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Abstract— It is well-known that both Self-Organizing Maps
and K-Means Clustering have the ability to be effectively mod-
ified in ways that allow their accuracy in specific applications
to be substantially amplified. We use Self-Organizing Maps to
classify acoustic features over various domains, and present
a methodology to improve its performance using topological
information. We utilize group theory to investigate the behavior
Gaussian forms and to derive an asymmetric neighborhood
function that learns from the topological structure of a data-set.
We present an analysis of clustering in speech frequency data
and show that the Self-Organizing Map proves itself as a useful
tool in this area. In particular we present a mechanism that
substantially improves the convergence of speaker-type classes
by using a dynamic, self-aligning neighborhood function.

I. INTRODUCTION

A Self-Organizing Map (SOM) is a type of competitive
learning based Neural Network that consists of components
called nodes. Associated with each node is a synaptic weight
vector of the same dimension as the input data vectors and a
position in the map space. A neuron that wins the competition
is called a winning neuron. In the context of an SOM win-
ning means that a neuron is the closest to the input sample
according to some distance metric. In an SOM the neurons are
placed at nodes in a lattice that is usually 2 dimensional, and
are then allowed to converge to stable points which should
minimize the distance between each synaptic weight and the
elements in the input space that belong to its cluster. The
stabilized node to which a point from the input lies closest
to may act as a category for that input pattern. The resulting
categories form what is known as the self-organized feature
space. [1,2,7,8,9,10]

A. Phonetics

Phonetics involves the study of the sounds of human speech
and is mostly concerned with the audible properties of speech
sounds, their production, audition and perception. Care should
be taken not to confuse phonetics with phonology, which
emerged from phonetics, and is the study of sound systems
and abstract sound units. Phonetics deals with sound elements
themselves rather than the contexts in which they are used in
languages.

When identifying dissimilar sounds such as human vowels,
the ears are most sensitive to peaks in the signal spectrum.
These resonant peaks in the spectrum are called formants. The
frequencies of these peaks correspond to resonant frequencies
of vocal tract. Each vowel has different formant frequencies
and bandwidths. Furthermore, every human being has his or
her own unique formant frequencies and bandwidths. Using
these characteristics of vowel sound production mechanism,
a band-limited impulse train can be used as a glottal source.
[3,4,5,6]

B. The Peterson/Barney data-set

The Peterson/Barney vowel data-set consist of measure-
ments of four acoustic features, F0, F1, F2 and F3 values, for
two repetitions of 10 different vowels by 76 speakers of British
English (33 adult males, 28 adult females, and 15 children).

The Peterson/Barney data-set is formatted as follows: there
are 1520 vowel tokens; each row represents a vowel, and
there are additional features (columns) for each token as
follows:

Column Information Key
1 Speaker Type 1 = Male, 2 = Female

3 = Child
2 Speaker Number Unique id for each speaker
3 Vowel Identity 1 = i, 2 = I, 3 = e, 4 = æ

5 = ∧, 6 = a, 7 = c’
8 = f, 9 = u, 10 = ε

4 F0 Fundamental Frequency
5 F1 First Formant
6 F2 Second Formant
7 F3 Third Formant

Vowels may be categorized on the basis of various artic-
ulatory or acoustic features. One standard articulatory-based
representation of the vowel space is shown Figure 1, which
is known as the International Phonetic Alphabet vowel chart.
The lateral displacement (front-ness) and height of the human
tongue during speech underpins some of the characteristics
of the frequency blends of human speech. This chart (Fig.
1) represents features the relative front-ness (left/right) and
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Fig. 1. Articulatory Vowel Chart [18]

relative height (up/down) of the tongue. Vowels in the upper
left are high and front; vowels in the lower right are low.

The four characterizing measurements provided in the data
for each vowel token are the fundamental frequency (in Hertz)
and the frequencies of the first three formants. As mentioned
above Formants are peaks in the acoustic frequency spectrum
and depend on the shape of the vocal tract at the time of
production. F0, or fundamental frequency represents the pitch
of the speakers voice. The first two formants, F1 and F2, are
usually enough to disambiguate a vowel because each vowel
has different F1 and F2 values. [14,15,16,17,18]

In the following sections with will attempt to use an SOM
to classify speech data into vowels and into child/male/female.
We will also show that there exist structural properties within
the data set that may be exploited in the task of optimizing
the clustering of the data.

II. PERFORMANCE EVALUATION METHODOLOGY

One way to evaluate the quality of the the clustering is
by comparing its same vs. different judgments to those of
the target. That is, for any pair of distinct vowels v1 and
v2, we can check whether or not the clustering puts them
in the same cluster, and whether or not this is correct (by
looking at the true vowel identities). This will yield four cases:

• true positives: v1 and v2 are in the same cluster and are
the same vowel

• false positives: v1 and v2 are in the same cluster but are
not the same vowel

• true negatives: v1 and v2 are in different clusters and are
not the same vowel

• false negatives: v1 and v2 are in different clusters but are
the same vowel

In our experiments we use both convergence rate and
the usual statistical methods to evaluate the performance of
each method’s classification. In particular, we determine the
following four evaluators of performance.

Precision = NumberofTruePositives
NumberofTruePositives+FalseNegatives

Recall = NumberofTruePositives
NumberofTruePositives+FalsePositives

Accuracy = NumberofTruePositives+TrueNegatives
Totalnumberofmeasurements

f-Score = 2·Precision·Recall
Precision+Recall

Qualitatively, accuracy is the level of conformity of a mea-
sured quantity to its actual value. Precision on the other hand is
the degree to which further measurements or calculations show
parallel results. The f-Score is a measure of a test’s accuracy.
It is defined as the ratio of twice the product of precision and
recall to the sum of precision and recall. That is, the f-score
is simply the harmonic mean of precision and recall.

III. EXPERIMENT 1: CLASSIFICATION OF VOWELS AND
SPEAKERS IN THE PETERSON & BARNEY VOWEL DATA

USING A SELF-ORGANIZING MAP.

A. Design

In the first (preliminary) experiment the usual framework
of SOM design was used to classify vowels based on
first formant and second formant frequencies. The relevant
quantities are:

Distance Metric, d2
j,i =‖ rj − ri ‖2

Neighborhood Function, hj,i(x)(n) = e
−

d2
j,i

2σ2(n)

Where, σ(n) = σ0e
− n

τ1

Learning-rate Parameter, η(n) = η0e
− n

τ2

Algorithm 1 Self Organizing Map
1: Choose random values for the initial synaptic weight

vectors wj(0)
2: Draw a sample x from the input space (the set of all speech

frequency measurements) with a certain probability; the
vector x will represent an activation pattern.

3: while There are noticeable changes in the feature map do
4: Search for the matching neuron i(x) at time step n.

This is the neuron closest to the input sample. The winning
neuron is obtained by: i(x) = argmin‖x(n) − wj‖, j =
1,2...,l

5: Update the winning neuron using the update formula
wj(n + 1) = wj(n) + η(n)hj,i(x)(x(n)− wj(n))

6: end while
7: return {wj}l

j=1

In this experiment, so as to maintain a value of η(n) on the
interval [0.01, 0.1], η0 was set to 0.1 and τ2 = nmax

ln(10) , where
nmax is an upper-bound on the number of iterations performed
in the experiment.

B. Results

In this experiment σ0 was set equal to 200, and convergence
was achieved over approximately 16,000 and 23,000 iterations
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for the vowel classification and the speaker-type classification
respectively. Vowel classification refers to classifying the data
into then unique clusters each of which will signify one of
the ten vowels in the IPA vowel chart in Figure 1. On the
other hand, speaker-type classification refers to classifying
the data into clusters according to whether the speaker was
a child, an adult male, or and adult female. Figures 2 and 3
show the results of the clustering with the points color coded
to represent points in the same cluster. The performance
evaluators from section II yielded inferior results which are
presented in the following tables.

Classification: Vowels
Precision 0.38

Recall 0.41
F-score 0.39

Accuracy 0.88

Classification: Speakers
Precision 0.37

Recall 0.53
F-score 0.44

Accuracy 0.51

IV. EXPERIMENT 2: CLASSIFICATION OF VOWELS AND
SPEAKERS IN THE PETERSON & BARNEY VOWEL DATA

USING K-MEANS CLUSTERING.

A. Design

The data was also clustered using the of K-Means clustering
algorithm. This experiment was performed in order to have a
benchmark using a deterministic algorithm with which we can
compare the results obtained from the SOM algorithm.

The most common form of the K-Means clustering algo-
rithm uses an iterative refinement heuristic known as Lloyd’s
algorithm. Lloyd’s algorithm starts by partitioning the input
points into K sets, either at random or using some heuristic.
It then calculates the mean point, or centroid, of each set. It
constructs a new partition by associating each data point with
the closest centroid. Then the centroids are recalculated for the
new clusters. This is repeated by alternate application of these
two steps until convergence, which is obtained when points no
longer switch clusters (or alternatively centroids are no longer
changed).[7,8,9,10]

The 3 means for the speaker-type classification were ran-
domly initialized. However, so as to catalyze the convergence
of the algorithm, the 10 means for the vowel clustering were
initialized on the points in the table below.

Fig. 2. Vowel Clustering of Peterson/Barney Data using SOM

Fig. 3. Speaker Clustering of Peterson/Barney Data using SOM

First Formant (Hz) Second Formant (Hz)
400 2750
420 2300
600 900
900 1501
750 1250
900 2200
500 1803
500 1509
450 1000
350 807

B. Results

In this experiment convergence was usually achieved
over approximately 31 and 15 iterations (of the K-means
algorithm) for the vowel classification and the speaker-type
classification respectively. Since in each iteration of the
K-means algorithm we evaluate the properties of every point
in the input space. This process performed in this algorithm
is equivalent to approximately 15 · 1, 520 = 22, 800 and
31 · 1, 520 = 47, 120 for the vowel classification and the
speaker-type classification respectively. Figures 4 and 5 show
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Fig. 4. Vowel Clustering of Peterson/Barney Data using K-Means

Fig. 5. Speaker Clustering of Peterson/Barney Data using K-Means

the results of the clustering with the points color coded
to represent points in the same cluster. The Performance
Evaluators yielded the following results.

Classification: Vowels
Precision 0.36

Recall 0.40
F-score 0.38

Accuracy 0.86

Classification: Speakers
Precision 0.30

Recall 0.42
F-score 0.36

Accuracy 0.56

The clustering obtained by using K-means clustering is
inferior to that obtained by SOM.

V. GENERALIZATION OF THE GAUSSIAN NEIGHBORHOOD
FUNCTION

We now generalize the SOM neighborhood function
through a series of relaxation conditions. The commonly used

Gaussian neighborhood function is given by:

hj,i(x)(n) = e
−

d2
j,i

2σ2(n) ,

where d2
j,i =‖ rj − ri ‖2

In the particular case of speech data to be classified over
speaker-type (male/female/child), the classification was done
using the the fundamental frequency and the first formant.
Thus the points to be classified are represented in R2. Hence,
d2

j,i reduces to (xj−xi)2+(yj−yi)2, where xn and yn are the
frequency coordinates of the data-set in the Euclidean plane.
Thus,

hj,i(x)(n) = e
−

(xj−xi)
2+(yj−yi)

2

2σ2(n)

The neighborhood function may be generalized so as to
allow axial distortions and rotations by assigning a variance
function σi(n) for each of x and y, adding an xy term and
parameterizing the coefficients of each term by an angle
parameter to implement the aforementioned rotations. This
generalized form is given by

hj,i(x)(n) = e−(a(n)·(xj−xi)
2+b(n)·(xj−xi)(yj−yi)+c(n)·(yj−yi)

2)

where the matrix
[
a b
b c

]
is chosen to be positive definite.

Now if we let

a(n) =
(

cos θ
σx(n)

)2

+
(

sin θ
σy(n)

)2

b(n) = − sin 2θ
σ2

x(n) + sin 2θ
σ2

y(n)

c(n) =
(

sin θ
σx(n)

)2

+
(

cos θ
σy(n)

)2

Then the generalized neighborhood function in R2 may
be rotated by an angle θ. Whence our generalized form is
given by

hj,i(x)(n) = exp
(
−

( [(
cos θ

σx(n)

)2

+
(

sin θ

σy(n)

)2
]
· (xj − xi)2

+
[
− sin 2θ

σ2
x(n)

+
sin 2θ

σ2
y(n)

]
· (xj − xi)(yj − yi)

+

[(
sin θ

σx(n)

)2

+
(

cos θ

σy(n)

)2
]
· (yj − yi)2

))

The ratio σx(n)
σy(n) changes the relative axial variance (the

spread along the x − axis compared to the spread along the
y − axis). The effect of variations in these parameters is
illustrated in figures 6 through 9. The additional degrees of
freedom provided by this generalized neighborhood function
is the basis for the derivation in the next section.
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Fig. 6. Sample Neighborhood function 1
θ = 0, σx = 1, σy = 3

Fig. 7. Sample Neighborhood function 2
θ = 45, σx = 1, σy = 3

Fig. 8. Sample Neighborhood function 3
θ = 45, σx = 3, σy = 1

Fig. 9. Sample Neighborhood function 4
θ = 135, σx = 3, σy = 0.5

Fig. 10. Generalization of the distribution of speaker-type clustering

VI. DERIVATION OF AN IMPROVED NEIGHBORHOOD
FUNCTION FOR OPTIMIZED CONVERGENCE

Using the generalized neighborhood function presented in
Section V, we show that it is possible, but non-trivial to derive
an optimized/specialized neighborhood function in the context
of a specific model given a hypothesis about the clustering.
This is done by varying the angle and relative spread along
each axis of the gaussian. We then propose a methodology
for implementing a generalized neighborhood function with
parameters that learn from the data-set and provide faster and
more accurate convergence using topological features within
the the data-set.

We can see from the experiments in Sections III and IV
that when the fundamental frequency and first formant data
are classified into 3 clusters the emerging clusters may reveal
information about the gender and age of the speakers, that is,
the clusters represent groups corresponding to male, female
and children. It is clear from the results of the experiments in
Sections III and IV that there exists a line of action such that
the each cluster is traversed. That is, the line of regression on
the geometric centers of each clusters will have sum of square
error that is close to zero. This observation may be exploited
to yield improved performance through subtle modifications
to the neighborhood function.

Consider an experiment in which data is to be clustered
and there exists a general hypothesis about the form of the
clustering or the distribution of the feature space. Let us take
the simple case which is similar to the Peterson / Barney
vowel data over speakers and hypothesize that the clusters
will be distributed approximately as depicted in Fig 10. Note
that this hypothesis is motivated by the results of the previous
experiments.

Note that the cluster separation in Fig 10 is exaggerated and
that there is likely to be more mixing between the points of
different clusters, that is, the convex hulls of the points in the
different clusters are likely to overlap.

Now, during the updating phase of the SOM algorithm
we want the neighborhood functions to be axially aligned
normal to the line of action through the hypothesized clusters

5



Fig. 11. Biased Neighborhood function at point (a,b)

as in Fig 11. A line of action is a the line obtained by
linear regression on the geometric centers of the clusters.
This assertion is motivated by the desire to have the major
axis of the neighborhood function lie as parallel as possible
to lines of ”best-separation” of adjacent clusters. Whether
the x − axis or y − axis is set to be the major axis is
irrelevant since the final angular alignment is made by means
of variations in θ. The minor axis is depicted in Figure 12 as
the predominant line that crosses the three clusters. Without
loss of generality assume that the major axis is the image
of the x − axis and that the minor axis is the image of the
y − axis. Under this assumption we seek

limn→+∞
σmajor(n)
σminor(n) = limn→+∞

σx(n)
σy(n) = ∞,

Where n is the current iteration.
While obeying the usual rules of SOM that state

limn→+∞ σx(n) = limn→+∞ σy(n) = 0

Qualitatively this means that the peakedness of the major
axis of the neighborhood function becomes more pronounced
as the synaptic weights approach the limiting values even
though the overall spread of the neighborhood function is
decreasing. To achieve efficient convergence of the ratio σx(n)

σy(n)

the decay constant of σx(n) must be much greater than that
of σy(n). So we impose the condition τσx

� τσy
. Where τi

is the decay rate of σi.
Analytically it makes little difference if we set σy(0) =

σx(0) since it is the divergence of the ratio that we are
interested in.

Let Φ = τσy

τσx
denote the divergence rate of the variances

along the x and y axes. (Larger Φ leads to divergence for the
term in the numerator)

Fig 12 shows the unclassified Peterson / Barney vowel data
with a line of action through the clusters derived using linear
regression and a partitioning which is an approximation of the
convex hulls of each cluster.

Fig. 12. Approximate Partitioning of Peterson / Barney data into 3 Clusters

Fig. 13. SOM on Peterson / Barney vowel data (speaker-type) using the
Optimized Neighborhood function

A. Experiment 3: SOM on Peterson / Barney vowel data
(speaker-type) using the Optimized Neighborhood function

The speaker data was clustered using an SOM with an
asymmetric neighborhood function whose parameters were
chosen so that the major axis of the gaussian in the SOM
lay perpendicular to the line of action in Fig 12. The accuracy
and convergence rate of the resulting clustering was improved
substantially and is depicted in Fig 13.

In this final classification the parameters used are
θ = 0.5rad (≈ 28.8◦)
σx(0) = σy(0) = 500
τσy = 20, 000
τσx

= 10 · τσy
= 200, 000

Thus, for this experiment the variance divergence parameter
Φ = 10.
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We ran the algorithm 10 times and clusters converged in
average 7133 iterations and yielded superior results (shown
below).

Classification: Speakers
Precision 0.48

Recall 0.52
F-score 0.40

Accuracy 0.61

These results represent a 10% increase in accuracy from the
unregulated SOM algorithm.

VII. GROUPS OF GENERALIZED NEIGHBORHOOD
FUNCTIONS

We now perform an analysis of the characteristic matrices
of generalized neighborhood functions. Using this analysis
we are then able to provide insight into the emergence of
matrix groups whose underlying sets characterize families
of optimized neighborhood functions on arbitrary clusters or
data-sets.

Consider the usual 2-dimensional generalized neighborhood
function given by

hj,i(x)(n) = e−(a·(xj−xi)
2+b·(xj−xi)(yj−yi)+c·(yj−yi)

2)

The parameters a, b and c are functions of n and θ
given by

a(n, θ) =
(

cos θ
σx(n)

)2

+
(

sin θ
σy(n)

)2

b(n, θ) = − sin 2θ
σ2

x(n) + sin 2θ
σ2

y(n)

c(n, θ) =
(

sin θ
σx(n)

)2

+
(

cos θ
σy(n)

)2

Where the characteristic matrix, Ω(n, θ) =
[
a(n, θ) b(n, θ)
b(n, θ) c(n, θ)

]
is positive definite.

Writing out the characteristic matrix we have

Ω(n, θ) =


cos2 θ

σ2
0e

− 2·n
τσx

+ sin2 θ

σ2
0e

− 2·n
τσy

sin 2θ

σ2
0e

− 2·n
τσy

− sin 2θ

σ2
0e

− 2·n
τσx

sin 2θ

σ2
0e

− 2·n
τσy

− sin 2θ

σ2
0e

− 2·n
τσx

cos2 θ

σ2
0e

− 2·n
τσy

+ sin2 θ

σ2
0e

− 2·n
τσx


We now introduce the notation ∆x = e

2
τσx and ∆y = e

2
τσy .

∆x and ∆y represent the squared effective decay rate of

the axial variances of the neighborhood function. Using this
notation, the characteristic matrix becomes

Ω(n, θ) = 1
σ2
0

[
cos2 θ∆n

x + sin2 θ∆n
y sin 2θ∆n

y − sin 2θ∆n
x

sin 2θ∆n
y − sin 2θ∆n

x cos2 θ∆n
y + sin2 θ∆n

x

]

We further reduce the characteristic matrix by replacing
the trigonometric quantities since they are constant in the
variable n. Substituting cos2θ, sin2θ and sin 2θ for κ1, κ2

and κ3 respectively, the characteristic matrix becomes

θΩ(n) = 1
σ2
0
·
[
κ1 ·∆n

x + κ2 ·∆n
y κ3 ·∆n

y − κ3 ·∆n
x

κ3 ·∆n
y − κ3 ·∆n

x κ1 ·∆n
y + κ2 ·∆n

x

]
Note that κ1 + κ2 = 1 and 4(κ1 · κ2) = κ2

3.

Definition The effective radius σ0, of a data-set, is the radius
of the hyper-sphere that bounds the convex hull of the data
set.

Definition Let θC be the slope of the line of least squares
through the points a given cluster C. The angular bias function
space BθC

σ0
is the set of neighborhood functions that bias the

convergence of the synaptic weights along the line of least
squares of cluster C. BθC

σ0
= {θΩ(n)|n ∈ Z} where Ω has

initial spread σ0.

We now develop the tools to show that for a data-set of
effective radius σ0 there exists a binary operation over which
the matrices in BθC

σ0
for fixed θ form a group.

Let us decompose the identity matrix as follows

I =
[
1 0
0 1

]
=

[
1 0
0 0

]
+

[
0 0
0 1

]
and adopt the notation

I1 for
[
1 0
0 0

]
and I2 for

[
0 0
0 1

]
. Thus I = I1 + I2

Define the functions Γ+(A) = (I1AI1 + I2AI2) and
Γ−(A) = (I1AI2 + I2AI1) over the space of real 2x2 ma-
trices.

It is easy to see that Γ+ performs the mapping[
x y
z w

]
7→

[
x 0
0 w

]
And that Γ− performs the mapping[

x y
z w

]
7→

[
0 y
z 0

]
The functions Γ+ and Γ− have the effect of isolating the

diagonal elements.
Theorem 7.1: The set of neighborhood functions over a

data-set of effective radius σ0 in the angular bias function
space for a fixed angle θ forms a group with the binary oper-
ation ◦, M1 ◦M2 = σ2

0

[
M1 ∗M1 − 3

4 (Γ−(M1) ∗ Γ−(M2))
]

where ∗ represents matrix multiplication.
See Appendix for Proof

A. Applications of Group Theory

The computational complexity of the SOM algorithm and
any of its variants may be reduced by employing the use of the
established group structure. This reduction in computational
complexity is performed by first computing the generator
of the group Ω(1) and then generating the entire family of
neighborhood functions by using simple matrix multiplication.
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Fig. 14. Artificial Data-Set used to Mirror Linear Regression

VIII. EXTENSIONS OF THE USE OF GENERALIZED
NEIGHBORHOOD FUNCTIONS FOR FIXED-ANGLE CLUSTER

ORIENTATION

The generalized neighborhood function was tested on an
artificial data-set in a context that mirrors linear regression.

A. Data-Set

The functional form of a cluster in the data-set was given
by y = x · tan(θ) + K1 + U(−50, 50), where U(a, b) is a
continuous uniformed distribution on the interval [a, b]. The
data-set comprised 3 clusters of 300 points given by,

y1 = x1 · tan(π
6 ) + 50 + U(−50, 50)

y2 = x2 · tan(π
6 ) + 200 + U(−50, 50)

y3 = x3 · tan(π
6 ) + 350 + U(−50, 50)

The clustered data is illustrated in the Fig 14.

B. Experiment Setup

We set σ0 = 400, φx = 1000, φy = 10 and θ = π
6 in

the generalized neighborhood function. The usual bounds of
η0 = 0.1 and τ2 = nmax

ln(10) , where nmax is an upper-bound
on the number of iterations performed in the experiment,
were implemented. The results of 5 trials were averaged
over varying numbers of iterations. A phenomenal increase
in clustering performance was observed. The performance is
outlined in Fig 15 and Fig 16.

Iterations Precision Recall F-Score Accuracy
4000 0.895 0.897 0.896 0.931
5000 0.923 0.924 0.924 0.949

10000 0.927 0.929 0.928 0.952
20000 0.947 0.947 0.947 0.965
30000 0.947 0.948 0.947 0.965
40000 0.953 0.953 0.953 0.969
50000 0.957 0.958 0.957 0.972
60000 0.959 0.960 0.960 0.973
70000 0.964 0.965 0.965 0.976
80000 0.967 0.967 0.967 0.978
90000 0.981 0.981 0.981 0.987
100000 0.982 0.982 0.982 0.988
150000 0.989 0.989 0.989 0.993
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Fig. 15. Performance of Optimized SOM on Artificial Data-Set to Mirror
Linear Regression

IX. EXTENSIONS OF THE USE OF GENERALIZED
NEIGHBORHOOD FUNCTIONS FOR VARYING-ANGLE

CLUSTER ORIENTATION

[h] The generalized neighborhood function was tested on
an artificial data-set in a context that mirrors non-linear
regression.

A. Data-Set

The functional form of a cluster in the data-set was given
by y = K1 −

√
|3002 − (x + U(0, 50))2| + U(0, 50), where

U(a, b) is a continuous uniformed distribution on the interval
[a, b]. The data-set comprised 3 clusters of 300 points given
by,

y = 300−
√
|3002 − (x + U(0, 50))2|+ U(0, 50)

y = 500−
√
|3002 − (x + U(0, 50))2|+ U(0, 50)

y = 700−
√
|3002 − (x + U(0, 50))2|+ U(0, 50)

The clustered data is given illustrated in Fig 17.
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Iterations Precision Recall F-Score Accuracy
4000 0.644 0.648 0.646 0.764
5000 0.645 0.653 0.649 0.765
10000 0.657 0.663 0.660 0.773
20000 0.658 0.663 0.660 0.773
30000 0.658 0.664 0.661 0.774
40000 0.664 0.680 0.672 0.778
50000 0.667 0.673 0.670 0.779
60000 0.667 0.674 0.671 0.780
70000 0.668 0.678 0.673 0.780
80000 0.678 0.686 0.682 0.787
90000 0.688 0.689 0.689 0.793

100000 0.695 0.710 0.702 0.799
150000 0.710 0.712 0.711 0.807
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Fig. 16. Performance of Unregulated (ie: φx = φy) SOM on Artificial
Data-Set to Mirror Linear Regression
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Fig. 17. Artificial Data-Set used to Mirror Non-Linear Regression

B. Experiment Setup

We again set σ0 = 400, φx = 1000, φy = 10. θ(x) = x·π
600

in the generalized neighborhood function so that θ(x) → π
2

as x → 300. The usual bounds of η0 = 0.1 and τ2 = nmax

ln(10) ,
where nmax is an upper-bound on the number of iterations
performed in the experiment, were implemented. The results
of 5 trials were averaged over varying numbers of iterations. A
phenomenal increase in clustering performance in non-linear
regression was also observed. The performance is outlined in
Fig 18 and Fig 19.

Iterations Precision Recall F-Score Accuracy
4000 0.779 0.792 0.785 0.856
5000 0.778 0.794 0.786 0.856

10000 0.779 0.796 0.787 0.857
20000 0.780 0.795 0.788 0.857
30000 0.780 0.796 0.788 0.857
40000 0.781 0.797 0.789 0.858
50000 0.781 0.797 0.789 0.858
60000 0.782 0.798 0.790 0.859
70000 0.783 0.797 0.790 0.859
80000 0.784 0.800 0.791 0.860
90000 0.784 0.801 0.792 0.860
100000 0.785 0.802 0.793 0.861
150000 0.786 0.802 0.794 0.862
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Fig. 18. Performance of Unregulated SOM on Artificial Data-Set to Mirror
Non-Linear Regression

9



Iterations Precision Recall F-Score Accuracy
4000 0.385 0.639 0.480 0.540
5000 0.385 0.612 0.472 0.545
10000 0.386 0.617 0.475 0.547
20000 0.392 0.656 0.491 0.547
30000 0.403 0.718 0.516 0.552
40000 0.410 0.733 0.526 0.560
50000 0.411 0.737 0.528 0.561
60000 0.412 0.736 0.528 0.563
70000 0.413 0.737 0.529 0.564
80000 0.413 0.736 0.529 0.564
90000 0.415 0.737 0.531 0.567

100000 0.416 0.740 0.533 0.568
150000 0.417 0.741 0.533 0.569
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Fig. 19. Performance of Unregulated (ie: φx = φy) SOM on Artificial
Data-Set to Mirror Non-Linear Regression

The use of the optimized neighborhood function substantially
improves the performance of the SOM algorithm in the context
of a non-linear regression.

X. EXTENSIONS OF THE USE OF GENERALIZED
NEIGHBORHOOD FUNCTIONS FOR ARBITRARY CLUSTER

ORIENTATION

Though improvements may not be as pronounced, the use
of generalized neighborhood functions that vary in some
may according to overall properties for the data-set may be
extended to clustering with arbitrary orientation.

Algorithm 2 describes a generalized mechanism for speed-
ing up clustering when there tends to be little overlap in the
convex hulls of the feature spaces.

XI. CONCLUSION

The Peterson Barney data-set was analyzed and the emer-
gence of clustering based on vowel and speaker-type was
observed. It was shown that it is possible to exploit geo-
metrically evident properties of the data-set by implementing

Algorithm 2 Dynamic Generalized Neighborhood Function
1: Draw the sample x from the input space with a certain

probability; the vector x will represent the usual activation
pattern.

2: Search for the winning neuron i(x) at time step n. This
is the neuron closest to the input sample. The winning
neuron is obtained by: i(x) = argmin‖x(n) − wj‖, j =
1,2...,l

3: Search for the neuron z closest to x.
4: Use some auxiliary mechanism to perform a linear approx-

imation of the boundary between the cluster corresponding
to the winning neuron and the cluster corresponding to the
second place neuron

5: Align the neighborhood function such that the major axis
is parallel to the line that best separates the feature spaces
corresponding to z and x.

6: Compute hj,i(x) given the value of θ from the alignment.
7: return hj,i(x)

an adaptive neighborhood function that utilized a very weak
hypothesis regarding the cluster distribution. We proposed a
general abstraction in various contexts and obtained superior
results; It is possible extend this approach to higher dimensions
and more complex geometric hypotheses. The field of asym-
metric neighborhood functions hold a wealth of opportunities
for the design of heuristics and other dynamic techniques
for improving clustering performance through accuracy and
convergence improvements.

REFERENCES

[1] Ultsch, Alfred (2007). Emergence in Self-Organizing Feature Maps, In
Proceedings Workshop on Self-Organizing Maps (WSOM ’07). Bielefeld,
Germany. ISBN 978-3-00-022473-7.

[2] Haykin, Simon (1999). ”9. Self-organizing maps”, Neural networks -
A comprehensive foundation, 2nd edition, Prentice-Hall. ISBN 0-13-
908385-5.

[3] Abercrombie, D. (1967). Elements of General Phonetics. Edinburgh
University Press: Edinburgh.

[4] Catford, J. C. (1977). Fundamental problems in phonetics. Bloomington,
IN: Indiana University Press. ISBN 0-253-32520-X.

[5] Clark, John; & Yallop, Colin. (1995). An introduction to phonetics and
phonology (2nd ed.). Oxford: Blackwell. ISBN 0-631-19452-5.

[6] Klatt, D. 1980, ”Software for a Cascade/Parallel Formant Synthesizer”
Journal of the Acoustical Society of America, 67:13-33

[7] J. B. MacQueen (1967): ”Some Methods for classification and Analysis of
Multivariate Observations”, Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, University of California
Press, 1:281-297

[8] J. A. Hartigan (1975) ”Clustering Algorithms”. Wiley.
[9] J. A. Hartigan and M. A. Wong (1979) ”A K-Means Clustering Algo-

rithm”, Applied Statistics, Vol. 28, No. 1, p100-108.
[10] D. Arthur, S. Vassilvitskii (2006): ”How Slow is the k-means Method?,”

Proceedings of the 2006 Symposium on Computational Geometry
(SoCG).

[11] An efficient k-means clustering algorithm: Analysis and implementation,
T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Y. Wu, IEEE Trans. Pattern Analysis and Machine Intelligence, 24
(2002), 881-892.

[12] H. Zha, C. Ding, M. Gu, X. He and H.D. Simon. ”Spectral Relaxation
for K-means Clustering”, Neural Information Processing Systems vol.14
(NIPS 2001). pp. 1057-1064, Vancouver, Canada. Dec. 2001.

10



[13] Chris Ding and Xiaofeng He. ”K-means Clustering via Principal Com-
ponent Analysis”. Proc. of Int’l Conf. Machine Learning (ICML 2004),
pp 225-232. July 2004.

[14] Ball, Martin J.; John H. Esling & B. Craig. Dickson (1995). ”The VoQS
system for the transcription of voice quality”. Journal of the International
Phonetic Alphabet 25 (2): 71-80.

[15] Duckworth, M.; G. Allen, M.J. Ball (December 1990). ”Extensions to the
International Phonetic Alphabet for the transcription of atypical speech”.
Clinical Linguistics and Phonetics 4 (4): 273-280.

[16] Hill, Kenneth C. (March 1988). ”Review of Phonetic symbol guide
by G. K. Pullum & W. Ladusaw”. Language 64 (1): 143-144.
doi:10.2307/414792.

[17] International Phonetic Association (1989). ”Report on the 1989 Kiel
convention”. Journal of the International Phonetic Alphabet 19 (2): 67-
80.

[18] International Phonetic Association (1999). Handbook of the International
Phonetic Association: A guide to the use of the International Phonetic
Alphabet. Cambridge: Cambridge University Press. ISBN 0-521-65236-7
(hb); ISBN 0-521-63751-1 (pb).

XII. APPENDIX

A. Proof of Group Structure over Angular Bias Function
Space

Proof:
Identity Element
θΩ(0) = 1

σ2
0
·

[
κ1 + κ2 κ3 − κ3

κ3 − κ3 κ1 + κ2

]
=

[
1

σ2
0

0
0 1

σ2
0

]
is the

identity element of the group since,
θΩ(0) ∗θ Ω(n) =θ Ω(n) ∗θ Ω(0) = 1

σ2
0

θΩ(n)
And
Γ−(θΩ(0)) =

[
0 0
0 0

]
So that,
Γ−(θΩ(n)) ∗ Γ−(θΩ(0)) = Γ−(θΩ(0)) ∗ Γ−(θΩ(n)) = 0

Whence, θΩ(n) ◦θ Ω(0) =θ Ω(0) ◦θ Ω(n) =θ Ω(n)

Closure
Given integers n and k, we need to show that
θΩ(n) ◦θ Ω(k) ∈ Bθ

σ0
. That is, the operation ◦ must

preserve the fixed angle θ. Note that for both θΩ(n) and
θΩ(k) the constants κ1, κ2 and κ3 agree since θ is fixed. Let

us first consider θΩ(n) ∗θ Ω(k) = 1
σ4
0

[
e1 e2

e3 e4

]
, the elements

of which we compute term by term for clarity.

e1 =(κ1∆n
x + κ2∆n

y ) · (κ1∆k
x + κ2∆k

y)+

(κ3∆n
y − κ3∆n

x) · (κ3∆k
y − κ3∆k

x)

=κ1κ1∆n+k
x + κ1κ2∆n

x∆k
y+

κ1κ2∆k
x∆n

y + κ2κ2∆n+k
y +

κ2
3∆

n+k
y − κ2

3∆
k
x∆n

y+

κ2
3∆

n+k
x − κ2

3∆
n
x∆k

y

=κ1∆n+k
x + κ2∆n+k

y +

3κ1κ2∆n+k
y − 3κ1κ2∆k

x∆n
y+

3κ1κ2∆n+k
x − 3κ1κ2∆n

x∆k
y

So that e1 is given by,

κ1∆n+k
x + κ2∆n+k

y + 3κ2
3

4 (∆n+k
y −∆k

x∆n
y + ∆n+k

x −∆n
x∆k

y)

and by the symmetry in the form of Ω, it is easy to
see that e4 is of a similar form in which the κ1 and κ2 terms
are swapped. e4 given by,

κ1∆n+k
y + κ2∆n+k

x + 3κ2
3

4 (∆n+k
y −∆k

x∆n
y + ∆n+k

x −∆n
x∆k

y)

Let us make the substitution
ε = 3κ2

3
4 (∆n+k

y −∆k
x∆n

y + ∆n+k
x −∆n

x∆k
y)

So that,
e1 = κ1∆n+k

x + κ2∆n+k
y + ε

and
e4 = κ1∆n+k

y + κ2∆n+k
x + ε

Additionally we see that,

e2 =(κ1∆n
x + κ2∆n

y ) · (κ3∆k
y − κ3∆k

x)+

(κ3∆n
y − κ3∆n

x) · (κ1∆k
y + κ2∆k

x)

=κ3[κ1(∆n
x∆k

y −∆n+k
x ) + κ2(∆n+k

y −∆n
y∆k

x)+

κ1(∆n+k
y + ∆n

y∆k
x)− κ2(∆n

x∆k
y + ∆n+k

x )]

=κ3[(κ1 + κ2) · (∆n+k
y −∆n+k

x )]

=κ3∆n+k
y − κ3∆n+k

x

It is also easy to see from the symmetry of Ω that e2 = e3.
So that e2 and e3 are both given by,
κ3∆n+k

y − κ3∆n+k
x

θΩ(n)∗θΩ(k) = 1
σ4
0

[
κ1∆n+k

x + κ2∆n+k
y + ε κ3∆n+k

y − κ3∆n+k
x

κ3∆n+k
y − κ3∆n+k

x κ1∆n+k
y + κ2∆n+k

x + ε

]
A second calculation shows that Γ−(θΩ(n)) ∗ Γ−(θΩ(k)),

Γ−(θΩ(n)) ∗ Γ−(θΩ(k)) = 1
σ4
0

[
e5 e6

e7 e8

]
It is clear that e5 = e8 = 0 and e6 = e7 since,

Γ−(θΩ(n)) = 1
σ2
0
·
[

0 κ3 ·∆n
y − κ3 ·∆n

x

κ3 ·∆n
y − κ3 ·∆n

x 0

]
And,

Γ−(θΩ(k)) = 1
σ2
0
·
[

0 κ3 ·∆k
y − κ3 ·∆k

x

κ3 ·∆k
y − κ3 ·∆k

x 0

]
So we have,

e6 =(κ3∆k
y − κ3∆k

x) · (κ3∆n
y − κ3∆n

x)

=∆n+k
y −∆k

x∆n
y + ∆n+k

x −∆n
x∆k

y

=
4 · ε
3

Hence, Γ−(θΩ(n)) ∗ Γ−(θΩ(k)) = 1
σ4
0

[
0 4·ε

3
4·ε
3 0

]
So that σ2

0

[
θΩ(n) ∗θ Ω(k)− 3

4 (Γ−(θΩ(n)) ∗ Γ−(θΩ(k)))
]

gives[
e1 (e3 − 3e6

4 )
e3 (e4 − 3e8

4 )

]
= 1

σ2
0

[
κ1∆n+k

x + κ2∆n+k
y κ3∆n+k

y − κ3∆n+k
x

κ3∆n+k
y − κ3∆n+k

x κ1∆n+k
y + κ2∆n+k

x

]
which is equal to θΩ(n + k) ∈ Bθ

σ0
.

Inverse Elements
The inverse element of θΩ(n) is θΩ(m) where n
and m are additive inverses. This is true since,
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θΩ(n) ◦θ Ω(−n) =θ Ω(n + (−n)) =θ Ω(0)

Associativity
Associativity also follows trivially since,
[θΩ(i) ◦θ Ω(j)] ◦θ Ω(k) =θ Ω(i + j) ◦θ Ω(k) =θ Ω(i + j + k)
and,
θΩ(i) ◦ [θΩ(j) ◦θ Ω(k)] =θ Ω(i) ◦θ Ω(j + k) =θ Ω(i + j + k)
Whence,
θΩ(i) ◦ [θΩ(j) ◦θ Ω(k)] = [θΩ(i) ◦θ Ω(j)] ◦θ Ω(k)
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Abstract—The acquisition of choice behaviors has been 

associated with a positive/negative/neutral reinforcement system 
that is well-modeled by neural networks. A multi-layer 
perceptron trained using back-propagation with a modified 
desired-output vector is used to model this behavior allocation in 
both steady-state and transitioning concurrent-schedule, 
variable-interval, reinforcing learning situations. The simulated 
results are compared to those in a laboratory setup and 
demonstrate that although the model there exist many general 
similarities between the model and the experimental results, the 
model is not well suited for the operant conditioning experiments 
simulated. 
 

Index Terms—Concurrent Variable Interval Schedule 
Learning, Multi-Layer Perceptron, Neural Networks 
 

I. INTRODUCTION1 
xperiments studying associative learning generally fall into 
two categories: classical and operant conditioning. 
Classical conditioning trains involuntary, reflexive 

behavior that occurs because of a trained association between 
stimuli and response. Operant conditioning, on the other hand, 
trains voluntary behavior under the expectation of 
reinforcement. Reinforcement occurs only if the operant 
response occurs [1]. A typical operant conditioning experiment 
involving rats, for example, might feature lever pressing that is 
reinforced on a probabilistic basis (Expected number of 
reinforcements per minute = x).   In classical conditioning 
experiments, when reinforcement ceases, the response 
continues. In operant conditioning, when reinforcement ceases 
or becomes independent of response, responses become less 
frequent. This is also known as the assignment of credit, and 
understanding the mechanism by which this occurs is known as 
the assignment of credit problem [2].    

General principles of learning have been well 
established through experimental evidence [3] and a number of 
mathematical models have been developed to try to explain the 
learning process [4][5]. The models generally postulate that the 

 
The author is with the Computer Science Department, Yale University, New 

Haven, CT 06520 USA. (e-mail: erica.newland@yale.edu). 
 
1 Currently, citations tend to point to works that summarize the relevant 

piece of information. More specific citations will be added in the final draft. 

better predicted a reinforcer is, the less efficient that reinforcer 
is at altering behavior. Put otherwise, an unpredicted reinforcer 
will have a substantial impact on future behavior. The 
difference between the predicted value of the reinforcer and its 
actual value is known as the error term. For example, if at 
time-step t, the event reinforcer is assigned a value of “1”, if the 
event no reinforcer is assigned a value of “0”, and if confidence 
of reinforcement is 0.6, then if there is a reinforcer given at 
time-step t, the error is 0.4. Indeed, this is qualitatively intuitive: 
if a reinforcer is predicted with 90% certainty and is received, 
then this leads to little change in the information available to 
the subject. If a reinforcer predicted with only 10% certainty is 
received, then this provides significant new information to the 
subject and suggests the need for an updated set of prediction 
values. This concept is also the guiding philosophy for the 
back-propagation algorithm on the multi-layer perceptron.  
Thus in this paper, we suggest a neural network-based model of 
learning that employs the back-propagation algorithm, under a 
particular operant conditioning paradigm.  

The molar model also appears to have correlates in neuronal 
activity, in particular in dopamine neural networks. Dopamine 
has been identified as a “neural substrate of prediction and 
reward” and the aptly named dopamine neurons have been 
linked to the prediction of affect of particular events [6]. 
Dopamine neurons emit a positive signal in response to an 
event that is “better” than expected and a negative signal if the 
event is “worse” than expected. No signal is emitted if an event 
occurs as expected.  This simple reinforcement schedule well 
matches the mathematical models described above. But 
although our model follows the general philosophy associated 
with dopamine neurons and employs a similar error signal, the 
structure of our network differs from that of neurons in the 
basal ganglia, where dopamine neurons are located [7]. Thus it 
is more accurate to consider the model presented here as one 
that can be used to describe and predict behavior and learning 
patterns but not necessarily one that accurately models how 
reinforcement learning is carried out in the brain. 

 
 

II. MOTIVATION 
 

The model presented is developed as a simulation of a 
concurrent-schedule laboratory setup used by Banna and 

Modeling the Allocation of Behavior in 
Steady-State and Transitioning 
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Newland to obtain an understanding of choice acquisition in 
rats[7][8]. Under this particular experimental paradigm, 
subjects are trained in a single session on a number of different 
learning-schedules. The single-session approach is particularly 
appealing for our simulation as we do not have to consider the 
influence of temporal delays between sessions.  

In concurrent schedule learning, two choices, for 
example two levers, are available to the subject. A response on 
each manipulandum is reinforced with a pre-determined 
probability. This probability is determined by a variable 
interval (VI) schedule of reinforcement. On a VI-30 schedule 
on the left lever, for example, the first response on the left lever 
to occur an average of 30 seconds after the trial begins is 
reinforced with a sucrose pellet. It is important to recognize that 
the actual interval between trial commencement and 
reinforcement is variable. The expected time for reinforcement 
may be 30 seconds, but sometimes reinforcement will be 
activated after 5 seconds have passed; other times it will take a 
minute for a press to yield reinforcement. The other lever, 
meanwhile uses its own schedule of reinforcement which may 
also be VI-30 or may have some a different expected time of 
reinforcement, for example VI-90.  The procedure described is 
known as the two-key procedure[ 8][9]. 

Concurrent schedules can be arranged to be 
independent or dependent of each other. Under a dependent 
schedule, a simulation of which is presented in this paper, when 
one reinforcer becomes active (on), the timer for the other 
schedule is put on hold until the first reinforcer is actually 
delivered [8]. Changeover delays are used in concurrent 
schedule designs to avoid reinforcing a steady alternation 
between manipulanda. A changeover delay is a forced delay 
that occurs when the subject switches from one reinforcement 
schedule to the other. For example, in a two-key arrangement, 
if the rat has been pressing the right lever and then switches to 
the left lever, a certain number of seconds pass before the left 
lever’s schedule becomes activated. That is, for that many 
seconds, there is no chance of reinforcement[8][9]. 

 

III. SYSTEM DESIGN 
 
 

A multi-layer perceptron trained on a modified 
back-propagation algorithm was used to model the acquisition 
of choice. Back-propagation is usually associated with the 
learning-with-a-teacher paradigm, in which a set of expected 
outcomes is compared to the neural network’s output and the 
network’s weights are adjusted according to the calculated 
error. Put otherwise, in traditional back-propagation learning, 
the entirety of information about the environment is available 
to the network [10]. Models of the acquisition of choice in a 
two-key procedure, however, should reflect the fact that subject 
only has available minimal information about the environment. 
Thus most of the modifications made to the back-propagation 
algorithm in our model are made to reflect the lack of available 
information about the environment. These adjustments thus 
involve the design of algorithms for determining, and regularly 
updating, the desired-output vector.  Importantly, we were not 
interested in a particular set of “final” or convergent weights 

for our model but instead on the decisions that are made 
throughout the entirety of the learning process.  

We let each neuron’s activation function be tanh(x).  
Let there be n steps in the learning process (n chances for 
weight updates); let each step i represent a time-step in the 
learning process. Let x(i) denote an input to network at time 
step i, let  y(i) denote an output of the network at time step i, and 
let d(i) denote the “desired-output” at time step i. The concept, 
and re-definition of, desired-output will be discussed below.  
The training will occur sequentially (the network will be 
updated after the presentation of each pair (x(i), d(i)). The seed 
input is a 0; each subsequent x(i) = y(i-1). 

 

A. Decisions as Expectations 
 

Conditioning models are often built around a 
hypothesis that the learning process involves the generation of 
expectancies of future events [11]. This hypothesis is well 
summed up by Gallistel in his book The Organization of 
Learning: “When confronted with a choice between 
alternatives that have different expected rates for the 
occurrence of some to-be-anticipated outcome, animals, 
humans, and otherwise, proportion their choices in accord with 
the relative expected rates.” 

By setting the value of a simulated reinforcer on lever 
1 to  1 and the value of a simulated reinforcer on lever 2 to -1, 
we make it simple to express the expectations of reinforcement 
on lever1 and lever2 as probabilities. If, at time step i, the 
expected reinforcement on lever 1 is 0.6, then this can be 
interpreted as 60% confidence that there will be reinforcement 
on lever 1. If, however, the expected reinforcement on lever 1 is 
0.2 then this indicates that it is considered more likely for there 
not to be reinforcement on either lever than there to be 
reinforcement on one of the levers. We work under the 
reasonable assumption that with no expected reward, a subject 
would prefer not to exert the energy to press a lever and thus, 
neither lever should be chosen.  

So we design the output of our neural network to be in 
the form of expected reinforcement rates.  An output y(i) = 1 is 
associated with 100% confidence in choosing lever 1, an output 
y(i) = -1 is associated with 100% confidence in choosing lever 2. 
|y(i)| # 0.5 means that the simulated subject does not press a 
lever at time-step i.   
 

B.  Memory 
 
An important concept often employed in the construction of our 
model is that of memory. Consider a vector C of values C(i)  
that represent knowledge of some characteristic of the state of 
the environment precisely, and only, at time-step i. But to take 
C(i-1) as the subject’s knowledge of the system at C(i) would 
be shortsighted: this would suggest that the only information 
the subject has at time-step i is information about the preceding 
time step when indeed the subject might have information 
about many preceding time steps. Yet it would be similarly 
brash to average the C(1) through C(i-1) to  
 average the values of C(i); this would imply that experiences at 
the beginning of the session are just as influential as recent 
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experiences. A considerable mass of experimental data 
suggests that a feasible model for weighing memories involves 
the use of the leaky integrator, which was introduced by Bush 
and Mosteller in 1955[12]. The leaky integrator is a linear 
operator commonly used in dynamic models of short-term 
memory in operant conditioning [2]:  
 

1 (1 ) ( 1)i iM wM w C i−= + − −  
 
A small constant w places higher weight on new experiences 
while a large constant places higher weight on old experiences. 
 

C. Motivating the Design and Adaptation of the 
Desired-Output Vector 

 
Traditional training by back-propagation ultimately 

hinges on the comparison of the neural network’s output at 
each time step with a desired output for that time step. However, 
the desired output in the experimental paradigm being modeled 
is generally probabilistic in nature and at specific times even 
requires modification in response to the neuron’s output. That 
is to say, the d(i) that exists at time t = 1, may be  very different 
from the d(i) that exists at time t = i.  

We derive the rules for designing and updating the 
desired-output vector from a set of motivating examples.  In 
this discussion, the schedules are referred to as VI-x, VI-y, 
where x and y represent the expected number of seconds until 
the reinforcer for lever 1 or lever 2, respectively, is activated. 
Observe that VI-x indicates that the reinforcer for lever 1 is 
activated, on average, x seconds after the commencement of a 
trial. That is, the expected number of reinforcers from lever 1 in 
one minute is 60/x. Define the length of a session as the number 
of time steps (for example, seconds) in the learning process. 
Observe that one activation can last longer than a second; 
indeed, a single activation on lever j lasts until the subject 
presses lever j. 

First consider time step i at which lever 1’s reinforcer 
is first activated. If the rat presses lever 1 (if y(i+1) > 0.5), then 
a reinforcer is received. If y(i+1) < 1, then the simulated subject 
has received a better reward than was expected. In order to 
match the general models of reinforcement learning, the 
decision process that led to the pressing of lever 1 should be 
strengthened and the rat should be encouraged to press lever 1. 
On the other hand if the expected reinforcement was 1, then the 
subject’s expectations were precisely met and the reinforcer 
should have no impact on future behavior.  Setting d(i+1) = 1 
will give us the desired results. In this case, d(i+1)-1 = 0, so no 
changes in the network will occur if y(i+1)=1. On the other 
hand, if y(i+1)<1, then d(i+1)- y(i+1)> 0, so the weights will 
be adjusted to encourage future outputs of 1.  

Thus we let d(i) = 1 correspond to a time-step when 
lever 1’s reinforcement is activated. Similarly, each d(i) = -1 
will correspond to a time-step when lever 2’s reinforcement is 
activated. Initially, (100/x) percent of the entries in d should be 
1 and (100/y) percent of the entries in d should be -1. The rest 
of the entries in d will be filled with 0’s, although these 0’s will 
be replaced by different values (see below) during the learning 
process.  

If y(i) =1, then no changes in the weights of the 
perceptron should be made; the subject’s expectations were 
precisely met.  Because the reinforcement is the equivalent of 
“telling” the simulated subject that lever 1’s reinforcer was 
indeed on, we can assign the value of d(i+1) = 1 without giving 
the rat information about the environment that it shouldn’t 
actually have.  

Now consider if lever 1’s reinforcer has been turned 
on at time step i but the simulated subject does not press lever 1 
at time step i+1 (y(i+1) # 0.5) .The lever will remain activated 
and should the rat finally press lever 1 at time-step j, we will 
want d(j) = 1. Thus, for each iteration such that d(i+k) = 1 and 
y(i+k) # 0.5, we set d(i+k+1) = 1. 

Replacing the original value of d(i+k+1) is not, 
however, a feasible solution. Consider the situation when the 
initial value of d(i+k+1) is -1. By replacing -1 with 1 we are 
altering the number of reinforcements provided on VI-y. In a 
laboratory experiment that runs dependent concurrent schedule, 
VI-y would simply be delayed until lever 1 were finally pressed. 
At this point, VI-y would resume. We would encounter the 
same problem would if the original d(i+k+1) were 1. We would 
be replacing a distinct activation of VI-x with a different 
activation. As a result, there would be fewer distinct activations 
of VI-x. To overcome this problem, instead of replacing 
d(i+k+1), we simply insert a new value in between d(i+k) and 
the original d(i+k+1), thus bumping d(i+k+1) to the 
(i+k+2)-place in d. 

 But the insertion of value d(i+k+1) = 1 also presents 
another difficulty. Consider the duration between time-steps 
i+1 and j. If the simulated subject does not press lever 1 at time 
i+k<j, it should not receive a reinforcer. If we have set d(i+k) = 
1, however, then this amounts to telling the subject that it 
should be pressing lever 1. This is an inaccurate representation 
of the subject-environment interaction: in the experimental 
setup that we are modeling, the subject does not know that the 
reinforcer is “on” at lever 1 until it actually chooses to press 
lever 1.  

First consider the case, at time-step i+k< j, when the 
simulated subject selects to neither press lever 1 nor lever 2 
while lever 1 is “on.”  By pressing no lever, the subject receives 
no new information about the environment. That is, no weights 
in the neural network should be updated. The only way to 
accomplish this is to set d(i+k) = y(i+k). This will result in an 
error value of 0 and no learning.  

Next consider the case when the simulated subject 
selects to press lever 2 at time i+k<j. The subject will not 
receive reinforcement (because we are employing dependent 
schedules, lever 2’s reinforcer will remain off). Although the 
subject should not be informed that lever 1’s reinforcer is on, it 
should receive some information upon selecting lever 2: it 
should learn that lever 2’s reinforcer is not on. Put otherwise, 
the decision to select lever 2 should be negatively reinforced. 
But in what way should the lever be negatively reinforced? 
Should the subject now be encouraged to press lever 1 or 
should it be encouraged to not press any lever?  In other words, 
how do we set d(i+k) such that we are giving the subject only 
the information about the environment that it is allowed to 
know. 

 One possible approach, and the one employed in this 
model, is to model the subject’s knowledge about the 15
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reinforcement schedule on lever 1. In order to guarantee that we 
are negatively reinforcing lever 2, we set 0<d(i+k) < 1. We then 
determine the value of d(j+k) by determining the expected 
reinforcement on lever 1 at this point in the algorithm. We 
accomplish this by using the leaky integrator, which was 
described earlier; we let C(i) = (# of reinforcements provided to 
subject from lever 1 at time i).    

Finally, we do not want to encourage the subject to 
continuously switch back and forth between two levers. That is, 
there must be a cost for changing levers. In the laboratory 
environment, this is enforced with a changeover delay.  If the 
rat presses lever 1 at time step i, and then the next time that he 
presses a lever he presses lever 2, for the next 2 seconds after 
the first press on lever 2, he will not be able to receive a pellet, 
even if the reinforcer is on. This can also be expressed in our d 
by not allowing a value of 1 or -1 for the first two time steps 
after a “change of levers” occurs. Here, we replace with values 
of d(i+1) and d(i+2) with 0. More accurately, we insert a new 
d(i+1) =0 and d(i+2)=0 in between d(i) and the previously 
named d(i+1) entry. We choose a replacement value of 0 in 
order to compensate for the lack of time information conveyed 
by the back-propagation algorithm. That is, we are 
investigating if setting d(i+1) and d(i+2) to zero can adjust for 
the fact that back-propagation algorithm makes the association 
between switching levers and the lack of reinforcement 
essentially impossible to make (see [7] and [11] for a discussion 
of the TD-learning algorithm and its use in behavioral 
modeling) .  

 

D. Design and Adaptation of the Desired-Output Vector 
Below we list the rules, which were justified above, 

used for creating, and updating, the desired-output vector 
during training.  

 
1) If y(i) < 0.5 AND d(i) = 1, insert a value  d(i+1) = 1 into 
d. If y(i) > -0.5 AND d(i) = -1, insert a value  d(i+1) = d(i) 
into d.  If a lever’s reinforcer is activated but the rat does not 
press that lever, then the reinforcer remains activated.  

 
2) If  y(i) > 0.5 but  d(i) is not 1, d(i) = wMi-1+(1-w)C(i-1), 
where C(i-1) = # of reinforcements on lever2 at time i-1.  If  
y(i) <- 0.5 but  d(i) is not -1, d(i) = wMi-1+(1-w)C(i-1) 
where C(i-1) = # of reinforcements on leve1 at time i-1.  If 
the simulated subject presses lever 1 but receives no 
response and this is not because of a changeover delay, then 
the subject decides between lever 2 and not pressing a lever 
based on its memory of lever 2’s reinforcement schedule.   
 
3) If | y(i)|#0.5, set d(i) =y(i).  Nothing is learned in this 
time-step.  

 

4) If y(i) > 0.5, then at the occurrence first k for which 
y(i+k) < -0.5, then  d(i+k) = d(i+k+1) = 0. If y(i) <-0.5, 
then at the occurrence first k for which y(i+k) > 0.5, d(i+k) 
= d(i+k+1) = 0. This represents a changeover delay. 

IV. RESULTS AND ANALYSIS 
 
The figures that follow illustrate simulations using a neural 

net with one input node, two hidden layers of two nodes each, 
and one output node, a training rate of 0.3, and a momentum of 
0.3. Each time-step represents one second. 

 Banna and Newland conducted sessions that lasted 120 
minutes each. During the first 30 minutes, which we will refer 
to as Stage 1, two VI-30 schedules were run; this yielded an 
expectation of 2 reinforcers per minute. For the next 90 minutes, 
which we will refer to as Stage 2, the original schedules were 
replaced with new schedules. These schedules featured a “rich” 
lever and a “lean” lever. In each session  

 
E(reinforcements on the poor lever ) 1 1 1 1{1,  , , , }
E(reinforcements on the rich lever) 4 8 16 32

∈

 
 

In both Stage 1 and Stage 2, and in all individual sessions, the  
expected number of reinforcers per minute was held constant at 
2.   

Experimentally, steady-state behavior in concurrent 
scheduling is described by the generalized matching relation 
[13]: 
 

.

 

where B1/B2 represents the ratio of responses on lever 1: 
responses on lever 2 and R1/R2 represents the ratio of 
reinforcers on lever 1 to reinforcers on lever 2. The steady state 
ratios were calculated for each of the five VI schedules 
modeled in the simulation and a least-squares line was fit to the 
results. On consistent runs of the simulation, the regression 
resulted in a remarkably good fit. We plotted and fit the data in 
two distinct ways. In Figure 1(a), each data point represents the 
cumulative values for a session run under one of the five 
schedule pairings. In Figure 1(b), each data point represents the 
cumulative values at each time-step over a 3-stage experiment. 
That is, Figure 1(b) tracks the learning rate at every single 
time-step, while Figure 1(a) provides a summary of behavior 
under each of the different schedule pairings.  In Figure 1(a) 
below, the equation of the line is 
     

Y = -0.032518  + 0.55243x 
 
The intercept of -0.032518 indicates no bias for either lever and 
the coefficient of 0.55248 suggests considerable underfitting of 
the general matching equation. However, this is consistent with 
results of [8] and [9]. In these works, the average slope value 

1 1

2 2

log log logB Rc a
B R

⎛ ⎞
= + ⎜ ⎟
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for a single rat’s behavior in one session was 0.63.  In Figure 
1(b), the slope is 0.6827 and the intercept is  -0.0066. These 
results are also consistent with those found experimentally and 
suggest that in the model, just as in the laboratory, the general 
learning – or “success” – trend, measured in terms of the ratio 
of number of responses to number of reinforcers, is consistent 
no matter the reinforcement schedule.  

 
Figure 1(a)  and (b). (a), top, shows a fitting of the general 
matching equation to the results of the simulation where 
each data point represents the cumulative values for one 
pair of schedules (ie, the cumulative reinforcements and 
responses for a 32:1 schedule pairing, 16:1 pairing, 8:1 
pairing, 4:1 pairing, and 1:1 pairing). (b), bottom, shows a 
fitting of the general matching equation to the results of the 
simulation where each data point represents the cumulative 
reinforcements and responses at that time step. The 
vertical lines represent the transition between a 1:1 
schedule ratio and a 32:1 ratio, and the transition between 
a 32:1 ratio and a 16:1 ratio, respectively.  
 

 In our model, setting the expected number of reinforcers per 
minute to two resulted in very few responses on the lean lever 
and often no reinforcement on the lean lever in a simulated 30 
minute block of a session. This suggests one of two conclusions 
about our model. Either the rich lever is favored more heavily 
than in the experimental setup or the percent of time spent not 
responding on a lever is higher in our simulation than in the 
laboratory. The consistency of our findings with the general 
matching equation, as well as the results of [8] and [9], suggest 
the latter. 

In Figure 2(a) and (b), we show box plots for the number of 
responses per simulated minute under a 32:1 paradigm with an 
average of 2 reinforcers per minute. Figure (c) shows the results 
from [8] and [9] for laboratory trials under the same set of 
reinforcement  
conditions. We observe that for stage 2, in particular, the 
difference in lever presses between the simulation and the 
laboratory results are extreme. The number of lever presses per  
Figure 2. 2(a) and 2(b) (Left top and left bottom) show 
number of lever presses/minute under a 32:1 paradigm 

with average of 2 reinforcers per minute. 2(c) (right), shows 
the results from [8].  BL indicates stage 1 (baseline), TR 
indicates transition between stage 1 and stage 2. END 
indicates the end of stage 2.  
 
minute in the 75h quartile of the simulation is less than 10, 
while in the laboratory results, the number of lever presses per 
minute does not fall below ten.  

A better understanding of the response pattern can be 
acquired by studying Figure 3, which shows the pattern of 
responses throughout an entire session. The horizontal lines 
indicate the lever-press cutoffs of 0.5 and -0.5. The points on 
the extremes of each of these horizontal lines indicate lever 
presses. As is expected from a back-propagation algorithm, 
output values change gradually: from a response on lever 1, 
through no lever press but favoring lever 1 and no lever press 
but favoring lever 2, to a response on lever 2.    
Figure 3 Simulation Responses 
 

We also analyzed the more specific behavior of the neural 
network within each steady state.  Figure 4(a) and 4(b) are 
histograms of “responses per visit” during stage 1 of the 

simulation. A visit on lever 1, for example, ends when lever 2 is 
pressed for the first time following the pressing of lever 1. This 
first choice of lever 2 represents the beginning of a visit on 
lever 2. A visit does not end if there is no lever press during a 
time step; a visit on one lever is only ended by an actual press 
on the other lever.  Figures 4(c) and 4(d) are histograms of 
responses per visit during the corresponding laboratory 
experiments (also equivalent schedules) by [8][9]. 2    

 The histograms in Figure 4 suggest that, at least during stage 
1, the nature of the visits to lever 1 and 2 are similar in the 
 

2 Permission granted from the authors for reprint. 
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simulation and the laboratory results. Although the data for the 
simulations is sparse, we do not observe the (aberrant) high 
preference for 1-press visits that the simulation produces under 
other conditions (see Figure 7(a) and (b)). The range of 
durations of the visits and the distribution of durations are 
comparable in the two models, although the absolute number of 
visits is much higher in the laboratory results. The histograms 
for stage 2, Figure 5, on the other hand, show a different result. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4, (a), (b), (c), and (d).  Histograms of stage 1 

(baseline) responses on lever 1 and lever 2 when both are 
operating under a VI-60 schedule.  The data in Figures (c) 
and (d) are fit with Gaussian curves.  Figures (c) and (d) 
have been provided by [8]. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5, (a), (b), (c), and (d).  Histograms of stage2 
responses on lever 1 and lever 2 when operating on a 32:1 
rich to lean reinforcement ratio with an average of 2 
reinforcements activated per minute. The data in Figures (c) 
and (d) are fit with Gaussian curves.  Figures (c) and (d) 
have been provided by [8]. 

 
 
 
 
 
The peak at a visit of duration equal to 3 is unexplainable. 

Even when the memory coefficient of 0.3 was varied, when the 
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changeover delay of 2 seconds was artificially increased within 
reasonable amounts (+15), or when the network parameters 
were changed, there remained a peak on the rich lever for visits 
of duration either 3, 4, 5, or 6.  The histogram of the simulation 
on lever 2 during stage 2 (Figure 5b), suggests that if there were 
more data points, perhaps the simulation and the laboratory 
experiments would yield similar results. 

It appeared possible that the small number of data points 
were skewing the data, so we modeled a situation in which 12 
reinforcements were expected per minute. We simulated a 
number of different rich to lean ratios; the result of an 8:1 
simulation are shown in Figure 6. We found a high number of 
visits of duration equal to 1, even when the changeover delay 
was artificially increased within reasonable bounds.  Stage 2, 
however, was better modeled by this set of conditions, although 
we again observe the visit duration peak of 3 on the rich lever.  

In Figure 6, below, we show the number of 
changeovers/simulated minute on two different ratio conditions. 
Although it is difficult to determine from Figure 6 if the change 
in ratio lead to a transition period in number of 
changeovers/minute  (or if the change was immediate) on the 
8:1 condition, it appears that there was a transition period, in 
the 32:1 condition. 

 

 

 Figure 6 (a)-(b). Changeovers per minute. 
 

 

 
Figure 7(a) –(d). Reinforcement schedules with expected 
number of reinforcers per minute set to 12. Figures (a) and 
(b) (top two) are on equivalent schedules. Figure (c) and (d) 
represent the rich and poor levers, respectively, in an 8:1 
reinforcement condition. 
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 Although the  histograms and matching equation allow us to 
compare our model to laboratory results  when the  subject is 
learning under a steady paradigms (stage 1, or stage 2), they do 
not give us information about behavior during the transition 
between the stages.  To determine how our model performs 
during transitions, we use the following equation, suggested by 
[14]. 

1
( )

2

( )
1 halfk R X

B PLog
B e

∞
−=

+
 

Where B1 represents the responses on lever 1 and B2 represents 
the responses on lever 2.  The four parameters are fitted using a 
non-linear least-squares regression. Pinf represents the upper 
asymptote.  k represents the slope of the straight portion of the 
S-curve, and Rhalf represents the number of reinforcers 
cumulatively delivered when the transition is half way 
complete.  In Figures 8 (a) (the simulation) and (b) (the 
laboratory data), each data point has been computed at the end 
of a pair of visits, one on lever 1 and one on lever 2. The log of 
the ratio of responses on lever 1 to responses on lever 2 during 
that pair of visits represents the dependent variable. The data 
has been plotted against cumulative reinforcements, which is 
measured as the number of reinforcements administered thus 
far in a session at the end of each pair of visits. After being 
plotted, the data in both figures was smoothed using a 
LOWESS algorithm and then a non-linear least-squares 
regression was used to fit the data. In both figures, x = 0 
represents the beginning of the transition. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 (a), (b): Stage transitions. Figure (b) is on a 32:1 
ratio with 2 expected reinforcers/min. (b) provided by [8]  
 

The parameters fit for our model gave us a Pinf  of 0.9978, a k of 
1.903, and an r of 0.1363, all with 95% confidence bounds. The 
reported R-square was 0.9652.  
 The ability to fit this model suggests that our network might 
indeed model behavior transitions. However, the results of 
many simulations were difficult to fit and simulations run with 
an expected reinforcer of 2 per minute or with a 32:1 rich:lean 
lever ratio were not well fit by the transition equation.  

V. TWO MULTI-LAYER PERCEPTRONS  
A 2-multi-layer perceptron system was also implemented. In 

this design, each multi-layer perceptron corresponds to one of 
the levers. The output of each perceptron corresponds to the 
expectancy of a reinforcer on the lever it represents. The 
perceptron whose output has the largest absolute value 
represents the lever chosen by the simulated subject. If no 
expectancy is greater than 0.5 than no lever is chosen. The rules 
implemented are very similar to those described earlier for the 
single multi-layer perceptron system. Only the “winning” 
perceptron, if there is a perceptron with output greater than 0.5,  
is updated at each time-step.  The results were not promising. 
Figure 9(a) and 9(b) show the responses at each time step for 
two consecutive simulations under identical conditions. Clearly 
the results are extremely variable and do not seem to reflect the 
conditions nor do they resemble experimental results. This 
design was not pursued further. 

 

 
Figure 9(a) and (b). Responses for two consecutive 

simulations using two multi-layer perceptrons and a 
winner-takes-all rule.  Two reinforcements per minute 
were expected. 
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VI. CONCLUSION 
 

 
As discussed above, the consistent applicability of the 

generalized matching equation to the simulation data lends  
credence to the use of a modified  back-propagation algorithm 
on a single multi-layer perceptron to produce molar models of 
behavior. However, the simulated model did not well-describe 
the more molecular behavior of subjects within each state. For 
example, while the response: reinforcement ratios reported by 
the model matched experimental results, the pattern in which 
responses occurred on the two levers differed from those 
reported experimentally. Moreover, they differed in different 
ways depending on the conditions tested.  

 Considerable efforts were devoted to manually changing 
parameters and an improved algorithm would automatically 
test these different parameter values in order to obtain optimal 
results. Generally,  the momentum term and learning rate 
parameter performed best in the range of 0.3-0.5.A large 
momentum term, for example, was found to produce stays as 
long as 1,000 seconds on the rich lever under some conditions. 
Finally, we suggest that a more sophisticated model of the 
operant conditioning described here could be provided by a 
different type of network.  Suri and Shultz discuss a 
temporal-delay (TD) algorithm that was used to model 
dopamine-neuron response in spatial tasks that might be of 
interest to readers [7].  A TD network would contain more 
temporal information and thus might better model the learning 
process.  
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Abstract— We use a genetic algorithm to study infant and 

young child development in a game theoretic environment 
modeling the interaction with either parent or caregiver. By 
changing the child’s interaction time with parental figures, which 
have several quality levels the development of the child’s mind is 
investigated. This model provides children interaction with 
several childcare conditions. As increasing exposed time with 
semi-optimal partner and decreasing quality of a guardian, 
child’s development is delayed 
 

Index Terms— Game Theory, Genetic algorithm  
 

I. INTRODUCTION 
O meet the demand of social evolution, many infants and 

young children are cared at a nursery school for part of the 
day. Accordingly, child development is effected not only by the 
quality of their parent but also by the time spent with the parent 
and at the nursery. Observing child reactions generated by 
study several childcare environments, we can study child  
awareness development as it is informed by different levels of 
care. Awareness is effected by restricted  
“mentalizing”or ”non-mentalizing[2]” interaction.  A 
mentalizing response would be one in which the parent 
responds to the child in a way that acknowledges the child's 
state of mind.  This could be by relating the child's actions to 
how they are feeling, thus linking action to a mental state.  A 
non-mentalizing response would be one in which the parent is 
responding directly to the child's actions without linkage to 
how the child is thinking or feeling. However, not all children 
are exposed to parents only. 

We will model the interaction of a normal child with a fully 
developed parent and contrast this with relations formed by a 
child with some imperfect parent. Such a model could be 
represent situations where a child stay in a nursery school and   
interact with a caregiver, elder friend or peer. This lessen 
interaction quality compared to that supplied by perfect parent. 
Interactions with such semi-developed adults should delay 
child’s development[1]. Further, we will vary the amount of 
daily nursery school time as since world some children spend 
more time in nursery than others. Moreover, by adding noisy 
input, we will model an autistic child’s development.  
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To model this interaction with parent and child development , 
a game theoretic approach provided by Miranker and Mayes[2]. 
This uses a variant of the game Prisoner's Dilemma in a 
recurrent form to model the interaction between caregiver and 
child.  A genetic algorithm is utilized to model the development 
of the child's emergence of mind a notation of fitness from the 
game play derived from increasingly good memory[3]. 

 

II. THE MODEL 
 

A. Game Theoretic Environment 
To model this interaction with parent and development of 

child, Prisoner's Dilemma will be used. Each of parent and 
child can choose a “mentalizing” play or “non-mentalizing 
play.”  The parent can ignore or attend the child. On the other 
hand, the child can use intuition or use his mind. The child 
wants to get Attention from the parent, and also wants to use his 
Intuition instead of build his Mind.  This reflects  that there is a 
cost involved with using his Mind, so he prefers to utilize his 
Intuition.  The parent wants the child to develop his Mind, but 
prefers ignoring the child to paying it Attention.  This models 
that the parent has a cost associated with paying Attention to 
the child, while ignoring the child and having him develop 
would be ideal to the parent. The payoff matrix is shown in the 
following table 

 
Payoff table 

Child\ Parent Attend Ignore 
Mind R, R S, T 
Intuition T, S P, P 
 
This model becomes a Prisoner's Dilemma when T>R>P>S. 

The value each participant receives in each iteration of the 
game hinges on the interaction of their choices with the action 
selected by their opponent. In this case, the best results for an 
individual are the result of successfully tricking the opponent 
into doing more work while engaging in less.  The opponent 
then receives the lowest possible return value.  In the real world, 
such actions result in a loss of trust.  A rational agent would 
learn from such experience and when confronted with that 
same type of situation would be more apt to anticipate another 
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deception.  The strictly logical course would be to minimize 
losses by engaging in the less effortful activity.  This kind of 
activity would naturally degrade into the (P,P) situation.  
Cooperating to achieve the (R,R) situation would benefit both 
parties more in the long term, but is much more difficult to 
achieve because of the increased risk associated with that 
position. 

 

 B  Mind Model 
The parent’s strategy is fixed in order focus to isolate child’s 

response. The optimal parent will be play a “tit-for-tat” strategy. 
This parent plays attend if the child uses his mind while she 
plays ignored if the child use his intuition. The beginning of the 
iteration child’s memory is empty. After each round of play, the 
child received payoff. Depending on determines whether up 
date his memory.  
Child’s memory holds a list of sequence of plays. To visualize 
the sequence, we assigned the values T=2, R=1, P=-1 and S=-2. 
This creates a zero sum game. 

In this experiment, child’s fitness level is set to 0. After each 
game, the payoff which child receives is added to his fitness 
level. The fitness level is an indication of how well he has 
anticipated the moves of his adversary.  A high fitness value 
results from typically high payoff values returned after 
participating in the Prisoner’s Dilemma and indicates a better 
response to the strategy being used by his opponent.   
 After each round of plays, a decision is made to either 
incorporate or discard the knowledge gained from these with 
some probability that directly relates to the payoff value that 
has just been achieved. .  Sequences associated with very 
favorable or very unfavorable payoffs are assigned a lower 
probability of being discarded.  This is analogous to real world 
situations in which very happy or traumatic events are encoded 
with greater intensity than those experiences which are not 
associated with a strong emotion. The probability of a sequence 
associated with a payoff value T and S are encoded as 0.9 while 
sequences associated with a value of R or P were encoded with 
a probability of 0.67.  These specific values were chosen 
arbitrarily. 

Memory is limited, so we limit the sequence length that child 
is able to recollect to 4steps. After each round, the memory is 
updated by removing the first value (the oldest value), shifting 
others one step forward, and storing the most recent payoff 
value is at the end of the memory sequence. When the child is 
faced with a similar situation in the future, a direct comparison 
of these two weights can be used to determine which of the two 
options has more reliably created a better payoff in the past. 
The memory is used to determine the frequency with which the 
child will choose the option with a higher weight.  In this 
experiment, the probability, z, that a child would choose the 
option with a lower weight was 

z= 1/(x-y+2) 
x is the value of the larger weight and y is the value of the 

smaller.  A choice between the two possible plays is then made. 
 

 C   Exposure to  Nursing School  
We model the exposure to the child to different levels of 

adviser by assuming that while child is at nursery school, he 
would spend time with caregiver, elder child or peer.  

The base case is taken for a child staying with an optimal 
parent whose strategy is “tit-for-tat”. The second child will stay 
at nursery school for 30% of the time for each weekday. We 
give a discount to caregiver’s quality as 70%, 50%, 30%, 0% 
optimal (totally random). Our model takes it that the child will 
stay with parent during the weekend as mentioned above. 

 The actions of the suboptimal parent will be determined by 
the value of a randomly generated variable, which when greater 
than some threshold will choose to play randomly rather than 
use tit-for-tat. 

Each game will be composed of 100 rounds, The goal will be 
to determine and compare the effects of exposure to suboptimal 
parents of varying degrees of degradation on the child’s 
development and the child’s ability to recover when 
subsequently exposed to optimal parenting. 

 

III. EXPERIMENT 
 

 A  Overview 
Initially, the optimal model was run as a base case.  This figure1 
shows the case that child stays with optimal parent all day long. 
It could represent that the child is not going nursery school or 
that the nursery school caregiver is optimal. 
Each time I executed the program, the result values are little bit 
different each other. This difference of values are generated 
from memory limit and the beginning part that child didn’t 
build up his memory. From the difference, I measured the mean 
values of end fitness and standard deviations. For this optimal 
case the mean end fitness 95 and stand dev 3.7   
 

 B  Increasing exposure time 

Fig. 1.  The base case of the child fitness 
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In each of the following figures the colors donate the 
percentage of nursing school time. 
I used loop function to divide time as in real world  
child spend some of his daytime at nursing school then come 
home and stay with parent whose optimal rate fixed as perfect.  
If the time is increased the fitness level is going down and the 
standard deviation value grows up. I set from 90th to 100th 
iteration as recovering period which means in that part of 
iteration child interact with perfect caregiver.  From the graph 
the dropping point represent that child in nursing school. 
Because child’s memory is only 4 step long at the beginning, 
the amount of time spend with semi optimal parent doesn’t look 
like disadvantage. But at the end of graph the fitness end is 
quite lower than less amount of time as we can see mean end 
fitness from this table. For the each case the standard deviation 
is 6.8,   7.3, 7.8, 8.3.  
Comparing blue line and ocean blue, even the care giver’s semi 
optimal rate is fixed at 70%. If the child spent  20% of  his time  
the fitness end at 87 and if child spend  50% of his time his 
fitness end at 52.  
When I decreased caregiver’s quality from 70% to 50% the 
mean end of fitness are dropped and standard deviation are 

increased as table 3. 
 
 
 

 
When the caregiver’s quality decreased to 30% the mean end of 
fitness are dropped and standard deviation are increased as 
table 4. The interesting point is that  
By reducing caregiver’s optimal level as 0, we can represent the 
case that child spend his time with peer. The mean end fitness 
gaps between each colors are relatively big, because the 

parent’s optimal rate is 100% and the caregiver’s optimal rate is 
0. The mean end fitness are quite low and the standard 
deviations are relatively big. 

Percentage of time Mean end Fitness Standard deviation
20% 87 6.8 
30% 76 7.3 
40% 62 7.8 
50% 52 8.3 
 
Table2.  70% optimal caregiver 

 
Fig. 2.  The child fitness with 70% optimal caregiver 

Percentage of time Mean end Fitness Standard deviation
20% 85 11.4 
30% 68 12.1 
40% 56 12.3 
50% 51 12.7 
Table3.  50% optimal caregiver 

 
Fig. 3. The child fitness with 50% optimal caregiver 

Percentage of time Mean end Fitness Standard deviation
20% 82 16.8 
30% 64 17.2 
40% 52 17.9 
50% 44 18.7 
Table3.  30% optimal caregiver 

 
Fig. 4. The child fitness with 30% optimal caregiver 
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 C  Autism child 

For autism child case, at first I give 30% random value to input 
for child and fixed perfect parent. The mean end of fitness was 
88 and the standard deviation is 13.8. Same child but the case 
that spend 20% time with 70% optimal parent, the fitness was 
about 67 and the standard deviation increase to 19.8%. 
The 50% noised child case, all iteration with optimal parent the 
Fitness was 21 and the standard deviation 49 it just mean 
random so the result is un measurable. 
For the last of cases the standard deviation is too big, the result 
is doubtful. 
 

IV. CONCLUSION  
When we reduced the caregiver’s optimal percentages the 

child’s development goes down as we expected. From the result 
of experiment we recognize that even though child spent part of 
his time with imperfect care giver. If the percentage of time 
amount is not big child can get over it  The more time child 
interact with semi-optimal, the longer time to build up memory 
to child   So we can conclude that the quantity time that child 
spend with optimal parent is as important as the optimal rate of 
the parent  
Autism child case, the experiment of is not clear because the 
standard deviations are very big. We still can see that the more 
time with optimal parent can generate the better fitness level  
 
 Future work that build some boundary to reduce the standard 
deviation for autistic case, and a better understanding of the 
autistic child’s problems where biasing could yield better 
solutions on finding a reliable output. 
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Percentage of time Mean end Fitness Standard deviation
20% 72 28.2 
30% 53 28.9 
40% 46 29.8 
50% 30 30.3 
Table3. with  peer 

 
Fig. 5. The child fitness with peer 

 
Fig. 6. The child fitness with peer 
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Stock Market Index Prediction using Neural
Network

Kun LI

Abstract— Researchers have known for some time that nonlin-
earity exists in the financial markets and that neural networks
can be used to forecast market returns. The following research
utilizes neural network models for estimation, and results are
examined for their ability to provide an effective forecast of future
values. A benchmark linear regression model is also employed to
show that the neural network models generate higher accuracy
in forecasting ability.

Index Terms— time series, neural network, linear regression,
self-organizing map, recurrent neural network.

I. INTRODUCTION

IMPORTANT changes have taken place over the last two
decades within the financial markets, including the use

of powerful communication and trading platforms that have
increased the number of investors entering the markets.
Traditional capital market theory has also changed, and
methods of financial analysis have improved. Stock-return
forecasting has attracted the attention of researchers for many
years and typically involves an assumption that fundamental
information publicly available in the past has some predictive
relationships to future stock returns or indices. The samples
of such information include economic variables, exchange
rates, industry- and sector-specific information, and individual
corporate financial statements. This is opposed to the general
ideal of the efficient market hypothesis which states that
all available information affecting the current stock value is
constituted by the market before the general public can make
trades based on it. Therefore, it is impossible to forecast
future returns since they already reflect all information
currently known about the stocks.

This is still an empirical issue since there is contradictory
evidence that markets are not fully efficient, and that it is
possible to predict the future returns with results that are
better than random by means of publicly available information
such as time-series data on financial and economic variables.
These studies identify that variables such as interest rates,
monetary-growth rates, changes in industrial production,
and inflation rates are statistically important for predicting a
portion of the stock returns. However, most of the studies just
mentioned that attempt to capture the relationship between
the available information and the stock returns rely on
simple linear regression assumptions, even though there is no
evidence that the relationship between the stock returns and
the financial and economic variables is linear. Since there
exists significant residual variance of the actual stock return
from the prediction of the regression equation, it is possible

Kun LI is a student.

that nonlinear models could be used to explain this residual
variance and produce more reliable predictions of the stock
price movements.

Neural networks are a nonlinear modeling technique that
may overcome these problems. Neural networks offer a
novel technique that does not require a prespecification
during the modeling process since they independently learn
the relationship inherent in the variables. This is especially
useful in security investment and other financial areas where
much is assumed and little is known about the nature of
the processes determining asset prices. Neural networks also
offer the flexibility of various architecture types and learning
algorithms. Two neural network approaches that can be used
for classification and level estimation will also be briefly
reviewed, both multilayer feed-forward neural networks and
recurrent neural network.

The resulting data selection and model development, em-
pirical results, and discussion and conclusion will then be
presented. Data sources and descriptions are given in the
Appendix.

II. STOCK MARKET INDEX

A stock market index is a listing of stock and a statistic
reflecting the composite value of its components. There are
many major market indices in finance world, each of the
them tracks the performance of a specific group of stocks
considered to represent a particular market or sector of the
stock market or the economy.

The Dow Jones Industrial Average (DJIA) is an index of
30 of the largest and most widely held public companies in
the United States. The Index includes substantial industrial
companies with a history of successful growth and wide
investor interest. The Index includes a wide range of
companiesłfrom financial services companies, to computer
companies, to retail companies.

A typical plot of daily data for Dow Jones Industrial
Average looks like Figure 1. Like most data (such as asset
prices, exchange rates, GDP, inflation and other macroeco-
nomic indicators) in economics and finance, a stock market
index comes in the form of time series exhibiting very high
noise, and significant non-stationarity and nonlinearity. Every
aspect will be studied later in this report and techniques will
be employed to overcome those difficulties.
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Fig. 1. Time series of the Dow Jones Industrial Average (DJIA)

III. THE EFFICIENT MARKET HYPOTHESIS

Professor Eugene Fama at the University of Chicago
Graduate School of Business developed the efficient market
hypothesis (EMH) as an academic concept of study through
his published Ph.D. thesis [1] in the early 1960s, which
later became a cornerstone of modern financial theory. The
EMH states that it is impossible to consistently outperform
the market by using any information that the market already
knows, except through luck, because stock market efficiency
causes existing share prices to always incorporate and reflect
all relevant information. This means stocks always trade at
their fair value on stock exchanges, and thus it is impossible
for investors to profit from either purchasing undervalued
stocks or selling stocks for inflated prices.

The EMH has provided the theoretical basis for much of
the financial market research during the seventies and the
eighties, but it has been put on trial recently: there is a
large body of evidence in support of EMH [2], an equal
amount of dissension also exists. For example, the existence
of apparently sophisticated professional investors like Warren
Buffett is an impossibility according to the EMH. Critics of
EMH [3] argue that the predictability of stock returns reflects
the psychological factors, social movements, noise trading, and
other irrational factors in a speculative market.

Warren Buffett, ”I’d be a bum in the street with
a tin cup if the markets were efficient.” Fortune
April 3, 1995.

The crux of the EMH is that it should be impossible to
predict trends or prices in the market through fundamental
analysis or technical analysis. If the EMH was true, then a
financial time series could be modeled as the addition of a
noise component at each step:

y(k + 1) = y(k) + ε(k)

where ε(k) is a zero mean Gaussian variable with variance σ.
The best estimation is:

ŷ(k + 1) = y(k)

In other words, if the series is truly a random walk, then the
best estimate for the next time period is equal to the current
estimate. Now, if it is assumed that there is a predictable
component of the series then it is possible to use:

y(k+1) = y(k)+ f(y(k), y(k− 1), · · · , y(k−n+1))+ ε(k)

where ε(k) is a zero mean Gaussian variable with variance σ,
and f(·) is a non-linear function in its arguments. The best

Fig. 2. A high-level block diagram of the system used.

estimation is given by:

ŷ(k + 1) = y(k) + f(y(k), y(k − 1), · · · , y(k − n+ 1))

Prediction using this model is problematic as the series often
contains a trend. A common solution to this is to use a model
which is based on the first order differences, instead of the
raw time series.

δ(k+1) = δ(k)+ f(δ(k), δ(k− 1), · · · , δ(k−n+1))+ ν(k)

where
δ ≡ y(k + 1)− y(k)

and ν(k) is a zero mean Gaussian variable with variance σ,
and in this case the best estimation is:

δ̂(k + 1) = δ(k) + f(δ(k), δ(k − 1), · · · , δ(k − n+ 1))

IV. SYSTEM DETAILS

Figure 2 depicts the hybrid intelligent system model for
stock market analysis. We start with data preprocessing,
which consists of all the actions taken before the actual data
analysis process starts. It is essentially a transformation T
that transforms the raw real world data vectors yi, to a set of
new data vectors xi.

Then the data is fed into a SOM. The output of the
SOM is the topographical location of the winning node.
Each node represents one symbol. A brief description of the
self-organizing map is contained in a later section.

An Elman recurrent neural network is then used which is
trained on the sequence of outputs from the SOM. The Elman
network was chosen because it is suitable for the problem, and
because it has been shown to perform well in comparison to
other recurrent architectures. The Elman neural network has
feedback from each of the hidden nodes to all of the hidden
nodes, as shown in Figure 3. For the Elman network:

A. Data Processing

1) Differencing: Whenever possible, large scale
deterministic components, such as trends and seasonal
variations, should be eliminated from the inputs.

For this study, the differences [yk − yk−1] of the variables
were provided to the networks so that different input variables
can be compared in terms of relative change to the monthly
stock returns, since the relative change of variables may be
more meaningful to the models than the original values when
forecasting a financial time series
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Fig. 3. The pre-processed, delay embedded series is converted into symbols
using a self-organizingmap. An recurrent neural network is trained on the
sequence of symbols.

2) Log conpression: In order to compress the dynamic
range of the series and reduce the effect of outliers, a log
transformation of the data is used:

x(k) = sign(δ(k)) log(|δ(k)|+ 1)

B. The Self-Organizing Map

A self-organizing map (SOM) is a type of artificial neural
network that is trained using unsupervised learning to produce
a low-dimensional (typically two dimensional), discretized
representation of the input space of the training samples,
called a map. The map seeks to preserve the topological
properties of the input space. The model was first described
as an artificial neural network by the Finnish professor Teuvo
Kohonen, and is sometimes called a Kohonen map.

Like most artificial neural networks, SOMs operate in two
modes: training and mapping. Training builds the map using
input examples. It is a competitive process, also called vector
quantization. Mapping automatically classifies a new input
vector.

Consider the problem of charting an n-dimensional space
using a one-dimensional chain of Kohonen units. The units
are all arranged in sequence and are numbered from 1 to

Fig. 4. Lattice of computing units in one-dimensional self-organizing map.

m (Figure 4). Each unit is connected to the n-dimensional
input x and computes the corresponding excitation. The
n-dimensional weight vectors w1, w2, · · · , wm are used for
the computation. When an input from such a region is fed
into the network, the corresponding unit should compute the
maximum excitation. Kohonens learning algorithm is used to
guarantee that this effect is achieved.

A Kohonen unit computes the Euclidian distance between
an input x and its weight vector w. This new definition of
excitation is more appropriate for certain applications and
also easier to visualize. In the Kohonen one-dimensional
network, The neighborhood of radius r of unit k consists of
all units located up to r positions from k to the left or to
the right of the chain. Units at both ends of the chain have
asymmetrical neighborhoods.

Kohonen learning uses a neighborhood function φ, whose
value φ(i, k) represents the strength of the coupling between
unit i and unit k during the training process. The learning
algorithm for Kohonen networks is the following:

Kohonen learning Algorithm
• start : The n-dimensional weight vectorsw1, w2, · · · , wm

of the m computing units are selected at random. An
initial radius r, a learning constant η, and a neighborhood
function φ are selected.

• step 1 : Select an input vector ξ using the desired
probability distribution over the input space.

• step 2: The unit k with the maximum excitation is
selected (that is, for which the distance between wi and
ξ is minimal, i = 1, · · · ,m).

• step 3 : The weight vectors are updated using the neigh-
borhood function and the update rule

wi ← wi + φ(i, k)(ξ − wi), for i = 1, ...,m

• step 4 : Stop if the maximum number of iterations has
been reached; otherwise modify η and φ as scheduled
and continue with step 1.

After quantizing real-valued time series into symbolic
streams, there are many ways to interpret the resulting sym-
bolics. In particular, we perform quantization into symbolic
streams over two and four symbols, respectively. The sequence
St over the binary alphabet {1, 2} is as follows:

St =

{
1 (down) δt < 0
2 (up) δt ≥ 0
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Fig. 5. Non-recurrent network. Multilayer perceptron with single hidden
layer.

Quantization using four symbols is more complicated, since
we have to determine the positions of the cut values θ1 and
θ2 separating normal from extremal differences. The sequence
over the alphabet {1, 2, 3, 4} is as follows:

St =


1 (extreme down) if δt < θ1 < 0
2 (normal down) if θ1 < δt < 0
3 (normal up) if 0 < δt < θ2

4 (extreme up) if 0 < θ2 < δt

C. Recurrent Neural Network

For time series forecasting, Neural network architectures
can be trained to predict the future values of the dependent
variables. What required is the design of the network
paradigm and its parameters. The multi-layer feed-forward
neural network approach (Figure 5) consists of an input layer,
one or several hidden layers and an output layer. Another
approach is known as the partially recurrent neural network
that can learn sequences as time evolves and responds to the
same input pattern differently at different times, depending
on the previous input patterns as well.

Some argue that the use of a recurrent neural network
instead of an MLP with a window of time delayed inputs
introduces another assumption by explicitly addressing the
temporal relationship of the inputs via the maintenance of an
internal state [6].

None of these approaches is superior to another in all
cases [7]; however, an additional dampened feedback, that
possesses the characteristics of a dynamic memory, will
improve the performance of both approaches.

We can convert a non-recurrent network into an Elman
network that remembers a previous state by adding a new set
of inputs which are fully connected by recurrent links to the
hidden layer outputs (but delayed by one unit of time).

1) Input Delayed Neural Networks: Time-delay neural
networks (TDNNs), also known as the neural network
finite impulse response architecture has been used quite
successfully in a number of practical applications including
speech recognition, and time series prediction.

Fig. 6. Input delayed neural network.

A TDNN is similar to a multilayer perceptron in that all
connections feed forward. The difference is that with the
TDNN, the inputs to any node i can consist of the outputs of
earlier nodes not only during the current time step , but during
some number d of previous time steps (t−1, t−2, · · · , t−d)
as well. This is generally implemented using tap-delay lines.

A natural restriction of the general TDNN topology is
the class of TDNN architectures which have delays only on
the input units. We call these input delayed neural networks
(IDNNs). An IDNN which has a single output unit, and d− 1
delays on its only input (Figure 6) computes a function of the
most recent d inputs including the current input.

y (n) = f

(∑
k

wk · x (n− k + 1)

)
where, f is a sigmoid function and the weights are corrected
by the Back Propagation algorithm (BP).

2) Elman Networks: Elman Networks (Figure 7) are a form
of recurrent Neural Networks which have connections from
their hidden layer back to a special copy layer. This means that
the function learnt by the network can be based on the current
inputs plus a record of the previous state(s) and outputs of the
network. In other words, the Elman net is a finite state machine
that learns what state to remember (i.e., what is relevant). The
special copy layer is treated as just another set of inputs and
so standard back-propagation learning techniques can be used.

y (n) = f

(∑
k

wk · xk (n) +
∑
m

wm · ym (n− 1)

)

V. STATIONARITY

A common assumption in many time series techniques is
that the data are stationary, but in reality, data points are
often non-stationary. A stationary process has the property
that the mean, variance and autocorrelation structure do not
change over time. Non-stationary behaviors can be trends,
cycles, random walks or combinations of the three.

Using non-stationary time series data in financial models
produces unreliable and spurious results and leads to poor
understanding and forecasting. If the time series is not
stationary, we can often transform it to stationarity with one
of the following techniques.
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Fig. 7. Elman network. There is a new set of inputs which are fully connected
by delay element to the hidden layer outputs.

A random walk can be transformed to a stationary process
by differencing and then the process becomes difference-
stationary. That is, given the series Yt, we create the new
series Zi = Yi − Yi−1. The disadvantage of differencing is
that the process loses one observation each time the difference
is taken. Although you can difference the data more than
once, first order differencing is usually sufficient.

A non-stationary process with a deterministic trend
becomes stationary after removing the trend, or detrending.
We can fit some type of curve to the data and then model
the residuals from that fit. For example, Yt = α + βt + εt
is transformed into a stationary process by subtracting the
trend βt : Yt − βt = α + εt. Since the purpose of the fit is
to simply remove long term trend, a simple fit, such as a
straight line, is typically used. No observation is lost when
detrending is used to transform a non-stationary process to a
stationary one.

For non-constant variance, taking the logarithm or square
root of the series may stabilize the variance. For negative
data, you can add a suitable constant to make all the data
positive before applying the transformation. This constant can
then be removed from the model to obtain predicted (i.e., the
fitted) values and forecasts for future points.

The approach used to deal with the non-stationarity of the
signal in this work is to difference original data followed by
a logarithm transformation and build models based on a short
time period only. This is an intuitively appealing approach
because one would expect that any inefficiencies found in the
market would typically not last for a long time.

VI. EXPERIMENTAL RESULTS

In order to gauge the effectiveness of the symbolic encoding
and recurrent neural network, we investigated the following
five systems:

TABLE I
CONFIGURATION OF SOM

Parameter Value
Dimention 1
# of nodes 2

Learning rule Kohonen
Learning rate 0.01

Epochs 50

TABLE II
CONFIGURATION OF IDNN.

Parameter Value
# of hidden nodes 5

Learning rule BP
Learning rate 0.01

Momentum constant 0.9
Transfer function of hidden layer tansig
Transfer function of output layer purelin

1) The system as presented in Figure 3 with SOM and
Elman network. The configurations of SOM and Elman
network are described in Table I and Table III respec-
tively.

2) The system above but without the symbolic encoding,
i.e. the preprocessed data is entered directly into the
recurrent neural network without the SOM stage.

3) The system with the recurrent network replaced by a
standard MLP network. The configurations of MLP is
described in Table II .

4) Standard MLP network only.
5) Simple linear regression model.

Linear regression can be easily implemented and converges
fast. But even test it against training data, it can only predict
direction of changing 75% of time. We get R2 = 0.1733,
the F statistic = 0.6290 and a p value for the full model =
0.6511, and an estimate of the error variance = 22.4130.
Every number is sugguesting that linear regression model
failed to capture the nature of the problem, which has been
pointed out earlier in this report.

Algorithm of SOM is quite simple. As shown in Figure
8, it did a very good job in terms of classification. In this

TABLE III
CONFIGURATION OF ELMAN NETWORK.

Parameter Value
# of hidden nodes 10

Learning rate 0.01
Momentum constant 0.9

Transfer function of recurrent layer tansig
Transfer function of output layer purelin
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Fig. 8. Symbolical encoding by SOM

TABLE IV
THE RESULTS FOR THE SYSTEMS.

Model Test error %
SOM + Elman 0.525

Elman 0.53
SOM + MLP 0.4514

MLP 0.445

particular case, only two neurons are used (one means stock
index will go up and the other means it will go down). In
future, sensitive study on numbers of dimentions and neurons
will be conducted.

Two types of recurrent neural networks have been used
here, both Elman networks and MLP. For Elman networks,
after less than 100 epochs training, it can perfectly simulate
training data almost all the time (Figure 9). That is not
surprising because basically it can approximate any function
(with a finite number of discontinuities) with arbitrary
accuracy if the hidden layer have enough neurons.

But when presented with testing data to simulate a real
prediction (forecasting) case, the best performance was
obtained with an embedding dimension of 8 and 10 hidden
neurons where the error rate was 58.0% (Figure 10). A t-test
indicates that this result is significantly different from the null
hypothesis corresponding to a random walk at p = 5.3854−3.

Sensitive analysis was done for both embedding dimmen-
sion number and hidden neuron number. The result are shown
in Figure 11 and 12.

VII. CONCLUSION

There exists a vast number of articles addressing the pre-
dictabilities of stock market return, and many of them are
claiming that the simulation can benifit greatly from quantiza-
tion of the original data into symbolic streams. And also there
is no conclusion whether the use of a recurrent neural network,
including the temporal relationship of the series explicitly in

Fig. 9. simulation using training data

Fig. 10. simulation using test data

Fig. 11. Sensitive analysis of embedding dimmension

Fig. 12. Sensitive analysis of number of hidden neurons
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the model, is signi?cant for this type of study. The author did
a shoulder by shoulder comparison of five diffenrent models,
Elman network, MLP network, Elman network with SOM
filter, MLP with SOM filter and simple linear regression. The
result of the simulation shows that SOM can greatly improve
the convergence of the neuron networks and Elman network
can do a better job to capture the temporal pattern of the
symbolic streams generated by SOM. Simple linear regression
is almost unusable in this case. Some sensitivity study was
done with respect to neural network parameters. A sensitivity
study of SOM parameters, which could be significant here, is
left to future work.

APPENDIX
SIMULATION DETAILS

Gist only
• Data: Dow Jones Industrial Average Index from 09/14/06

to 11/23/07. Each time we train the network with 20
numbers and test it with one day data right after the
training segment. Google Finance.

• Linear regression: simple linear regression.
• SOM: one dimention model with two neurons. Kohonen

Learning Rule. Learning rate = 0.01. 250 epochs.
• Elman networks: tansig neurons in its hidden layer.

purelin neurons in its output layer. Batch training. Per-
formance index: mean absolute error. Ten hidden-layer
tansig neurons and a single logsig output layer.
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Abstract—Given a list of movies, a number of people, and the 

viewership information, we determine clusters consisting of 
similar movies or people. Different from the classical clustering 
problem, movies and people can belong to multiple clusters. We 
will introduce two variations of SOM algorithms to find these 
clusters. One uses inhibitory synapses to prevent neurons from 
converging to the same value, and serves to obtain a preliminary 
cluster grouping. In the second, each input, instead of only 
examining the closest neuron, operates on all the neurons that 
could possibly represent the clusters this input belongs to.  This 
algorithm serves to complete the preliminary cluster grouping. A 
few testcases are given to demonstrate the performance of the 
algorithms in practice. 
 

Index Terms—Self Organizing Map, Feature Extraction, 
Inhibitory Synapses 
 

I. INTRODUCTION 
Given a fixed number of movies and viewers and the 

information on who watched what, we seek to determine the 
reasons behind the choices viewers made. 

We assume that each movie has a number of features, and 
each viewer prefers a number of features. If a movie has a 
feature that a viewer prefers, we assume that this particular 
viewer has watched that movie. 

For example, suppose there are three movies and two 
viewers. The viewership information is described in the 
following graph (squares are movies, and circles are viewers): 

 
 
 
 
 
F and P are features (F stands for “funny” and P stands for 

“political”). From the above graph, we can see that the second 
movie is both funny and political, and the first viewer likes 
funny movies. 

Feature is a useful abstraction because it reveals why a 
particular viewer watched the movies in question. If we know 
the features, then when there is a new viewer, we can analyze 
the movies s/he watches, directly associate him/her with the 
correct features, and make appropriate movie recommendations. 
It is easy to see how this approach can also be applied to 
website or book recommendations. 
 
 

II. MATHEMATICAL MODEL 
Suppose there are m viewers, then we can associate a feature 

with a vector in the m-dimensional space. If viewer i likes 
feature X, then the i-th component of X is 1; otherwise it is 0. 

For the graph we gave, the two feature vectors are: 
F=(1,0) 
P=(0,1) 

Analogously, we also associate a movie with a vector in 
m-dimensional space. If viewer i watches movie Y, then the i-th 
component of Y is 1; otherwise it is 0. For the graph we gave: 

M1=(1,0) 
M2=(1,1) 
M3=(0,1) 

Now we define the operator  “|”: 
A|B = sgn(A+B) 

sgn(A) is a vector, the i-th component of which is the sign of 
the i-th component of A. Specially, the sign of a positive 
number is 1, the sign of 0 is 0, and the sign of a negative 
number is -1. 

“|” is in fact an extension of the logic OR operation. 1 
corresponds to TRUE, and 0 corresponds to FALSE. 

Now the assumption we made earlier can be formally stated 
as follows: if a movie M has features F1, F2, …, Fk, then: 

M=F1|F2|…|Fk 
We call this Cover Condition. 
Another obvious property is: if M has feature F, then: 

M|F = M 
Hereafter, we may also say vector M “contains” vector F 

(which suggests that movie M has feature F). 
The problem we are trying to solve can be formally stated as 

follows. We have n movie-vectors in a m-dimensional space, 
M1, M2, …, Mn. Find r feature-vectors F1, F2, …, Fr, so that for 
every Mi (1≤i≤n), all the feature-vectors Mi contains, when 
connected by “|” operator, evaluate to Mi. We want to find the 
smallest possible r. 

We define two more operators. 
Operator “•”: 

Let A=(x1, x2, …, xm), B=(y1, y2, …, ym) 
then A•B=x1y1+x2y2+…+xmym 

Operator “*”: 
Let A=(x1, x2, …, xm), B=(y1, y2, …, ym) 

then A*B=(x1y1, x2y2, …, xmym) 
We also introduce the notation: 

U=(1,1,…,1) 
So we know A•U equals to the sum of all components of A. 
 

Feature Extraction Using 
Self Organizing Map 

Lin He 

F 

F 

P 

P 

FP 
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We make two other assumptions: 
1. Fi and Fj (i≠j) should not be too similar; otherwise it is 

difficult to distinguish the two features. Formally, both 
(Fi•Fj)/(Fi•U) and (Fi•Fj)/(Fj•U) should be small. 

2. It is easy to see that movies and viewers are 
exchangeable. If we interchange the role of movie and 
viewer, condition (1) should still hold. 

The above the conditions are to ensure that viewers and 
movies are different enough to distinguish features. 

III. SELF-ORGANIZING MAP 
The problem we are dealing with, in many ways, resembles a 

classical clustering problem. 
In the classical clustering problem, a number of points are 

distributed in a space, forming several clusters. A fixed number 
of neurons are randomly set up in the same space. 

All the points are repeatedly processed. In every processing 
step, the point finds the closest neuron, and pulls the neuron 
toword itself. The strength with which it pulls is proportional to 
the distance between the point and the chosen neuron. The 
farther the distance, the harder it pulls[1]. 

After a while, the neurons end up in clusters. Since a point 
only pulls the closest neuron, a neuron is only pulled by points 
in its cluster. Since all points in the cluster pull the neuron, the 
neuron eventually stablizes at the center of the cluster as forces 
from many directions tend to cancel each other out. 

In our problem, movies can be viewed as the points. If two 
movies M and N do not share any feature, M•N should be 
relatively small (according to condition (1)). In this sense, they 
are “far apart.” Similarly, if two movies M and N share some 
features, M•N will be relatively large. In this sense, they are 
“close.” 

Hence, movies with the same features “cluster” together in 
the m-dimensional space. 

If we can set up an appropriate number of neurons in the 
m-dimensional space, and apply an appropriate SOM, these 
neurons should end up at the clusters. 

Let’s examine a hypothetical cluster consisting of three 
movies: 

M1=A|B 
M2=A|C 
M3=A|D 

M1, M2, M3 are movies. A, B, C are features. 
If a neuron N ends up somewhere close to the cluster, it will 

be pulled by all three neurons. Whenever N is pulled, the “1” 
components of A are always strengthened (that is, increased). 
In contrast, most “1” components in B are only strengthened 
1/3 of the time, but weakened 2/3 of the time. Similarly for C 
and D. The net effect is that “1” components of A appear in N 
too; whereas “1” components of B, C, D are weakened to close 
to 0 in N. The final neuron N will be very close to feature A. 

To put this in the perspective of the classical clustering 
problem, the center of M1, M2, and M3 is A. The other three 
features B, C, and D are merely noise. They tend to cancel each 
other out. 

After noticing the resemblance to the classical clustering 
problem, we will focus on designing a SOM algorithm to solve 
this viewer-feature problem. However, there is a significant 

difference between the classical SOM algorithm and the one we 
need to deal with. 

In our problem, in order for a neuron to end up as a correct 
feature, it has to be pulled by all the movies that have this 
feature. If only some of the movies containing this feature pull 
at the neuron, the noise influences might not cancel each other 
out cleanly; as a result, the neuron may end up somewhere far 
from the intended feature. 

In other words, if a movie has k features, it has to pull all k 
neurons representing these features. This is a considerable 
extension to the classical clustering problem which only deals 
with the closest neuron. 

So the basic idea is as follows (assuming we know the 
number of features in advance. Later we’ll discuss how to 
determin the number of features). 

1. First randomly set up some neurons in the space. 
2. All the movies are processed repeatedly. 
3. For each input (movie), find all the neurons it 

“contains.” 
4. Pull each one of these neurons toward that input movie, 

the strength with which it pulls being proportional to the 
distance between the neuron and the input movie. 

Formally, the algorithm statement is: 
Stablizer Algorithm: 
1. Randomly set up r vectors of m-dimension, N1, 

N2, …, Nr. 
2. Randomly select a movie M to process. 
3. If M|Ni= M (1≤i≤r), Ni=Ni+µ(M-Ni) 
4. Repeat (2) and (3) for a reasonable number of times. 
µ is the learning rate. It is set to 0.05 in my program. 
We expect the algorithm to work iff each Ni(1≤i≤r) is close 

to a particular feature enough to be identified as a distinct 
feature. It only serves to expand and stabilize incomplete 
neurons when they are sufficiently close to the actual features. 

 
I experimented with a number of algorithms based on the 

above schema, but did not succeed in any one of them. Here is a 
typical failure: 
Expected Result My Result 
THREE features 

(1, 0, 0) 
(0, 1, 0) 
(0, 0, 1) 

THREE features 
(1, 0, 0) 
(1, 0, 0) 
(0, 0, 1) 

 
The main reason is that multiple neurons could end up at 

exactly the same location. 
In other words multiple neurons end up in the same cluster. 

This problem does not exist in the classical SOM algorithm 
because every input finds a closest neuron, hence every cluster 
has an impact on the final distribution of the neurons. But in 
this problem, if we follow the above schema, an input (movie) 
could very well not contain any neuron simply because none of 
the neurons converged to the particular features this movie 
contains. So some clusters are ignored. As a result, multiple 
neurons could end up in the same cluster. The option of being 
able to pull multiple neuron also causes the possibility of not 
pulling any neuron. What an irony! 
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IV. INHIBITORY SYNAPSES 
To address the difficulty summarized in the last section, I 

appended inhibitory synapses among neurons. 
More specifically, I impose the following Sum Condition: 

N1+N2+…+Nr=U 
Whenever any change is made to any neuron, all the neurons 

are normalized so that the Sum Condition always holds. 
This essentially forces every viewer to appear in one and 

only one neuron. This effectively addresses the difficulty 
mentioned in the last section. 

However, with the Sum Condition comes a severe constraint: 
since a viewer can only appear in one of the neurons, what if 
s/he happens to like multiple features? 

For example in, 
F1=(1,1,0) 
F2=(0,1,1) 

the second viewer likes both features. How should the 
neurons represent the overlap of features? We have two 
options: 
Option 1 Option 2 
N1=(1, 0.5, 0) 
N2=(0, 0.5, 1) 

N1=(1, 1, 0) 
N2=(0, 0, 1) 

Option 1 seems reasonable, but experiments show it is 
actually very unstable. 

Option 2 forces the multi-interest viewer into one of the 
neurons. In Option 2, N2 still represents F2, but N2 only has part 
of F2’s “1” components. We denote N2 as the “reduced form 
of feature F2.” 

Now we want to design an SOM algorithm to get a set of 
neurons, each of which represents the “reduced form” of a 
distinct feature. Once we have these neurons, we can apply the 
Stablizer Algorithm to expand the “reduced form” to its full 
representation. 

V. FEATURE EXTRACTION ALGORITHM 
Feature Extraction Algorithm: 
1. Randomly set up r neurons. 
2. Process a random movie M. 
3. Define f(N, M) as the degree to which M contains N. 
4. For Ni(1≤i≤r), Ni=Ni+ f(N,M)(µNi*sgn(M-N)) 
5. Normalize Ni(1≤i≤r) to meet the Sum Condition. 
6. Repeat (2), (3), (4) and (5) until all Ni(1≤i≤r) 

converge. 
Note: 
a). µ is the learning rate. It is set to 0.05 in the experiments. 
b). sgn(A) is the sign vector of vector A. Specifically, The 

i-th component of sgn(A) is the sign of i-th component of A. 
The sign of 0 is 0. 

c). f(N, M)=(N*N*N*N)•M / (N*N*N*N)•U 
     where (U=(1,1,…,1)) 

 
The critical part of the algorithm is step 4. 
f(N,M) is a function that indicates “the degree” to which M 

contains N. f(N,M) ranges from 0 to 1. 
If we follow the example of Stablizer Algorithm, we only let 

M pull N when M completely contains N, that is f(N, M)=1. 
This is not going to work in practice because initially none of 
the neurons are specialized enough to be contained by any input 

(movie). So f(N, M) is best used as a measure of how hard M 
pulls N, rather than an absolute cut-off of whether M should 
pull N. 

A natural design of f(N, M) would be: 
f(N, M) = (N•M)/(N•U) 

In other words, if we only look at non-zeros, the above 
function is the part of N that overlaps with M as a percentage of 
the whole of N. But this definition does not work well. 
Consider the following case: 

M=(1, 1, 0) 
N1=(0.05, 0.6, 0.65) 

N2=(0.30, 0.35, 0.65) 
(N1•M)/(N1•U)=(0.05+0.6)/(0.05+0.6+0.65)=0.5 

(N2•M)/(N2•U)=(0.30+0.35)/(0.30+0.35+0.65)=0.5 
So f(N1,M)=f(N2,M). 
However, N1 has a great potential of developing into (0, 

1, …), whereas N2 is likely to develop into (0, 0, …) because 
the first two components of N2 are not strong enough to be 
pulled sufficiently. 

In other words, we should prefer concentrated components 
over spread-out components. So I designed the following: 

f(N, M)=(N*N)•M / (N*N)•U 
When multiplied by itself, a smaller fraction diminishes 

faster than a larger fraction. So the above function will award 
focused components. Indeed with the new function, f(N1, 
M)>f(N2, M). 

However, the function does not work well for some testcases. 
I suspected it was not strong enough, so I awarded concentrated 
components even more amply: 

f(N, M)=(N*N*N*N)•M / (N*N*N*N)•U 
Experiments with this function could pass most testcases I 

designed. 
 
Another point worth noting in step 4 of the Feature 

Extraction Algorithm is this change from the customary SOM: 
Customary: ∆ = µ(M-N) 
Here: ∆ = µNi*sgn(M-N) 

In the customary algorithm, the pull is proportional to the 
distance between the input and neuron, while here it is 
proportional to how strong each component of the neuron is! 

As mentioned in the last section, when a viewer likes 
multiple features, s/he should be forced into one of the neurons 
representing these features. In other words, we want every 
component of every neuron to converge to 0 or 1. 

This is exactly what we are doing. When a component of Ni 
is large (close to 1), we want to encourage its growth, hence ∆ is 
large. When a component of Ni is small (close to 0), we want it 
to stay there, hence ∆ is small. 

VI. ALGORITHM IN SUMMARY 
Now assume we know the number of features r. We can run 

the Feature Extraction Algorithm. 
Unfortunately, the Feature Extraction Algorithm does not 

always gives satisfactory results. Sometimes a neuron is a 
combination of multiple features. Sometimes multiple neurons 
represent the same feature in different “reduced forms.” 

So we run the Feature Extraction Algorithm multiple times. 
Each time it is finished, we check two things: 
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1. Every neuron is fully contained by at least one movie. 
2. Every movie contains at least one neuron. 
If either of these two conditions fails to hold, we have to run 

the FEA again with a different set of initial values. If after a 
specified number of runs the algorithm still fails to find a good 
result, we call the result a FAILURE. 

If we get a set of reduced forms of features satisfying the 
above two conditions, we run the Stablizer Algorithm to 
complete the neurons. 

After SA is finished, we check if every movie is fully 
covered by the neurons it contains (Cover Condition). If yes, 
we have a solution! 

If even one movie is not fully covered, we have to go back to 
FEA and run it again, expecting a better result. Again, if after a 
specified number of runs of FEA+SA, no solution is found, the 
result is a FAILURE. 

So what happens when a FAILURE happens? 
In the beginning we assumed that we know r (the number of 

features) in advance. This is certainly not true. So in fact what 
the methodology does is this: 

1. r 1 
2. Run FEA+SA as described above. 
3. If a solution is found, print. Otherwise r r+1, and go 

back to (2). 
Not surprisingly, if r = a produces a good result, all values 

greater than a will also produce good results. When there are 
more neurons than features, some features will duplicate, while 
others will combine with others to form new enlarged features. 
For complicated cases, the methodology sometimes gives 
solutions slightly larger than the necessary number of features. 

VII. TEST 
For convenience, features are indexed A, B, C, … Here is a 

typical input file: 
3 
10 
A B C A B C AB AC BC ABC 
10 
A B C AB AC BC ABC A B C 
The number “3” is the number of features. 
The first number “10” is the number of viewers. 
The following 10 strings indicate which features the viewers 

like. 
The second number “10” is the number of movies. 
The following 10 strings indicate which features the movies 

have. 
 
The features vectors should be: 
A: (1,0,0,1,0,0,1,1,0,1)  or  1 4 7 8 10 
B: (0,1,0,0,1,0,1,0,1,1)  or  2 5 7 9 10 
C: (0,0,1,0,0,1,0,1,1,1)  or  3 6 8 9 10 
 
My program reads in these data, calculates the movie vectors, 

and then, based on the movie vectors, calculates the features 
using algorithms described above. 

The output for this particular input is: 
1 4 7 8 10 
3 6 8 9 10 
2 5 7 9 10 

It is not necessarily in the same order as A, B, and C; but it 
covers all the features. 

VIII. CONCLUSION 
Two variations of SOM combined provided a reasonably 

good solution to the Feature Extraction Problem. In practice, 
when every movie/viewer associates with at most three features, 
the algorithm produces very accurate results. However, the 
whole project is based on the assumption that movies and 
viewers are different enough to distinguish different features. 
Whether the premise holds true in the real world still remains to 
be investigated. 

There are several of natural concerns about the algorithm’s 
practical value. 

The first concern is whether people actually watch all the 
movies that have their preferred features. As mentioned before, 
we can select a relatively small sample of the most-watched 
movies and the most active viewers from a huge pool of 
candidates. These fanatic fans are likely to have checked out all 
the popular movies. Moreover, these viewers and movies are 
likely to cover a wide range of features; or rather, features not 
covered by these movies/people are the less popular ones, 
hence of less significance, which we can afford to ignore.We 
can use them to calculate features, and then use them as 
benchmarks to place other people and movies into the 
appropriate feature categories. 

The second concern is scalability since there are an 
enormous number of movies available. The number of viewers 
is even larger. But this is not a big issue since we have decided 
to work on the most-watched movies and most active viewers. 
In addition, if there are too many movies or viewers, we can use 
a variation of SOM algorithm, propoosed by Andrew R. Pariser, 
to reduce the dimensionality first[2]. 

APPENDIX 
I list a couple of non-trivial testcases here. 
Testcase 1: 
Every viewer and movie possesses at least two features. 
6 
15 
AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF 
15 
AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF 
 

Expected Output My Output 1 My Output 2 
SIX features 
4 8 11 13 15 
3 7 10 13 14 
5 9 12 14 15 
2 6 10 11 12 
1 2 3 4 5 
1 6 7 8 9 

 

SIX features 
4 8 11 13 15 
3 7 10 13 14 
5 9 12 14 15 
2 6 10 11 12 
1 2 3 4 5 
1 6 7 8 9 

 

SEVEN features
5 9 12 14 15 
3 7 10 13 14 
4 8 11 13 15 
2 6 10 11 12 
1 6 7 8 9 
1 2 3 4 5 
1 2 3 4 5 

 
Since the algorithm is randomized, my output mostly 

alternates between the above two. As we can see, when the 
algorithm gets unlucky, and fails to find a solution in six 
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features (which is the correct answer), it finds the solution with 
one more feature. Although there is a duplicate in the 
seven-feature output, it is easy to detect and remove. 
 

Testcase 2: 
On top of the previous case, a number of movie/viewer with 

three features are added. 
6 
21 
ABC BCD CDE DEF EFA FAB 
AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF 
21 
ABC BCD CDE DEF EFA FAB 
AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF 
 

Expected Output My Output 
SIX features 

1 2 6 7 12 13 14 15 
2 3 4 9 13 16 19 20 
1 2 3 8 12 16 17 18 
1 5 6 7 8 9 10 11 
3 4 5 10 14 17 19 21 
4 5 6 11 15 18 20 21 

SEVEN features 
1 2 6 7 12 13 14 15 
2 3 4 9 13 16 19 20 
2 3 4 9 13 16 19 20 
1 2 3 8 12 16 17 18 
1 5 6 7 8 9 10 11 
3 4 5 10 14 17 19 21 
4 5 6 11 15 18 20 21 

Again, there is a duplicate in my output. But the whole thing 
is pretty much the same as the desired output. 

Interestingly, Pariser’s algorithm [2] would not do very well 
with the two inputs presented here. His algorithm forces every 
movie to be associated with exactly one group. Unfortunately, 
in these two inputs, every movie and, morever user, is 
associated with at least two features. In other words, none of the 
movies can be cleanly classified into one category. Our 
algorithm effectively disentangles the plurality in association. 

Admittedly, the current algorithm runs very slowly on large 
data, but I believe improvements on converging speed can be 
made, and techniques on reducing the number of iteration 
should be attainable. Due to the constraint of time, we do not 
pursue further along the line of efficiency. 
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Abstract— A dynamic notion of affect (degree of satisfaction) 

that an agent acquires in competitive iterated game play is 
developed.  Simulated play against both a random environment 
and a competitor agent is used to study the impact of affect on 
game playing strategies. For definiteness, the formulation is 
framed in terms of stock trading.  In an appendix, comments on 
how affect and game play inform a notion of consciousness are 
given. 
 

     
Index terms- Affect, Consciousness, Tit-for-two-tat, 

anti-tit-for-tat, stock trading 
 
 

I. INTRODUCTION 

 
notion of affect is introduced into game playing 
strategies(1). For definiteness and clarity we frame our 

study in terms of stock trading. So affect maybe thought of as 
an experience of feeling or emotion of the investor in response 
to his performance. Affect will playa key part in an investor’s 
interaction with stimuli. In a direct competition between a pair 
of players, affect also refers to affect display, which is a facial, 
vocal, or gestural behavior that serves as an indicator of the 
investor’s feelings. For clarity we restrict affect to represent 
two situations, satisfaction or dissatisfaction, and so we specify 
affect as follows. 
 

      
⎩
⎨
⎧

−
≥

==
0<1
01

)sgn()(
x
x

xxa                                         (1)                 

 
Here x is the difference between the predicted payoff of a round 
of play and the actual payoff as we shall see. 
  

We consider a basic case and an advanced case and study 
both by simulation. The basic case involves an investor playing 
against an environment represented by random market 
behavior. If the simulation is able to produce success against a 
random market, playing against real market behavior is likely 
to be easier to achieve. The advanced case will involve two 
competing investors (players), each choosing a distinct 
strategy. 

 
 

 

Strategy superiority is based on both a notion of accumulated 
satisfaction (affect) of the investor with his play and his total 
return. Affect, is informally characterized as the satisfaction a 
person feels when he has done something right. This 
corresponds to a positive value of affect. Reversely, 
dissatisfaction is taken as a negative value of affect. We shall 
see that one particular strategy majorizes all other strategies 
considered. 
  
    For simplicity in describing the process, only binary moves 
are considered. For instance, in the basic case the rising or 
falling of a stock price is represented by ±1, respectively. 
Similarly, ±1 represents the investor’s order to buy or sell a 
stock. The advanced case is similar; each investor either buys 
or sells, represented by ±1. In the advanced case, one investor’s 
reaction provides stimulus for the second. In both cases, the 
responser is a function of affect, response, stimuli and round of 
play (indexed by j) as follows: 

 
),,,(sgn 1 jSRAr jjjj += ρ                                    (2) 

Here rj= ±1 is the investor’s response, i.e. his decision to buy or 
sell. 

Rj = r0,..,rj-1 
Aj = a1,..,aj 
Sj = s0,...,sj-1 

Where sj = ±1 is the stimulus from the environment or the 
competing investor as the case may be. 
 
     We shall make a number of choices for ρ.  To evaluate the 
process, we include some well known strategies. These are 
tit-for-two-tat and anti-tit-for-tat. Notice that j characterizes a 
non-autonomous dependence on the environment. 
 
   

II. METHODS  

A. Basic Case: Player vs. Environment 
 

Here an investor (player) employs one of several different 
strategies verses random changes in stock price. Simple factors 
are used for the prediction of the response. These are the 
number of times a favorable buy was omitted (P), number of 
times a favorable sale was omitted (L) and the overall 
satisfaction of the investor. The response (±1) will be specified 
as a unique function of these factors for each strategy as we 
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shall see. 

 
 There are four strategies illustrated. First, the tit-for-two-tat 

(T2T), which we take to represent a naïve or a forgiving 
investor. This investor keeps on either buying or selling for 
consecutive rounds of play. He will switch his action (buy/sell) 
only if he is dissatisfied for two consecutive rounds of play. 
The response strategy is described as follows. 

 
T2T:  121 )sgn( −−− += jjjj raar                       (3) 

 
Here aj, j> 0 is the affect at play j. 
 
The second is the anti-tit-for-tat strategy (ATT). This is 

considered the riskiest. The investor keeps alternating his 
response, disregarding his experience. So, he buys then sells 
then buys and so on. ATT is described as: 

 
ATT:  1−−= jJ rr                   (4) 

 
Third, we develop a new strategy called “Developed 

Strategy” (DS).  
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 Here αj is the accumulated affect over some specified 
number N of prior plays. 
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The computations shown in section C employ N=100 or 500 
round of play. 

 
The fourth strategy is called DS-Factors (DSF). Suppose 

there are to be N rounds in a trial. For the first N/2 rounds of 
play, the investor will follow T2T (suggesting that he’s new to 
the market place). Then, for second half of the trial his response 
depends on the affect accumulating in his mind. So, the investor 
learns from his past performance.                  
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Then for j ≥ N/2 (To account losing trades) we take 
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4.0=θwhere  is an arbitrarily specified parameter. 
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We see that the factors (parameters) Pj and Lj express the 

total number of favorable trades that were passed up. Other 
choices of factors are possible. For instance, they might depend 
on prices being low in summer and high in spring. However, we 
leave such refinements to future study. 
 

The overall satisfaction and actual gain or loss is based on a 
predefined payoff matrix. This matrix represents the reward for 
each of the possible pairs of response and stimulus. 

 

B. Advanced Case: Two Players 
 

   The advanced case (a two investor game) is a generalization 
of the basic case (a player versus the environment).  For 
clarity, we require that strategies are different for each player.  
 
   We shall employ a new strategy somewhat similar to the 

DSF, called DS-function (DSFn). It is so named because 
instead of using a signum function to calculate the response, we 
use a function of the form α sin(accumulated affect)+ βP + τL. 
Then the response is equal to the signum function of the 
previous function specified as follows, 

 
DSFn:    ))(sinsgn( jkjkjkjk LPr ++−= βαα           (11) 

where k=1,2 indexes the players and α and β are parameters 
to be specified. 

 

C. Simulation and Results 
 
   In the following figures, the abscissa denotes the trial 
number. 

 
Basic Case: player vs. environment  

 
We employ payoff matrix shown in table 1. 

 
Table 1 

player\stimulus 1 -1 
1 -2 15 
-1 15 -10 

 
 Interpretation: If the investor places an open order to buy and 
the price rises, we would say he is involved in a losing situation. 
Similarly, for an open order to sell and the price declines. This 
situation is captured in the payoff matrix by a negative value. 
 

42



P a g e  | 3 
 
 In Fig.1 we plot the accumulated Affect for 25 different trials 
each of 100 rounds of play four different strategies. 

 

 
         Fig.1   Accumulated Affect for trials of 100 rounds 

of play 
 
From Fig.1, we see the risks associated with the ATT 

strategy. It yields highest satisfaction (maximum value of 
accumulated affect) or the least satisfaction (minimum value of 
accumulated affect). So, it can’t be a winning strategy for the 
basic case. 

 
Table 2 displays some statistics for the previous simulation. 

The value of satisfaction has a minimum equal to 23. 
Deviations of the maximum values on the other hand, are not 
significant. The better averages of accumulated affect were 
delivered by the developed strategies. 

 
Table 2 

Strategy\α  Min Max Avg 
Tit-for-two-tat 41 57 49.25 
Anti-tit-for-tat 23 69 45.8 
DS 31 69 51.5 
DS - 2 factors 39 59 48 
DS – 3 factors 37 65 50.25 

            
In Fig.2 we plot the accumulated Affect of 20 trials each of 

500 rounds of play. 
 

 
         Fig.2   Accumulated Affect for trials of 500 rounds 

of play 
 
 In Fig.2 we increase the trial size to 500 rounds of play. The 
ATT strategy still produces to the minimum and maximum 
values of accumulated affect (risky). The DSF strategy is stable 
in so it maintains the accumulated affect in a high range with 
minimal variation. To illustrate these behaviors, we plot the 
averaged variance of accumulated affect of the strategies in 
Fig.3. 
 

 
Fig.3 Average variance of accumulated affect for 20 trials, 
each of 500 rounds of play. 

      In Fig.4 we plot the sum of payoff of each of 20 trials each 
with 100 rounds of play  
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                Fig.4 Actual accumulated payoff 

   Fig.4 induces us to discard the T2T strategy for the 
remainder of the basic case simulation, because it displays the 
worst financial performance. Notice, also that the DSF strategy 
produced reasonable performance, where the accumulated 
payoff is defined 
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1 ),(           (12) 

 
          

 
    Fig.5 Accumulated payoff for 20 trials each is 500 rounds 
of play 

 
In Fig.5, we display results comparing the DSF and DSFn 

strategies. Runs were made for different values for α,β and τ 
falling in the range [-0.5, 2]. Parameters α, β and τ appearing in 
(11), were chosen arbitrarily, although some rule of thumb 
calculations were employed to inform the choices.  

 

 
Fig.6 Accumulated payoff for 20 trials each with 500 
rounds of play 

Fig.6 is an extension of Fig.5 obtained by increasing the trial 
size from 100 to 500. The results are consistent with those  
represented in Fig.4, demonstrating the adequacy of the 
simulation. 

 
   The choice of θ for the DSF strategy is also based on 
numerical experiments. The value θ=0.4 gave highest affect 
values. Fig.7 illustrates this point.  

  

 
Fig.7 Result of adjusting θ on accumulated affect. The 
linear plots are least square fits. 
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Advanced Case: Two-player game: 
 
Table 3 The payoff matrix 

player1\ player2 1 -1 

1 -5 15 

-1 20 -10 

 
Table 3 is the payoff matrix for both players in a two-player 

game. There is a common payoff matrix to ensure that the 
competition between players is fair. 

 
The following Tables 4 and 5 show clearly why we find the 

DSFn strategy to be superior in a two-player game. 
 
Table 4   First competition between T2T and ATT 
Strategies Payoff  Accumulated Affect 

T2T 2480  499 
ATT 1260  -1 
 

Table 4 shows that T2T is superior to ATT, because it 
produced larger payoff and greater satisfaction. 
 
Table 5   Second competition between T2T and DSF 
Strategies Payoff  Accumulated Affect 

T2T 2450  499 
DSF 1235  497 
 

From table 5 we see that T2T is also superior to DSF. This 
motivated using the DSFn. The results are striking as table 6 
shows. 

 
 From table 6 we leave it to reader to decide which strategy is 
better. Yet, there might be some suspicion about the 
performance of the DSFn against strategies other than T2T. So 
we also show the results in Table 7 for additional confirmation.  
 
Table 6 Third competition between ATT and DSFn 
Strategies Payoff  Accumulated Affect 

ATT 3510  179 
DSFn 5180  499 
 
Table 7 Fourth competition between DSF and DSFn 
Strategies Payoff  Accumulated Affect 

DSF 7385  497 
DSFn 9830  499 
 
 Again, both table 6 and 7 confirms results shown in Tables 4 
and 5.  
 
  Figure 8 exhibits a comparison of the averaged sum of 
payoff for the strategies of interest. Correspondingly, Figure 9 
exhibits the average accumulated affect. 

 
Since there are 2 players and 4 strategies, each strategy is 

employed 6 times by a player against his opponent. We average 
the accumulated payoff (Fig.8) and accumulated affect over 
each such 6 competitions. 

   

 
Fig.8 Accumulated payoff averaged over 6 competitions 
for each strategy 
 

 
 Fig.9 Accumulated affect averaged over 6 competitions 
for each strategy 
 
    Notice that the investor adopting DSFn wasn’t the most 
satisfied even though his performance was best. The reduction 
of satisfaction of DSFn is mainly due to which player had the 
first play. Reversely, T2T had the great satisfaction, but not the 
greatest payoff. 
  

     

III. APPENDIX: COMMENTS ON CONSCIOUSNESS 
 
    We propose a rational representation of consciousness in the 
basic case. Suppose we take consciousness to be the ability to 
perceive the relationship between oneself and one's 
environment. More specifically we take consciousness as an 
appropriate function of the accumulated affect (satisfaction) 
and the effective stimulus. The later is taken to be 

∑
+−=

=
j

Nji
jNj s

1
, sgnβ     ,                                          (13) 

the majority rule for a block of size N plays. 
 
Hence, (the content of) consciousness at stage j of the player is 
taken to be 
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),( ,,,,,, NmnNnmNmn BAKc =                                    (14) 

 
Where An,m,N = (αn,N,αn+1,N,…, αn+m,N), similarly Bn,m,N = 
(βn,N,βn+1,N,…, βn+m,N) s.t. N=500, n=10. A choice for the 
function K is the correlation between the two arguments, which 
in our simulations is 500 (1 whole trial). The correlation 
formula used is 
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Where again, n=10, N=500 and m=500,…,510. 
 
 

 
 
Fig.8 Correlations between α and β  

 
Fig.8 shows the correlation values between10 pairs of α and β, 

each representing a trial of 500 rounds of play. α and β are 
vectors: α the values of accumulated affect of 10 trials, and β 
values of accumulated stimulus of the corresponding 10 trials. 
Fig.8 shows a repetition of 20 runs of this calculation. 
 

Table 8 shows the correlation averaged over all 20 runs for 
the T2T, ATT and DSF strategies. 
     
Table 8 Average of correlation over 20 runs 

Strategy Averaged Correlation 

T2T .052 
ATT -.058 
DSF .0805 

 

REFERENCES 
[1] Acquisition of General Adaptive Features by Evolution. 

Dan Ashloc1 and John E. 
http://www.public.iastate.edu/~jemayf/NLA.pdf   

[2]     Wikipedia. “Tit for tat” 
[3]     Wikipedia. “List of games in game theory”   
[4]    Lab 1 Repeated Play Prisoner's Dilemma. By Mike 

http://students.cs.byu.edu/~cs670ta/PDLab.html   
[5]    About.com. “Three Main Influences on Stock Prices”. By Ken Little 
[6]    http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.htm 
[7]    Wikipedia. “Affect (psychology)“ 
[8]   WordNet Search. For definition of “strategy” and “satisfaction” 
[9]  “Correlation and Covariance of a Random Signal” by. Michael Haag 

http://cnx.org/content/m10673/latest/    
[10] UNIX SYSTEM. For programming. 

 
 

 

46



1


Abstract—Field-programmable gate arrays (FPGAs) are 

becoming increasingly popular due to low design times, easy 
testing and implementation procedures and low costs. FPGAs 
placement and routing are NP-complete problems dealt well with
modern tools using heuristic algorithms. As modern FPGAs 
increase in size and also new capabilities, such as Run-Time 
Reconfiguration (RTR), are introduced, the complexity of these 
problems is greatly increased. In this paper we approach both
problems using a modified version of Kohonen Self-Organizing 
map. The algorithm, consisting of four phases, takes into 
consideration constraints that may apply to the FPGA design 
(such as I/O pins, resource constraints like global clock etc).  The 
modified algorithm yields a good topological map of the design to 
be placed, minimizing the average distance between connecting 
logic blocks.

Index Terms—FPGA, self-organizing feature map, placement, 
routing, constraints

I. INTRODUCTION

ield-programmable gate arrays (FPGAs) are semiconductor 
devices, which consist of programmable components 

called “logic blocks”. These blocks can be programmed to 
perform different functions (such as AND, OR) or to store
data. Logic blocks connect through wires running all over the 
FPGA board. Many connected logic blocks create an FPGA 
design that performs a specified operation. An FPGA board 
can be reprogrammed, while its main counterpart, Application 
Specific Integrated Circuits (ASICs) are manufactured for a 
specific application and their operation cannot change. The 
main disadvantage of using FPGAs compared to ASICs is that 
FPGAs are pre-manufactured so their cost increases linearly 
for every board, while ASICs have a huge initial cost but 
production cost for larger quantities increases slowly. Also, 
FPGAs are slower and more power consuming. On the other 
hand, an FPGA has no initial manufacturing cost, it has low 
recurring engineering costs and is significantly cheaper than 
ASICs for small quantities.

A user programs the board using High-level description 
languages (HDLs); the output code is converted by tools to 
logic blocks. The exact place that a logic block will be stored 
is defined through the “placement” procedure. Similarly, the 

Michail Maniatakos is with the Electrical Engineering Department, Yale 
University, USA (e-mail: michail.maniatakos@yale.edu)

wire tracks that will be used to connect logic blocks are 
defined through the “routing” process. Placement and routing 
are often interactive because good routing is highly dependent 
on good placement.

In this paper we approach placement and routing processes 
using a modified version of Kohonen’s Self-Organizing Map 
algorithm defined in [1]. Specifically, we modify the notion of 
a winning neuron and which neurons are updated. 

In Section 2 the Self-Organizing map algorithm is given, 
while in Section 3 the placement and routing process of an 
FPGA is described. In section 4 we introduce our approach on 
FPGA placement and routing using SOMs. Section 5 presents 
a case study where our algorithm is used to place a complex 
design on an FPGA board. Finally, in Section 6 performance 
figures are presented along with a discussion of the results of 
the algorithm.

II. SELF-ORGANIZING MAP ALGORITHM

Self-organizing maps (SOMs) are a special class of artificial 
neural networks, based on both competitive and cooperative 
learning. The main purpose of the SOM is to transform an 
incoming signal pattern of arbitrary dimension into a one or 
two dimensional discrete map. Each neuron in the map is fully 
connected to all source nodes in the input layer [2]. SOM 
training is based on two basic principles:

Competition. The prototype vector that is most similar to an 
input data vector (where similarity can be defined in terms of
Euclidean distance) “wins” the competition and is then 
transformed in order to be more “similar” to the input vector. 
By means of this process the algorithm learns the position of 
input data.

Cooperation: Besides the winning neuron, all its neighbors 
(where neighborhood radius must be defined by some 
parameter) are moved towards the input data vector as well. 
With cooperation, the map self-organizes.

A brief summary of the SOM algorithm as presented in [2] 
follows.

Let [x1, x2, …, xm]T be an input data vector, where m is the 
dimension of the input data space. The synaptic weight vector 
of each neuron has the same dimension as the input space and 
is denoted by [wj1, wj2, …, wj1m]T for neuron j. The algorithm 
consists by the following steps:

1. Initialization. Initialize weight vectors wj(0) with random 
values, while wj(0) must be different for every j = 1, 2,

Constraint-Based Placement and Routing for 
FPGAs using Self-Organizing Maps

Michail Maniatakos
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… l, where l is the number of neurons.
2. Sampling. Choose a sample x from the input data set. 

This choice is performed stochastically. 
3. Similarity matching. Using the Euclidean distance, 

determine the winning neuron i(x) at the specified time 
n: 

ljwnxxi j
j

,...,2,1,)(minarg)(     (1)

4. Updating. Update the synaptic weight vector of the 
winning neuron and its nearest neighbors using the 
formula

))()()(()()()1( , nwnxnhnnwnw jijjj      (2)

where the learning rate function η(n) decreases over 
time and hj,i(n) is a monotonic function that defines each 
neuron’s topological neighborhood. A common choice 
for this function is the Gaussian function
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where dj,i is the distance between the winning neuron i 
and neuron j, and σ(n) is










 n

n exp)( 0                                           (4)

where σ0 is the initial value of and τ is a time constant.

5. Continuation. These steps are repeated for a specified 
number of iterations or until no noticeable changes in
the feature map are observed.

III. FPGA PLACEMENT AND ROUTING

An FPGA board consists of several logic blocks. In a simple 
FPGA design, a logic block contains a Look-Up Table (LUT)
and a flip-flop, so it could either perform a specific function
defined in the LUT or store a single bit. A LUT contains the 
truth table of the function implemented. The output of a logic 
block goes to the input of another logic block through wiring 
tracks, unless Input/Output connections are specified (usually 
at the edges of the board). A simple FPGA board layout is 
shown on Figure 1. This layout style is called island-style 
architecture, a very popular approach (followed by Xilinx [3]). 

A. Typical Application Synthesis Flow

In order to program an FPGA board, a user uses a Hardware 
Description Language (HDL), such as Verilog or VHDL. This 

design is transferred to the FPGA board, using the following
three step procedure [4]:

1. Technology Mapping. In this stage, the functionality of 
primitive logic gates is restructured into sets of logic blocks. 
For example, an AND gate might be converted to one logic 
block, programming the logic block’s LUT to have the truth 
table of the AND operation. Of course a logic gate may need 
to spread along several Logic blocks (a 5 gate NAND for 
example).

Fig 1.   FPGA board structure showing Logic Blocks and interconnections

2. Placement. In this step, all packed blocks of logic have to 
be assigned to specific block locations in the 
prefabricated two-dimensional array of the FPGA 
board. Ideally, perfecting localized routability in each 
subsection of the board would yield the best placement, 
but given the distributed nature of interconnect and 
dependencies caused by segmentation this approach
becomes infeasible. So a metric to evaluate an 
algorithm performance is the wiring length of the 
placement. Placement is an NP-complete problem.

3. Routing. After placing the logic blocks in specific places, 
these blocks must be connected using routing segments
and switches to create a connecting path through 
FPGA’s routing tracks. This is likewise an NP-
complete problem, because an FPGA has a limited 
number of wiring tracks running around the board. The 
most commonly used algorithms for routing are the 
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maze-routing algorithms as presented in [5]. These 
algorithms are based on Dijkstra’s shortest path 
algorithm. The placement and routing processes must 
not be separated; a specific placement may not be 
routable at all, while a slightly different one may yield a 
good quality routing.

B. Constraints

An FPGA design usually has specific constraints to operate
correctly under given specifications. A straightforward 
example of a constraint is a logic block that receives its input 
from outside the board, so it has to be placed on the I/O blocks 
(usually at the edges of the board). So the route and place 
algorithms must take into consideration the special nature of 
this logic block. Another example of a constraint comes from
switch pins that exist in specific places on the board where the 
corresponding logic block must be placed appropriately to 
receive the switch state. 

Besides such constraints, there are some constraints that 
affect design’s performance and not design correctness. For 
example, in an FPGA design all clocked elements (such as 
Flip-Flops) share the same global clock; so the clock signal 
must arrive at clocked elements simultaneously and as fast as 
possible (for better performance). Thus, these elements must 
be placed near the clock buffers that produce the clock signal.

IV. MODIFIED SOM ALGORITHM

We devise an algorithm to achieve good placement and 
routing on the FPGA board. Good placement yields good 
routing and vice versa.

We modified part of the Kohonen SOM algorithm in order 
to handle possible constraints of the FPGA design. The lattice 
we use for the SOM algorithm corresponds to the real layout 
of the design we want to place and route. So, a neuron in the 
lattice represents a logic block that has to be placed in a logic 
block of the FPGA, while synapses represent the connections 
between logic blocks (a logic block can have up to four 
connections). For example, for the simple design shown in Fig. 
2, the lattice that would be produced is show in Fig. 3.

 Constraints that can be applied in the algorithm fall in two 
different categories:

Strict constraints: Constraints in this category are defined as 
conditions that must hold in order for the design to work 
properly. For example, a specific logic block must be placed 
on a specific block (e.g. an I/O pin). 

Relaxed constraints: Violation of constraints in this 
category will not affect the correctness of the design but its 
performance. The modified algorithm may violate some 
relaxed constrains in order to achieve a better placement and 
routing. For example a logic block should be placed as near as 
possible to an FPGA resource. The final distance between the 
logic block and the resource affects the performance of the 
design (e.g. if the logic block is placed too far, the design will 
be slower). Generally, we can regard these types of constraint 
as resource race constraints, because multiple elements have 

to be placed close to a specific resource.

Fig. 2.  Simple design to be placed

Fig. 3.  Lattice for sample circuit of Fig. 1

A constraint has an importance property, graded from 1-10, 
where 10 implies great importance. Strict constrains are 
automatically assigned a value of 10. This property helps the 
algorithm evaluate constraint importance and drives the 
algorithm to prioritize the constraints to be considered, 
optimizing the quality of the final placement.

The ultimate goal of this algorithm is to minimize distances 
between interconnecting logic blocks, so as to maximize 
design performance.

A. Initialization of the algorithm

We first define the lattice of the circuit to be placed (as 
described in Fig. 3). A logic block (LB) is represented by a 
neuron and synapses between neurons represent the 
connections between the logic blocks. So if the design has M 
logic blocks to be placed we have the following set of neurons
in the lattice labeled arbitrarily 1, …, M.

 These M neurons connect through the MxM connection 
matrix C where






otherwise

connectedarejandiLBsif
Cij ,0

,1
                   (5)

A strict constraint is defined by three values [s1, s2, s3], 
where s1 and s2 define the coordinates where the logic block 
must be placed, and s3 is the index of the logic block that has 
to be placed in the position [s1, s2] on the FPGA board. For 
example, the set [1, 1, 5] specifies that the logic block 5 has to 
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be placed in the [1, 1] position of the FPGA board.
Similarly, a relaxed constraint is defined by two values [c1, 

c2], where c1 is the index of the logic block and c2 is the index 
of the resource.  For example, the set [2, 3] implies that logic 
block 2 must be placed close to resource 3.

A resource is defined by three values [r1, r2, r3], where r1 and 
r2 are the X-Y coordinates of the resource and r3 specifies its 
importance property.

Finally, N denotes the dimension of the squared FPGA 
board where the logic blocks must be placed (for example for 
N=20 we have a board with 20x20 = 400 positions for logic 
blocks).

Initialization of the algorithm consists of placing the lattice 
randomly on the FPGA board, employing a uniform 
distribution. The algorithm itself consists of four phases. A 
brief description of each phase follows:

Phase 1 (Constraints set): In this phase, we satisfy the strict 
constraints by placing the neurons (logic blocks) appropriately.
These neurons will remain fixed as the lattice self-organizes.

Phase 2 (Resource Competition): During resource race 
phase 2, we restrict the set of potential winning neurons to the 
subset of neurons that compete for a specific resource. This 
phase is repeated for every resource.

Phase 3 (Ordering and Convergence): In the 3rd phase the 
lattice self-organizes with no further restrictions, except that 
constrained neurons are neither allowed to win nor be updated.

Phase 4 (Quantization): Because the coordinates of the 
neurons won’t have integer values, we quantize the coordinate 
matrix..

An analytical description of the above phases follows.

B. Phase 1: Constraints set

During this phase we place the strict constrained logic 
blocks in the exact coordinates defined by design constraints. 
During following phases, these neurons are not involved in the 
competitive or cooperative process of the self-organizing map 
(they remain fixed throughout the whole process of ordering 
and convergence).

In case of a conflict, we move the logic block to the nearest 
unoccupied block.

C. Phase 2 (Resource Competition)

In the second phase the algorithm considers the relaxed 
constrains set by the FPGA design. During this phase, the 
algorithm’s effort is to move the logic blocks (neurons) close 
to the resources in order to optimize placement quality. 

An SOM self-organizes based on input vectors, so we have 
to generate these vectors. For each resource, one input vector 
is generated. For example, if we have a resource in [2, 2] 
position on the board, then a two-dimensional input vector is 
generated in the same position ([2, 2]). Fig. 4 presents the 
feature map using a resource placed at the bottom left of the 
FPGA board.

Fig. 4. Self-organized feature space

Using this method, we drive winning neurons closer to 
resources. Only constrained neurons are allowed to win, so 
they will gradually move closer to the resources. The 
probability that an input vector will be selected during 
sampling is directly proportional to the importance property 
defined for each resource. So the modified algorithm for this 
phase is the following:

1. Initialization. The values of the initial weight vectors are 
copied from the weight vectors of phase 1 (e.g. we 
continue using the same feature map)

2. Sampling. We choose a sample x from the input space, 
with probability directly proportional to the importance 
of this vector. Thus, more important resources will be 
sampled more often than others.

3. Similarity matching. We find the best-matching neuron
i(x), where i is a neuron that competes for the resource. 
Therefore, only racing neurons are allowed to win. The 
best matching criterion is Euclidean distance:

Lk
k

Rkiwnxxi  ,,)(minarg)(            (6)

where RL is the subset on neurons that compete for 
Resource L.

4. Updating. We adjust the synaptic weight vectors of all 
neurons using the following formula:

))()(()()()1( 11 nwnxhnnwnw jjj      (7)
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where learning rate parameter η1(n) gradually decreases 
over time, and h1 is the neighborhood constant; so 
neighborhood radius remains constant throughout the 
algorithm. We set the neighborhood radius to a constant 
small value to prevent resource competition from 
modifying a large portion of the lattice, allowing only 
competing neurons and some of their neighbors to move 
towards the resources.

5. Continuation. These steps are repeated until no 
noticeable changes in the map are observed.

At the end of this phase the constrained neurons will be 
closer to the desired resources, while the rest of the map will 
still be unordered. The synaptic weights of these neurons, like 
strict constrained neurons presented in Phase 1, won’t be 
updated during subsequent phases. Phase 2 is repeated for 
every resource defined in the FPGA design.

D. Phase 3 (Ordering and Convergence)

During this phase, placement is finalized using the Kohonen
SOM algorithm presented in Section II. Again, the input data 
vectors must be defined. Similarly to Phase 2, one input 
vector is created for every resource and for every strict 
constrained neuron (placed during Phase 1). So the final input 
vector set consists of two dimensional vectors that represent 
the position of the resources and strict constrained neurons. 

When this phase completes, a good geometric 
approximation of the design to be placed will be produced. 
The result is not guaranteed to be optimal; placement and 
routing are NP-complete problems. 

Also, due to the mathematical nature of the SOM algorithm, 
logic blocks’ coordinates will have real values; this is not 
allowed, because logic blocks should be placed on distinct
logic block places. This misalignment defect is targeted in the 
next and final phase.

E. Phase 4 (Quantization)

During this final phase logic blocks are moved to the nearest 
logic block location. If during this quantization phase more 
than one logic block is to be placed in a single location, only 
the nearest logic block is allowed to move there; in case of a 
tie, the first in the list is moved there. Then the rest of the 
blocks are placed in the nearest unoccupied block using 
Euclidean distance.

After this final phase we get a design that fulfills the 
constraints of the FPGA design while achieving good 
placement and routing. In most of the cases the modified SOM 
algorithm manages to reduce the distances of the initial
random placement up to 10 times. A specific example of using 
the algorithm follows.

V. CASE STUDY

In this section the modified SOM algorithm is demonstrated. 

Assuming we have an FPGA board of 10x10 logic block 
locations, we will attempt to place and route 30 randomly 
connected logic blocks (keeping the limit of up to 4 
connections though). Every phase of the algorithm is presented 
in Figure 5.

We add three strict constraints in our case study:

[ 1 4 3]
[10 2 26]
[ 5 5 15]

The first two values are the X-Y coordinates of position that 
the logic block must be placed in, while the third value 
specifies which logic block will be placed there.

We also add one resource located in four different places 
with different importance properties:

[ 2  2 10]
[ 2  7 10]
[ 7  2  5]
[ 7  7  5]

In the above matrix the first two values in a row specify the X 
and Y coordinate of the resource while the third specifies its 
importance. 

The logic blocks that will compete for this resource are 
defined in the following matrix:

[10 22 8 20]

The above matrix specifies that the logic blocks with index 10, 
22, 8 and 20 will compete for the resource.

During initialization of the algorithm, we randomly place 
the logic blocks on the board. The initial summed distance 
between all logic blocks is 1345 units.

In phase 1 the strict constrained logic blocks are moved to 
their specified positions. In this case study the summed 
distance is slightly increased, but it could also be slightly 
decreased or remain the same. The constrained logic blocks 
are represented with red dots.

Phase 2 is the resource competition phase. Blue-dotted logic 
blocks compete for the blue-crossed resources. Even though 
they are not extremely close to the resource, they are pretty 
close, and they are evenly spaced among the resources. The 
summed distance in this stage was decreased to 273.44 units, 
which is very good considering the fact that the algorithm 
actually hasn’t started final ordering and convergence.

In phase 3 the final ordering and convergence of the 
algorithm is performed. After 600 iterations the map 
converged to the lattice shown in Fig. 5. The distance is much 
smaller (126.04) compared to the initial one (1345.00), which 
ensures us that the algorithm has greatly improved the 
placement and routing of the design.

During the 4th and final phase, we quantize the final
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Fig. 5. Case study for a 10x10 FPGA with 30 logic blocks to be placed
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positions of the logic blocks. This quantization yields 
increased distances (170 units) This is expected because close 
to resources there are more logic blocks, so conflicts will 
occur because of limited logic block locations. While
conflicting logic blocks move to nearby places, summed 
distance increases.

This final placement shown in Fig. 5 can be considered 
good placement, because there aren’t many crosses between 
routing channels while the summed distance is about ten times 
smaller than initially.

VI. RESULTS AND DISCUSSION

A. Performance Evaluation

In this section we will evaluate algorithm performance. 
Generally, the best measurement for placement’s quality is the 
summed distance of logic blocks. We could also use other 
measurements, such as the mean quantization and the 
topological error.

We first focus on the performance of the algorithm for
different iterations, using summed distance as our quality 
measurement. The summed distance of logic blocks in each 
phase will be calculated. By performing 20 different runs of 
the algorithm we get the distances presented in Figure 6.

The first conclusion from this figure is that the algorithm 
exhibits similar performance for each run: great improvement 
during Phase 2, further improvement during final ordering and 
convergence during Phase 3, while during the Quantization 
Phase 4 summed distance are slightly increased. Also, Phase 3 
has the least deviation compared to all other phases; so 
algorithm performance seems to be deterministic.

Another important conclusion is that the final placement is 
independent of the initial random placement; so no matter how 
good or bad the initial placement is, algorithm performance

Fig. 6. Summed distance between all phases of the algorithm for 20 runs

isn’t affected.
Next consider evaluation of the average performance of the 

algorithm for many runs.  We perform 100 iterations of the 
algorithm and calculate the average value of summed distance 
between phases. The results shown in Fig. 6 are clear; all 
iterations exhibit the same behavior as described previously.

Fig. 7.  Average distance between phases for 100 runs

Finally, we calculate the average quantization and 
topological error of the algorithm in each phase. The results 
are shown in Fig. 7.

By carefully examining the graph, it is obvious that the 
average topological error follows the average summed distance 
curve. This was expected because topological error is related 
to distances between neurons and possible crosses between 
their synapses.

However, average quantization’s curve is slightly different 
than the previous curves. During the transition from 
initialization phase to phase 1, quantization error is improved. 
Since input data vectors are generated around constrained
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neurons, this improvement was expected; when we move
neurons during phase 1 to their constrained positions, we move 
them closer to the input data, so the quantization error 
decreases. The same explanation covers Phase 1 to Phase 2 
improvements. However, during phase 3, quantization error is 
increased. We can attribute this increase to the fact that during 
final ordering and convergence neuron distribution is denser
close to the important resources and sparser close to less 
important resources. After final quantization, neurons are 
placed at discrete locations, decreasing once more the 
quantization error.

Fig. 8.  Average Quantization and Topological error for 100 runs

B. Discussion

The proposed methodology is an approach to placement and 
routing problems using a self-organizing neural network. An 
FPGA design can be viewed as a lattice that has to be 
organized optimally. 

The modified algorithm produces a good topological 
approach of the design to be placed; it decreases distances 
between logic blocks and avoids intersecting wires by 
decreasing the topology error. It is possible that this layout 
may be fine-tuned locally (for example by using single logic 
block swaps and recalculating distances) but the overall design 
will adhere to the same topology. 

We should also mention that the algorithm is slow, and for 
large designs it would probably require a large number of 
iterations to converge. Also the resource race phase results are 
not deterministic; so we can’t predict with certainty the 
specifications of the placed layout. However, exploring all 
possible parameters for each training phase of the algorithm 
could yield greater certainty, trading-off an optimized 
placement.
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Abstract 
 

This paper proposes an Ensemble Neural Network to 
create text summary of web search query results. A 
search engine returns the result to a web search query by 
matching the keywords entered by a user to the keywords 
contained in a web page. Thus, the results might not 
always be relevant to the user. Here, we propose a neural 
network model to generate text summary for each result 
to allow user to find the content without going through 
the whole webpage. Text summary is generated by 
extracting all those sentences which are of the most 
significance in the text. Each sentence in the text is 
encoded as a set of features and presented as an input to 
an ensemble neural network. The network is trained using 
the set of randomly selected texts from the internet. The 
network output is then used to classify a sentence as a 
summary sentence. 

Index Terms—Ensemble Neural Network, Part of speech 
tagger, Search Query, Summarizer.  

 
 
1. Introduction 
 
With so much data finding its way to the Internet, it 
almost seems impossible for a web user to find and utilize 
information relevant to his/her use.  Search engines have 
made it possible for a web user to search for information 
that a user wants nevertheless a user is required to find 
the relevant information from the plethora of search query 
results returned by the search engine. A search engines 
response to a user search query consists of a list of 
matching web page titles and their links to actual sites 
hosting them. However it is still required on the part of 
the user to go through each search result to see which 
results are relevant. We propose a solution to this 
problem by generating an automatic summary for each 
search result. Then, a user can see whether a particular 
search result is relevant just by reading the summary. 

The method for extracting the summary of a search 
query result returned by a search engine uses an ensemble 
of neural network to extract sentences from the search 
query results. 

The neural network employed is explained in depth in 
Section II and discussion and future work are given in 
Section III. Words text and document are used 

interchangeably throughout and they both refer to a web 
page. 
 
2. Neural Network based Web Search Query 
Result Summarizer 
 
2.1 Introduction and Motivation 
 
Text Summarization is an information retrieval method to 
automatically generate a summary of text. The technique 
has been studied for decades but today with the Internet 
and the World Wide Web it has become much more 
important. Most text summarizers are extraction based, i.e. 
they generate summary by extracting sentences from the 
text. Some summarization algorithms are capable of 
producing summaries that contain not only sentences that 
are present in the document but also new automatically 
constructed phrases that are added to the summary to 
make the latter more intelligible. In theory, this 
functionality makes the summarization algorithm more 
powerful by improving the comprehensibility of the 
output summary. In practice, the automatic construction 
of phrases is a quite difficult task and there is no 
guarantee that the new phrases will be really meaningful 
for the user. In this paper, we discuss the neural network 
to generate summary by extraction. We propose a neural 
network model which is an extension of the neural 
network proposed in [5]. We provide a method to extract 
all those sentences in the document which are related to 
the user specified search query. We tag the words in the 
sentence and the query with the part of speech and then 
compare them to extract related sentences. This help a 
user finding all those results which are related to his/her 
query. 

Ensemble neural networks are the neural networks 
which consist of a cluster of neural networks each having 
the same form. Ensemble methods combine the outputs of 
several neural networks [2]. The output of an ensemble is 
a weighted average of the output of each network, with 
the ensemble weights determined as a function of the 
relative error of each network determined in training [2]. 
Individual networks in the ensemble are trained 
employing the same data but their synaptic weights are 
initialized with different values. In several papers and 
previous work it has been shown that the network 
ensemble has a generalization error generally smaller than 
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that obtained with a single network and moreover that the 
variance of the ensemble is less than the variance of a 
single network. Thus, ensemble neural network provide 
better generalization in classification problems than a 
single network. The output of a Basic ensemble method 
[2] consists of output of all the networks weighted equally. 
      
      

    
       
where M is the number of the individual neural networks 
in the ensemble, Fi(n) is the output of network i on the nth 
training pattern, and F(n) is the output of the ensemble on 
the nth training pattern. 
 
2.2 Features 
 

We extract a set of features for each sentence in the 
text. These features sets are extracted to represent the 
relevant information from each sentence without losing 
the overall meaning and context of the sentence in the 
document. These features are classified as the position of 
a sentence in the document like it’s the first sentence or 
the last sentence in the document. It has been shown that 
summaries consisting of leading sentences outperform 
most other methods in this domain [7], and that sentences 
located at the beginning and end of paragraphs are likely 
to be good summary sentences [6]. The number of unique 
words in the sentence which are the non-stop and non-
repetitive words in the sentence, the number of unique 
words that are above a threshold weight value which is 
determined by the weight of the words, the number of 
words that match the title of the document, the number of 
unique words that match the title of the document, the 
number of all the words that match the title and have the 
same part of speech as the words in the title, the weight of 
the sentence which is the measure of its closeness with 
other sentences based on number of words a sentence 
shares with other sentences, the number of unique words 
that match the search query, the number of all the words 
that match the search query and have the same part of 
speech as the words in the search query and the total sum 
of the weights of all the unique words in the sentence.  

Words in a sentence are compared to the search query 
words in order to include those sentences in the summary 
which are more related to the user specified query words 
and hence more relevant. In case there isn’t any sentence 
which matches to the user specified keywords, the 
document can be classified as not relevant to the user. 
This can be used to provide user a recommendation for 
the document to be relevant. These features are encoded 

as a vector and each sentence is assigned the vector of its 
extracted feature values. 

 
2.3 Preprocessing 
 

Preprocessing consists of a number of operations 
mainly stop word removal, case folding, unique word 
extraction and small sentence removal. Stop words are 
words like ‘do’, ‘is’ and ‘will’ etc. and have minor effect 
on the meaning of the text. Case folding consists of 
converting all the characters of a document into the same 
case format, either the upper-case or the lower-case 
format. Unique words extraction consists of finding all 
the non-stop and non-repetitive words in each sentence. 
Each unique word, w, in the document is assigned a 
weight, weightw, which is calculated by its frequency in 
the document as follows - 
 

                   
 

where tFw is the frequency of word w in the document, 
Stotal is the total number of sentences in the document and 
Sw is the number of sentences containing w. Thus, words 
that are highly frequent in few sentences have larger 
weights than the words that are highly frequent in many 
sentences. We associate a weight with each sentence of 
the document which is the measure of its closeness with 
all the other sentences in the document and its value is 
inversely proportional to the closeness. The weight of a 
sentence is the weighted average of its closeness with all 
the other sentences. Closeness of a sentence is defined as 
the number of unique words it shares with another 
sentence. Sentence which shares larger weight words with 
another sentence is more closure to it than the sentence to 
which it shares smaller weight words as they contain the 
same words and might convey the same meaning. Words 
in a sentence are tagged with the part of speech through a 
part of speech tagger and compared to the search query 
and the title of the document. We used a log-linear part-
of-speech tagger available at The Stanford Natural 
Language Processing Group licensed under the GNU 
GPL Number of words matched and the corresponding 
weights of the words matched are used to find how close 
each sentence is to the search query and the title. We keep 
a lower limit on the number of words in a sentence and 
sentences with words below the threshold value are 
eliminated. 
 
2.4 Implementation 
 

Each Sentence in the document is mapped as a vector 
of nine features defined in [B]. Values in the feature 
vector are row normalized to a unit vector. Neural 
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networks in the ensemble are implemented as three layer 
Feed-Forward neural network. Each Neural network 
consists of nine input units, twenty-one computational 
units in the hidden layer and one output neuron. The 
output of the ensemble neural network is the weighted 
average of the output of all neural networks in the 
ensemble. The feature vector of a sentence is applied to 
all the networks in the ensemble as an input and the 
output of the ensemble determines whether the sentence is 
to be included in the summary or not. The output of the 
ensemble for a sentence is in the range of [0-1], where a 
value close to 1 means the sentence is to be included in 
the summary and a value close to 0 means the sentence is 
not to be included in the summary. The number of 
sentences in the summary is taken as ten percent of the 
total number of sentences. Thus, we select ten percent of 
the total sentences for which ensemble output value is 
close to 1. Neural network is implemented in the Matlab 
Neural network toolkit. 

 
2.5 Training 
 

The neural network is trained on a set of text 
documents with Back-Propagation training algorithm. 
The supervised learning is performed using the summary 
of the training data set as the target values. For each 
document in the training set, feature vectors are computed 
for each sentence and applied to the ensemble neural 
network with the desired target output as 1 if that 
sentence is included in the summary or as 0 if it’s not. In 
the neural network training, the keywords of the 
document are matched with the unique words in the 
sentences and the part of speech tagged words in the 
sentences. Thus we make use of keywords in the same 
way as we make use of the search query. Training the 
neural network on keywords makes it more robust since 
neural network learns to associate with the words that 
describe the context of the document and would be of 
interest to a user.  

The main difficulty with training of neural network 
was the unavailability of any large text corpus with 
extraction based summaries. The dataset used to train and 
test the ensemble neural network consisted of 50 random 
web pages selected from http://directory.google.com/ 
from different categories. Summary and keywords for 
each of the web pages was created by hand. The data set 
was divided between 35 documents in training set and 15 
in test set. Each document consisted of 16 to 143 
sentences with an average of 46 sentences. The neural 
network was trained using 35 documents using Back-
Propagation algorithm with variable learning rate and 
momentum term. For each document in the training set, 
we provided the desired target output of 1 for each 

sentence that was included in the summary and a 0 for all 
the sentences that were not included in the summary. 

 
2.6 Result 
 

We compared the results of our neural network model 
against a public domain multi-document summarization 
system, MEAD, available at 
http://tangra.si.umich.edu/clair/md/demo.cgi.  Our neural 
network when tested on documents from the test set 
correctly classified 60% of the sentences as summary 
sentences against 48% of the sentences correctly 
classified as summary sentences by MEAD. We 
compared the summaries created with the summary 
created by hand for each document in the test set. 

The results that we received were not as expected as 
one issue was the proper text extraction from html web 
pages. In most of the cases there were some unwanted 
non-stop words that were included in the text extracted 
from the search result. 

 
3. Discussion and Future Wwork 
 

The neural network model proposed enables a web user 
to view the summary of each web page returned by the 
search engine such that the summary generated tends to 
consist of those sentences which are more proximate or 
relevant to a search query specified by the user. This 
model can be used when the summary to be generated 
depends on some interest or relevance parameter of the 
document i.e. the summary generated highlights those 
points in the document which are more prevalent and 
describe its content. The summary generation method can 
be further enhanced by incorporating semantics of the 
document while generating the summary for example 
considering meaning of the words in a sentence to find 
closeness between two sentences. 
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