!Computing Center, Academia Sinica, Beijing, China. This research was supported in part by

ONR Grant N00014-82-K-0184, and Yale University.

2D«spt. of Computer Science, University of Toronto, Toronto, Ontario, Canada M3S 1A7. This

research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

Nonlinear Implicit One-step Schemes for Solving
Initial Value Problems for Ordinary Differential
Equations with Steep Gradients
Jiachang Sun!and Ken Jackson?

Technical Report #215/82
September 1, 1982






1 Introduction . .

Table of Contents

.................................

2 A general theory for nonlinear implicit one-step schemes . . . . . . . . ... . ...
3 Derivation of some geometric schemes . . . . . . . .. .. Lo
4 Generalized Mean Scheme (GMS). . . . . . . . . . . . . . oo
5 Some computational considerations forthe GMS. . . . . . . . . ... .. ...
6 Extension to SYSteIms . . . . . . . . .t e h e e e e e e e e e e e e e e e e e

7 Numerical Tests

.................................

12
15
20
22

23






ABSTRACT

A general theory for nonlinear implicit one-step schemes for solving initial value problems for
ordinary differential equations is presented in this paper. The general expansion of 'symmetric’
implicit one-step schemes having second-order is derived and stability and convergence are studied.

As examples, some geometric schemes are given.

Based on previous work of the first author on a Generalization of Means, a fourth-order
nonlinear implicit one-step scheme (GMS) is presented for solving equations with steep gradients.
Also, a hybrid method based on the GMS and a fourth-order linear scheme is discussed. Some

numerical results are given.



1. Introduction

Many classical methods for solving initial value problems for ordinary differential equations are
based on piecewise polynomial interpolation. If the solution of the problem possesses a very steep
gradient, these schemes produce poor results. In particular, if a singularity occurs, it is often
inappropriate to attempt to represent the solution in the neighborhood of the singularity by a
polynomial. In this paper, we consider a class of nonlinear implicit one-step schemes that may be

more appropriate for such problems.

A general theory for nonlinear implicit one-step schemes is developed in section 2. Conditions
for consistency, stability, and convergence are obtained. Each comsistent symmetric scheme is at
least second-order, and the condition that it must satisfy to be fourth-order is given. A class of
symmetric and homogeneous schemes which are generalizations of the well-known trapezoidal »rule is

obtained.

The trapezoidal rule is exact for second-degree polynomials. In terms of geometry, a second-
degree polynomial is a conic. As examples of nonlinear symmetric implicit schemes, we develop
several geometric schemes based upon "circles”, "ellipses”, " parabolae”, and "hyperbolae” in section

3.

On the other hand, in terms of Means, the 'trapezoidal rule is the Arithmetic Mean of the first
derivative of the solution at two neighboring grid points. In section 4, based on the Generalization of
Means [9], a fourth-order nonlinear implicit one-step scheme (GMS) is presented for solving problems

with steep gradients.

In section 5, we discuss some practical considerations including the use of hybrid methods based

upon the GMS and more traditional schemes.



In this paper, the theory of nonlinear implicit one-step schemes is restricted to scalar equations.
However, we have used these schemes successfully to solve systems of equations. The application of

these schemes to systems is discussed briefly in section 6.

Numerical Results for seven test problems, some of which contain systems of equations, are
given in the last section. Two of the examples use an imbedding technique to apply the GMS to the

solution of two-point boundary value problems.

-



2. A general theory for nonlinear implicit one-step schemes
Consider the initial value problem (I.V.P.)
y =1xy), y(a)=y, (a<x<b)
where f(z,y) ts continuous in z and Lipschitz continuous tn y in the region

a<x<b,- co < y < oo, a and b finite.

We investigate the following general nonlinear implicit one-step scheme
Yn-E-I = Yn +h S(fn’fn+l)’
where

h=x ., -x,f =1x,Y) Y

n+ = f(x

’ fn+1 n+1’ n+l)'

The the local truncation error for scheme (2) is
L) = y(x, , ) - 5(x,) - BS(Cx, 306, 0, 4 3%, 4 )y

where y(x) is the solution of (1).

Definition 1:. [5] The scheme (2) is said to have order p if p is the largest integer for which

L(f) = O(hP*1).

Definition 2: The scheme (2) is said to be consistent with the I.V.P.(1) if L(f) = o(h).

(1)

(2)

(3)

We will use the notation f(t)=f(t,y(t)) throughout this paper except where it may be confused.

Forx < x <x ., lett=(x-x)/h. Since
Yt yp) - ¥(x,) = Bf " f(t) dt,
(3) may be rewritten as

L) = B (8) dt - Sty 1, M0y 30y -

By the Integral Mean Value Theorem, there exists a point § between x  and x_ _, such that

J " 1(t) de = f(Ex(9))

So

(4)



LU0 _ f16.3(6)) - ST, 30t 905, )

Furthermore, if f'(t) = g{-exists, then
[y de= f(x )+ [ P(t)(1-t) d
0 0
and
. ) 1
S(f(x)f(x,, 1)) = S(F(x,)f(x,)) + f - dS(f(x, )A(E))-
Hence, we have
Lemma 3: Let the function S(f,g) be continuous in sts two variables f and g. Then the
scheme (2) is consistent with (1)if and only if
S(f,f) = 1. (5)
Moreover, if both f and S have continuous first derivatives, then any scheme (2)

satis fying (5) has truncation error

L(f) = bf {F(0(1-t) - STH(x, (xAE)}e | ©
where f(t) = 9, S'(g (1) = 3 gf(t)

The proof of the following theorem is similar to the one given in [2] for general explicit one-step

methods.
Theorem 4: Let
(i) the function S(f,g) be continuous jointly as a function of its two arguments in the
region fg > 0, and
(1) S(f(z,y),9(z,y)) satis fy the Lipschitz condition

| S(f(x,y),8(z,w)) - SExy ) Ew ) < M(ly-y|+ [w-w'])
for all points in the domain defined by

a < x,2 < b’ -o0 < )’aY‘,W,W‘ < +o0

under the constraints f(x,y)f(z,w)>0 and f(x,y‘)f(z,w*)_>_0.

Then the scheme (2) is convergent i f and only i f it is consistent.

In order to get a second-order scheme, note that



7 de = fix,) + () + 5 7 d
£ 1 dS(i(x,)0(6) = b FSEx )Ny + 1 S (Ex).A0) (1-t)de.
0 n [}

Therefore,
Theorem 5: If S,f € CL, then the scheme (2) has a second-order rate of convergence i f

and only i f

S(if) =1, 9%(?% -1 )
=g

Moreover, i f the second derivatives of S and f are continuous, then

L(f) = - —I {(1-0%1(t) - 21-4)S"(f(x,) f(1))} dt
where S(f(x,,),f(t}) = S(flz,,.9(z, ). ft,y(t))).
Corollary 8: Keeping S(f,f)=/f, the second condition of (7) is equivalent to one of the
following four conditions

3S(g,f) 35(g,f) 1

g=f % !
3S(g, ) _ 95(g/f) and 3S gf) _1
% gt 8 g %

Suppose now S and f both belong to C?%. Expanding f about the point Xpy1fe = (x,+x, +l)/2’

==

D] -

we have
1 hZ,, 4
f(t) dt = an/2 + ﬂf ’(xn+l/2) + O(h%). (8)
On the other hand,
aS(f(€).f(n)
S(f(xn)’f'(xrwl)) = S(f()'{n-l~1/2)’f(xn+l/2)) + —'3_'__2—' (xn‘xn+1/2) +
¢ §N=%y,1/0
3S(f(£).8(n)) 9*S(1(€),f(m)) (XX 41/2)°
) (X 41X 4172) + _BET—T __2“'&""
" §n=Xy41/9 En=xXy11/2
8°S(1(£) f(m)) UM CoprFngr)

(Kp 1 Xne1/2) XX pay2) + - o

_ 2
l57’7""“n+1/2 Ie’"=xn+l/2

a&on




For symmetric schemes, S(f,g)=S5(g.f) and, consequently,

B2 0%S(f(€),8(n))
—_—t

S(f(x).f(x "n+1/2) tg a2

n+1)) = f(

82S(f(€)1(n) 2a‘~’S(f(£),f(n))

- 4 .
on° ond¢ Er=raip ¥ o)
But
Ao M) aSHeS) - OS(ES) ,
= .!7 f1 ,
€ o1(£) O+ () ©
%) f(m)  B%S((E)f(m)
— f1 2 .
9€ on atmere)
Hence, from Corollary 6
_ B o opd S08)  8%S(0g)- .
S(f(xn),f(xn+l)) f("n+1/2) + 8—{ 7 + 2] or2 afog J lf,g=f(xn+1/2) } + O(b%). 9)

Substituting (9) and (8) into (4), we obtain the following theorem.

Theorem 7: If Sand fe 02, then each symmetric consistent scheme

S(fyf) = f, S(fﬂg) = S(grf) (10)
has a second-order rate of convergence, at least. Moreover, if the fourth derivatives of f
and S are continuous, then

a%s(f, a%s(f,
(fg) 0%(fg) )+ o). a1)

19 3f’2’
{f + \ af2 afag ]'f’szf(xn+1/2

L(f)= -

= oA
B

It should be noted that symmetry is a sufficient but not necessary condition for a scheme to be

second-order. For example, the scheme

2
Y =Y h (fn"—fn«}-l)/2 + fn f‘n-lH

ntL T T (f )2
is second-order but not symmetric.

Corollary 8: A symmetric scheme is fourth-order i f



d*s(fg) 67S(1.¢g) f” i
8f2 ) 6f8g f’g=f(xn+l/2)--_.,‘:_;-f:2 |x=xn+l/2. ( )

Now we consider a general representation of consistent symmetric schemes (2). Let
1

_fg _ f+g
f—"g'yﬂ—T-,

and assume S(f,g) can be expanded in terms of its two variables f and g:

S(f.e) =5(Em = T oy ;& 7.

Using conditions (10), each consistent symmetric implicit one-step scheme (2) has the expansion

f+ f- 2 48,
S(f.g) = _i__g_ ) Qok,j (f2§)2k+o (—‘)2g 4, (13)

k>0,j

where gy ; are real constants to be chosen.

Furthermore, it is often useful to restrict the class of schemes to be homogeneous in the sense
that
S(cf, cg) = cS(f,g) (14)

for any constant c. For these schemes, we obtain the following conclusion:
Theorem 9: Assume S can be expanded in terms of its two variables f and g. Then each
homogeneous consistent symmetric nonlinear implicit one-step scheme (2) has the

Jollowing expansion

S(g) = 45 {1+ £ oy (FEY+2). (15)

where a & Gre real constants to be determined.

Observe that the trapezoidal rule is the principal part of each homogeneous consistent symmetric
nonlinear implicit one-step scheme (2). Hence, in this sense, these nonlinear schemes are an extension

of the trapezoidal rule.

Setting a) = 0 for all k > 0, we get an ’extended trapezoidal rule’ with one extra term:

)2
Site) = 5 - oiFEh e



From (11),

h3

{1 - 3a-} + O(h®). (17)

L(f; a) = -

In terms of Means, the scheme (16) represents a linear combination between the Arithmetic

Mean and the Harmonic Mean of f and g:

f+ 2f
S(f,g) = (1-a) —§§ + a T-'Fg

For example, if @ = 1, the above scheme represents the Harmonic Mean between f and g.
Finally, we discuss the stability of the nonlinear implicit one-step scheme (2).

Let f(x,y) = Ay and Y, = pY , where p is the "growth factor” in the step. Assuming that the
scheme (2) is homogeneous in the sense of (14), we get

p =1+ h\S(1, p). 7' (18)

Definition 10: A nonlinear implicit one-step scheme (2) is said to be A-stable if all the
roots of its characteristic equation (18) satisfy |p| < 1 for any Re hA < 0.

For nonlinear implicit one-step schemes, (18) may have more than one root for a fixed h)\, and it
may be possible to choose which root the scheme follows, unlike the case for multistep methods.

Hence, the following definition may be of some practical value.

Definition 11: A nonlinear implicit one-step scheme (2) is said to be conditionally A-stable
if at least one root of its characteristic equation (18) satisfies |p] < 1 for any Re hA < 0.

Theorem 12: For each real symmetric homogeneous scheme S(f,g), the characteristic
equation (18) transforms the unit circle of the p plane to the tmaginary axis of the \
plane.
Proof: Since S(f,f) = S(I,f) = S(f,f), S(f,f) is real for any f. Hence, for p = el?,

.1 B2 B2

S(eiﬂ, 1)‘= WW% is purely complex.

A necessary requirement for a homogeneous scheme to be A-stable is that it is stable at infinity.
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Theorem 13: A necessary condition for a homogeneous nonlinear implicit one-step

scheme (2) to be A-stable is that all roots of

S(1,p)=0 (19)

\
N

satisfy |p| < 1. To be conditionally A-stable, at least one root of the above equation must
satisfy |p| < 1.

As an example, consider the stability of scheme (16) with characteristic equation

1 -1
p=1+hx{£§-g{;f’q__)) (20)
If |p] = 1, then p = e 0<f<2n, and

[aey

%-_{-—f = i tan f/2.

Hence, (20) may be rewritten as
2i tan (/2
1+altan 8/2]*
It follows that, if |p| = 1, then hX is purely complex and lies in the interval (-ia"'/2, ia"!/?) for
a>0. For a<0, h\ may assume any value on the imaginary axis. Also note that, for scheme (16),

equation (19) becomes
-1 _

‘»—\

a'l/ 2,

[

<+

)

That both roots of S(1,p) are on the unit circle for @ <0 and that one is inside and the other is

outside the unit circle for a >0 follows from the well-known result
Lemma 14: The one-to-one mapping tn the complex field

we) =L (21)

maps the domains |z|<1, |z|=1, and |2|>1 onto ReW<0, ReW=0, and ReW>0,

respectively.

The characteristic equation (20) can be rewritten as

aW(p) + EW(p)- 1 =0, (22)
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where W is defined in (21).

Since W=0 is not a root of equation (22), any root W satisfies hx (W4 (-e)W} =2. If e<0
and ReAh < 0, then ReW <0, whence, by Lemma 14, any root of the characteristic equation (20) for

the scheme (16) satisfies |p| < 1.

Also note that, if @520, then the roots of quadratic equation (22) satisf& W,W, =- o1, Hence,
if a>0, then Arg(W,) + Arg(W,) = = and, consequently, either ReW,=ReW,=0 or ReW, and
ReW, are opposite signs. Therefore, by Lemma 14, either both roots of the characteristic equation
(20) for the scheme (16) satisfy |p|=1 or one is larger than 1 in magnitude and the other is smaller.
We may simply choose the value of Y, in scheme (2) with (16) such that |[Y Il < [[Y, || Thus,
we have proven

Theorem 15: Scheme (16) is A-stable for a < 0 and conditionally A-stable for o > 0.

For the mbre' general scheme (15) with a finite terms number of terms, the corresponding

characteristic equation is

T ay (W) + EW(p) -1 =0, | (23)

k

o

By the relationship between coefficients and roots,

2n+2 1 9 '

k=1

where W, (k=1,...,2n+2) are roots of (23). Hence, if Re(h\) < 0, then ReW, <O for at least one

root W of (23). Therefore,
Theorem 18: FEach scheme (15) with a finite number of terms is conditionally A-stable.

Remark: Theorem 16 is valid even if the coefficients o of the scheme (15) are complex.
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3. Derivation of some geometric schemes

The trapezoidal rule can be viewed as the Arithmetic Mean of f and f__, since

S(, fyy) = gf, + 1

n+l)'

Let f = tan a, f = tan o, (¥(x,,F¥(x ))/h = tan Ly The trapezoidal rule

n+1

satisfies

1
tan @,y = Q{tan a, +tana ) (25)

It is easy to see that the scheme (25) is poor if the angle @ or a _, is close to 90°. In this case,

n+

it is natural to replace (25) by the Arithmetic Mean of the angles o and o +1

1
@1z =30 + oy (26)
The corresponding function S(f_f +l) is
(a+8 29041 IV +1f -
S(ffpet) = : (27)
n’ ' n+l i f f .
, n + n+1 Y

From analytic gec;metry, the curve which satisfies (26) everywhere is a circle. So we call (27) a
Circle Scheme. The Circle Scheme (27) is not linear with respect to the solution y(x) or f, but (26) is
linear with respect to the angles. Hence, if the angles are not too lafge, the Circle Scheme is close to
being linear. In fact, if we rotate the coordinate system by an axigle 8= a1/ then the Circle

Scheme coincides with the trapezoidal rule in the new coordinates.

Introducing a parameter a into (27) leads to a class of Elliptic Schemes:
{(a%+ Da+, D2 411

E(f f, , a) = 2 (28)
ne fn + fn+l
Note ’
OE(fg) (a*+g)'/2 E  OE(fg) (a*+7)/? E

ot (@) Pi+g) 95 (a2 Ai+e)
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9°E OEE- of 9°E  OE E

82 of a’+f2  ofdg  Of aP+g’

i)_‘-’_E_I f 9E f
aI=8 " ga%+f2) ofag 5  2a’+?)

A straightforward computation leads to the following conclusion.

Theorem 17: E(f,,f, , ;a)in (28) has the following properties:

(f+f JE 2 0 with '="iff f+f ,

JE . JE
gf:?.oy gf;lzo (f,+f .H);r‘ZO

Min(f,f,, ) < E(f,f

(fnfn+l)l/2 < E(

ja) < Max(f f ).

f +f
2“*‘ ifa>(ff

n+1’

a) < )1/2,

n’ n+l’ n n+l

of f
—noel < E(fn’fn+l; ) (fn n-i-l)l /2 ifa < ( n n+1)l/2'
n+1
As a function of a, E has only one fized point a = {fnfn+1)1/2, Jor f £, >0

. ks
Hence, the Elliplic Scheme (28) represents a Mean which lies between the Arithmetic Mean and

the Harmonic Mean.

Similarly, we can derive two other geometric schemes: the Parabolic Scheme and the Hyperbolic
Scheme. An easy way to derive the Parabolic Scheme is to apply the trapezoidal rule in a coordinate

system rotated by an angle a=garctan(a) from the original coordinate system:

f+ f f“+!+a

pa) = .
n+ 2 at+[(f + L) 2P
Substituting hyperbolic functions into the formulas (25),(26) instead of trigonometric functions, we

P(f_f (29)

get the Hyperbolic Scheme

22 21 1/2
H(f f , a) = Pl (0 0, ) | (30)

AT fn + fn+l
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Since schemes (28),(29),(30) are all symmetric, by Theorem 7, we have
Theorem 18: The Elliptic, Parabolic, and Hyperbolic Schemes (28),(29),(30) are second-
order. The local truncation error for the Elliptic and Parabolic Schemes is
h® (., £ 5
A+ O0)
and for Hyperbolic Scheme (30)

h3 99 ff,z 5
-ﬁ{f °:-a—é—;—f2}|x=xn+g + O(h ).

Remark: 1. In practice, the Parabolic Scheﬁe has an advantage over the Elliptic and Hyperbolic
Schemes in that it does not require square roots. Also, it is valid for all .1 +1 including fn+f o +1=0‘
2. The parameter a can be chosen so that one of the schemes (29) or (30) is fourth-order.

3. These geometric schemes are not homogeneous unless we multiply the parameter a, as well as fn

and

nt by the constant c.



15

4. Generalized Mean Scheme (GMS)
In addition to the above Geometric Means, another useful Mean for solving O.D.E.s is the

Generalized Mean developed by Jiachang Sun [9].

Definition 18: For a given positive sequence a = (a,,...,a ) on a real plane (r,t), a
Generalized Mean of the sequence {a} S(a,,...,a ;r;t) is defined by

(n-1)! I (t+1) .

S(al’.”,an;r,t) = r(t+n) [al ,-.-,3nr]yn'l+t}l/"" (31)

where [y,,....y |f(y) is the (n-1)-th divided difference of the function f(y) at the points
yla'“yyn'

Now, we use the Generalized Mean (GM) in (31) to construct the Generalized Mean Scheme
(GMS), a nonlinear implicit scheme. In this paper we only consider the one-step case. From (31),

the GM between fn and fn+l is

) f lr(l+t) . f r(14t) , .
. ___ n+ n V1/rt

S(fnrfn+l)r7t‘) - { 'l—__,'_t f r_gr J / . . (32)
n+l n

where r,t are real. Substituting (32) into the local truncation error formula (11), we get

Theorem 20: Let f(x) have constant sign forz, <z < z then each scheme (32)

n+l’
with two real parameters (r,t)is second-order at least. Moreover,

h3 ., f12
L(f;r) =- TQ'{ f7-[3- 1'(2+t)]§-f—}]x - + g + O(b®), where h = Xo41 " Xpe (33)

n

To simplify the study of this scheme, we consider the restriction rt==1 on the parameters r,t.

The scheme (32) reduces to

.y I n+1 n .
S(fn’fn-f-l’r) = T4r ‘—f""F—"fT‘ ’ (34)
n+l ~ 'n A
where
f .- f Log (f /T . .)
.0) — +1 n . —_ +1
S(fn:fn+1)0) - _n'—"""__f- ’ S(fnafn.H" - f—'fln_l'_'l" (35)
Log (fn+1/ o) nel - 1o

and the local truncation error (33) becomes

. 3 12
L) = - (1= (1n)f) + od). (36)
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It is obvious that for r= 0 the scheme (35) is A-stable in the sense of the previous definition,

because this scheme is exact for any exponential function. In general, the characteristic equation (18)

for (34) is
1+4r
=1+ f_lillf____.__l_
p= I4r Pr -1
or
r
p-1 Abr
(p-1) e = 1Fr (37)
Note that
( ) pr -1 |p|2(l+r) - ;’lp‘?.r . ;r'pl2 + ;,l+r - pl+r + pr +p-1
- == - B
p1+r_ (pl+r_ 1)(pl+r_ 1)

Let p = Re'’. Then the real part of the numerator is
R2(+1) L (R1+21R)cosB - (RZHT-R")cosrf - 1
which, for r>0 and R>1, is greater than or eqﬁal to
R21+1) . (RIFILR) - (R*R") - 1 = (R-1)R™-1)(R!1) > 0,

whence ReAh > 0 in (37). Consequently, if r>0, then the scheme (34) is A-stable.

For r<0, r#-1, rewrite (37) as

(1- l—r_'-_r)\h)pl“ o -p+(1+ = h)=0. b (38)

L
1+r
First, assume r is a rational number: r = - m/n, where m and n are two positive integers.
Substituting Z==p1/ " into (38) and multiplying by Z™, we get
n+m _ ¢y _ T n_ I m _
Z (1 1+r)‘h)z (1+ 1+rxh)z +1=0.
Since the product of roots of the above equation equals (-1)™*™, if any root is greater than 1 in

magnitude, then at least one root is less than 1 in magnitude. By continuity, this holds for all real

r<0, including r=-1. Therefore, if r<0, then the scheme (34), (35) is conditionally A-stable.

In summary, we have proven
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. Theorem 21: The scheme (34),(35) is A-stable for each parameter r > 0 and is
conditionally A-stable for r < 0.
Given a fixed r, scheme (34) is exact for equations y' = f(x,y(x)) = C(x - Co)l/ *, where C) and
C, are constants, just as the trapezoidal rule is exact when f is a linear function of x. This explains
why the GMS may lead to better results near a singularity, provided we can find a good

approximation to r.

Note that we can interpret the GMS as an Intergrand Approximation Method (Jackson, [4]).
That is, the discrete numerical solution {Y, } can be extended to a continuous approxmation Y(x) to
the solution y(x) of (1) satisfying Y(x ) = y(x ) by

Y(x) =Y, + f: PIf(., Y(.)); |(s) ds,

-

where, for x ¢ [xn,xn+l],

+178 +1
Pleirl(s) = {glx,)F £ - + 8lx,,,) - ;; oLy,
Plg;r] is a nonlinear interpolation operator computed by first raising g to the power r, then
performing linear interpolation, and finally back transforming by raising the interpolant to the power

1/r. Of course, if r==1, P reduces to a linear interpolation operator.

A similar technique can be employed to enrich a piecewise linear space to solve singular two-
point boundary value problems, using either the finite element method or the finite difference

method. (See, Jiachang Sun [10], [11]).

In order to obtain a more accurate scheme, we set

f f?’

‘f?lx-: Xt % : (39)

r=1-

From (36), the scheme (34) is fourth-order accurate for this value of r.

It is worth mentioning that the function in (39)
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f”

F(,00" ) = e : (40)
often remains bounded even when f and its derivatives are unbounded. For instance, F is a constant
for any power function f==C(x - Coy)*. And, what is more interesting, F is identically equal to 1 for

any exponential function, f=C, Exp(C,(x - Cy)).

However, the F is not easy to compute, as an evaluation of " is required. Some high-order
schemes based on non-polynomial interpolation developed by Lambert [5] and Lambert and Shaw [6]
have not been used widely, possibly because they too require the evaluation of higher derivatives of

f. Furthermore, it is not clear that these methods are applicable to systems of equation.

Fortunately, we can avoid computing "’ in (39) by setting
f f
r=.};(.f.j‘+‘ ) (41)
n+l n
With this approximation, the scheme (34) retains its fourth-order rate of convergence. Also, it

retains exact for f(x,y(x)) = C,(x - Co)llr-

Computing experiments show that there is only a slight difference in accuracy between using
(39) and (41) in the scheme (34); sometimes one is a little more accurate, and sometimes the other.

But (41) saves computing time, and {” is not required.

An alternative derivation of the GMS is obtained by taking
Ff =7 (rs£0), Flf=1, Gu) =/ "FEdé (42)
uo

With this notation, (34) may be written as
-1 -1
G(Ff ) - G(Ff)
1 1 ‘
F fn+l -F fn

]

(43)

S(f £, ) = [F', ,F'f] G(y)

n+1’

This formulation can be generalized by considering other functions F. Using Theorem 7 and the
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local truncation error formula (11), we have

Theorem 22: For any one-to-one map F, (43) defines a second-order one-step implicit

scheme with local truncatson error

3 2r-1
L(f; F) = - E-{ R d—F-f(dF'lf)"n + O(b9). (44)
‘ 12 df? di X=Xpt1/2

This formulation unifies most of schemes described in this and the previous section. Some
examples follow.
1. Ff = f leads to the trapezoidal rule.

2. Ff = el leads to the scheme (35). (It is independent of the parameter r).

af
3. Ff = (—1—.—-@—)1—/2 leads to the Elliptic Scheme (28).

leads to the Hyperbolic Scheme (30).

f=

(1+3)1/2

Many other schemes can be derived using this formulation.
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5. Some computational considerations for the GMS
First, we consider how to solve the implicit equation (2). For an initial value system (1) with

steep gradients, functional iteration may be employed:

Y =Y +hs(f,f k) (45)

where

(k-1)
k'l) == i ( {D.T_!'__..__ - f_n_.)
k-1 77
h f"n-f-l( ) fn
For stiff problems, a Newton iteration should be used instead.

ol (46)

As a simple stopping criterion for the iteration, we use
p
k) vyl
” Y n+1 Y n+l1 ” < Ey’

where € is a parameter to be specified.

The starting value, Y(o)n +1» 18 computed by a conventional explicit method. For simplicity, we
use the Euler Method for the numerical tests in the last section. Of course, a more accurate

predictor may be used.

The rate of convergence of the iteration (45) depends upon the value of the " contraction factor”

ds oS of dS or
har=hsray tharay (47)

where, for the GMS,

as_; S ¢ ¥ Logf - rn1+'Logfn_ f"Logf - f "Logf_ 5

———
T (1+I‘)2 1+r . fnr . fnr
If f is continuous, then,

}.

14r
S-->—;— o as h-->0, f-->fn,

and

as n r (l4+r 1 1+4r 1
r m) * ﬁr{TfnLngn + o - fLogf, + an)} =0

Also, from Theorem 5, 3S/df --> 1/2 as h --> 0. Therefore, for sufficiently small h, iteration (45) is
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convergent and, moreover, its rate of convergence is close to that of the trapezoidal rule using the

same functional iteration procedure.

It is worth mentioning that the GMS is particularly well-suited to solving problems having steep
gradients, especially those problems for which f(x,y(x)) behaves like a piecewise power function of
x. In practice, it may be more efficient to use the GMS only on the sections of the problem having
steep gradients and a conventional scheme on the sections of the problem where f(x,y(x)) is well-
behaved. We consider two fourth-order hybrid schemes of this type. If |fn| S_f‘, then MixI uses the

cubic Hermite scheme (modified trapezoidal rule)

Y

f+f 3
+1 h » 9
ntl =Y +h-= 2“ +‘“12(fn'fn+1)- (48)

And MixII uses the classical fourth-order Runge-Kutta scheme in place of (48). If lfn|>f*, then both

MixI and MixII use

f .- f +
S(Ff )= Dt n_ if [r|<er’,
It Log (f /1)

Log (fn/fn+1)

T if [r+1| <er',
" 'n

S(fn’fn+l) =

n+1
and

r fn+l(fn+1/fn)r - fn

S(fn,fn+1)= e T I/f T , otherwise, (49)
n+ n

* * . * *
where f and er are constants. In our numerical tests, we take f = 2 and er = 0.01.
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6. Extension to Systems

So far, our discussion has been restricted to scalar equations. However, we have used nonlinear
implicit one-step schemes successfully to solve systems of equations; some numerical results are

presented in the last section.

For systems, we apply the scheme (2) to the individual components of the system. The
parameter r is a vector whose components elements are determined componentwise by formula (46),

where

M= Sxa() = 50+ £ 3¢
]

is a vector. Hence, the Jacobi matrix of f(x) is needed to be computed for finding the index vector r

to get a fourth order scheme. The advantage of (41) over (39) is more significant for systems than

for scalar equations.

The analysis of nonlinear schemes for systems of equations is an open problem that we will

A
S

consider in the future.
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7. Numerical Tests
In this section, we present some numerical results. Throughout, y(x) denotes the solution of the
problem (1) and C(x-£) is a piecewise approximation to function of y'(x), where p = 1/r is the index

of the approximation. If p < 0, the approximate position of the singularity is

f
§=x +h {(=2)y-1})L
n+l1
Throughout this section, we use the following abbreviations:

GMS -- the scheme (34);

R-K -- the classical fourth-order Runge-Kutta scheme;

C-H -- cubic Hermite scheme (48);

MixI -- the hybrid scheme composed of GMS and C-H (49);

MixII -- the hybrid scheme composed of GMS and R-K;

L-S -- the scheme proposed by Lambert and Shaw [6};

Error -- Y _ - y(x) for the GMS;

Er(f) -- the error in the first derivative Y’ - y'(x) for second-order equations.

A uniform mesh, h = x__, - x_, is used throughout the section. The Fortran program was run

n+1

in double-precision, on a DEC-System 2060 computer at Yale. The iteration error € is taken to be

10710,

Test 1.08] y' =14y, y(0)=1

with solution y(x) = tan(x + ) which has a strong singularity at x = ‘1{-
Table 1. x =0 (0.05) 0.75
Uy T e e € 1 s R-K

0.70| 11.6814 |11.6808 | -1.975 0.7828 | 11.6813 11.6680

SR D e | e oo
0.75| 28.2383 [28.2305 | -1.992 0.7851 | 28.2378 27.6947

Remark: For the exact solution, p =-2, &= -} - 0.7835.
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Test 2. [6] xy' =y + 5x%eY/5% y(1) =0

with solution y(x) = -5xLog(2-x) which has a weak singularity at x = 2.

Table 2. x = 0 (0.05) 1.95

- - - — . - - —— - - - - - ————— - - - - -

1.90] 21.8745 21.8753 | -1.055 2.001 | 21.8748 21.8746
S P | et o
1.95] 29.2084 29.2098 | -0.997 2.001 | 29.2099 29.2077
S D b e

Remark: For the exact solution, p=-1, §=

Test 3. [8] (1-x)y’ = y Logy, y(0) = %2

0.2/(1-x)

with solution y(x) =-e which has an essential singularity at x = 1.

Table 3. x =0 (0.05) 0.95

- - - -~ - —— - "0 D W - - - o P - - > W W WO —— . OO W —n o -

o - - - 0 - - o wo -

I
0.90] 7.3891 7.3902 | -2.521 0.963 |
e e _ e b e
0.95| 54.5982 54.8956 | -3.126 0.976 |
SN I

Remark: For the exact solution, p =-00, € =

- o 5 o - - - .5 00 o oo D = w0

These results show that the GMS is more accurate than the classical fourth-order Runge-Kutta
scheme in Tests 1 and 3; the accuracy is about the same in Test 2. Also, the GMS is more accurate
than the scheme of Lambert and Show in Test 3; the accuracy is about the same in Tests 1 and 2.

However, the GMS doesn’t need "’ which the L-S scheme requires.
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Test 4. (Artificial) A system of equations consisting of four components:
y, =-0.1 e¥z/y,, ¥,(0) = .35
¥y = 2y 0.) (105" /% y0)=0

ez Log y " ¥5(0) = 0.1

o
I

Yy = 2y3y4y )’4(0) = e0.2.

The solution is

y,(x) = 0.25(1-x)* + 0.1, y,(x) = -Log(1-x),

y3(X) = O.I(I-X)'z, y4(x) == 80-2/(1-)()-

Table 4 h = 0.05

@ e e - - - —— - - - - - - - = = - - - - -

- — - - > ——

0.900| 0.1000 | 3.01 0.77
W . I

(2)1 2.3026 | -1.00 0.91
I I

- - | o - - - ——— - - - -

— i > - | - o - - — - — - - - - - -

(3)] 10.0000 | -3.00 0.97 9.9992 8.8429 9.6617
@ s To e o | T ey T ot 7 ies
T R T P - o e T S W S
T R o T R o T S

I

l
e |2
(3)| 40.0000 | 5.53 0.84
l
I

- - - ———— — ——— - ——— - -

| -

- o - - | " ——— - - - - - -

(4)| 54.5982 50.0038 32.9154 *
( h/2 54.4607 46.0766 44.9161
<7 The C-H scheme overflows on the last point using (45).
Remark: On the last point x=0.95 the vector of first derivatives is equal to

( -0.16x1073, 2.1, 1.4x10%, 3.8x10% ).
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Test 5. A problem with an integrable singularity:

,_—y_ _lt _-2~(l+t) i
Y =13t (Ix)k- o5 y(0) = - f7+, -1 <t <0,

The solution is

. 1, 14x 1
y(x) = Sign(x - '2') i Ix - gl”t-

Table 5. Errors x = 0.1 (0.1) 1.0

- - - - - - ———— - —— - - " - > > . - - - e " . " - - == = . - -

x | t=-0.1 t=-0.3 t=-0.5 t=-0.7 | * t=-0.7 *
e e |
0.1 ] -0.214-5 -0.115-4 -0.60-5 -0.87-4 | 0.54-12
0.4 | -0.237-4 -0.416-6 0.70-4 -0.19-3 | -0.18-10
0.5 | 0.245-1 0.959-1 0.63+0 -0.74+1 | 0.29-08
0.6 | 0.431-1 0.150+0 0.87+0 -0.86+1 | 0.29-08
0.9 ] 0.507-1 0.178+0 0.10+1 -0.10+2 | 0.40-08
1.0 ] 0.533-1 0.187+0 0.11+1 -0.11+2 | 0.42-08

- e > - - . - - - - - -~ - - O G = 5 e . - WD = - - . - > e - - - -

Remark: the right éol.umn is the error for another problem
o-(1+1)

y'=(1+t)y(x-0.5)", y(0)=F—

the solution of which is:

, = 1<t<0,

y(x) = (0.5-x)!*t/(1+t), forx < 1/2

y(x) = (x-0.5)"*/(1+t), forx > 1/2

which has a turning point at x = %-
The GMS scheme may be used with invariant imbedding to solve linear two-point boundary

value problems with various singularity properties. For these problems, y'' = f' is available directly

and may be used in the computation of the fourth-order GMS scheme using (41) to compute r.

Consider the two-point boundary value problem
y"(x) + p(x)y'(x) + a(x)y(x) = r(x) (50)

ay(0) + byy'(0) = ¢, a,;¥(1) + byy'(1) = c,.
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To solve this problem, we use the sweep method of Gelfand and Formin [1] (p.133). (See, also

Miller [7] or Scott [8].)

For by# 0,

(i) the Initial Value Problem for the Forward Sweep is

a
W =-q-pu- v’ u(0)=-b—o,
0
vi=r-v(u+p) v(0)=—-°—.
bO
(ii) and the Initial Value Problem for the Backward Sweep is
¢,-b,v(1)
y=uy+v, =

a,+b,u(1) ’

For by =0,

(i) the Initial Value Problem for the Forward Sweep is

A b,
u=1+u(p+qu), u(0) = - —,
3
o
vi=u(r+qv), v(0) = —.
3y

(ii) and the Initial Value Problem for the Backward Sweep is
. c,u(1) - b,v(1)

uy' =y +v, ¥( .
au(l) + b,

Test 6. An unstable two point boundary value problem
y" - 165y’ - 2700y + 4.95¢!%* =0,
y'(0) = 0.015, y(1) = 0.001¢'®

with solution y(x) = 0.001 e'*%.
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Table 6. x =0 (0.005) 1

e I e o e 7
DT RN R o ey e Iy R B
TR TR N T g e arm-aa e s st e ab i -
N TR I R W R ey T e e e
NN ARy el Tt et et ey
NIRRT ey eyl e yrare

e - - —— - —— - — - " =" = . = - ———— - - - = — - o - - ———

Remark: NI -- number of iterations with e = 10719 for the GMS.

Test 7. A linear singular perturbation problem with constant coefficients
Ly=-¢y"+y +(l+eJy=1f(x), in(0,1)

¥(0) =y(1) =0
where f(x) = (1+¢)(a-b)x - ea - b,

a=1+ e'(H")/‘, b=1+c¢€l,
with. true solution

y(x) = eI+ax)fe L ox_ 5 4 (a-b)x.
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Table 7.1 Maximum error in Y at the nodes
e i/ [ RK aMs MixI cH MixII
'6'1"'1"16":""6'5115'""Iéfiéii'°"‘iaféiié """ 0.79-3  0.37-1
:"éé":””é'Iiii """ 0.75-4  -0.12-4 0.47-4  0.99-3
:"56":""6'2515 """ 0.10-4  -0.74-6 0.29-5  0.16-3
:"éé":""é'éiié """ 0.23-5  -0.46-7 0.18-6  0.33-4
'6‘6i':'166°’:""6'5116""3675315 '''' -0.19-4 0.56-3  -0.24-2
:”566":""6’%535 """ 0.65-5  -0.125 0.34-4  0.10-4
:'266":""'6'5635 """ 0.81-6  -0.76-7 0.21-5  0.17-5
:’éé6":"’"6°i512""f67i§16 """ ~0.47-8 0.13-6  0.34-6
“6?65i:i666":""6'5616""367i§35 """ -0.19°5 0.54-3  -0.12-3

- - - — =~ - - - - - - - - - - - . = . = - - - e b e e .-

- - - - - — - - - ——— — — - -~ " - ——— - - - - - = . .y " . - - -

€ 1/h | R-K GMS MixI C-H MixII
R T e S T T
R Tl o TP S-S 3 o S -7 S

R I T S 3 e-aa e par e o

R T Bt e T S W

T I T e or S - M- 3 o S - e P
T ey N T S S .7 S P

T T T CH-Jama YT -ma 3 o
BT R e o S YT R
T T R B PR o Y T S 3" T R R ot
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Table 7.3 CPU TIME in seconds on a DEC 20.

- - —————————— - - ——— i ———— - ——— - - - —— - ———

€ 1/h | R-K GMS MixI c-H MixII
6'1"1"i6'°':__"6°65 """" 0.57 0.48 0.38 0.23
:_'56'-':""5'i§ """" 0.52 0.41 0.38 0.21
:_'36"':’°°'6'§é """" 0.64 0.54 0.62 0.37
:'-56"':""'6'55-"°*"I’I§ """"" 0.93  1.12 0.66
5'6E‘T‘i66'-':"'-i'é§ """ 6.66 5.63 6.20 2.62
}-556”°:'--'§'éé """ 7.49 6.78 7.83 4.69
:‘366"":'"°?'§6"'"Ié'éé"°"'IiTZé'_"'Ié'58 """ 7.92
:'566"°:_"ii‘5§ ----- 23.36 21.76  24.77  15.62
6?65i~i656'°';"-§i'é§ ””” 58.30 47.74  50.17  23.40
Table 7.4 % =1
TTTTVTE T R aMs MixI c-H MixII
''''' :’Bfi":""6'5116""36'iéii'_"°367523§'""°6-?§Zé""'6-§?3i
Error :'5'6i':_—'-6°§i16""36f§2:§ """ -0.19-4 0.56-3  -0.24-2
:°5'66I:""6'5616‘_"36'i§3§ '''' ~0.19-5 0.54-3  -0.12-3
V001 1 Tolaael co.19+0 0.38-3 0.88-2  0.46+0
Er(f) :‘6'6i“;'-"6”5i1§'-'-3675215 """ -0.19-2 0.57-1  -0.24+0
:—5'661:"'-6'1515""'36‘1516 """ “0.19-2 0.54+0  -0.12+0

- - ————— - - - . = - - . D = W - - - " - - D D = - O W > > o0 e w-
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