Yale University
Department of Computer Science

Program Optimization and Parallelization Using Idioms

Shlomit S. Pinter and Ron Y. Pinter

YALEU/DCS/TR-730
August 1989

Program Optimization and Parallelization Using Idioms

Shlomit S. Pinterle?
Ron Y. Pinter’v*

Dept. of Computer Science
Yale University
New Haven, CT 06520

August 1989

Abstract

Programs in languages such as FORTRAN, Pascal, and C, were designed and writ-
ten for a sequential machine model. Several methods to vectorize such programs and
recover other forms of parallelism that apply to more advanced machine architectures
have been developed during the last decade. We propose and demonstrate a more
powerful translation technique for making such programs run efficiently on parallel ma-
chines which offer facilities such as parallel prefix operations as well as parallel and
vector capabilities. This technique, which is global in nature and involves a modifi-
cation of the traditional definition of the program dependence graph (PDG), is based
on the extraction of parallelizable program structures (“idioms”) from the given (se-
quential) program. The benefits of our technique extend beyond the abovementioned
architectures, and can be viewed as a general program optimization method, applica-
ble in many other situations. We show a few examples in which our method indeed
outperforms existing analysis techniques.

1 Introduction

Many of the classical compiler optimization techniques [2] comprise the application of local
transformations to the (intermediate) code, replacing sub-optimal fragments with better
ones. One hopes, as is often the case, that repeating this process (until a fixed-point is
found or some other criterion is met) will result in an overall better program. To a large
extent, attempts to vectorize — and otherwise parallelize — sequential code [20] are also
based on the detection of local relationships between data items and the control structures
that enclose them. These approaches, however, are local in nature and do not recognize the
structure of the computation that is being carried out.

A computation structure sometimes spans a fragment of the program which may include
some irrelevant details (that might obscure the picture both to the human eye and to

On sabbatical leave from the Dept. of Electrical Engineering, Technion — Israel Institute of Technology.
*Work supported in part by NSF grant number DCR-8405478.

®On sabbatical leave from the IBM Israel Scientific Center.

*Work supported in part by ONR grant number N00014-89-J-1906.

automatic recovery algorithms). Such “idioms” [16] may include inner-product calculations
in numeric code, data structure traversal in a symbolic context, and patterns of updating
shared values in a distributed application. Recognizing them is far beyond the potential of
the classical, local methods.

Once recognized, such structures can be replaced lock, stock, and barrel by a new piece
of code that has been highly optimized for the task at hand. This pertains to sequential
target machines, but is most appealing in view of the potential gains in parallel computing.
For example, a loop computing the convolution of two vectors, which uses array references,
can be replaced by an equivalent fragment using pointers which was tailored by an expert
assembler programmer. The same code can be replaced by a call to a BLAS [8, 13] routine
that does the same job on the appropriate target machine. Better yet, if the machine at
hand — for example, TMC’s CM-2 [19] — supports summary operators, such as reduction
which works in time O(logn) using a parallel prefix implementation [4, 12] rather than O(n)
on a sequential machine (where 7 is the length of the vectors involved), the gains could be
even more dramatic.

In this paper we propose a method for extracting parallelizable idioms from scientific pro-
grams. We cast our techniques in terms of the construction and analysis of the computation
graph, which is a modified extension of the program dependence graph (PDG) [9], as nec-
essary for the required analyses. We describe how to form this new type of graph from a
source program and provide algorithms that use it for optimization transformations. Using
this method, we were able to extract structures that other methods fail to recognize, as re-
ported in the literature, thereby providing a larger potential for speed-up. We believe that
our techniques can also be fitted to other program analysis frameworks, such as symbolic
evaluation and plan analysis.

Our technique is more involved than just symbolic manipulations and the look-up of pat-
terns. Its power can be demonstrated by a small example, taken from [3], who gave up on
trying to parallelize the following loop (which indeed cannot be vectorized):

DO 100 I=1,N

C(I)=A(I)+B(I)

B(I+1)=C(I-1)*A(I)
100 CONTINUE

Known methods, and even a human observer, may not realize that this loop hides two scan
operations that can be implemented in time O(logn) (n being the value of N) rather than
O(n). This kind of transformation can, however, be effected using our computation graph.

We first review other work on dependency analysis and evaluate its limitations for purposes
of idiom extraction. Then, in Section 3, we provide a formal presentation of our technique,
including the necessary algorithms. In Section 4 we exemplify our techniques, stressing the
advantages over existing methods. Section 5 discusses applications other than parallelism
and proposes further research.

2 Existing Optimization and Parallelization Methods

Three major program analysis methods for purposes of optimization and parallelization are
most common: constructing and then using the program dependency graph (PDQ), setting
up and then solving a system of linear equations that reflect the relationship between array
references, and (partial) symbolic evaluation. In this section we briefly review each method,
reason why in itself none can be used to serve our purposes, and explain why we have decided
to extend the PDG approach.

Much of the traditional program analysis work culminated in the definition and use of the
PDG or its constituents, the control and data dependence graphs. Such a graph defines
the flow of control in the program as well as the dependence between the variables being
used in the program’s statements. Analyzing the graph allows us to detect loop invariant
assignments for purposes of vectorization, classify the type of other dependencies as loop
carried and internal ones, and when applied to programs in single static assignment (SSA)
form [7] it can be quite effective.

The analysis methods allowed by this framework, however, are very much tied to the original
structure of the program. Also, the focus is on following the dependency between symbols
rather than tracking data flow per se, and moreover there is no explicit representation of
the operations that are applied to the data. Thus, this approach is not quite strong enough
to allow us to extract patterns of data modification that are not readily apparent from the
source program.

Another approach is that of capturing the data dependence between array references by
means of dependence vectors [6, 11, 20]. Then methods from linear algebra can be brought
to bear to extract wavefronts of the computation. The problem with this framework is that
only certain types of dependencies are modeled, again — there is no way to talk about
specific operations, and in general it is hard to extend.

Finally, various symbolic methods have been proposed [10, 14, 17], mostly for plan analysis
of programs. These methods all follow the structure of the program rigorously, and even
though the program is transformed into some normal form up-front and all transformations
preserve this property, still these methods are highly sensitive to “noise” in the source
program. More severely, the reasoning about array references (which are the mainstay of
scientific code) is quite limited for purposes of finding reduction operations on arrays.

The PDG-based methods seem to be most flexible and amenable for extensions. Recently
[5] they have also been shown to be semantically sound, removing a potential draw-back.
Moreover, this approach offers the most extensive support for program analysis that is
required for enabling the usage of our techniques, namely it allows application of classical
optimizations, vectorization, and more. Thus, we have chosen to extend the PDG based
framework and provide algorithms that can be used on the new structure.

3 Computation Graphs and Algorithms for Idiom Extrac-
~ tion

In this section we propose a new graph theoretic model to represent the data flow and
dependencies between values in a program, namely the computation graph. Such graphs
are labelled (at the nodes), directed, and acyclic by construction. After formally defining
this model, we provide an algorithmic framework that uses this new abstraction in order
to analyze the structure of programs and identify computations that can be parallelized
or otherwise computed more efficiently than they appear in the source. We conclude this
section by stating some properties of computation graphs and by outlining the correctness
of our transformations.

To guide the reader through this section we use the sample program of Figure 1, which
is written in FORTRAN. This example is merely meant to illustrate the definitions and
algorithms, not to show off the advantages of our approach over other work; this will be
done in Section 4.

DO 10 I=1,N
T = I+4
(o assume M is even
DO 10 J=3,M
ACT,J) = A(I,J) + T*A(I,J-2)
10 CONTINUE

Figure 1: A sample FORTRAN program.

3.1 Modeling

We first list some assumptions concerning the form of the programs on which we perform
our analysis. This form can be obtained by applying certain well known optimization
transformations.

e The program has been converted to Single Static Assignment (SSA) form per [7] and
the Program Dependence Graph (PDG) [9] has been constructed. This means that
we can ignore — to the extent of looking at the relationship between variables in the
program — the dependence of variables on the outcome of conditional statements.

e We assume that standard basic block optimizations (such as dead-code and dead-store
elimination, common subexpression detection, etc.) are performed on basic blocks,
per [2], Section 9.4, so that the resulting set of assignments to values is “clean”. This
implies that the expression DAG that is obtained represents only the dependencies
between variables that are live upon entry to the blocks and those that are live at the
exit, thus reflecting the substitution of temporaries in expressions that use them locally
and the like. We further assume that the dependency between values is “simple”,

4

meaning that each defining expression is of some predefined form. Typical restrictions
could be that it contains at most two values and one operator or that it be a linear
form; which restriction is imposed depends on the type of recognition algorithm we
want to apply later (in Section 3.2).

o All the PDG based optimizations (on both structure and data) have been performed,
including the recognition of loops wherever possible. We also assume that the possi-
bility to vectorize and apply some other parallelizing transformations (such as scalar
expansion) has been detected and annotated; we may use some of this information in
our algorithms or may prefer to subsume it with our own techniques, as we shall see.

e Loops have been normalized with respect to their index, as defined below. Here we
follow Munshi and Simons [15] who have observed that by sufficient unrolling, all loop
carried dependencies can be made to occur only between consecutive iterations.

Definition 1 A loop is in normal form if all of its loop carried dependencies are between
consecutive iterations.

A loop can be normalized as follows: let the span of a loop be the largest integer k such
that some value set in iteration 4 still depends on a value set in iteration i — k. Then, to
normalize a loop with span k£ > 1, the loop’s body is copied (unrolled) k& — 1 times and the
loop’s index is adjusted so it starts at 1 and is incremented appropriately at each iteration.
Loops are normalized from the most deeply nested outwards.

In the example of Figure 1, the inner loop needs to be normalized by unrolling it once,
whereas the the outer loop is already in normal form (it is vacuously so, since there are no
loop carried dependencies). We also assume that the temporary scalar T has been expanded,
thus obtaining the program in Figure 2.

DO 10 I=1,N
T(I) = I+4
C assume M is even
DO 10 J=1,M-2,2
A(I,J+2) = A(I,J+2) + T(I)*A(I,J)
A(T,J+3) = A(I,J+3) + T(I)*A(I,J+1)
10 CONTINUE

Figure 2: The program of Figure 1 in normal form.

Given a program satisfying the above assumptions, we define its computation graph, G =
(V, E), in two stages: first we handle basic blocks (that do not contain conditional branch-
ing), and then we show how to represent normalized loops. A node v € V represents the
instance of an assignment statement to a variable (this includes a variable’s initializations,
since we use SSA form), denoted var(v), and is uniquely identified by the statement num-
ber. We draw an edge from u to v if the value computed in u is used in v, i.e. var(u)

appears on the right hand side of a later assignment to var(v) and no v’ on the path from
u to v has var(u) = var(y').

We further label each node by the function performed on the arguments to obtain the
value assigned to var(v). The function is represented in terms of a numbering on the
edges entering the node (i.e. the arguments) which is used to disambiguate the defining
expression?, as is done in expression trees and DAGs.

Using the array references verbatim as atomic variables, the basic loop constituting the
body of the inner loop of Figure 2 gives rise to the computation graph shown in Figure 3.
Since we shall be looking for potential reduction and scan operations, which apply to linear
forms, we allow the functions at nodes to be ternary multiply-add combinations. Note also
that the nodes denoting the initial values of the variables use 1 as their function label
(which could be replaced when the graph is embedded in a larger context, as we shall see).

Figure 3: The computation graph of the basic block constituting the inner loop of the
program in Figure 2. '

Next we define computation graphs for normalized loops. Such graphs are obtained by
replicating the DAGs representing the enclosed body? as follows. We generate three copies
of the graph representing the body: one represents the initial iteration, one — a typical
middle iteration, and one stands for the final iteration. Fach node is uniquly identified
by the statement number and the unrolled copy it belongs to (initial, middle, or final).
Furthermore, array references that depend on the loop variable are changed by substituting
the initial loop boundary, the name of the variable, and the final boundary in the index
expressions respectively.

For every loop carried dependency [3, 20], we insert an edge from the appropriate vertex in
the initial copy to the one in the middle copy, and likewise from the middle copy to the final
copy. The loop is linked to its surroundings by (data) dependency edges where necessary
(i.e. from initializations outside the loop and to subsequent uses).

!When the function is commutative, such as addition, this is not necessary.
2 At the innermost level these are basic blocks, but as we go up the structure these are general computation
graphs.

In order to cover the cases in which the loop body is executed fewer than three times, we
splice each dependency edge that goes into the loop by adding a ¢;,-node on it. From this
$in-node we also draw an extra edge leading to the proper place in the unrolled subgraph
representing the computations in which the loop is unrolled or is rolled less than three
times. Such a node contains the proper ¢-function (per [7]) which navigates the control
flow for every execution. Similary, we splice every dependency edge leaving the loop, adding
a Pout-node, and draw an edge from the proper place of the unrolled graph to the new node
(if that dependency appears in the unrolled graph). In the rest of the paper we omit the
unrolled part of the graph since we are interested in parallelizing loops that have many
iterations. that in case of nested loops there may be a need to use it.

Note that since nodes represent events rather than statements, all of the loop’s anti-
dependencies [3, 20] are reflected simply as data dependencies. The new graph spans a
“signature” of the whole structure, and we call it the summary form of the loop. Note that
once inner loops are transformed into their summary form, they are treated as part of the
body of the enclosing loops and they may be — in turn — replicated similarly to yield
another summary form. If the loop control variable is used in the computations within its
body we treat it like any other variable with the proper initial value (node), and we add a
statement (node) for incrementing the control variable.

Figure 4 shows the computation graph of the inner loop of the example in Figure 2. The
graph comprises three copies of the graph from Figure 3 with the appropriate edges added.
The graph for the whole program would consist of three copies of what is shown in Figure
4, with appropriate annotation of the nodes, but with no extra edges since there are no loop
carried dependencies between the I iterations.

Figure 4: The computation graph of the inner loop of the program in Figure 2.

3.2 Algorithms

Having constructed the computation graph, the task of finding computational idioms in the
program amounts to recognizing certain patterns in the graph. These patterns comprise
graph structures such as paths or other particular subgraphs, depending on the target

7

idiom, and some additional information pertaining to the labeling of the nodes. The idiom
recognition algorithm constitutes both a technique for identifying the graph patterns in the
given graph as well as the conditions for when they apply, i.e. checking whether the context
in which they are found is one where the idiom can indeed be used.

Overall, the optimization procedure consists of the following algorithmic ingredients:

e Matching and replacement of individual patterns can be achieved by using graph
grammars to describe the rewrite rules. While rewriting, we also transform the labels
(including the operators, of course), thus generating the target idioms. We make sure
no side effects are lost by denoting forbidden entries and exits per [18].

® We need to provide a list of idioms and the graph rewriting rules that replace them.
These should include structures such as reduction, scan, transposition, reflection, and
FFT butterflies. Compositions thereof, such as inner product, convolution, and other
permutations, can be generated as a preprocessing stage.

e At the top level, we (repeatedly) match patterns from the given list according to
a predetermined application schedule until no more changes are applicable (or some
other termination condition is met). This means that we need to establish a precedence
relation among rules that will govern the order in which they are applied. This greedy
tactic, which is similar to the conventional application of optimization transformations
a la [2], is just one alternative. One could assign costs that reflect the merits of
transformations and find a minimum cost cover of the whole graph at each stage, and
then iterate.

We next elaborate on each of the above items, filling in the necessary details. First we
discuss graph rewriting rules. Since we are trying to summarize information, these will be
mostly reduction rules, i.e. shrinking subgraphs into smaller ones. More importantly, there
are three characteristics that must be matched besides the skeletal graph structure: the
operators (functions), the array references, and context, i.e. relationship to the enclosing
structure. '

The first two items can be handled by looking at the labels of the vertices. The third involves
finding a particular subgraph that can be replaced by a new structure and making sure it
does not interfere with the rest of the computation. For example, to identify a reduction
operation on an array, we need to find a path of nodes all having the same associative
operator label (e.g. multiplication, addition, or an appropriate linear combination thereof)
and using consecutive (i.e. initial, middle, and final) entries in the array to update the same
summary variable; we also need to ascertain that no intervening computation is going on
(writing to or reading from the summary variable).

Both the annotations of the nodes as well as the guards against intervening computations
are part of the graph grammar productions defining the replacement rules. Figure 5 provides
two such rules to make this notion clear. Recall that we assume that at this point certain
vectorization transformations, including scalar expansion, have occurred, so we use their
results when looking for patterns (alternatively, we can generate these transformations,
too, with appropriate expanding rewrite rules).

’ L
’:r @

(b)

Figure 5: Matching and replacement rules for (a) reduction and (b) scan.

Once such rules are applied, the computation graph contains new types of nodes, namely
summary nodes representing idioms. These nodes can, of course, appear themselves as
candidates for replacement (on the left hand side of a rule), thereby enabling further opti-
mization. Obviously, we would apply the rules for lower level optimizations first and only
then use the others, but one should not get the impression that this procedure necessarily
follows the loop structure of the given program. On the contrary, the computation graph
as constructed allows the detection of structures that might otherwise be obscured, as we
~ shall see in Section 4.

The result of applying the rules of Figure 5 to the graph of Figure 4 is shown in Figure 6.
If we had started with a graph for the entire program of Figure 2, not just the inner loop,
applying a vectorization rule to the result would have generated the program of Figure 7.

L
A(I, even)

scan(+, +)

scan(*, +)
A(I, odd)

A(I,even)

Figure 6: The computation graph resulting from applying the transformations of Figure 5
to the graph in Figure 4.

DOALL 10 I=1,N

T(I) = I+4

SCAN(A(I,*),1,2,T(I)’ll*ll’ll+l|)

SCAN(CA(T,*),2,2,T(I)," %", "+")
10 CONTINUE

Figure 7: The program resulting from applying idiom extraction on the program of Figure
2. (We use an arbitrary template for SCAN which includes all the necessary information,
including strides inside vectors or minors and the operations to be performed.)

In general, the order in which rules are applied and the termination condition depend on the
rule set. If the rules are Church-Rosser then this is immaterial, but often they are competing
(in the sense that the application of one would outrule the consequent application of the
other) or are contradictory (creating potential oscillation). This issue is beyond the scope
of this paper and we defer its discussion to general studies on properties of rewrite systems.

3.3 Correctness

In this section we argue that the computation graph faithfully represents the computation
expressed by the program. A computation of a program is a partially ordered set of events
that is derived from the program during its execution. Before evaluation we replace every
conditional branch and loop header with the corresponding ¢-node. The events of the
evaluation are the executions of assignment statements and the results of conditionals (¢-
nodes), and the ordering is defined by the execution order. We define the dependency
relation to be the irreflexive transitive closure of the program’s computation. The collection
of all such relations of a program, with respect to the input domain, represents all the
computations of the program.

Definition 2 Given a computation graph of a program, we define a subgraph of the com-
putation graph to be a representative of a computation of the program if the following four
conditions hold: (i) it contains the source (root) nodes corresponding to the variables ini-
tialized by the computation, (i) for every node which is not a ¢-node it contains all the
edges and nodes reachable from the node via non ¢-nodes, (iii) for every ¢-node reached
only one exiting edge is in the subgraph, and (iv) the irreflexive transitive closure relation
of the subgraph is a subset of the dependency relation.

To establish the correctness of this representation, it is not difficult to prove the following.

Lemma. 1 Every terminating computation of the program has a representative in the pro-
gram’s computation graph.

Next we claim that the representatives are detailed enough in order to carry out our transfor-
mations. For non-looping computations, the computation graph defines the same ordering

10

relation as the computation of the program. Since the major area of optimization is array
access in loops, we must justify the construction of the computation graph for loops. There
is one key lemma (presented here without proof, which is straightforward), as follows:

Lemma. 2 Unfolding three iterations of a normalized loop is enough to reveal its data
dependence structure.

We finally define the correctness conditions for transformations in our framework.

Definition 3 A transformation is correct if for any given program every terminating com-
putation of the transformed program has a representative in the computation graph of the
original program, and each representative subgraph of the computation graph is consistent
with the ordering of some computation.

4 Examples

To exemplify the advantages of our idiom recovery method, we present here three cases in
which other methods cannot speed the computation up but ours can (if combined properly
with standard methods). We do not include the complete derivation in each case, but we
outline the major steps and point out the key items.

The first example is one of the loops used in a Romberg integration routine. The original
code (as released by the Computer Sciences Corporation of Hampton, VA) looks as follows

DO 40 N=2,M+1
KN2 = K+N-2
KNM2 = KN2+M
KNM1 = KNM2+1
F=1.0/ (4.0%xx(N-1) - 1.0)
TEMP1 = WK(KNM2) - WK(KN2)
WK(KNM1) = WK(KNM2) + F*TEMP1
40 CONTINUE

but after substitution of temporaries, scalar expansion of F, and renaming of loop bounds
(no normalization is necessary in this case), which are all straightforward transformations,
we obtain

DO 40 I=K+M,K+2xM
F(I)= 1.0 / (4.0%x(I-K-M+1) - 1.0)
WK(I+1)=WK(I)+F(I)*(WK(I)-WK(I-M))

40 CONTINUE

Now observe two facts: all the references to WK(I-M) are to elements that are not set in this
loop (per the given bounds), and the computation of F(I) can be performed in a separate
loop (“loop distribution”); again, these facts can be deduced with known techniques.

11

The loop computing F can be easily vectorized, so all we are left with is a loop containing a
single statement which computes WK(I+1). If we draw the computation graph for this loop
and allow operators to be linear combinations with a coefficient (F(I) in this case), we can
immediately recognize the scan operation that is taking place.

The second example is taken from [3], who gave up on trying to parallelize it (and indeed
it cannot be vectorized):

DO 100 I=1,N

C(I)=A(I)+B(I)

B(I+1)=C(I-1)*A(I)
100 CONTINUE

In this case, a 3-fold unrolling is required. Once this is done, we detect two independent
chains in the computation graph, one including the computation of the even? entries in B
and C, and the other computing the odd entries. If the data is arranged properly, the whole
computation can be attained by two scan operations, taking time O(logn) (n being the
value of N) rather than O(n).

Finally, we parallelize a program computing the inner product of two vectors, which is a
commonly occurring computation. Consider

P=0

DO 100 I=1,N

P=P+X(I)*Y(I)
100 CONTINUE

Traditional analysis of the program (in preparation for vectorization) replaces the loop body
by

T(I)=X(I)*Y(I)
P=P+T(I)

Figure 8 shows the computation graphs of this transformed basic block and that of the
relevant part of the loop. The vectorizable portion of the loop can be transformed into
a statement of the form T=X*Y, and what is left can be matched by the left hand side of
rule (a) of Figure 5. Applying the rule produces the graph corresponding to the statement
REDUCE(P,1,1,T(I),"+").

The recognition of an inner product using our techniques will not be disturbed by enclosing
contexts such as a matrix multiplication program. The framed part of the program in
Figure 9 produces the same reduced graph that appears replicated after treating the two
outermost loops.

"We use “even” and “odd” here just to distinguish the chains; the recognition procedure does not need
to know or prove this fact at all.

12

Figure 8: Transforming an inner product to a reduction.

DO 100 I=

DO 100 J

Cc(I,J)=0

DO 100 K=1,N

C(I,J)=C(I,J)+A(I,K)*B(X,J)
100 CONTINUE

i,N
i,N

Figure 9: The portion of a matrix multiplication that is recognized by the tarnsformation
of Figure 8.

5 Other Applications and Future Work

Our primary objective is to cater for machines with effective support of data parallelism.
Our techniques, however, are not predicated upon any particular hardware, but can rather
be targeted to an abstract architecture or to language constructs that reflect such features.
Examples of such higher level formalisms are 4 PL functionals and idioms, the BLAS package
(which has many efficient implementations on a variety of machines), vector-matrix prim-
itives as suggested in [1], and languages such as Crystal, C* and *1isp which all support
reductions and scans.

All in all, we feel that this paper makes both methodological and algorithmic contributions
that should be further investigated. We believe that in addition to the constructs mentioned
above, many other can be expressed as patterns and be identified as idioms. Such constructs
need to be formulated in terms of computation graph patterns, and further — additional
work on algorithmic methods other than repeated application of the rules (such as fixed-
point computations) is also necessary. Finally, we intend to implement the techniques
mentioned here as part of an existing parallelization package and obtain experimental results
that would indicate how prevalent each of the transformations is.

13

References

[1] A. Agrawal, G. E. Blelloch, R. L. Krawitz, and C. A. Phillips. Four vector-matrix
primitives. In Symposium on Parallel Algorithms and Architectures, pages 292-302.
ACM, June 1989.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

[3] R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific pro-
grams for parallel execution. In Fourteenth Annual Symposium on Principles of Pro-
gramming Languages. ACM, January 1987.

[4] G. Blelloch. Scans as primitive parallel operations. In International Conference on
Parallel Processing, pages 355-362. IEEE, 1987.

[5] R. Cartwright and M. Felleisen. The semantics of program dependence. In SIG-
PLAN’89 Conference on Programming Language Design and Implementation, pages
13-27. ACM, 1989.

[6] M. C. Chen. A parallel language and its compilation to multiprocessor machines or
VLSL. In Thirteenth Annual Symposium on Principles of Programming Languages,
pages 131-139. ACM, January 1986.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. In Sizteenth Annual Symposium
on Principles of Programming Languages, pages 25-35. ACM, J anuary 1989.

[8] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. on Mathematical Software,
14(1):1-17, March 1988.

[9] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Trans. on Programming Languages and Systems,
9(3):319-349, July 1987.

[10] P. Jouvelot and B. Dehbonei. A unified semantic approach for the vectorization and
parallelization of generalized reductions. In International Conference on Supercomput-
ing, pages 186-194. ACM, June 1989.

[11] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the Association for Computing Machinery,
14(3):563-590, July 1967.

[12] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the Association
for Computing Machinery, 27(4):831-838, October 1980.

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. on Mathematical Software, 5(3):308-323,
September 1979.

14

[14] S. L. Letovsky. Plan Analysis of Programs. PhD thesis, Dept. of Computer Science,
Yale University, December 1988. Available as YALEU/CSD/RR. 662.

[15] A. Munshi and B. Simons. Scheduling sequential loops on parallel processors. Technical
Report RJ 5546, IBM Almaden Research Center, 1987.

[16] A. J. Perlis and S. Rugaber. Programming with idioms in apl. In APL’79, pages
232-235. ACM, June 1979. APL Quote Quad, Vol. 9, No. 4.

[17] C. Rich and R. C. Waters. The programmer’s apprentice: a research overview. Com-
puter, 21(11):10-25, November 1988.

[18] M. Rosendahl and K. P. Mankwald. Analysis of programs by reduction of their struc-
ture. In V. Claus, H. Ehrig, and G. Rozenberg, editors, Graph-Grammars and Their
Applications to Computer Science and Biology, pages 409-417. Springer-Verlag, 1979.
Lecture Notes in Computer Science, Vol. 73.

[19] Thinking Machines Corporation, Technical Report HA87-4. Connection Machine Model
CM-2 Technical Summary, April 1987.

[20] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, Dept. of Com-
puter Science, University of Illinois at Urbana-Champaign, October 1982. Available as
TR UIUCDCS-R-82-1105.

15

