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Abstract

In this paper we describe fixed-phase retiming, a new optimization technique for the
design of low power digital circuits. In fixed-phase retiming, we first transform any given
edge-triggered circuit into a two-phase level-clocked circuit by replacing each flip-flop by
two level-sensitive latches. Subsequently, while keeping the latches clocked on one of the
phases fixed, we attempt to reduce power dissipation by relocating the remaining latches
on interconnections with high glitching activity and capacitive load. Since in standard
cell design the capacitance of a latch is typically smaller than the input capacitance of
a combinational gate, this transformation reduces power dissipation during the opaque
phase of the latch. We give a boolean quadratic programming formulation of fixed-
phase retiming and describe an O(V*log V)-time algorithm for computing a fixed-phase
retiming that minimizes power dissipation, where V is the number of combinational
blocks in the circuit.

1 Introduction

With the growing number of portable electronic applications, power dissipation in VLSI
circuits has become a major concern. This concern has resulted in an increasing interest in
the development of tools and techniques for the design of low power digital circuits. In this
paper we describe an optimization technique called fized-phase retiming that can help in the
design of low power digital circuits. In fixed-phase retiming, a given edge-triggered circuit is
transformed into a two-phase level-clocked circuit by replacing every edge-triggered flip-flop
in the original circuit by two back-to-back level-clocked latches. While keeping the latches
clocked by one of the phases fixed (hence the name fixed-phase), latches clocked on the
other phase are relocated with a view to reduce power dissipation. Specifically, latches are
placed on interconnections with high glitching activity, thereby shielding the glitches from
large capacitive loads which are the primary source of power dissipation in CMOS designs.
The fixed-phase retiming methodology is illustrated in Figure 1. In this paper, we present
an efficient algorithm to optimize synchronous circuits for reduced power dissipation using
fixed-phase retiming.

Fixed-phase retiming presents several advantages. First, since the latches clocked on
one phase are kept fixed, the values of the state variables of the synchronous circuit can
be obtained at the same interconnections as before optimization. Therefore, the testability
characteristics of the original edge-triggered circuit remain virtually unchanged. Second,
since we allow only one latch per weighted edge to move around, the final circuit is only
marginally different from the original circuit. As a result, the layout doesn’t change much
with fixed-phase retiming. Finally, as we show in this paper, power optimization using fixed-
phase retiming can be accomplished without sacrificing performance; circuit performance
may, in fact, improve.

Optimization by fixed-phase retiming involves minimizing power dissipation of a given
circuit by latches relocation while maintaining the clock period. This is best illustrated by
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Figure 1: The fixed-phase retiming methodology for low power design.

the example given in Figure 2. Figure 2(a) shows a section of an edge triggered circuit.
The numbers on the edges indicate the potential reduction in power dissipation in pW
due to the presence of an edge-triggered flip-flop on that edge assuming that the rest of
the circuit remains unchanged. Negative values of power reduction indicate an increase in
power dissipation when a flip-flop is placed on an interconnection. This reduction in power
dissipation can come about if the edge has a high glitching-capacitance product [3]. Each
edge-triggered flip-flop is then replaced by two back-to-back level-clocked latches and the
resulting circuit is fixed-phase retimed to result in the circuit in Figure 2 (b). If we assume
a non-overlapping two-phase clocking scheme 7 = 10 = (¢o = 4,70 =1,¢1 = 4,11 = 1) for
the level-clocked latches, it can be shown that there is a reduction in power dissipation of
11.8 units. Specifically, the glitching on edges B 1z D, E B Fand E =2 H is “masked”
for 60% of the clock cycle which leads to a reduction of 0.6 x (12 4+ 13 — 2) = 13.8 units of

power, while the glitching on edges G B Jand H2Kis “exposed” for 40% of the clock
cycle which leads to an increase in 0.4 X (10 — 5) = 2 units of power. Although we have
made some simplifying assumptions in this example in computing power reduction, such as
uniform glitching distribution over the clock period and relocation does not change glitching
drastically, the example illustrates that fixed-phase retiming has a reasonable potential for
reducing power dissipation in synchronous circuits.

In this paper, we show that the problem of power optimization under fixed-phase re-
timing can be expressed as a Boolean Quadratic Program. We then demonstrate that this
problem can be reduced to a 0-1 Integer Linear Program which can be solved efficiently.
Specifically, we present a polynomial-time algorithm that computes a fixed-phase retim-
ing which maximizes the reduction in power dissipation while maintaining the performance
for a given circuit and terminates in O(V*logV) steps where V denotes the number of
combinational blocks in the circuit.

The remainder of this paper has five sections. In Section 2 we describe our graph
representation model and give an overview of retiming edge-triggered circuits for low power.
In Section 3, we analyze effects of fixed-phase retiming on power dissipation. Specifically,
we derive a mathematical expression for the reduction in power dissipation. In Section 4
we define the power optimization problem under fixed-phase retiming and express it as
a boolean quadratic program. In Section 5, we present an O(V*log V)-time algorithm for
solving the boolean quadratic program. We conclude in Section 6 with directions for further
research.

2 Preliminaries

In this section we describe the graph representation of a circuit and describe power dis-
sipation in edge-triggered circuits. We also state our assumptions about the behavior of
level-clocked circuits with regard to power dissipation.
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Figure 2: Section of an edge-triggered circuit that illustrates power optimization by means of fixed-phase
retiming. The numbers on the edges indicate the potential reduction in power dissipation in power units
when an edge-triggered flip-flop is present on that edge, assuming the rest of the network remains unchanged.
(a) Initial edge-triggered circuit. (b) Fixed-Phase retimed circuit that achieves a reduction of 11.8 units of
power compared to the circuit in (a) under a (4,1,4,1) two-phase non-overlapping clocking scheme. The

relocation of latches causes an increase in power dissipation on edges E ZHand G5 Jand a lowering in
power dissipation on edges B 3 D, F BFad H3K.

2.1 Graph representation

Given an edge-triggered circuit, we transform it into an equivalent level-clocked circuit
by replacing each edge-triggered flip-flop by two level-clocked latches clocked on alternate
phases by a two-phase clocking scheme m = (¢, Y0, $1,71) as given in Figure 3. We model
the resulting level-clocked circuit as a directed multigraph G = (V, E,d,w, x, Eg, C). The
vertices V in the graph correspond to the combinational elements in the circuit. The directed
edges F of the graph model the interconnections between the combinational blocks. For
a combinational element v the propagation delay is given by d(v) and the input phase by
x(v). If the input phase of a vertex v is x(v), it means that ¢, ,) clocks the last latch on
any path that ends at v. Each edge u = v € E connects an output of some combinational
block u to the input of another block v, and it is associated with a weight w(e) that gives
the latch count on the wire. Fach edge u = v in the circuit graph is also associated with
a pair (E4(e),C(e)) where E,(e) denotes the average glitching frequency of the output of
node u that leads to v and C(e) denotes the capacitive load presented by node v to the
output of node u. The product E4(e) x C(e) is a measure of the power dissipation due to
glitching on the edge e in the circuit.

2.2 Retiming edge-triggered circuits for low power

When an edge-triggered flip-flop is placed on a zero-weight edge, u 4 v, there is a reduction
in power dissipation since the glitching at the output of u is shielded from the rest of the
circuit by the flip-flop. Assuming that the rest of the network remains unchanged, the
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Figure 3: A two-phase clocking scheme 7 = {¢o, Y0, ¢1,71)-

reduction in power dissipation is given by [3]

fanout;

P (0) = Ey(i) x C(0) + Ey(i) x 3 (845 C(5)) = By(8) x Cys - (1)

J
u—v

Equation (1) consists of three terms. The first term Ey(¢) x C(%) denotes the reduction in
power dissipation at the input of v due to the masking effect. Since the glitching on edge
i also propagates through its transitive fanout fanout;, the masking effect of the flip flop

also affects power dissipation on each edge 2 v in the combinational fanout fanout;.
The second term Eg(%) X Zf ‘J‘]."O“t"(Sjyi -C(7)) denotes the reduction in power dissipation in

the edges of the transitive fanout of i, where C(j) denotes the capacitive load presented by
node v to the output of u. The probability that a transition on edge ¢ propagates to edge
J is denoted by s;; and is given by [3]

sji=Prob(j11:1), (2)

where Prob(i | |i |) denotes the probability of a transition at edge j given that there is a
transition at edge ¢. The third term E4(¢) x Csy denotes an increase in power dissipation
due to glitching at the flip-flop inputs where C; denotes the input capacitive load of the
flip-flop.

2.3 Retiming level-clocked circuits for low power

Retiming level-clocked circuits has a similar effect on power dissipation as edge-triggered
retiming. Contrary to flip-flops which shield glitching for the entire clock period, level-
clocked latches shield glitching for the part of the clock period that they are opaque. This
does not mean, however, that fixed-phase retiming is less effective, since it can always be
applied to further optimize edge-triggered circuits that have already been optimized using
edge-triggered retiming sa described in [3].

Our analysis of fixed-phase retiming relies on certain simplifying assumptions. In level-
clocked circuits, signals that flow through a latch during its transparent phase can initiate
computations in the next combinational stage, a phenomenon termed as cycle stealing. As
a result, data can ripple through several stages of storage elements before their propagation
is complete. Our treatment of fixed-phase retiming does not take into account the effects of
cycle stealing for the following reasons. First, our approach seeks to minimize the glitching
component of power dissipation. Due to the inertial delay of the combinational blocks,
we do not expect glitching to propagate through many combinational stages, and thus it
is not an issue. Second, cycle stealing is a theoretical potential of level-clocked circuits
and it is not clear how many practical circuits employ it extensively. Moreover, since our
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Figure 4: Masking, Exposing and Remasking. (a) A two-phase level-clocked circuit obtained by replacing
edge-triggered flip-flops in the original circuit by back-to-back non-overlapping level-clocked latches. (b)
Fixed-Phase retimed circuit. Moving the ¢o latch from C — D to A — B masks the glitching of A from
B but at the same time exposes the glitching of C to D. The incoming latch on edge D — E remasks the
glitching of C from E.

methodology applies to circuits which were originally edge triggered, cycle stealing should
not be significant after fixed-phase retiming. Another simplifying assumption in our analysis
is that glitching is evenly distributed over the clock cycle.

3 Effects of fixed-phase retiming on power dissipation

In this section, we describe the changes in power dissipation that occur in fixed-phase
retiming. We derive a mathematical expression which gives the change in power dissipation
of a circuit after fixed-phase retiming.

Three things can happen to the glitching activity during fixed-phase retiming which are
illustrated in Figure 4. We will assume, without loos of generality, that latches clocked on
¢o are mobile and the ¢; latches remain stationary. First, when a latch is placed on an
edge u = v with w(e) = 0, the glitching of u is masked from v for the duration the latch
is opaque. This is true for the edge A — B in Figure 4(b) where the glitching of A is not
visible to B when ¢q is low. Second, when a latch is removed from an edge v — v with
w(e) = 2, the glitching at the output of u, which was previously masked from v, is now
ezposed to v for the duration the ¢; latch is transparent. This is true for the edge C — D
in Figure 4(b) where the glitching of C is visible to D for the duration ¢; is high. Third,
the exposed glitching can get re-masked as for the edge D — E where the glitching from C
is remasked from E due to the incoming latch on edge D — E.

We now present a detailed analysis of the changes in power dissipation in a circuit with
fixed-phase retiming. Let E, denote the set of edges u — v such that w(e) = 0, E; denote
the set of edges © — v such that w(e) = 2, and E, denote the set of edges u - v such that
w(e) > 2. We derive the power dissipation due to glitching for edges in these three sets
before and after retiming. We then compute the difference of these power dissipation terms
and derive a mathematical expression which denotes the reduction in glitching component
of power dissipation due to fixed-phase retiming. Since fixed-phase retiming can potentially
change the number of latches, the power dissipation due to the zero-delay transition activity
on these latches can be different. So we compute an overall expression that denotes the
reduction in power dissipation which includes the change in glitching component as well as
the change in zero-delay latch power dissipation.

For an edge u = v € E, before retiming, power dissipation due to glitching occurs only




on the combinational blocks v and its combinational transitive fanout fanout; and is given
by

fanout;
pbef(z')=Eg(i)x{0(i)+ > (sj,zwcu'))}. 3)

The contribution to dissipation by the latches is zero since w(z) = 0. After retiming, there
may be power dissipation by both combinational blocks and latches. The power dissipation
associated with the edge u = v after retiming depends on whether the retiming process
leaves a latch on ¢ or not. When r(v) — r(u) = 1, i.e. a ¢p-latch is present on edge i,
the power dissipation contributed by the latch output during the transparent phase of the
latch’s operation is really as though there is no latch present. This is true for 4;—" fraction of
the clock cycle. When 7(v) —7(u) = 0, i.e. there is no latch on edge 7, the power dissipation
is the same as it was before retiming. As a result, the power dissipation associated with 4
after retiming due to dissipation in combinational blocks is given by

fanout;
posli) = 2. g<i>-(r(v)—r<u))x{c(i)+ > (s]-,i-cu))}

T

fanout;
+ Eg(4) - [1 = (r(v) = r(w))] x {C(i)+ > (s -C(J'))} : (4)

The first term in Equation (4) denotes the power dissipation when 7(v) — 7(%) = 1 and the
second term denotes the dissipation when 7(v) — r(u) = 0. For the kind of level-clocked
latch implementations we consider, the capacitive loads presented by a latch, whether it is
open or closed, is the same. As a result, the contribution to power dissipation by the latches
after fixed-phase retiming is given by

Pap(i) = Ey(i) - (r(v) = m(w)) - Cr - (5)

For certain other implementations of a level-clocked latch such as a pass transistor inverter
combination, the input capacitance Cj, may depend on whether the latch open or closed
and Equation (5) maybe be differ for these. From Equations (3), (4), and (5), it follows
that the reduction in power dissipation, due to the masking effect of fixed-phase retiming,

associated with an edge u = v € E_ is given by

APmask(1) = Phes(8) = (Pase(t) + popy(i))
fanout;
= TR0 (o) = r@) x L O+ Y (s5-C()
+ Ey(3) - (r(v) = r(u)) - CL . (6)

The power dissipation before retiming associated with an edge u — v € E; due to dissi-
pation in combinational blocks is zero, since the output of the latches is a clean transition
without glitches. The glitching at the input of the latches is seen by the ¢g-latch for the
entire clock period and by the ¢;-latch for the duration when the ¢o-latch is transparent.
As a result, the contribution to dissipation by the latches is given by

T+ ¢o
T

Phes(i) = RZIONE» (7)




The power dissipation associated with edge i after fixed-phase retiming, due to dissipation
in combinational blocks is given by

fanout;
Paft(’)—"" o(8) - r(uw) x §C() - (L=r(w)+ Y [8i-CG)-(L—r(w))]} . (8)

EN
Uy —v;

When r(u) = 0, i.e. the ¢g-latch is not removed from i, then the combinational power
dissipation remains unchanged and is zero. When r(u) = 1, Equation (8) consists of two
terms. The first term is non-zero when r(v) = 0, i.e. no incoming ¢@q-latch is inserted on
edge ¢ and the glitching E () is visible to node v for the duration the ¢; latch is open.
However, when r(v) = 1, there is an incoming ¢g-latch which remasks the glitching and
there is no power dissipation in the combinational fanout of . The second term consists

of the effect of glitching E (i) on each edge u; EN v; in the combinational transitive fanout
of ¢ which is denoted by the summation term in Equation (8). Similarly, when r(v;) = 0,
the glitching effect propagates, but it gets remasked when 7(v;) = 1. The contribution to
dissipation by the latches after fixed-phase retiming is given by

P

T Bi).Cp- (1 - r(w) + Ey(i) - r(u) {CL-i—?-CLw(v)} ()

Pfft(i) =

Equation (9) consists of three terms. When r(u) = 0, the power dissipation remains un-
changed and is given by the first term. When r(u) = 1, the first term reduces to zero and
the second term denotes the dissipation in the ¢;-latch. When r(v) = 1, the third term
denotes the power dissipation in the incoming ¢o-latch on i. The term denoting power

dissipation in the incoming latches on edges u; ER v; in the combinational transitive fanout
of 4 is not included in Equation (9) since it will be taken into account in the power dissi-

pation term associated with edges u; % v; : w(j) = 0. It follows from Equations (7), (8),
and (9) that the change in power dissipation that arises from fixed-phase retiming for an

edge u — v : w(i) = 2 due to the exposing effect is given by

APepose(t) = pfef(i)—(paft(i)erfft(i))

fanout;
= — By (i) x §(C(5) - Cp) - r(u) - m(v) + Z [85 - C(5) - r(w) - 7(v;)]
fanout;
5() - r(w) x § = [C(5) + E (856 - CUN+—-Cr¢ . (10)

Now in addition to the reduction in the glitching component of the power dissipation,
there could be a change in power dissipation due to a change in the number of latches in
the circuit. This component of power dissipation is entirely due to the change in the power
dissipation of clock ¢ and is given by

Apeir(¢o) = E(do) - CL—g, { > (r(v)=r(w)+ w(e)) IEII} , (11)

u-—-wGE




Equation (11) consists of two terms. The first term denotes the power dissipated in the
latches in the retimed circuit and the second term represents the power dissipation in the
latches in the original circuit by the ¢g clock line. The switching activity on the ¢q clock
line is given by E(¢o) and the capacitive load presented by the latch to the ¢g clock line is
given by Cr_g4,.

It follows from Equations (6), (10), and (11) that the net reduction in power dissipation
by means of fixed-phase retiming is given by

PR = ‘V_E: Apma.sk(e) + Z; Apexpose(e) + Apclk(¢0) . (12)
eChc e€ry

Thus the power optimization problem by fixed-phase retiming is equivalent to maximizing
the objective function PR while maintaining the performance of the circuit.

4 Fixed-phase retiming via boolean quadratic programming

In this section we define the power optimization problem under fixed phase retiming. We
show that the problem is a boolean quadratic program with monotone inequalities. It is the
monotonicity of the constraints that allows us to develop an efficient algorithm for fixed-
phase retiming. While optimizing circuits for power dissipation, it is desirable to maintain
the performance of the circuit and ensure that the circuit still operates at the same clock
speed after fixed-phase retiming. As a result, we need to impose timing constraints during
the optimization process. The following lemma gives the necessary and sufficient conditions
for a retiming such that a retimed circuit G, is properly timed by a given clocking scheme
.

Lemma 1 (Lemma 35, [5]) Let G = (V, E, d,w, x) be a two-phase, level-clocked circuit, let
T = (¢0, Y0, P1,71) be a clocking scheme, and let v : V — Z be a retiming function. Then,
the retimed circuit G, is properly timed by 7 if and only if for every edge u = v € E, we
have

(1)~ (0) < w(e) | (13)

and for every path u 5 v, we have
dip) < « (-l—i;”—(p)> + bxw) (14)
41| B2 4 (o) mod D)0y + 1oxe) (15)
| L2 - (r(u) mod )y + ) (16)

i X(u) # X(v), and

dp) < 7 (%p—)) + 1—x(w) (17)
1| 2] 4 (70 mod D)1y + 00 (19)
| 22— (r(w) mod 2) ey + ) (19)

if x(u) = x(v)-




Thus power optimization problem with timing constraints leads us to the following mathe-
matical formulation.

Definition 2 (Power Optimization Problem - PO) Let G = (V,E,p,w, x, Eg, C) be
a synchronous circuit and let © = (¢o,70,91,71) be a two-phase clocking scheme. Let
E; denote the set of edges u > v € E : w(e) = 2 and let E,. denote the set of edges
usveE: w(e) = 0. Moreover, let p be the least-weight path from u to v in G. The power
optimization problem under fized-phase retiming is to compute a retiming v : V. — {0,1}
such that we

max (PR)
subject to the constraints
r(u) < r(v) + w(e) forallu > vekE,
d(p) < T(ZFE) - 1)

+T(v)(7l—x(u) + ¢x(u))

—7(u) (V) + Px(u)) for every path u 5 v .

Expression (12) denotes the reduction in power dissipation under fixed-phase retiming which
we wish to maximize. The constraints in Definition 2 are required to maintain the perfor-
mance of the circuit. These are derived from Lemma 35 in [5] which gives the necessary and
sufficient conditions for a retiming r, so that the retimed level-clocked circuit is properly
timed by a general two-phase clocking scheme 7. It is straightforward to show that for
r € {0,1}, the conditions in Lemma 1 reduce to the constraints in Definition 2.

We now show that Problem PO has some special properties which we will exploit in
Section 5 to obtain a polynomial-time algorithm for solving it. From Equation (10), it
is evident that PR contains the quadratic terms r(u) - r(v) and 7(u) - r(v;) and thus it
is a quadratic programming problem. Moreover, since r € {0,1} the power optimization
problem PO is an instance of boolean quadratic programming which is NP-complete in
general. We make two important observations. First, we notice that all constraints in
Definition 2 are monotone inequalities (inequalities of the form az; —bz; < ¢ where a,b > 0
are termed monotone [2]) with at most two variables per inequality. Second, if we assume
that the latch capacitance is smaller than the capacitance of combinational blocks, that
is, Cr, < C(3) forall ¢ € E, then all quadratic terms in the objective PR have positive
coefficients. Specifically, the term (C(7) — Cr) - r(u) - r(v) in Equation (10) can only take
positive values with this assumption. We performed a comprehensive comparison of the
input capacitances of the cells in the CMOS3 Cell Library [1] to check whether this was
indeed a reasonable assumption to make. With the exception of a high impedance inverter
whose input capacitance was comparable, all other combinational blocks had higher input
capacitances than a level-clocked latch. Thus, the power optimization problem under fixed-
phase retiming reduces to a boolean quadratic program with monotone inequalities and an
objective to be maximized that has positive quadratic coefficients.

5 Polynomial-time algorithm for fixed-phase retiming

In this section we show that the boolean quadratic program of Section 4 is efficiently solv-
able. From a general boolean quadratic program we derive a boolean quadratic program




with the special structure that all constraints are monotone linear inequalities and the ob-
jective consists of quadratic terms with only positive coefficients. Based on the results of
Hammer et. al. in [4], we reduce it to a boolean linear program. We then show how to
solve the boolean linear program efficiently based on the results of Hochbaum and Naor
in[2]. Specifically, we show that any boolean quadratic program with m constraints and n
variables, whose constraints are monotone linear inequalities and whose objective consists of
quadratic terms with only positive coefficients can be solved in O(mn?logn)-time. We then
give a polynomial-time algorithm that optimizes power dissipation by fixed-phase retiming
and terminates in O(V*logV) steps, where V is the number of combinational blocks in a
circuit.

The general boolean quadratic program with m constraints and n variables is defined
as follows. -

Definition 3 (Boolean Quadratic Programming - BQP) Given ¢; € R", Cy € R™*"
and x € IB™, we wish to mazimize

c1x +x7Cox (20)
subject to
Ax<b, (21)
where A € R™*™ and b € R™.

We consider a special case of BQP in which the constraints are monotone linear inequalities
and all quadratic terms in the objective have positive coefficients which is defined as follows.

Definition 4 (Boolean Monotonic Quadratic Program - BMQP) Given z;,z; € IB,
dij ER foralli,j=1,---,n, and P = {(4,5):1 < i,j < n; dij > 0}, we wish to mazimize

n
Sodimi+ D dijzi-z;, (22)

(i,5)eP
subject to
apz; — brz; < ek k=1,---,m, (23)
where, aj,br € R and ay, by > 0.
Introducing new 0-1 variables y;; associated with the quadratic terms z; - z; in Definition 4

and constraining them to take the value of the product of the two literals in these terms,
we arrive at a linearized form of BMQP which is defined as follows.

Definition 5 (Linearized Boolean Monotonic Quadratic Program - LBMQP) Given
zi,Yij €B, dij €R for alli,j=1,---,n, and P = {(i,5): 1 < i,j < n; di; > 0}, we wish
to mazimize

Zdiwi-l- > dijuij (24)

(i,5)€P
subject to
Yis — T4 < 0 (iv .7) S ’ (25)
Yij — 25 <0 (l,]) eEPp, (26)
akxi—bkwj < ¢k k=1,---,m, (27)

where ag,b; € IR and ap, by > 0.
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POFPR(G, )

1 Compute objective PR and constraints C of the form of PO

2 Linearize PR to obtain an LBMQP formulation by replacing every term of the form
r(u) - 7(v) by the variable ry, such that C — C U {r(u) > ryp} U {r(v) > rys}

3 Compute r that maximizes PR subject to C using the Hochbaum-Naor technique.

4 return r.

Figure 5: Algorithm POFPR for solving the power optimization problem using fixed-phase retiming. The
algorithm determines a retiming r : V' — {0,1} that minimizes the power dissipation and terminates in
O(V*log V) steps.

It was shown in Theorem 1.7 in [4] that unconstrained boolean quadratic expressions of the
form of Expression (22) and their linearized forms of the form of Expression (24) have the
same optimum value. We state a corollary of that result for boolean monotonic quadratic
programs in the following lemma.

Lemma 6 The optimum solution of Problem LBMQP is equal to the optimum solution of
Problem BMQP.

Proof. The proof follows from a case analysis of the values taken by z; and z; and examining
the expression z;-z; and the variable y;; for each case. When (z;,z;) = {(0,0),(0,1),(1,0)},
z; - z; = 0; moreover, Inequalities (25) and (26) ensure that y;; = 0. When (z;,z;) = (1, 1),
z; - zj = 1, but y;; is unconstrained. Since the coefficient of y;; is positive, any solution
that seeks to maximize the objective will try to force y;; to be 1. For (z;,z;) = (1,1), y;;
is unconstrained and consequently it will be set to 1 in the optimum solution. Thus z; - z;
and y;; take identical values in the optimum solution of Problems BMQP and LBMQP
respectively. Thus the optimal solution of LBMQP is also the optimal solution of BMQP

l

The following lemma gives the running time for computing the integer optimal solution
of a monotone system of linear inequalities with bounded variables and only two variables
per inequality with respect to an arbitrary linear objective.

Lemma 7 (Theorem 3.7, [2]) The integer optimal solution of a monotone system of in-
equalities with respect to an arbitrary linear objective can be computed in pseudo-polynomial
time, in O(m(X 1=, [Vi|)2log(2, |Vi|)) where m is the number of inequalities, n is the
number of variables, and V; is the set of integers that are contained between the largest and
smallest integer feasible values of variable ;.

We now give the running time for solving Problem BMQP in the following theorem.

Theorem 8 The optimal solution to the Problem BMQP can be computed in O(mn?logn)
time where m is the number of constraints and n is the number of variables.

Proof. From Lemma 6, it follows that the optimal solution to Problem BMQP and its
‘linearized form LBMQP are the same. Problem LBMQP is a monotone system of linear
inequalities where the variables can take only two values in the set {0,1} which implies
that |V;| = 2 for any variable z; in LBMQP. Consequently, the running time for Problem
BMQP follows immediately from Lemma 7. O
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We now present an efficient algorithm for solving Problem PO which is based on the
results of Hochbaum and Naor in [2]. The algorithm, given in Figure 5, first computes the
objective and the set of constraints to obtain a boolean quadratic program. This boolean
quadratic program is then linearized to obtain an instance of LBM QP which is then solved
using the algorithm due to Hochbaum-Naor [2]. We conclude this section with the following
theorem.

Theorem 9 Algorithm POFPR solves Problem PO in O(V*logV) steps.

Proof. We have O(V2) constraints for the fixed-phase retiming problem and O(V') variables.
Since Problem PO can be formulated as an LQBMP, the running time for POFrPRr follows
immediately from Theorem 8. O

6 Conclusion

In this paper we have investigated fixed-phase retiming for designing low power digital
circuits. We have shown that the ensuing optimization problem can be expressed as a
boolean quadratic program which can be solved in O(V*logV') steps. We are currently
evaluating the effectiveness of our technique. Our preliminary experiments with a 4-bit
carry-lookahead adder indicate power savings of about 15%. Our experiments reveal that
in addition to shielding highly capacitive nodes from glitching, fixed-phase retiming reduces
power dissipation by equalizing arrival times of signals at gate inputs, thereby reducing the
glitching component itself.
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