Yale University
Department of Computer Science

An Exploration of Asynchronous
Data-Parallelism

Michael S. Littman and Christopher D. Metcalf

YALEU/DCS/TR-684
October 1988

1

An Exploration of Asynchronous
Data-Parallelism

Michael S. Littman
Christopher D. Metcalf

October 10, 1988

Abstract

In this paper, we develop the idea of asynchronous data-parallelism; that
is, data-parallel programs in which the processing elements may be performing
different computations at any given time. We suggest that since synchronous
machines are forced to sequentialize the clauses of conditional statements, pro-
gramming is hindered. Programmers must waste time factoring and merging
expensive expressions from conditional clauses. This is still not always sufficient
to use the machines at their maximum efficiency.

We propose a method by which a synchronous machine can be used to simu-
late a MIMD machine language called Milan. Milan can be used as an efficient
target for existing data-parallel languages such as Crystal and PARALATION
Lisp. By keeping Milan’s instruction set small and regular, we are able to keep
the simulation overhead to a minimum and achieve impressive performance on
a few simple problems.

We believe that Milan could be used as a research tool for computational
models which require fine-grained asynchronous machines, such as very complex
neural networks, CSP or parallel symbolic processing.

Introduction

1.1 Common Configurations

Large-scale multiprocessor computers typically come in one of two forms. The first
is called MIMD because there may be Multiple Instructions and Multiple Data
elements active simultaneously within the machine. To utilize the power of the
machine’s independent processors, programmers break the control flow of their pro-
grams into chunks which execute separately (asynchronously). This is known as

control-parallelism.

A second type of multiprocessor is called SIMD for its Single Instruction stream.
All the processors of a SIMD machine execute the same instruction at the same
time (synchronously). To use the large number of processors on such machines, the
program’s data must be organized into groups. The elements of each group are
distributed over the machine’s processors and manipulated as a unit. The SIMD
machine’s instruction set is tailored for acting on data objects in this way. This
style of programming is called data-parallelism.

Both of these configurations have distinct advantages and disadvantages. An
asynchronous machine supports the parallel execution of multiple expressions, sub-
routines, and even programs. However, control-parallel algorithms needed to run on
these machines can be difficult to express and debug due to tricky synchronization
issues [1].

A data-parallel program is often a clearer description of the problem and may
capture a greater fraction of the potential parallelism in a problem [1,2]. Unfortu-
nately, synchronous machines can not easily compute differing expressions in par-
allel. This leads to the opinion that SIMD machines are not general purpose, that
is, that they are limited to a certain class of problems.

To illustrate the tradeoffs in these models, consider the problem of computing

n

dil+(n—i+1)

=1

An asynchronous control-parallel approach is to create a list of subtasks to
compute the factorials and a set of subtasks which add the factorials together.
Each available processor removes a task from the list, performs it, and gets a new
task. Since processors will be busy as long as there are tasks to be done, wasted
time is kept to a minimum. However, the termination condition for the program
can be hard to specify. The program must halt when there are no more pending
additions and there are no pending factorials or factorials in progress.

To perform this computation in a synchronous data-parallel fashion, one creates
a vector with an element for each ¢ from 1 to n. Next it steps through the factorial
function for every value in the vector at once. The same is done for every n —i + 1.
Finally the two vectors are added elementwise and reduced to a single value using
addition. This is the opposite of the control-parallel algorithm. Here, the termi-
nation condition is straight-forward and no extra work needs to be done managing
subtasks. But each processor spends a significant amount of time idle, waiting for
other processors in the vector to compute the factorial.

2 An Alternative: Asynchronous Data-Parallelism

In this paper we suggest implementing a third configuration, that of asynchronous
data-parallelism. An asynchronous data-parallel machine is one in which operations
for creating and manipulating large data objects are available but the computations
used to define the individual elements of these objects execute independently. This
paradigm couples the power of asynchronous computation with the clarity of the
data-parallel approach.

In terms of the example above, an asynchronous data-parallel machine could
have each processor compute first ¢! and then (n — ¢ + 1)! without having to waste
time resynchronizing in between.

At the moment, there are only a few machines that might be able to support
such a model directly; these include the Fluent machine [3], currently under de-
velopment at Yale, the PASM (Partitionable SIMD/MIMD) machine [4], and the
Ultracomputer [5], also still only on paper. Each of these is asynchronous, con-
sists of many processors, and supports data-parallel operations. Implementation
for other MIMD machines is not difficult, involving only the writing of primitives
for synchronization and group operations, but not particularly attractive due to the
limited number of processors typical on such machines.

To explore asynchronous data-parallelism we devised an asynchronous data-
parallel machine language called Milan (Multiple Instruction LANguage) and im-
plemented it on a commercially available synchronous machine, the Connection

Machine-2 [6,7].

3 The Milan Virtual Machine

3.1 The Milan Approach

In principle, using a synchronous machine to simulate an asynchronous one is not
very difficult. First, the code for the entire program is loaded into the memory
for each processor. Next, some sort of instruction pointer is initialized to zero in
every processor. Now the SIMD machine is used to step each processor through a
standard “fetch-execute” cycle. This is done by looping through the set of possible
commands, activating first all processors requesting addition, then multiplication,
then logic operators, then control-flow operators, and so on through the entire
instruction set.

This approach is inefficient. Implementing a typical machine language in this
way would require 163 separate instructions in each cycle just to do computa-
tion. /footnoteThis number comes from a rough count of the number of instructions

3

in 68000 machine language. Adding a general communication scheme would slow
things down even more.

Therefore, whereas the idea of simulating a MIMD machine using SIMD hard-
ware is not unique to us/citeDP, doing so practically is new. The desired tradeoff
is to win back in multiprocessing ability what is lost on simulation overhead.

Our approach to efficient MIMD simulation is similar to the approach used in
RISC architectures, although for a different reason. A RISC machine minimizes
the number of instructions to simplify and therefore speed up the existing ones,
and to increase the amount of on-processor memory for registers. Our virtual ma-
chine shares the first goal: creating a highly-simplified set of commands makes each
“virtual machine” sequential cycle through them faster, and thus makes the basic
virtual MIMD cycle faster.

In this section, we describe Milan and explain the techniques we use to maximize
its computational speed. The majority of speedup comes from having a very regular
instruction set, collapsing similar computational instructions into single instructions
(for instance, addition and relative jumps) and creating a simplified communication
scheme. We show that this is sufficient to produce a surprisingly efficient interpreter.

3.2 Instruction Format

A Milan instruction consists of four sixteen-bit words: the opcode, two operands,
and the result address. For monadic operators, the second operand is ignored?.
Each of the sixteen bits of the opcode correspond to a mini-instruction (computa-
tion, addressing-mode, or communication command). For each bit in a processor’s
opcode that is a 1, that processor executes the corresponding mini-instruction. The
regularity in the instruction format allows a high degree of SIMD parallelism to be
achieved in instruction interpretation.

Table 1 contains a Milan instruction for decrementing location 5. The instruction
is encoded as follows: the first bit means indirect the first operand. Since it is zero,
opl is considered to be a constant. The second bit indirects the second operand.
This causes op2 to be replaced with the contents of location 5. The third bit negates
opl and the fourth adds (the now indirected) op2 to it. At the end of the cycle, op1
is stored into res, in this case, back into location 5. The meanings of the other bits

is the topic of the rest of this section (a summary of instruction bits can be found
in Table 2).

1Except in the case of indexed indirection, as explained later.

Opcode I opl [op2 | res
0111000000000000 | 1 | 5 | 5

Table 1: The Milan instruction for decrementing location 5.

3.3 Computation Mini-Instructions

In this section, we describe the ten mini-instructions which (when used in combina-
tion) are responsible for arithmetic computation, addressing-modes, boolean arith-
metic, and program flow. We demonstrate the ability of these mini-instructions to
express a large number of useful functions and describe simple optimizations which
can be performed to speed up the instruction cycle.

All arithmetic computation in Milan is based on five simple mini-instructions:
NEGATE, ADD, SIGNUM?, MULTIPLY, and DIVIDE. Any computation which can be ex-
pressed as a subset of these commands in this order will execute in a single cy-
cle. For instance: negation, addition, signum, multiplication, division, identity (no
operation), subtraction (negation and addition), decrement (negation and addi-
tion), increment (addition), absolute value (signum and multiplication), compari-
son (negation, addition, and signum), rounding to nearest multiple (division and
multiplication) all take unit time.

These arithmetic functions can be combined with memory indirection to create
a host of addressing modes. We chose to have four possible indirections in each
cycle:

1. Indirect the first operand.

2. Indirect the second operand.

3. Indirect the first operand again.
4

. Indirect the result pointer.

This allows a possibility of 16 different addressing modes for dyadic operations in
a single cycle. For monadic operations, there are an additional 48 addressing modes.
This is a result of the fact that the third indirection above occurs immediately
following the ADD in the cycle. This allows indexed operand indirection (for instance,
referring to locations relative to the stack pointer) in a single cycle. Similarly, we add
an INDEX mini-instruction following the fourth indirection which adds the second
operand to the result pointer. This allows information to be stored relative to the
contents of a location (like the stack pointer) in one cycle.

Using one and zero for true and false, we can express the fundamental boolean
functions as follows:

2The SIGNUM function takes a number and returns -1, 0, or 1 depending on whether the number
if negative, zero, or positive.

¢ normalize. (create a boolean from an arbitrary number). Signum and then
absolute value (2 cycles).

¢ logical not. Subtract the value from one (1 cycle).
¢ does not equal. Compare and then absolute value (2 cycles).
¢ less than or equal to. Compare, then add one and signum (2 cycles).

. greater than or equal to. Compare, then subtract from one and signum
(2 cycles).

e equal to, greater than, less than. Perform does not equal, less than or
equal to, or greater than or equal to as appropriate, and subtract the result
from 1 (3 cycles).

¢ logical and. Multiply (1 cycle).
¢ logical or. Addition and signum (1 cycle).

e logical exclusive or. Subtraction followed by absolute value (2 cycles).

Since the instruction pointer is represented as a machine location, control flow is
easily expressed in terms of these primitives. Subroutines and unconditional jumps
amount to adding values to the instruction pointer and perhaps manipulating the
stack. A conditional jump is slightly more tricky in that some boolean value must
be multiplied by an offset before it is added to the instruction pointer.

Thus, the simplicity and regularity of the instruction set allows a single ADD
mini-instruction to be active simultaneously in add, subtract, compare, boolean and
Jjump instructions.

Computational functions that cannot be expressed using the primitives discussed
so far are handled by triggering an “exception”. An exception is a mini-instruction
which causes the interpreter to suspend the cycle so as to execute a command
stored in the excep location of the processor that signaled the exception. Multiple
exceptions occurring in the same cycle are serialized. Input, output, and expensive
mathematical operations such as logarithms are supported through the EXCEP mini-
instruction (a summary of available exceptions can be found in Table 3).

3.4 Computation Optimizations

There are a few simple techniques which can be applied to make the virtual MIMD
cycle even faster.

On an architecture in which indirection is slow, the flexibility achieved in our
four-indirection model can be accomplished with only two indirections per cycle:
one for either the first or second operand and one for either the first operand or the
result pointer.

Multiplication and division operations, around ten times slower than add or
subtract, are not always needed in their full generality. Our Milan implementation
allows division to be replaced with a bit shift command (allowing division and
multiplication by powers of 2) and multiplication to be replaced with multiplication
only by 1, 0, and -1 (permitting the use of multiplication for absolute value and
conditional jumps).

In programs which do require generalized multiplication or division, a test can
be done called a global-or to quickly determine if any processors need to do mul-
tiplication or division in the cycle. If the operations are not needed, they are not
performed. Similarly, other time-consuming instructions are checked with a global-
or before execution to determine whether any processors need to perform them. In
fact, as the Milan program is running via interpreter, the interpreter can analyze the
program code at load-time and never attempt to execute an unused mini-instruction.

We have also considered a variety of schemes for speeding up exceptions. For
instance, by counting the number of logarithm exceptions, the interpreter can choose
to use the front end to handle each of these serially, or use the Connection Machine’s
own logarithm instruction to serve all of the calls in parallel. Each operation has
its own threshold which determines when it is more efficient to perform in parallel.

In practice, we found that eliminating generalized multiplication and division
wherever possible had the most significant effect on the runtime of our implementa-
tion. The other optimizations did not give improvement in the programs we tested.
This could be a function of the small problems we used in testing.

3.5 Communication Mini-Instructions

In order to limit the amount of serialization necessary in communication, we allow
only one publically readable and writable location on each processor. We call this
the result port as it is where a processor stores the results it computes for other pro-
cessors to read. Since this value may have different meanings to different processors,
an additional tag value serves as a description; it is up to the Milan programmer to
choose a consistent tagging protocol.

A processor attempting to read this value has the option of having the read
block (fail to terminate) until the tags set in the remote processor match a value set
locally.

Parallelism in the Milan model comes from processor allocation. The ALLOC
mini-instruction provides for the dynamic allocation of subordinate processors. An
efficient (only 6 global operations) allocation algorithm is used to allow an arbitrary
number of processors to allocate an arbitrary number of free processors quickly.

In Milan, allocation serves the function of creating new distributed objects. Each

allocated processor computes an element of the object. Allocations can be nested,
permitting arbitrarily complex structures to be created.

A processor is allocated by having its status location set to 1. The alloca-
tion algorithm uses the status bit to enumerate the free processors for allocation.
Like multiplication and division, allocation is very time consuming. The allocation
procedure is never called unless there are processors wishing to allocate.

Almost as important to the overall performance of the system is processor deal-
location. The decision as to when a processor should deallocate is crucial in Milan
since asynchrony results in reclamation nondeterminism. In the current model, we
deallocate as part of the reduction operation (that is, after finding the sum or max-
imum of values in a group of processors). In the future, high-level scope analysis
can be used to help determine when a processor can be reclaimed.?

Another important set of communication operations are the scans (also known
as parallel-prefix operators). A scan is a function defined over the members of a
particular group. For instance, an “add scan” returns the sum of the first ¢ elements
of the group to element ¢. Scans for addition, replication, and maximization are
accessible as calls directly to the hardware. These calls are special in that they are
defined only from within an allocated group (otherwise it makes no sense to speak
of the the ith element of a group). Generalized user-defined scans can easily be
created from the Milan primitives. These, however, run much more slowly.

To use the hardware of the Connection Machine most efficiently, our Milan
implementation introduces extra synchrony not required by the abstract model. In
our implementation, a scan exception will not complete in any processor in a group
until all processors in that group have signaled the scan. The synchronization is
achieved by having each group count the number of processors which have reached
the synchronization point. When all have, a segmented scan is initiated.

We have also made the observation that a copy-scan (that is, a scan to replicate
values across a group) can be expressed in terms of either an add-scan or a max-
scan. Hence, it is rarely necessary to do more than one scan in a cycle, since all
requested add-scans in the machine (or likewise all max-scans) can be performed in
a single hardware operation.

3.6 Communication Optimizations

Since communication is slow but any number of processors can communicate at
the same time with no added overhead, a subway optimization can be used. The

3Note that the problem of determining exactly when a value is no longer needed is incomputable.
Otherwise, a program could be written which asks “Will I use this value again?” and does the
opposite.

subway optimization is to make processors wait before actually communicating.
Then, every 5 or 10 cycles, all waiting processors communicate. We have not found
this to significantly effect runtime in the simple problems we tried. Programs with
complex patterns of communication would probably show greater improvement.

A problem with the current model is that programming using only one port for
interprocessor communication can be cumbersome. If supported efficiently enough
by the machine, the model can easily be adapted to allow access to remote memory
locations. This change necessitates the addition of some sort of status tag for each
memory location. This tag would be used to determine whether or not a piece of
data is ready to be used by remote processors.

Another potential difficulty with the model is that allocation can possibly take
linear time with respect to the number of processors. This may occur when there
has been a large amount of allocation and deallocation resulting in excessive frag-
mentation. The rooming scheme (similar to the paging scheme used to control
fragmentation in memory allocation) is a matter of making fixed sized chunks of
d processors which are always allocated together. Allocating a group of size n
amounts to allocating % chunks from anywhere within the machine. The overhead
for this optimization seems to exceed the gain in a system of less than ten thousand
processors.

3.7 Milan Summary

The Milan cycle is summarized in Table 2. Table 3 contains a list of the available
exception operations.

4 Data-Parallel Languages

Milan could not be useful without some high-level language interface. In this section,
we review seven common data-parallel languages and classify them as to whether
or not they could be used asynchronously.

An important observation to make in the comparison of synchronous and asyn-
chronous models of computation is that they only differ in their interpretation of
conditionals.* A program with no conditional statements will run the same in
synchronous and asynchronous modes. Therefore the ability of a data-parallel lan-
guage to execute asynchronously depends on its semantics for the conditional. As
a test-bed for conditionals, consider dividing even numbers in a vector by 2 and
multiplying odd numbers by 3 and adding one.

4The term “conditional” is meant to be interpreted broadly as any branch in control-flow.

| Instruction bit | Action

unconditional | The instruction, res, op1, and
op2 are loaded from the location indicated
by ip.

IND1 opl gets the value stored in the location
indicated by op1.

IND2 op2 gets the value stored in the location
indicated by op2.

NEGATE opl gets minus opl.

ADD opl gets opl plus op2.

REMOTEREAD No action. '

IND1B If REMOTEREAD is set, opl gets the
value on the read port of processor op2,
blocking if BLOCK is set. Otherwise,
opl gets the value stored in the location
indicated by op1.

BLOCK No action.

SIGNUM opl gets the signum of op1.

DIVIDE opl gets the integer quotient of op1
and op2.

MULTIPLY op1 gets opl times op2.

ALLOCATE opl gets a pointer to the lead processor of
a group of size op2 in which each of those
processors begin execution at op1.

EXCEP opl gets the value of executing exception
excep on arguments opl and op2.

INDRES res gets the value stored in the location
indicated by res.

INDEX res gets res plus op2.

REMOTEWRITE | No action.

READY Unused.

unconditional | op1 is stored into the memory location
indicated by res. If REMOTEWRITE is
set, the destination processor is op2.
ip is incremented.

Table 2: A summary of the Milan interpreter cycle.

10

Math Logical . Send with... Scans Other
logarithm logical and add add input
logarithm base 10 | logical or logical and copy output
exponential logical xor logical or maximum | set random
square root logical equivalence | logical xor random
power maximum start clock
sine minimum split clock
cosine overwrite break
tangent unsigned maximum

unsigned minimum

Table 3: A list of available exception operations in Milan.

Neither APL [8], nor Paris [9] (PARallel Instruction Set—the machine language
of the Connection Machine) have any notion of a parallel conditional. In APL, our
example function can be implemented by computing both the case for odd and the
case for even and merging the two results together (using addition, for example).

Paris has a slightly more elegant method in that processors in the odd case
can be turned off while processors in the even case are computing and vice versa.

Nonetheless, both languages throw away the tiny amount of asynchronousness pos-
sible.

The Connection Machine’s high-level languages (xLisp [10], Cx [11], and CM-
Lisp [12]) support a variety of parallel conditionals. In these languages, our example
function can be expressed straight-forwardly as a standard conditional expression.
However, this syntax is really only an illusion of asynchronousness. Due to each
of these languages’ dependence on side-effects, their designers chose to define the
semantics of conditionals to be the same as if the clauses were computed sequentially.

In other words, these languages express no more in the way of asynchronous behavior
than APL or Paris.

PARALATION LisP [13], and Crystal [14] do not allow side-effects in parallel
conditionals; Crystal because it is a functional language and PARALATION LISP to
avoid the need for resynchronization. In Crystal, computing our example expression
on all elements of A can be written (and executed) as:

[x in A | << isodd(x) -> 3*x+1, else -> x/2, > 1,
This means that both languages allow for the execution of conditional branches

in parallel, that is, they support an asynchronous interpretation. Thus, there are at

least two existing data-parallel languages that could serve as a high-level language
for Milan.

11

5 Arguments Against Synchronous Data-Parallelism

There are supercomputers and established languages for doing synchronous data-
parallel computation. Asynchronous data-parallelism requires writing programs in
less common languages to run on non-existent machines or bearing the costs of
substantial interpreter overhead. In this light, it is reasonable to ask what is wrong
with the synchronous model.

We claim that programs written for synchronous machines can be slow and
unreadable. Programmers must do their best to factor and merge time-consuming
code from conditionals. This leads to semi-optimized programs which are difficult
to read and understand.

5.1 Factoring

To limit the time spent sequentializing conditional branches, complex expressions
must be carefully “factored out” of the conditional much as an optimizing compiler
removes expensive operations from an inner loop.

Consider, for instance, the Crystal function w(n) defined as®.

win) =<<n-=1 -> 0,
isodd(n) -> 1 + w(3*%n + 1),
else => 1+ w(n/2) >,

If this function were translated in the obvious way to run on the Connection
Machine, it would be very inefficient. The recursive calls are in the conditional
branches and therefore serialized. Stack space is quickly depleted and the function
runs very slowly.

Removing the recursive call from the conditional, like this:

w(n) =< n=1->0,
else -> 1 + w (<< isodd(n) -> 3%n + 1,
else => n/2) >, >,

results in a program which can be made to execute with no stack space and time
proportional to whichever n takes the longest to reach 1. The reason for this
profound difference is that in the first case, the slow recursive call is made twice at

5t is an open problem in number theory whether or not this function terminates for all n. Quickly
evaluating this function for many n might help theorists detect patterns that would not have been
obvious in a few examples. Hence, parallel execution might be of great assistance.

12

each level of recursion (once in each branch of the conditional) while in the second
case, the call is made once at each level.

The benefits of performing this factorization are astounding. Factoring poten-
tially reduces the parallel runtime of the program from O(2%) to O(z) (where z is
the maximum value of w(n) being computed in parallel). In terms of real comput-
ing time, a factored version of w (written in Paris) running on the numbers 1 to
4000 was over 400 times faster than the corresponding unfactored program. Un-
fortunately, it is not always obvious to the compiler—or the programmer—how to
perform such a factorization.

5.2 Merging

A second commonly-used tool for decreasing the amount of time spent in condi-
tional branches is merging. In this method, similar operations occurring in each

conditional branch are reduced to a single operation. This is the primary technique
with which Milan is built.

Consider an expression to compute either the quadratic determinant or the area
of trapezoid depending on the value of t:

<< t =1 -> b"2-4*a*c, else -> 1/2*xhx(b1+b2), >>,

This expression can be rewritten cl*wkx+c2*y*z by insuring that cl, w, z, ¢2, y,
and z took on the values 1, b, b, —4, a, c respectively in the case when ¢t = 1 and %,
h, b1, %, h, b2 otherwise. This may be desirable to speed up a program’s execution,
but it is not desirable to read.

There are times when merging is even more difficult and more crucial. In the
case of Milan, it took us several months to developed a merged instruction set. This
is not the kind of task that a compiler should be asked to perform.

5.3 Intractable

Some conditionals are so complex that no amount of factoring or merging can pre-
vent costly sequentialization. No compiler or human should have to produce an
efficient version of a program which computes (for example) fibonacci, factorial,
ackermann, greatest common divisor, a test for primality and the original w func-
tion all in different branches of a conditional. Asynchronous execution is the most
straight-forward way of reducing the amount of time for such a conditional from
the sum of the branches to the maximum of the branches.

13

6 Benchmarks

Although the importance of asynchronous computation is clear, it remains to demon-
strate its practicality. To evaluate the efficiency of our interpreter, we wrote Paris,
*Lisp and Milan code to compute the standard matrix multiplication algorithm
and the w function. We found that the Milan interpreter, with the power of the
asynchronous model, performs only marginally slower than Paris on a typical syn-
chronous problem and actually outperforms *Lisp on an asynchronous one.

The matrix multiplication programs generate two sample matrices and then form
the product by creating a new matrix whose (¢, 7) elements are equal to the inner
product of row ¢ of the first matrix and column j of the second matrix.

The xLisp and Paris programs have one major difference from Milan—since
no facility exists for creating nested objects in these languages, the programs are
written with matrices represented as linear structures. We give statistics for two ver-
sions of these programs. The multiread version has many communication collisions
when reading each value to compute the inner products. The copy-scan version
reads each value once and replicates the values using the Connection Machine’s
copy-scan primitive®.

It is important to note here that Milan’s ability to easily represent the two-
dimensional structure of the matrix comes from dynamic allocation, a function
present in PARALATION LisP, Crystal and Milan.

Table 4 gives the running time (in seconds) for each program on n X n matri-
ces. The xLisp programs were timed running interpreted on a Vax front-end to be
consistent with the execution of Milan.

The *Lisp program to compute the values of w(n) for n from 1 to 445 would
not run as stack space was depleted too quickly. Therefore, we extrapolated based
on comparisons with the identically coded Paris versions. Table 5 gives timings (in
seconds) for the 5 different versions. In the table, data marked with a dagger (})
had to be estimated due to machine limitations.

We have shown that a SIMD problem (such as matrix multiplication) runs ap-
proximately 16 times more slowly in Milan than in the native machine language
and about 4 times more slowly than a “high-level” language.

For a MIMD problem (like w) the ratio is worse when comparing the factored
synchronous versions to Milan. This is due to the overhead of handling individ-
ual control flow and serialized indirection. This difference will diminish somewhat

6In the next software release, this distinction will not be necessary as read-time collisions will be
handled efficiently. The result of this change is that the Milan and multiread versions will be faster.
We estimate that the runtime for Milan on a 15 x 15 matrix will be about 1.77 seconds—only 16
times slower than the native Paris machine language.

14

Language | Version | n Time

Paris multiread | 5 0.03
10 0.07

15 0.19

copy-scan | 5 0.03

10 0.10

15 0.11

*Lisp multiread | 5 0.69
10 0.69

15 0.69

copy-scan | 5 0.79

10 0.79

15 0.79

Milan 5 0.87
10 1.32

15 3.06

Table 4: A comparison of 5 programs to compute matrix multiplication.

Language | Version | Time (secs)
Paris unfactored | 12.00
factored 25 .. .
=D fy estimated values.
xLisp unfactored | 145.00% AgECTs signily eshifnated vatues
factored 2.53%
Milan 36.00

Table 5: A comparison of 5 programs to compute the value of w(n) for n from 1 to
445 in parallel.

15

when indirection is supported through the system software of the Connection Ma-
chine (although the hardware is currently in place, the software has not been fully
upgraded to take advantage of it).

Most interesting of all is the *Lisp unfactored version of w which is estimated
to be four times slower than Milan due to the amount of serialization occurring in
conditional branches. Milan actually outperformed code which was running very
close to the machine.

So our simple benchmarks indicate that the cleaner asynchronous model of data-
parallelism can be utilized with an almost acceptable amount of overhead on an
existing machine. This overhead will only decrease in coming years with improved
hardware and system software.

7 Extensions and Directions

Simulation of a fine-grained asynchronous machine can be accomplished with a rea-
sonable amount of efficiency on any synchronous machine that possesses generalized
communication and memory indirection. In this section, we discuss fairly straight-
forward techniques for keeping the virtual cycle time down. There is much more
work that can be done to make MIMD simulation even more efficient.

At the hardware and system software level, there are many ways in which the
virtual cycle can be accelerated. Direct microcode support for all of the mini-
instructions (including allocation) would be beneficial. Further, software support
for indirection and message combination and streamlining of the Vax front-end
interface (expected in the next release of the Connection Machine’s software) would
speed things up considerably. The results we have achieved do not depend on the
memory indirection of the machine. This is why the runtime of the Milan version
of the w function is relatively poor. Even though it should be faster (as it is more
of a MIMD problem), memory indirection slows it down considerably.

A more esoteric research direction would be to study ways of compiling asyn-
chronous data-parallel programs for synchronous machines. It would be interesting
to explore issues such as getting a compiler to decide between MIMD simulation
and direct SIMD execution for a given problem or to select exactly which set of
mini-instructions to include in the main cycle. Further, a model for switching be-
tween SIMD and MIMD computation could potentially result in computers faster
than any which exist today.”

Nonetheless, the model offers immediate uses. The language as currently written
supports an arbitrary number of programs running simultaneously on the Connec-

“The PASM machine [4] is an attempt to do this at the hardware level.

16

tion Machine (up to the number of available processors). A future version of the
interpreter could function as a “daemon”, managing resources on the Connection
Machine and accepting new programs to run as resources became available. This
would allow a dynamic form of multitasking that might make the Connection Ma-
chine easier to share.

Other applications lend themselves to immediate implementation. Milan could
support higher-level neural net programming with many thousands of highly so-
phisticated neurons. This naturally leads into an implementation of actors [15] or
of interacting agents for natural language and knowledge representation problems.
Finally, the machine provides an easy way to implement the various higher-level
asynchronous languages that have been proposed, such as CSP [16].

8 Conclusions

The common configurations for multiprocessor computers fail to provide the combi-
nation of efficiency and expressibility. Asynchronous data-parallelism provides the
best features of asynchronous execution and data-parallel programming, and it is
easier to use and more efficient than it might at first seem. In the absence of any
machines tailored to support this model, we have created a method using existing
SIMD hardware to simulate an asynchronous computer. Using such a system could
result in programs that do not require confusing source-level optimizations to run
efficiently.

In the future, we suggest that more work be done at the hardware level to
support this model. This support would be invaluable in creating a system capable
of pushing the speed limitations of current parallel machines.

Acknowledgments

The authors wish to thank their advisors, friends from TMC, Bellcore and the Crys-

tal Group, roommates, and significant others for support and helpful discussions.
The authors acknowledge the support of The Office of Naval Research under

Contract Number N0O0014-86-K-0310.
References

[1] W. Daniel Hillis and Guy L. Steele Jr. “Data Parallel Algorithms,” IEEE
Computers, 29(12):1170-1183, 1986.

[2] Douglas Baldwin, University of Rochester Technical Report, TR 224, August
1987

17

[3] A.G. Ranade, S.N. Bhatt and S.L. Johnsson, “The Fluent Abstract Machine,”
Proceedings of the 5th MIT Conference on Advanced Research in VLSI, March
1988.

[4] A Partitionable SIMD/MIMD machine.
[5] The NYU Ultracomputer Project.
[6] W. D. Hillis. The Connection Machine, MIT Press, 1985.

[7] “Connection Machine Model CM-2 Technical Summary,” Thinking Machines
Technical Report HA87-4, April 1987.

[8] Kenneth E. Iverson. A Programming Language, John Wiley and Sons, New
York, 1962.

[9] “Connection Machine Parallel Instruction Set (Paris), The C Interface, Version
4.0”, Thinking Machines Corporation, 1987.

[10] “The Essential *Lisp Manual. Release 1, Revision 7.” Technical Report, Think-
ing Machines Corporation, July 1986.

[11] John R. Rose and Guy L. Steele Jr. “C*: An extended C Language for Data
Parallel Programming,” Technical Report PL87-5, Thinking Machines Corpo-
ration, April 1987.

[12] Guy L. Steele Jr. and W. Daniel Hillis. “Connection Machine Lisp: fine-grained
parallel symbolic processing,” In Proceedings of the 1986 Symposium on Lisp
and Functional Programming, pages 279-297, 1986.

[13] Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Pro-
grammang, MIT Press, Cambridge, Massachusetts, 1988.

[14] M. C. Chen. “Very-high-level parallel programming in Crystal,” In The Pro-
ceedings of the Hypercube Microprocessors Conf. Knozuville, TN, September
1986.

[15] Gul Agha, Actors: A Model of Concurrent Computation in Distributed Sys-
tems, The MIT Press, Cambridge, Massachusetts, London, England, 1986.

[16] C. A. R. Hoare. “Communicating sequential processes,” Communication of
ACM, 21(8):666-677, 1978.

18

