is available then the component-wise condition numbers
can be computed or estimated with a total of O(n?) operations.

6.1 Computation of Condition Numbers from the QR Decomposition

1=a(5)

be the QR decomposition of A, where @ is a n x n orthogonal matrix, and R is a m x m non-singular
upper triangular matrix. To compute ||r;|| and ||g;]| it is sufficient to work with R instead of A, as
we will now show.

Let

We have
o = (ATA) = RTIRT = o] RT,

where v; = R~Te;. This means, once v; has been computed, ¢; can be determined from v; by solving
the triangular system Rg; = v; in O(m?) operations. As At = (AT A)~1 AT we get

_ = ¢} AT_ TR-TAT_(vT O)QT

so ||ri]| can be determmed dlrectly from v; via ||ri|| = ||vi||. Hence, ||g;|| and ||r;]| can be obtamed
from the ith row v7 of R~1.

In order to accomplish this efficiently we first consider the case i = m. The upper triangular
structure of R implies that v,, = R~ Te,, = -,l;em, where p is the element of R in position (m, m).
So ||rm|| can be determined from the bottom element of R via ||rm|| = 1/|p| - without inverting R.
Substituting vy, = %em in ¢, yields Rq,, = %em. Therefore, if a QR decomposition of A is available,
[Irm]| is available right away and the computation of ¢,, requires merely the solution of a m x m
triangular system.

This process can be carried out for all #, and is described in [20] for the computation of ||r;]|. After
choosing a permutation matrix P that moves column i of A to the last position, and performing a
QR factorisation of the permuted matrix AP, proceed as for i = m in order to obtain ||;]| and ||g||.
The proof of Corollary 6 in the Appendix establishes the correctness of this procedure. One does not
have to perform the QR factorisation from scratch for each permutation P. Gragg and Stewart [13]
show how to efficiently ‘update’ the QR factorisation from one permutation to the next in O(m?)
operations, see also Section 12.6 in [12].

The next section discusses the efficient computation of the ||r;|| for non-singular bidiagonal and
tridiagonal matrices.

6.2 Computation of Condition Numbers for Bi- and Tridiagonal Matrices

In [14] Higham gives algorithms for computing ||A~!||ec When A is bi- or tridiagonal. We modify
these algorithms to compute ||r;||, where rf = el A~1.

33



When
a11 ax2
azz az3

Qm-1,m
Gmm
is a m x m non-singular bidiagonal matrix, the elements o;; of its inverse are given by [14]
0 ifi>j
Qi = l/a.-,- ifi=j.
=i ip10iq,i/ai i<

These expressions and ||r]|? = 3772, a7 lead to the following modification of Algorithm 2.1 in [14]

for the computation of all ||r;]|?,

1 1+ a2y llrisall? .
llrmll* = = nl*= "':;‘ T, m-1>i>1.
mm 33

This algorithm requires a total of 5m operations. It incurs no round-off error from cancellation
because all quantities involved are non-negative.

When A is a m x m tridiagonal matrix we modify Algorithm 4.2 in [14] to compute the two-norm
of the columns of A~7. Assume that

ay;y aiz
azy aszz a3
A= aszz dass
Qm-1,m
Gm,m-1 Gmm

be irreducible, that is, a;;4+1 and a;41,; are non-zero. Otherwise one can either introduce small
perturbations to make all a;;41 and a@;4;; non-zero, or one can treat A as a block tridiagonal
matrix with diagonal blocks that are irreducible tridiagonal [14].

The inverse of a tridiagonal irreducible matrix AT can be represented by means of two vectors y
and z as [5, 14, 29]
-7y, _ ) Yizip; ifi<y
(A7 = {ziyjpj ifi>j’
where

T

Cins s . _

n=1 pn=]] ( ’““’) =ptd 1 <i<m-1.
o1 \ g+ @i i+l

The products p; can be computed recursively in 2m operations. To illustrate the computation of y
and z we write out in full the representation of A~T,

V121 Y122 Y173 ... YiZm 1
Y122 Y222 Y223 ... Y2Zm P2
AT —| Y123 Y223 Y323 ... ¥Y3Zm P3
Yi2m Y22m Y32m ... YmZm Dm
This implies A~Te; = y1z and A~ Te,, = z,, Pmy. Set y = 1. Since AT is tridiagonal, one can solve
for ys, ..., ym from equations 1,...,m — 1 of ATy = (2mPm)~'em; and use equation m to solve
for zy,. Then use ATz = ¢; to solve for zpm_1,...,2.
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Since column i of A~T equals
T _ . . o .
ri =pi(Nzi Y224 .. Yo% Y% YiZipl ... YiZm),

we have lImil|? = p?(2? Z;-=l UHE ST D zf) All ||r;]]? can now be computed in a total of O(m)
operations by accumulating the two sets of partial sums

s;:yf, si=si-—1+yi2) 2<i<m,
and
tm = 22, ti=tig1 + 22, m-1>i>1,

and then combining them into

Inill® = pi(zdsi + 4ftis1),  1<i<m

When A is a Hessenberg matrix one can probably use the expressions for A~! in [5] to compute
[Ir:]|? in a fashion similar to that for tridiagonal matrices.

6.3 Estimation of Component-Wise Condition Numbers

When A is a mxm triangular matrix upper bounds for the ||r;|| can be computed in O(m?) operations
by making use of ideas from condition number estimators for triangular matrices [16], as we will now
show. An estimate of the ||¢;|| can be obtained from the inequality ||g;|| > ||r:||? from Corollary 6 in
Appendix 1.

Since A is triangular, (A~1);; = 1/ai; and 1/]ai| < |||l < ||7ill1. Instead of A, we will work
with its comparison matriz C(A) = (ci;) of A [3], which is defined as

= |a.-,-| ifi‘—‘j
VT el ifi# g

and satisfies the component-wise inequalities
CA)™20, |47 <O

because it is an M-matrix [28]. The first inequality implies that the ith element of C(4)~Te equals
IC(A)~Te;l|1, where e is the vector of all ones, while the second one implies lIrll < lImilly <

IC(A)~Te;||1. Hence all ||C(A)~Te;||; can be computed with a total of O(m?) operations by solving
the system C(A)Ty =e.

When A is a general, non-singular matrix, the ||r;|| may be estimated by applying the above
estimator to the LU factors of A. Let A = LU, where L is a lower triangular and U is an upper
triangular matrix. If C(L) and C(U) are the respective comparison matrices of L and U then

I <cw),  WwTl<e)™, AT <UL < cu)TieL) .

Thus, ||~]] < |Irlli < IC(L)~TC(U) Tes||1, where ||C(L)~TC(U)~Te;l|; is the ith element of
C(L)~TC(U)~Te and e is the vector of all ones.

Therefore, if the LU decomposition of the m x m matrix A is available, an upper bound on
the ||rs|| can be obtained by solving the two triangular systems C(L)Ty = e and C(U)Tz = y in
O(m?) operations. Of course, the same is true for the Cholesky decomposition 4 = LTL of a
symmetric positive-definite matrix A.
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7 Summary

Traditonally, the error in the computed solution Z of a system of linear equations Az = b has been
estimated from the norm of the relative error ||z — z||/||z]|-

Amomg the advantages of norm-based errors are straight-forward perturbation analyses as well
as clear, simple error bounds. For example,

||

1E]

represents an approximate upper bound on the norm of the error in Z, where ¢ is the size of the relative
perturbation in the data A and b, and the condition number (A, z) determines the sensitivity of
the solution z to perturbations in the data.

< k(A z)e

In the simplest case, when (A4, z) equals the two-norm condition number of the matrix A, the
error bound frequently turns out to be rather pessimistic. A more realistic condition number, such as
Skeel’s [19], is obtained by exploiting the structure in perturbations from error analyses of algorithms
for linear system solution, e.g. [2]. Still, as we illustrated in Section 1.1, the condition numbers are
prone to overestimating the error in individual components of Z.

As a consequence, we decided to pursue a perturbation analysis for individual components of the
solution z without making any assumptions about the perturbations. The resulting expressions for
the component-wise relative errors |z; — z;|/ |z;| are simple and easy to interpret.

The terms that multiply, and possibly amplify, the perturbations in the component-wise errors are
called component-wise condition numbers. Besides being amenable to nice geometric interpretations,
they are able to reveal the existence of solution components that are much better conditioned than
existing condition numbers would lead us to believe. Moreover, barring any restrictions on the
perturbations, we showed that there is always one component of z whose condition number is
proportional to K2(A).

We conclude that no norm-based relative error bound can ever predict the presence of well-
conditioned components in z, assuming no restrictions on the perturbations. Therefore, our component-

wise condition numbers are essential.

It would be interesting to examine how restrictions on the structure or distribution of perturba-
tions affect the component-wise condition numbers.
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8 Appendix 1: Expressions for Left-Inverses

We give ‘block’ expressions for the left-inverse of a matrix with full column rank, which involve
angles associated with columns of the matrix, and one can clearly see that each part of the left-
inverse has a geometrical interpretation. We used these expressions in Section 2.4 to justify our
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choice of measures of sensitivity in component-wise relative errors for the solution of linear systems
and least squares problems.

In order to explain the emergence of angles, we start off with some geometric interpretations.
Given a n x m matrix A = (a; ... am), n > m, with columns a; the matrix AT A contains
information about the angles m;; between individual columns a; and a;:

(AT A)i; = af a; = |laillllaj| cos myj,
see also [1], page 65.

In contrast, the inverse matrix (AT A)~! provides information about the angles associated with
an individual column and the subspace spanned by all other columns, as the next theorem shows.
Thus, while AT A contains ‘local’ information about columns, the inverse provides a more ‘global’
view,

Theorem 11 Let A= (a; A;) be a nxm matriz, n > m, of full column rank, where a; represents
the first column of A and A, the remaining columns. Let ¢ be the solution of the least squares
approzimation of a; by the columns of Ay, so

las]l = min|| A1y - asl,  —&1 = Are—ay,

where @, is the residual. Similarly, let dT be the least squares approzimation of the columns of A,
by ai,
|41l = myinllalyT - A4l - A =a,dT - Ay

Then — (aTay)~! 1 =T
(A7 4) =( ! (A{Al)-l) (—d I )

Proof: Verify that multiplication of the above expressions by AT A gives the identity.

These particular expressions for the inverse are based on the derivation of a formula for partial
correlation coefficients in [9]. If
X YT
“=(3 W)

is a symmetric positive-definite matrix then its inverse can be written as [8]

M-! = (X -YTw-1y)-! -X"'YW-YX-lyT)-!
T\ -WlY(X - YTw-ly)-! (W-vXx-1yT)-! ‘

Apply this formula to
T T A
ATa=( 0% % 1),
(A{al A{Al )
and use the fact [9] that the inverse of the (1,1) element of (AT A)~! equals
aiay — a] A1 (AT A1) ' AT a, = of (1 — A1(AT 4,)714AT) ay = T ay,

where I — A;(AT A1)~ AT is the orthogonal projector [12], page 75, onto R* (A1).
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Thus @, is the prOJectlon of a; onto the orthogonal complement R*(A;) of the column space
of A; in ®", while A; is the projection of A; onto the orthogonal complement ’R,l(al) of a; in R,

&1 = (I— Al(A{Al)_lA'{) a, fil = (I - al(ag’al)"laf) Al.

It is easy to show that by applying a permutation to the columns of A, the above theorem can
be made to distinguish column a; of A instead of column a;.

Theorem 12 With the notation of Theorem 11, the lefi-inverse (AT A)~1 AT of A can be written as

At = @Ayt = (G ).

Proéf: Multiply the expression in Theorem 11 by AT. m

One can clearly see that the first row of (AT A)~! AT is orthogonal to R(A;), while the remaining
rows are orthogonal to a;. Now we can express the elements of the left-inverse of A in terms of
angles associated with columns of A.

Corollary 5 The ith row r] of the left-inverse (AT A)=1AT of A has the same direction as the
residual in the least squares approzimation of a; by the remaining columns,

1 1 1
T _ T( AT g\-1 4T _ il = af
ri =e (ATA)TAT = aTa; * 7 |lai|| cos o ||| a5,

while its length is inversely proportional to that of the residual,

llasll = lla;|l cos @ =

1
lirll”

Because the ith row r; of the inverse is a multiple of the residual &;, its norm is a most natural
criterion for measuring how well the ith column of a matrix can be approximated by the other
columns. As mentioned in Section 2.4, Stewart already proved the relationship

1
&' —_— m' A' — K3 = —
” 3” yln” iy a'” “T‘,”

The following corollary is needed in the derivation of the component-wise error for least squares
problems in Section 4.1. It states that the length of a row in (A7 A)~! is greater than the square of
the length of the corresponding row in At (they are equal when A is non-singular).

Corollary 6 If A is a nxm matriz of rank m, rT = el At, and gF = el (AT A)~! then ||gi|| > ||7:]|%

Proof: Let
AP=Q ( g)
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be the QR decomposition of A with column permutations, where P is a m x m permutation matrix,
Q is a n X n orthogonal matrix, and R is a m x m non-singular upper triangular matrix. If e; = Pe;
then

¢f =ef(ATA)™ =] PT(ATA)'PPT =T RT'R"TPT = o] R™TPT,
where v; = R™Te;. As A = (AT A)~1 AT we get
rf =gl AT =] RTPTAT = (/] 0)Q".
Hence ||ri| = ||v; || and ||g:|| = [|R™ v;]-

For a fixed P consider the index i for which j = m. The upper triangular structure of R
implies that vm = R™Tem = Le,m, where p is the element of R in position (m,m). So ||rs|| = 1/|p].
Substituting vm = Zem in g; yields ¢; = PR™ vy, = 2PRep. Hence |gil| > 1/p% and [|gil] > |m:]|>.

In order to prove the corollary for all rows, choose a sequence of permutation matrices such that
ei=Pepforl<i<m. m

Remark 2 The angles o; associated with the columns of A are equal to the corresponding angles
associated with the rows of (AT A)~1AT.

To see why, recall that a; is the angle between a; and r;, where r; constitute the columns of B =
[(ATA)‘IAT]T, and AT is the right-inverse of B with rows af. Therefore the relevant angles are
those between r; and a;, which are just o;.

Appendix 2: More Perturbation Results

Here we derive perturbation results for linear systems that, unlike those in Section 3, do not contain
computed quantities in the error expressions. This is possible because the perturbations are expressed
differently.

Let Z be the computed solution of the linear system Az = b and the exact solution of (A+F)z = b.
In order to assess in more detail the effect of perturbations in the matrix on the component-wise
relative error, we distinguish two cases regarding perturbations in the matrix A: perturbations
confined to the column corresponding to z;, and perturbations of all columns except for the one
corresponding to z;.

Denote by a; and f; the respective columns of A and A + F,

A=(01 e Qi1 G G4 ...a,,.), F=(f1 f,‘_l f,' f.‘+1 fm)
We distinguish the ith columns ¢; and f; from the remaining columns by introducing
Ai=(01 e Qiel Gi41 ... am), Fi=(f1 ver fic1 fig1 ... fm)

As before, a; denotes the angle between a; and and its projection on span;c"#{ak}, while §; denotes
the angle between b and the projection of a; onto span;,"#,-{ak}. Due to the particular expres-
sions for the perturbations, the following results are formulated in terms of the projections é; of a;
onto span;c"#{ak}, rather than in terms of the rows r,-T of At. This represents only a small change,
as according to Corollary 5 in Appendix 1 ||a;|| = ||a;]| cos a; = 1/||r:]l.
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First consider the case when only column a; is perturbed, that is, F; = 0. In Section 6 of [21]
Stewart discusses this situation in the context of errors in regression variables. Due to his assump-
tions with regard to the statistical nature of the errors, it is difficult to compare his and our results.

The following lemma, whose proof appears at the end of this section, applies to both linear
systems and least squares problems. It shows that in case of linear systems the effect on z; of the
perturbation f; is making itself felt in terms of its size ||f;|| and in terms of its distance to the
space of the other columns. In some sense, the effect of f; is confined to column a; — although the
direction of f; itself is arbitrary. The reason is that the space spanned by the remaining columns has
dimension n — 1. So its orthogonal complement span;,'“#{ak} has dimension one. But both, a; and
fi, are projected into this one-dimensional space in order to make up Z;. Therefore, the effect of any
perturbation in the ith column is confined to the one-dimensional space spanf;#{ak}. Consequently,
unless a; + f; is zero, there is no question about the right-hand side b remaining in the column space
of A, so cos f5; does not enter the relative error for Z;.

In the case of least squares problems, the effect of f; still remains confined to column a; but now
the relation between perturbation and right-hand side matters as well, and cos 3; enters the picture.
The smaller the contribution of a; to b outside the space of the other columns, the more the angle
between f; and b matters. Due to the quadratic nature of the least squares problems we get squared
condition numbers in front of second-order error terms.

Lemma 1 Given matrices A and A+ F of full column rank with F; = 0, let z solve miny ||Ay — b||
and Z solve miny ||(A+ F)y—b||. Let ¢; be the angle between f; and the projection &; of a;
onto spanf;#{ak}, and p; = || fi||/|las|l-

If 2; = 0 then Z; = 0.

If z; # 0 then

. . 2 . .
g 1TA T Zi—zi _ p; 2cosdi+ piS bt — cosdy i Smint
— . 2, ) R - X : 3¢, ; ’
1420 558 + oo = cosai 1428t + PPt

where ¢ ; is the angle between b and the projection f; of f; onto span;:"#{ak}, and ¢;; is the angle
between f; and f;.

Ifz; # 0 and A is non-singular then

T = o 1 T; — x5 _ pi cos @;
] ’1+§—2:—g:-p,’ T cosa,‘1+§g%pi.

The relative perturbation p; cos ¢; associated with a linear system is amplified by the factor
1/ cos a;, which is independent of the righthand side in contrast to Corollary 1. Therefore, the more
the corresponding column a; lies in the space span.;{ax} spanned by the remaining columns, the
larger the relative error in the ith component of z.

With the abbreviations k; = 1/cosa; and pf = —p; cos ¢;, the above component-wise relative
error for non-singular linear systems can be written as

Ti—z _ Kipf
- ’
z; 1 - kipf
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which closely resembles the norm-based relative error for the perturbed system (4 + F)z = b

lz—zl _  s(A)p(4) _IFl
Bl S T-s(@dpd)’ "=

Now consider the case when all columns, except for the one associated with z;, are perturbed,
that is f; = 0. Given the original linear system Az = b, where A is a n x n non-singular matrix, let
the perturbed system (A + F)Z = b+ f satisfy |A~!||||F|| < 1. This means that A + F is also non-
singular because A+ F = A(I + A~'F), and I + A~ F is non-singular if ||A=1F|| < ||A=Y||||F]l < 1
[12], Lemma 2.3.3. The proof of the following lemma appears at the end of this section.

Lemma 2 Let Az =b and (A+ F)z = b with f; = 0, and ||A~Y||||F|| < 1.

Define the matriz
A;=F; (T4 (ATA)YATF) ™ (AT 4,)1 AT,

where (4) IF
K\A4)pa
Al K ————, = —
Al < T Il
and the related relative errors
[|Asa]| 1A
Paji = y o Phi = T
7 el el

Let ¢q; be the angle between A;a; and the projection a; of a; onto spani'#{ak}, and ¢p; the angle
between A;b and a;.

Ifz; # 0 then

. i _ Pa,i Pb,i
- al (I — A;)b L 1- %ﬁ% i T —z; _ %:‘Pa,i - %ﬁ;—m,i
HEPY - ai ’ . ai ’
G(I=Ada 1 - By, zi 1- et pai
If z; = 0 then 18 .
i COS @b, ¢
B o— a;l|cos a;
zi = 1 |Aiail| cos da,i °
- lailf cos a;

The vectors A;a; and A;b are in the column space of F;. If the column space of F; is a subset of
the column space of 4; then F; is orthogonal to span;c"#..{ak}, and cos ¢, ; and cos ¢ ; are zero, which
implies Z; = z;. The angles ¢,; and ¢; ; are bounded above by the angle between spankl;ﬁ{ak} and
the column space of F;. As before, the relative error in the ith component of Z is the larger the more

the right-hand side b and the corresponding column a; lie in the space spanned by the remaining
columns.

Proof of Lemma 1

From Theorem 1 and Corollary 5 we have

5 = (@ + )b
@+ f)T(a+ )
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where @; and f. are the respective projections of a; and f; onto spa,n;c"#,-{ak}.

We first prove the easier case when A is non-singular and spanj;{ax} has dimension one. So fi
must be a multiple of &, i.e. f; = Aa; for some real number A. Therefore

— QA+ Mllall llbll cos i _ [1s]l [1Bl] cos i
(1+X)af (ai + £3) af (s + fi) ’

where f3; is the angle between @; and b.

If ¢; is the angle between f; and a;, then the denominator of #; equals
af (a; + ;) = ||l llal| cos i + [|asl| || fill cos .

Therefore,

goo lbllcoss  _
llas|| cos a; + || fil| cos @i — 1 T cosg‘ HLH

CO8 /g

since z; = ||b|| cos B; /(||ai|| cos a;) by Theorem 1 and Corollary 5.

In the general case when span k#{ak} may have dimension greater than one, the projection f; is
not a multiple of &;. So,

1+3‘;r,;

z; =z

aT Ty
1+2L + 4k
Denote by ¢, ; the angle between f, and b, and by ¢;; the angle between f. and f;. So,
fFo=Nfilllsllcos g, fT £ = IIFFN£:ll cos gy

From Corollary 5 we know that ||&;|| = ||a;||cosa;. In a similar fashion we can show that ||fi|| =
[Ifill cos ¢y,s. This gives the expression for the relative error in the general case.

Clearly Z; = 0 whenever z; = 0.

Proof of Lemma 2

Similar to the proofs in Appendix 1, it suffices to show the statement for ;.
From Theorem 1 and Corollary 5 we know z; = af Pb/a1 Pa,, where
— T -1 T
P=I-(A1+F)(A+FR)T(A+ ) (A+ )T
We consider numerator and denominator of Z; separately.
In order to get rid of the inverse inside the projector P we would like to apply the Sherman-
Morrison-Woodbury formula [12], page 51, in such a way that the inverse of the matrix sum is a
scalar. This is possible if the sum consists of rank-one matrices.

To this end decompose Fj into its components in spanj4;{ax} and spani‘#l{ak},

Fy = AI(A’{AI)-IA:IPFI -+ Fl, where ﬁl = (I - AI(A'{Al)—lA’f)Fl »
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Hence R
A+ Fi=AZ+F, where Z=1I+(ATA)14TH,

and
(A1 + Fl)T(Al + Fl) = (A1Z+ ﬁ'l)T(AIZ + Fl) = ZTA?A1Z+ F1TF1

since A{F‘l = 0. By means of the singular value decomposition of A; and the interlacing of singular
values of A; and A, [12], Section 8.3.1, we can show that ||(AT A;)~*ATFy|| < ||JA~Y|||F)| < 1, so
by Lemma 2.3.3 in [12] Z is non-singular. Thus,

P=I-(Ai+Fz27Y)AT A+ Z7TET I Z27Y) Y (A + By 2707,

As each column of F} is in spani‘¢1{ak}, and spani'#{ak} has dimension one, F; has rank one

and we can write F} = a1 fT for some (n — 1) x 1 vector f (the fact that, in case of least squares
problems, the rank of F' exceeds one has sofar prevented us from proving this theorem in the more
general case). Now we can apply the Sherman-Morrison-Woodbury formula to

AT A1+ Z7TFTRZ7Y) ™ = (AT A1+ 4Ta, 2775 fT271)?
= (AT A1) —afai(AT A) ' 27T M1 + aTa fT 271 (AT A2 27T £)7 1 fT 271 (AT A

Distinguishing the scalars
fo,  (=fT27%ATA)'277f

gives

P=I-(A1+F2™Y ((A'{'Al)"l “1Z2-TsfT 771 (AT Ay) ) (A1 + F,Zz7Y)T.

1+

Multiply the terms in the product and use y = Al(AfAl)"IZ ~Tf to get

P=1- (AI(A{AI)‘IAT + (6197 — oyy” +yal + Célﬁf)) .

1
14+0(¢

The numerator of #; equals

oTPb = 1+“1<y(*7’b yTb) = “ly aT(I— By 27V (AT A;)1AT)b = aT (1 — Ay)b,

where Ay = F1Z71 (A{Al)' 1AT. Similarly, the denominator equals

a{ﬁa 1=

(a1 a;—oyay) = IT__;_lcﬂ al (1 - F127Y(AT A1) AT)a; = aT (1 - Ay)a;.

Therefore
5, = al (I — Anb
1T AT (1= A)ay’

which represents the first equality for z; in the statement of the theorem.

Let 51 be the angle between ; and b, and ¢;,; be the angle between @; and A;b. The numerator
of z, satisfies

676 — T A1b = [[a||Ib] cos B — llaall 1818l cos éa,1 = [felI(1b] cos By — 1A 1b]] cos @5.1).
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Similarly, with a; being the angle between a; and a; and with ¢a,1 being the angle between a;
and Aja;, the denominator satisfies

& a1 — a] Aqay = [|ay || [laa]| cos ay — [|as [ [|Ar1a1]| cos da,r = [|a1]|(J|as] cos @1 — [|Ara1]| cos ga,1)-

Hence,
_ |1b]] cos By — ||A1b]| cos ¢ 1

) = .
lla1]| cos a1 — ||Ajay|| cos ¢a 1
If z; = 0 then
F= [|A1b]] cos ¢p 1
! [la1]| cos a1 — ||Azas]| cos ga,1’
and otherwise b con Avbl coss
b'l bll
= “b“ cosﬂl 1- I]bl“ cosfy 1- ﬂblll cos B,

Ly = =2
llai|]cosa; 1 — IlAa::nlj cg::;l,x 1- |jA;:u|] C::s¢;;1
by Theorem 1 and Corollary 5. This establishes the second equality for z; in the statement of the
theorem and the expression for the relative error in z;.
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