Adaptive Parallelism with Piranha

Nicholas Carriero, David Gelernter,
David Kaminsky, Jeffery Westbrook

YALEU/DCS/RR-954
February 1993

Adaptive Parallelism with Piranha

Nicholas Carriero* David Gelernter ' David Kaminsky *
Jeffery Westbrook §

Abstract

“Adaptive parallelism” refers to parallel computations on a dynamically changing
set of processors: processors may join or withdraw from the computation as it proceeds.
Networks of fast workstations are the most important setting for adaptive parallelism at
present. Workstations at most sites are typically idle for significant fractions of the day,
and those idle cycles may constitute in the aggregate a powerful computing resource.
For this reason and others, we believe that adaptive parallelism is assured of playing an
increasingly prominent role in parallel applications development over the next decade.

The “Piranha” system now up and running on a heterogeneous network at Yale is a
general-purpose adaptive parallelism environment. It has been used to run a variety of
production applications, including applications in graphics, theoretical physics, electri-
cal engineering and computational fluid dynamics. In this paper we describe the Piranha
model and several archetypal Piranha algorithms. Our main goals are to show that it
is an effective and workable approach, to explain how the Piranha model constrains
algorithm design, and to suggest directions for theoretical and practical research.

1 Introduction

“Adaptive parallelism” refers to parallel computations on a dynamically changing set of
processors: processors may join or withdraw from the computation as it proceeds.

Any parallel application might in principle gain if it is built as an adaptive program.
In any computing environment (including a dedicated multiprocessor), such a program is
capable of taking advantage of new resources as they become available, and of gracefully
accommodating diminished resources without aborting. Anadaptive parallel program might
grow or shrink within a single multiprocessor. might encompass processors both within a
multiprocessor and in a LAN, might jump from platform to platform and so on.

Networks of fast workstations are the most Important setting for adaptive parallelism
at present. Workstations at most sites are tvpically idle for significant fractions of the
day, and those idle cycles may constitute in the aggregate a powerful computing resource. -

"Research partially supported by Air Force Grant AFOSR-91-0098
"Research partially supported by Air Force Grant AFOSR-91-0098
‘Research partially supported by NASA Training Grant NGT-50719
§Departmenr. of Computer Science, Yale University, New Haven. CT 06520-2133. Research partially
supported by National Science Foundation Grant CCR-9009753.

Although the Ethernet and comparable interconnects weren’t designed to support parallel
applications, they are capable in practice of supporting a significant range of production
parallel codes. Ongoing trends make “aggregate LAN waste” an even more attractive target
for recycling: desktop machines continue to grow in power; better interconnects will expand
the universe of parallel applications capable of running well in these environments. For these
reasons and others, we believe that adaptive parallelism is assured of playing an increasingly
prominent role in parallel applications development over the next decade.

Adaptive parallelism is a poor fit to the assumptions underlying most parallel algorithm
and program development models. Algorithms research targeted at adaptive parallelism is
a necessity if algorithms are to keep pace with ongoing practical developments in parallel
systems.

Several ad hoc systems have been designed to solve specific computational tasks adaptively—
for example testing primality or computing travelling salesman tours [8, 10].

The “Piranha” system now up and running on a heterogeneous network at Yale 7] is
a general-purpose adaptive parallelism environment. It has been used to run a variety of
production applications, including applications in graphics, theoretical physics, electrical
engineering and computational fluid dynamics. .

In this paper we describe the Piranha model and several archetypal Piranha algorithms.
Our main goals are to show that it is an effective and workable approach, to explain how

the Piranha model constrains algorithm design, and to suggest directions for theoretical
and practical research.

2 Process vs. Task Models of Adaptive Parallelism

An adaptive parallel computation runs on a set of n processors, each of which may be
available or withdrawn. An available processor can be used in the computation. When a
processor withdraws, any part of the parallel computation occurring on that processor must
quickly cease.

A typical model for adaptive parallelism structures an application in terms of a fixed
set of processes that are dynamically remapped among free processors: when a processor
withdraws, its processes are migrated somewhere else. Such an approach was investigated
as long ago as the “MuNet” project and the early stages of Actors research (e.g. [1],03]); a
variant of this approach formed the basis of the “Amber” adaptive parallelism system {6].

This approach, while theoretically appealing, has drawbacks in practice. General pro-
cess migration is expensive, and it poses obvious difficulties on heterogenous networks of
processors. Holding processes constant while the node pool contracts may lead to excessive
process management overhead in the shrinking pool of active nodes.

Piranha, in contrast, is an adaptive version of master-worker parallelism [5]. Algorithm
designers specify in effect a single general purpose “worker function,” by convention named
“piranha().” They do not create processes and their applications do not rely on any par-
ticular set of named active processes. When a processor becomes available, a new process
executing the “piranha” function is created there; when a processor withdraws, a special
“retreat” function is invoked, and the local piranha process is destroyed. Thus, there are no

“create process” operations in the user’s program, and the number of participating processes
(and not merely processors) varies dynamically.

Workers perform tasks. A task consists of a fixed set of input data from which a worker
function produces a set of output data and a collection of new tasks, possibly consulting
global program state data and communicating with other workers in the process.

Data and task descriptors are stored in distributed data structures accessible to all
worker processes; the more workers, the faster the program completes, but there is no
reliance on any particular number of active workers. The Piranha system uses the shared
associatve object memories (“tuple spaces”) provided by Linda [5] to manage coordination
and the distributed data structures in which the problem state is stored.

This approach has a number of advantages. Processes need never be moved around.
Heterogeneity is easily accomodated—including the kind of “strong heterogeneity” in which
a task begun on one type of machine is continued on another. The application collapses
cleanly with little overhead into a degenerate “non-parallel” case, in which a single active
Process runs on a single participating node. Handling the degenerate case is important.
Research should aim (we believe) at making adaptive parallelism a default programming
mode for all compute-intensive applications—which implies that the system must impose
little or no overhead in the single-processor case.

3 The Structure of Piranha Programs

3.1 Processes

‘Piranha programs consist of two types of processes: one feeder and multiple piranha. The
feeder runs on the home node. The home node is available at all times. The feeder has
many functions, including distributing tasks (creating the task collection) and gathering
the results. It may also join in consuming tasks.

The piranha function is automatically executed on all nodes that join a computation,
except for the home node. Typically, a piranha function executes a loop that reads a
task and corresponding input data, performs the task, and creates zero or more new tasks
and output data. The code to consume a task (and the definition of a “task” itself) is
application-dependent.

If the piranha function creates a new task, it may choose not to write the task out to
distributed memory, but instead reserve the task for itself and begin processing it. This
optimization can reduce global memory access time when the output data of one task is
the input data to another. Thus a piranha process may have a local collection of task
descriptors and task input data.

Let 7(t,n) denote the set of tasks held at processor n at time t. This set includes the
task the piranha function is currently executing. A task disappears from 7%, n) only once
it is completely processed.

Let O(t,n) be the output data held at processor ¢ at time n. This is data that has been
produced by a task but not vet written to distributed memory. -

Figure at back.

Figure 1: Time to access non-local memory
Time to perform 500 non-local put/get pairs on a 10 MBit /second Ethernet.

3.2 Tuple Space

Piranha processes communicate through a global, associative, ob ject memory called tuple
space.! Tuple space (and the “tuples” stored in it) persist irrespective of which nodes are
currently active. Processes can communicate even if they are never active concurrently.

Since tuple space is global, tasks and results stored in tuple space are available to all
processes. The cost of accessing tuple space is linear in the number of bytes transferred.
Figure 1 shows transfer time as a function of tuple size.

Processes also have local memory that can be accessed cost-free. We impose no limits
on local memory.

3.3 Retreat

When an available node withdraws the Piranha process on that node must cease operation.
This is the job of the retreat function.
Upon retreat at time ¢, the Piranha process n takes the following actions.

1. Immediately terminate the local piranha computation.
2. Transfer into distributed memory the set T(t,n).
3. Transfer into distributed memory the output data from any completed tasks.

4. Relinquish all local memory. Thus any intermediate results of the task computation
are lost.

A retreat returns a task being processed to distributed memory as if it had never been
started.? Thus if a processor is becomes available for just slightly less than the time required
to complete a task, all the work is wasted and we are not making good use of available cycles.
One can define a task to be a single instruction of the workstation microprocessor. In that
case the input and output data of a task are the executable images. This guarantees finest
granularity of the parallel computation and ensures that progress is made on all but the
very shortest segments of availability, but leads to prohibitively high cost on retreat, since
the entire image must be written. On the other hand, one can choose a task to be the entire
computation, which leads to no parallelism but minimizes retreat time.

In general, larger granularity reduces distributed communication time at the risk of less
efficient use of available time and of more costly retreats. On the other hand, algorithms
that maintain the entire program state in tuple space use more communication time, but

have very low cost retreat functions. Good Piranha algorithms strike a balance between
these concerns.

'A description of tuple space access functions is found in [5].
2A clever programmer can save intermediate state at the cost of a more complex retreat function.

i

O-0—O—
S
O—~O—

—_—
‘iv
‘

!

€
O-0—-0—

Figure 2: Heat Diffusion task graph

4 Task Graphs

Our starting point in the design of efficient Piranha programs is an algorithm’s acyclic “task
graph”: tasks are nodes and directed arcs are dependencies. A task is “enabled” iff all of
the tasks on which it depends are complete.3

In the simplest case, a problem with no dependencies (e.g. a Monte Carlo simulation), the
graph contains no arcs. A more complicated example, the task graph for a heat diffusion
algorithm, is shown in figure 2. A two dimensional plane is divided into a number of
gridpoints. The algorithm iteratively computes the temperature of each gridpoint based on
its previous value and the values of its four neighbors. We define a task to be the updating of
one column of the grid at one iteration. Each task depends on the values in its neighboring
columns and on its own values of the previous iteration.

4.1 Ensuring Deadlock Freedom

Consider the case where k Piranha are active. k — 1 Piranha and the feeder are blocked
waiting for a result to be produced by the last Piranha P. If P retreats, the computation is
deadlocked. To avoid this situation, correct Piranha algorithms ensure that some process

*In some cases a Piranha can begin consuming a task before it becomes enabled, but the task can’t be
completed until all dependencies are satisfied.

i
1
!

t
!
!

O-O—O—
©-0—O—
O-O-O—
O-O—O—

Figure 3: Labelled Heat Diffusion Task Graph

will never block waiting for data. Since any Piranha can retreat at any time, the only
reasonable choice to be the non-blocking process is the feeder.

Consider figure 2. To prevent deadlock, the feeder traverses the graph executing — or
being willing in principle to execute — tasks. It never starts a task unless all of that task’s
dependencies are satisfied (i.e. the task is enabled). If the task has already been done by a
Piranha, it skips to the next. A topological traversal is analogous to a sequential execution
by the feeder. Parallel efficiency is not sacrificed, since the feeder need not compute the
values that have already been computed. Rather than duplicating work done by the Piranha,
the feeder simply ensures that the result of each task is computed before it moves on. The
feeder can “walk behind” the piranha collecting results. Should some piranha retreat while

computing the next result in the task graph, the feeder gathers this task and computes the
result itself.

5 Computational Efficiency

In general, the goal of a parallel computatiofi is to reduce the actual clock time to job
completion. (In the context of a set of tasks related by an acyclic priority graph, this is
called the makespan.) In an adaptive parallel environment, one cannot make guarantees
about actual clock time to completion. Qver a large span of clock time very few computation
cvcles may be available. Hence we define time complexity in terms of total uptime.

The up function of a processor p, a(p), maps any non-negative real time ¢ to {0,1}. The
function has value 1 at time ¢ if processor p is available at time ¢, otherwise 0. Given a time
to, the uptime of processor p to ¢ is the integral of a(p) from 0 to ty. The total uptime to
to is the sum over processors of the uptime per processor.

A run is an execution of a Piranha algorithm on a given set of input data and n up
functions for the n processors. The wall time of a run is the real time ¢y at which the
computation terminates, i.e., the time the clock on the wall shows. The work time of the
run is the total uptime to 5. The efficiency of the run is the ratio of the sequential running
time to work time.

Our goal is to keep the efficiency high. Then the Piranha algorithm is making effective
use of the available cycles. Our definition of Piranha work time is the natural analog to the
PRAM work function, (# processors) X (#time).

5.1 Efficiency in the worst-case

Consider the simplest parallel computation, a collection of m independent tasks each of
which takes time 1 to complete. (Here “1” is a whit time that includes the time to read a
task and process it.)

A piranha strike is successful if an up piranha gains access to a task. The fairness of the
underlying communication system is crucial to determining the running time of a program.
A process starves if it can strike an infinite number of times without gaining access to a
task.

Theorem 5.1 Suppose the communication system allows for starvation. Then the worst-
case running time is infinite.

Proof: Consider the case of 3 processors (2 piranha p; and p, and one feeder f) attempting
to complete one task. (Without loss of generality; it is easy to arrange that even if there
are n tasks initially, eventually only one task remains.) Let § = 1 - ¢ and ¢; = i§ for
1=0,1,2,.... We give availability functions a(p;) and a(p2) such that the task is never
completed. Let a(p;) be 1 during the intervals [t:rtiy1],7 = 0,2,4,. .. and zero otherwise.
Let a(p2) be 1 during the intervals [ti,ti+a],4=1,3,5,... and zero otherwise. The feeder is
always available. '

Initally, p; and f are active and request the task. Assume p; wins. It reads the task,
starts to compute, but goes down before completing and writes the task back out. Simul-
taneously, p, becomes active and requests the task. p starts reading the task, but fails
before finishing the computation. By that time, p; is active and gets the task, only to fail
before completing. This continues indefinitely. The feeder starves. Since there is always an
available processor, the total available time is infinite. |

The above theorem assumes that an adversary is able to choose the scheduling of tasks
to processors. Next we consider the case when we add a scheduler to the Piranha system
that decides if and when an available processor will be given a task.

Theorem 5.2 With any randomized scheduler, the worst-case running time is Q(nT),
where n is the number of processors and T is the time to process all tasks on a single
processor. Hence the worst-case efficiency is o(3).

Proof: The adversary simply makes each processor run in bursts of time 1 — ¢ where ¢ is
an arbitrarily small constant. No task can be completed on any processor other than the
feeder. Per task completed the available time is Q(n), for Q(nT) total available time. I

Thus in the worst-case one might as well simply perform all tasks on the feeder. This
certainly guarantees efficiency Q(1/n). Empirical evidence suggests, however, that in real-
life applications the availability functions are much more constrained than we have allowed,
and worst-case scenarios do not often arise. In the next subsection we look at a simple
probabilistic model for the up functions. '

5.2 Markov chain up functions

We assume that the up function is determined by a simple Markov chain on two states, UP
and DOWN. The probability of leaving either state for the other is p and the probability of
staying in the same stateis ¢ = 1 —p. It is easily ve;iﬁéd that in steady state the probability
of UP equal the probability of DOWN equals 1/2. We discretize time, and assume that a
transition occurs each time step. -

Consider the problem of processing a collection of independent tasks, each requiring c
units of uptime to complete. What is the expected time?

We extend the Markov chain by splitting the UP state into ¢ substates Uy, U,y -« -y Ue.
The probability of leaving u; for DOWN is p. The probability of going from u; to ui, for
1 <1< cis q and the probability of going from u. to u, is q.

Let p; be the steady state probability of state i, where state 0 is DOWN and state 7 for
¢ > 0 is u;. One may verify that the steady state probabilities are:

1
Po = 5
pgi=! '
= gy LSise

Every time the chain enters state u. a task is completed. The probability of being in
state p. is 5{-’%. Given n tasks, consider the value t, such that n = tnpe- Then t, is the
time at which the expected number of tasks completed is n.

Suppose we have only a single piranha processor with uptime determined by the above
Markov chain. We wish to complete a job with sequential running time s. To finish the
work on the piranha, we divide the job up into n tasks. The time to process each task will
bec=a+d, whered=s/nand aisa positive value that accounts for extra cost associated
with reading tasks, etc. What is the choice of n that minimizes th?

We have
5 2(1 = gty

tn=nfpe= 5l

Differentiating t/, = %’_}, setting ¢; = 0, and solving for ¢ gives the following formula for the
optimum e¢:
W(-q%/e) +1
In(1/q)

Here W is the function satisfying W(z)e" () = z. The value of the numerator is approxi-
mated by +(1 — 2¢%/e)!/2,

For example, let ¢ = 0.9, and a = 10. Then the optimum value of ¢ is approximately
8.1. Then the time to complete the job is approximately 13s. If we run the tasks in parallel
On p processors, we expect to get linear speedup.

6 Examples

The task ordering imposed by a problem and represented in its task graph constrains its
potential solutions. Below we examine three important classes of scientific algorithms. We
consider problems ranging from totally unconstrained (Monte Carlo) to highly constrained
(domain decomposition).

Algorithm designers must consider the following questions: What is the definition of a
task? How does the feeder traverse the task graph? How do the Piranha traverse it? How
does the algorithm cope with the loss of a node (i.e. what is the retreat function)? How
are nodes added to computation? What information is stored locally and what is stored
globally (in tuple space)?

In our discussion below, we will attempt to answer the questions posed above. Since we
are primarily interested in the coordination framework of the problem, details about the
computation algorithms will be omitted.

6.1 Monte Carlo Simulations

Monte Carlo simulations are ideal for the Piranha environment. Tasks are easily defined
(one trial). Initialization data for each trial can be stored in tuples. Task order is not
relevant since the task graph contains no arcs. The feeder and the Piranha repeatedly grab
and compute any unfinished trial. Retreat simply requires that the task be returned to tuple
space for some other process to complete. New nodes Join the computation by consuming
tasks. Previously active processes need not be aware of the presence of a new worker. Since
state is not relevant between trials, efficiency dictates that as much state be stored locally
as possible (without causing excessive paging). State is flushed before each trial.

One advantage of Piranha is that easy applications are easily programmed. Pseudocode
for a Monte Carlo program is given in figure 4.

With the simulation template given below, it is possible to construct numerous Piranha
programs simply by defining the do_simulation function and the result structure. Pro-
grammers can also include additional data in the “task” and “result” tuples as needed for
the simulation.

Workers | Run Time Aggr Time
Piranha 4.26 3.59 14.5
Net Linda 43 3.17 14.3
Sequential 1 14.2 14.2

Workers is the average number of workers used. The time spent by the feeder (Piranha)
and master (Network Linda) were omitted since these processes do not consume tasks in
this program. Run Time is the wall clock time from start to finish. Aggregrate time (Aggr
Time) is the sum of all of worker time used. All times given are in hours. Six Piranha,
eight network Linda and two sequential runs were averaged.

Table 1: Rayshade Performance

One “Monte Carlo” type (loosely speaking) Piranha program is Rayshade.? Rayshade is
a ray tracing program written by Craig Kolb. It renders an image in horizontal “scanlines.”
Each scanline is a task and tasks are completely independent. Table 1 shows a comparison
of the Piranha, Network Linda®, and sequential versions of Rayshade. The Piranha version
is 98% efficient compared to the sequential version. Only 68 total seconds (on average) were
wasted to retreat.

6.2 LU Decomposition

LU decomposition is interesting in a Piranha environment because it is a “middle-weight”
problem: its ordering constraints are harder than (e.g.) Monte Carlo simulations and easier
than domain decompostion problems. Uniike Monte Carlo problems, task dependencies
limit the range of possible solutions. Furthermore, data must be transferred from task to
task. But unlike domain decomposition, the graph is not so limiting as to dictate a single
solution.

The LU decomposition (LUD) of an m x n matrix A, m < n,is a pair of matrices and
U such that A = LU, L is m x n unit lower triangular, and U is m x n upper triangular.[2]

In our Gaussian-like approach to LUD, we select the leftmost column ¢ of the matrix,
and zero the elements in i above the diagonal. The same linear transformation applied to
¢ are then applied to the columns to the right of it (s +1.i4+2 ...)- i is incremented and
the process continues.

The dependencies for a column ¢ at iteration j of the algorithm are on column j (the
column being scaled) and on the value of ¢ at the previous iteration. The task dependency
graph for LUD is given in figure 3.

We have considered a number of Piranha algorithms. 4] They all define a task to be
updating one column by one pivot. While the feeder cannot consume tasks in any order as
it could above, it still has quite a few options. In figure 8 we present two alternatives.

4Ra.yshade is not a Monte Carlo simuiation. Since :here are no intertask dependencies; we call it a Monte
Carlo type Piranha program.

*Linda is a registered trademark of Scientific Computing Associa:es. New Haven.

#define DONE -999

feeder ()
{
int i;
struct Result result;

/* put out the tasks */
for (i=0; i < TASKS, i++)
out (‘‘task’’, i);
/* help compute results */
piranha ();
/* collect results */
for (i=0; i < TASKS; i++)
in (‘‘result’’, i, ?result_data);

/¥ declared globally to be available for retreat */
int i;

piranha ()

{

struct Result result;

while (1) {

in (“‘task’’, ?7i);

if (i == DONE) {
/* all tasks are done */
out (‘‘task’’, i);
break;

}

else {
/* do the task */
do_simulation (i, &result);
out (‘‘result’’, i, result);
in (“‘tasks done’’, ?i);
out (‘‘tasks done’’, i+1);
if ((i+1) == TASKS) out (““task’’, DONE) ;

retreat ()

{ ‘
/* replace the current task */
out (‘‘task’’, i);

11

s

tigure 4: Monte Carlo Pseudocode

Q oo

T

O-0 -

f f

Figure 5: LUD Task graph

In the “left-to-right” algorithm, we exploit the fact that a column does not depend on
columns to its right. We store the columns in a queue in tuple space. Each process p
(the feeder mimics the Piranha) claims the leftmost unclaimed column ¢;. p then reads and
applies pivot columns ¢1 to ¢i—1.% p creates pivot vector ¢;, publishes it, then claims another
column. One a pivot is read, it can be cached for later use.

If process p retreats while working on column ¢; after having applied ; pivots, p returns

retreated tasks, claims it, and performs the necessary operations on it. If all active processes
are blocked waiting for pivot ¢; (i-e. all processes are working on columns ¢j, J > 1), some
Process abandons its current tasks and completed ¢; instead. Newly active processes simply
begin consuming columns.

We ran a simulation of the left-to-right algorithm. Figure 6 show the aggregate and wall

(o]
clock time used as 3 function of the number of processors. In each case (1000, 2000, and

*When a processor claims one column, it is reserving multiple tasks (i.e. it will apply each pivots to the
column, barring retreat). This optimization saves the cost of repeatedly removing the column from tuple
space and replacing it there.

12

See Back

Figure 6: Processors vs. Time

See Back

Figure 7: Processors vs. Efficiency

pivots from other processors. This efficiency breakpoint is higher for larger problems.

Unlike the Monte Carlo model and the “left-to-right” algorithm, The “bottom-up” al-
gorithm completely partitions the tasks among the workers. The columns of the matrix are
assigned arbitrarily to the active Piranha. When a new pivot is published, each Piranha p
applies it to each of its columns. Once pivot :—1 had been applied to column i, the Piranha
passes column i to the feeder. The feeder creates the pivot from column i and publishes it.
The feeder also stores the result. The algorithm is called “bottom-up” from its traversal of
the task graph given above — each Piranha applies one pivot to all of its columns before
applying the next pivot to any of them.

Dynamic rebalancing is used to maintain load balance among the Piranha. We store
the count of the unfinished and active Piranha in tuple space. Each Piranha can compute
its “fair share” of the work. If a Piranha has more than its fair share (above a certain
tolerance), its dumps columns into the “overflow pool” (in tuple space) until it has the
correct number. Underloaded Piranha remove columns from the pool to boost their load.

The overflow pool is also used when Piranha, enter and leave the computation. New
Piranha increment the count of the number of active workers and claims columns from the
pool until they have sufficient work.” A retreating Piranha decrements the number of active
“ workers and dump its columns to the pool.

If the feeder is waiting for column i, but ¢ is in the overflow pool (due to retreat or
rebalancing), the feeder claims i. If i has had fewer than ¢ — 1 pivots applied, the feeder
itself applies the requisite pivots. Unlike the Piranha, the feeder traverses the task graph
left-to-right.

In preliminary measurements of the bottom-up version of LUD, we have shown efficiency
of about 70% on a 2000 x 2000 matrix when compared to sequential times extrapolated from
smaller matricies. The sequential version, when run on a 2000 x 2000 matrix, performed
poorly due to excessive paging. This problem occurs on matrices smaller than 1000x1000.

6.3 Domain Decomposition

We consider a heat transfer program as representative of a class of algorithms with nearest
neighbor dependencies.® A task is to update the value of one column of gridpoints at an
iteration. As described above, each gridpoint depends_on its four nearest neighbors. The
task graph is presented in figure 2.

Since each task depends on the adjacent columns (or column), unoptimized solutions

“They do not wait for a full complement of columns before they begin working.
*The implementation of the domain decomposition aigorithm is being completed.

Figure 8: LUD Task graph
The LUD task graph is shown labelled “left-to-right” (left) and “bottom-up” (right).

perform an unacceptably large amount of communication. If we consider iterating M times
over an N x N matrix, where each column and its (one or) two neighbors are accessed at
each iteration, we globally access (3 x N2 - 2 x N) x M gridpoints.

Our Piranha algorithm assigns a contiguous set of columns to each active processor.
This reduces the communication to 2 x K; per iteration, where K — i is the number of
workers at iteration i. Summing over all iterations ; yields the entire communication cost.
In addition, initially distributing the grid incurs N2 sends.

Both the feeder and the Piranha (they behave identically) traverse the task graph
bottom-up. Each active process p claims a column set Tq,1 t0 2p 3. Then, at each iter-
ation ¢, p reads Za-1,i-1; Tb+1,i-1, updates its columns, and publishes Tqi, Th ;.

As in LUD, we use a rebalancing algorithm to cope with retreats and new workers,
When a node p retreats, it dumps its columns into tuple space. p’s neighbors claim the
columns at the next iteration. New nodes are added by splitting the columns possessed
by some worker. Imbalances are corrected between iterations by passing columns among
workers possessing adjacent column sets. By using local exchanges we believe that this
algorithm will maintain a load balance, tolerate retreats, and include new Piranha without
fragmehting the grid and thus perform efficiently in the Piranha environment. Measurement
of actual performance will be taken in the near future.

14

7 Future Work

We have presented Piranha algorithms for a three important types of problems. We have
yet to investigate problems with irregular task graphs or graphs that cannot be determined
exactly until run-time. We are currently studying rebalancing algorithm for domain decom-
position problems like the one presented above. Finally, we are studying the sensitivity of
our algorithm to retreat frequency.

References

(1] Agha, G. Actors: A Model of Concurent Computation in Distributed Systems. MIT
Press (Cambridge: 1986).

[2] Aho, A., Hopcroft, J., and Ullman, J, “The Design and Analysis of Computer Algo-
rithms,” Addison- Wesley, Reading, MA, 1974.

(3] Baker, H. and Hewitt, C., “The incremental garbage collection of processes.” In Con-
ference Record of the Conference on Al and Programming Languages, pp 55-59, ACM,
Rochester, New York, 8/77.

[4] Bjornson, R., Kaminsky, D., and Weston, S., “LU Decomposition in an Adaptive
Parallel Environment”, in progress, 1993.

[5] Carriero, N and Gelernter, D. How to Write Parallel Programs: A First Course. mIT
Press (Cambridge: 1990).

[6] Chase, J.S., Amador, F.G., Lazowska, E.D., Levy, H.M., Littlefield, R.J. “The Amber
System: Parallel Programming on a Network of Multiprocessors,” Proceedings of the
Twelth ACM Symp. on Operating Systems Principles, pp 14 7-158, 12/89.

[7] Gelernter, D. and Kaminsky, D., “Supercomputing out of Recycled Garbage: Prelimi-
nary Ezperience with Piranha,” Sizth ACM International Conference on Supercomput-
ing, Washington D. C., July 19-23, 1992.

[8] Lenstra, A.K., and Manasse, M., “Factoring by Electronic Mail,” Proc. Eurocrypt ’89,
Lecture Notes in Computer Seience 434, Springer- Verlag, 1990.

[9] Mutka, M.W. and Livny, M. “Profiling Workstations’ Available Capacity for Remote
Ezecution”, Performance 87, pp 529-544, Elsevier Science Publishers B.V. (North
Holland), 1988.

[10] N. Reingold, private communication, 1993. -

F_‘
!

Non-local Access Cost

time (seconds)

| Set 0
150.00 —

140.00 —
130.00 —
120.00 —
110.00 —
100.00 —
90.00 —
80.00 —
70.00 —
60.00 —
50.00 —
40.00 —
30.00 —

20.00 —

10.00 — - —

' | | | | Kilobytes
20.00 40.00 60.00 80.00 100.00

Processors vs. Time
time (seconds) x 103

l [1000 cols wall clock
26.00 — s~ 1000 cols aggr time
/ 2000 cols wail clogk =™~~~
s /" T 000 Gl g e T
, / 3000 cols wall Clock
22,00 = 7 ~ 3000 ol agar fmg —
~ o
/ —
20.00 ,
- /
18.00 — -7 T~ _
1600 — _~ , -
v
14.00 — _
12.00 — _
10.00 — .
8.00 — R —
\ ,/
\ _
— \ P —
6.00 N
- ¥ - -
4.00 - \ ~ < —_—
200~ =TT e —
\ ___
0.00 — _

processors

Processors vs. Efficiency

TN esmmm o e e vt .

| — 1000 cols speedup
— 1000 cols Eff.

| processors

