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Abstract

We introduce a solver for stiff ordinary differential equations (ODEs) that is based on the

deferred correction scheme for the corresponding Picard integral equation. Our solver relies on

the assumption that the solution can be accurately represented by a combination of carefully

selected complex exponentials. The solver’s accuracy and stability rely on the computation of

highly accurate quadrature weights for the integration of the selected exponentials on equidis-

tant nodes. We analyze our solver stability and accuracy regions, and demonstrate its fast

convergence on stiff problems. The solver is combined with an adaptive step-size scheme

employing interpolation formulas for the exponentially fitted solution.

1 Introduction

The development of numerical solvers for ordinary differential equations (ODEs) is a wide

and mature area of research. In particular for non-stiff ODEs, many successful approaches

have been studied and used, which provide excellent efficiency [11]. For stiff ODEs a more

careful treatment is required, however, many successful methods have been suggested [12].

Direct, high order solvers such as Runge-Kutta and Adams methods [11] have been widely

used. They are based on the approximation of the solution by a polynomial, an approach

that is too expensive when high accuracy is required. A different class of solvers is based

on the iterative use of low-order methods to improve a solution approximation, of which our

particular interest is in the deferred correction method [2], [3], [4]. However, due to lack of

stability the use of the classical deferred corrections method has been somewhat limited. The

spectral deferred correction scheme suggested in [1] offers a significant improvement in stability

and accuracy over the classical one. The improvement is obtained by considering the iterative

spectral solution of the corresponding Picard integral equation on a Gauss-Legendre grid.

The solution of the Picard equation eliminates the need for numerical differentiation which

is unstable. Following the work of [1] came other works employing different quadrature rules

and modifying the scheme to a semi-implicit one [6], [7], further acceleration of the method

has also been suggested in [8], [9] and [10].
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In this paper we describe an accurate deferred correction based solver for the Picard equa-

tion corresponding to stiff ODEs in the initial value problem

φ′(t) = F (t, φ(t)), φ(a) = φa t ∈ [a, b]. (1)

The solution is approximated on a discretized grid of uniform size time steps. Our key as-

sumption for the solution of (1) is that the solution can be accurately approximated by a

combination of complex exponentials. Such an approach, known as exponentially fitted meth-

ods, is different than the typical polynomial fitted methods. Exponentially fitted methods have

been used for the solution of differential equations in various works (e.g. [13], [14], and [15]).

Similarly to the non-stiff ODEs solver of [16], we use complex exponentials λj for the solution

approximation

φ(t) ∼
n∑

j=1

αje
λjt, (2)

where the coefficients αj correspond to the solution being approximated. The choice of

λj , j = 1, ..., n is based on a numerical scheme known as skeletonization (see [18]). Once

the exponentials are chosen, the coefficients αj are computed via a least-squares procedure.

Our least squares procedure guarantees the accuracy of the resulting quadratures on regions

in the complex plane by constructing the quadratures on the boundaries of the regions and

using the maximum principle (lemma 2.5 below) to show that their accuracy holds for the

whole region.

Our solver is adapted for the stiff case by using implicit deferred corrections schemes.

It demonstrates accuracy regions at least as large as the designed quadrature accuracy. In

particular, it has an arbitrary order of accuracy which is bounded below by the accuracy of

the quadrature rules or by the number of iterations performed. Obviously, the quadratures

accuracy can be pre-defined to machine precision. The solver has satisfactory stability regions

due to its high accuracy. Specifically, a method of order 10 is A-stable (see section 2.1) and

A(α)-stable with α close to 90◦ for a method of order 14.

We compare our method with state of the art deferred correction methods ( [6], [7]) where

we show an improvement in the algorithm efficiency over methods with different quadrature

rules. A comparison with additive Runge-Kutta method [5] is also demonstrated, where our

method shows preferable convergence. Finally, we demonstrate the use of an efficient adaptive

step-size scheme which initializes finer grids by highly accurate least squares interpolation,

designed (as well) to fit the exponential representation of the solution. The adaptive schemes

is critical for highly stiff problems and in particular where layers exist.

The paper is organized as follows. In section 2, useful mathematical and numerical prelim-

inaries that are used throughout the paper are briefly described. In section 3 we discuss the

mathematical apparatus used to construct the algorithm. In section 4 we describe the algo-

rithm and its adaptive scheme. Section 5 analyzes the accuracy and stability properties of the

solver. Section 6 demonstrates the algorithm performance with a few numerical experiments

with comparison to related work.
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2 Mathematical and Numerical Preliminaries

In this section we describe several facts from numerical analysis to be used throughout the

rest of this paper. The set {a = t1, ..., tn = b} such that ti = a + (i − 1)h will be called an

equidistant discretization of [a, b] with step size h. The function φ : R → Cm and its derivative

F : R×Cm → Cm are sufficiently smooth. The complex modulus or absolute value is denoted

by | · |, and ∥ · ∥2 denotes the Euclidean norm of a vector or the corresponding operator norm

of a matrix.

2.1 Accuracy and Stability of Numerical ODE Solvers

The two characteristics which are generally used to describe the performance of a numerical

ODE solver are its order of accuracy and its stability region ( [11], [12]). Let φ̃ denote the

solution to the IVP (1), obtained by a numerical solver at equidistant discretization t1, ..., tn

of [a, b] with step-size h. The underlying method is said to be of order of accuracy p, if for any

sufficiently smooth F in (1) there exists a constant M > 0 such that

|φ(b)− φ̃(b)| < Mhp. (3)

The stability of a numerical ODE solver is generally determined by analyzing its behavior

on a test problem of the form

φ′(t) = λφ(t), t ∈ [0, 1], (4)

φ(0) = 1, (5)

where λ ∈ C. The amplification factor Am(λ) for λ ∈ C is defined by the formula

Am(λ) = φ̃(1). (6)

If, for given λ, |Am(λ) ≤ 1|, then the numerical method is said to be stable for that value of λ.

The set of values of λ for which the method is stable is called the stability domain. If a method

is stable for all λ in the left-half plane (Re(λ) ≤ 0) then the method is said to be A-stable. A

method is said to be A(α)-stable if it is stable for all λ such that π − α ≤ arg(λ) ≤ π + α.

Thus, A-stability is equivalent to A(α)-stability with α = 90◦. Finally, a method is said to be

L-stable if it is A-stable and

lim
Re(λ)→−∞

Am(λ) = 0. (7)

Remark 2.1. Increasing the number of discretization steps for a given interval will increase

the frequency domain to which the numerical method applies. In general, changing the step

size of a numerical scheme for the solution of (1) from 1 to h is equivalent to changing the

exponent λ in (1) to λh, as the dilation τ = th transforms (4) into

∂φ(τ)

∂τ
= λhφ(τ). (8)

Remark 2.2. If the accuracy domain of a numerical scheme for a prescribed precision ε

contains the semi-disk

S = {λ ∈ C : |λ| ≤ |λ̃|}, (9)

3



then the performance of the scheme is measured by the number of steps per wavelength

2π

|λ̃|
. (10)

2.2 SVD and Least Squares

Given the linear system

Ax = b, (11)

where A ∈ Cm×n and b ∈ Cm, any vector x ∈ Cn which minimizes

||Ax− b||2 (12)

is called a least squares solution of the system (11). If X is the set of least squares solutions

of (11) then X contains one unique element of minimum L2-norm

xLM = argmin{||x||2 : x ∈ X}, (13)

which is called the minimum norm least squares solution. The singular value decomposition

(SVD) provides an explicit expression for xLM . If A = UΣV ∗ is the SVD of A, i.e. U ∈ Cm×m

and V ∈ Cn×n are orthonormal and Σ ∈ Rn×n is diagonal, then

xLM =

r∑
i=1

u∗i b

σi
vi, (14)

where (u1, ..., um) are the columns of U , (v1, ..., vn) are the columns of V , (σ1, ..., σr) are

the positive diagonal elements of Σ, and r is the rank of A. In numerical applications it is

reasonable to define the rank of matrix A to precision ε. Given ε > 0 and the singular values

(σ1, ..., σmin(m,n)) of A, sorted in decreasing order, the numerical rank of precision ε of A is

defined as r ∈ N, such that σr ≥ ε and σr+1 < ε. Accordingly, we define the minimum norm

least squares solution of precision ε of system (11) as

xLM (ε) =

r(ε)∑
i=1

u∗i b

σi
vi, (15)

where r(ε) is the numerical rank of precision ε of A and all other quantities are as in equation

(14). Given an algorithm for the computation of the SVD, the minimum norm least squares

solution xLM (ε) can be computed via (15). However, besides this obvious SVD-based algo-

rithm, there exist various other schemes for the computation of xLM (ε), which are usually

faster; an example is the complete orthogonal factorization described in Chapter 5 of [17].

2.3 Matrix Interpolation (Skeletonization)

The following lemma will be used for the approximation of exponentials of bounded frequency.

It is often referred to as skeletonization and is given by [18] in slightly more general form.
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Lemma 2.3. Given a matrix A ∈ Cm×n with columns (a1, ..., an), and k ∈ N such that

1 ≤ k < min(m,n), there exists a selection of k columns of A such that

A = (an1 , ..., ank
)T +X, (16)

where all elements of T ∈ Ck×n have magnitude less than one and the operator norm of

X ∈ Cm×n is bounded by the (k + 1)st singular value σk+1(A) of A as follows

∥X∥2 ≤ σk+1(A)
√

1 + (k(min(m,n)− k)). (17)

In other words, the lemma states that A can be approximated by interpolating between k

of A’s columns, if the (k + 1)st singular value of A is small, i.e. if k is close to the numerical

rank of A. The fact that all elements in the interpolation matrix T have magnitude less than

one guarantees that this interpolation is stable.

Remark 2.4. The factorization (16) can typically be computed in O(nmk) operations (the

worst case is O(mnl) operations, where l = min(m,n)) by the algorithms described in [18].

2.4 Implicit Euler Method

The 1st order Euler methods solve the initial value problem (1) on the interval [t1, t1 + L] by

taking a sequence of n − 1 steps t2, ..., tn such that ti+1 = ti + h, where h = L/(n − 1). In

this paper the focus is on stiff ordinary differential equations that can be solved by implicit

methods only. Specifically, we describe for this matter the implicit Euler scheme which uses

the backward difference quotient

yi = yi−1 + h · F (ti, y(ti)). (18)

The scheme (18) requires the computation of the derivative at ti and solving a system of equa-

tions for yi. The solution requires the inversion of a matrix constructed from the corresponding

Jacobian(s), e.g. by a direct method.

2.5 The Bisection Method

The bisection method finds the root of the function f within the interval [x1, x2] iteratively

by testing whether f changes its sign to the left or to the right of the midpoint

x3 =
x1 + x2

2
. (19)

If sign(f(x3)) = sign(f(x2)) we set x2 = x3, otherwise x1 = x3, and the search is repeated.

The method stops when x1 and x2 are sufficiently close. To obtain a root with precision ε the

method requires O(log(ε)) steps.

2.6 Newton’s Method

Consider a general system of equations in n unknowns:

fi(x1, x2, ..., xn) = 0, i = 1, 2, ..., n. (20)
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Newton’s method for solving (20) is derived from Taylor’s formula:

f(x) = f(xk) + (x− xk)f
′(xk) +O(|x− xk|2), (21)

in which the quadratic term is neglected. One can then use the iteration

(xk+1 − xk)f
′(xk) + f(xk) = 0, k = 0, 1, 2, .... (22)

to solve a linear system of equations for xk+1. The method requires the inversion of Jacobian

matrix f ′(xk) which can be computed by direct methods [19].

2.7 The Maximum Modulus Principle

The following result can be found in any standard textbook on complex analysis.

Lemma 2.5. (Maximum modulus principle) If D ⊂ C is a bounded connected set with boundary

∂D, U ⊂ C is an open set such that (D ∪ ∂D) ⊂ U and the function f : U → C is analytic on

U then the maximum value of |f | on (D ∪ ∂D) occurs on the boundary, i.e.

max
∂D

|f | = max
D

|f |. (23)

3 Analytical Apparatus

In this section we describe the Picard Integral Equation, and a numerical method to solve

it. We then present an accurate method used within the suggested solution to the Picard

Equation, to represent and approximate band limited functions at equidistant nodes.

3.1 The Picard Integral Equation

The spectral deferred correction schemes presented in [1] relay on the integral form of the

solution of (1). Integrating equation (1) with respect to t yields the Picard integral equation

φ(t) = φa +

∫ t

a
F (τ, φ(τ))dτ. (24)

Let φ0(t) be some approximate solution to (1). A measure for the quality of the approximation

is given by the residual function ε(t):

ε(t) = φa +

∫ t

a
F (τ, φ0(τ))dτ − φ0(t). (25)

We define the error δ(t) by

δ(t) = φ(t)− φ0(t). (26)

Substituting (26) into (24) we obtain

φ0(t) + δ(t) = φa +

∫ t

a
F (τ, φ0(τ) + δ(τ))dτ. (27)

Substituting (25) into (27) yields a correction equation

δ(t) =

∫ t

a
[F (τ, φ0(τ) + δ(τ))− F (τ, φ0(τ))]dτ + ε(t). (28)
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With the function G : R× C → C defined as

G(t, δ) = F (t, φ0(t) + δ(t))− F (t, φ0(t)), (29)

we can rewrite (28) as a Picard-type integral equation

δ(t)−
∫ t

a
G(τ, δ(τ))dτ = ε(t). (30)

The Picard-type error equation is also the basis for spectral deferred correction methods

as, e.g., in [1].

3.2 Euler Methods for the Picard Equation

Let a = t1, ..., tn = b be a discretization of the interval [a, b]. Similar to the construction of the

Euler method for the solution of (1) (as presented in section 2.4), the backward Euler solution

for (30) is given by

δi = δi−1 + hi−1 ·G(ti, δi) + (ε(ti)− ε(ti−1)). (31)

Each step for computing δi is referred to in the following as the Picard Integral Exponential

Solver (PIES) step. Similarly to the implicit Euler method, the solution for the correction δi

requires an inversion of a matrix for the corresponding system of equations, typically done by

a direct method. A marching scheme as (31) for the numerical computation of a solution for

(1) will require a high-order accurate method for the integration involved in computing the

residual ε in (25). An accurate integration method is described in the following sections 3.3,

3.4.

3.3 Highly Accurate Quadrature Rules

In this section we describe the computation of highly accurate quadrature weights for the

approximation ∫ tj

−1
φ(τ)dτ ≈

k∑
i=1

φ(ti)ωij , (32)

where ωij ∈ R, and t1, ..., tk is a discretization of [−1, 1]. Our computation is based on the

assumption that the ODE solution φ is a linear combination of the finite set of exponentials

eλ1t, eλ2t, ..., eλnt. Our process for choosing the complex λ1, λ2, ..., λn is described in section

3.4 below. The matrix ω = (ωij) has to satisfy the linear system

Aω = b, (33)

where A ∈ Cn×k,

A =


eλ1t1 eλ1t2 · · · eλ1tk

eλ2t1 eλ2t2 · · · eλ2tk

...
...

...

eλnt1 eλnt2 · · · eλntk

 (34)

and b ∈ Cn×k

b =


∫ t1
−1 e

λ1τdτ
∫ t2
−1 e

λ1τdτ · · ·
∫ tk
−1 e

λ1τdτ∫ t1
−1 e

λ2τdτ
∫ t2
−1 e

λ2τdτ · · ·
∫ tk
−1 e

λ2τdτ
...

...
...∫ t1

−1 e
λnτdτ

∫ t2
−1 e

λnτdτ · · ·
∫ tk
−1 e

λnτdτ

 . (35)

7



Each column of ω is approximated by the minimum norm least squares solution (15) of (33),

such that the accuracy of the quadratures is of order ε.

Different types of quadrature rules can be formulated based on the the above scheme which

include or exclude the leftmost endpoint. In [7] an L-stable quadrature rule is obtained by

omitting the left most node in the interval. In other words ω1,· = 0 in (32). Such a scheme will

be referred to as a right-hand rule (rhr), whereas including the left hand point will be referred

to as a left-hand rule (lhr).

3.4 Skeletonization of the Complex Semi-disc

We assume that our solution is well approximated by

φ(t) ∼
n∑

j=1

αje
λjt (36)

for some λ1, ..., λn. The first step in constructing an accurate quadrature rule is to select

λ1, ..., λn in (34) such that (32) will be approximated for all functions fλ(t) = eλt for which λ

lies within the complex semi-disk

Sρ = {λ ∈ C | Re(λ) ≤ 0, |λ| ≤ ρ}. (37)

In the following we justify the choice of λ1, ..., λn from the boundary of Sρ (denoted by ∂Sρ).

Lemma 3.1. Given an initial value problem

φ′ = λφ, φ(0) = φ0, (38)

let φλ denote its solution, and φ̃λ its approximate solution computed via the scheme (31), with

quadratures for the residual as described in section 3.1. Furthermore, let D denote a connected

bounded region in the complex plane and ∂D its boundary.

If for any fixed t ∈ R and ε > 0 the inequality

∥φλ(t)− φ̃λ(t)∥ < ε (39)

holds for all λ ∈ ∂D, then (39) also holds for all λ ∈ D.

Proof: For any fixed value of t the method suggested in sections 3.1 and 3.2 computes φ̃λ by a

finite number of additions and multiplications of linear functions of λ. The function gt : C → C
defined by λ 7→ φ̃λ is therefore a polynomial in λ and hence an analytic function of λ. Since

the function ft : C → C defined by λ 7→ φλ is also an analytic function of λ, the error term

in φλ − φ̃λ is also an analytic function of λ. Thus the Lemma follows from the maximum

modulus principle (Lemma 2.5).�

Since one PIES step depends linearly on the solution at the previous nodes, any method

valid for any eλ1t, eλ2t, ..., eλnt is thus valid for any linear combination of these functions in the

following sense: Let λ ∈ ∂Sρ for which there exist coefficients c1, ..., cn ∈ C such that

|eλt −
n∑

i=1

cie
λit| < δ, (40)
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for all t ∈ [−1, 1]. If (39) is satisfied for λ = λ1, λ2..., λn, then by the triangle inequality

|φλ − φ̃λ| < ε+ δ. (41)

Inequality (41) is satisfied for sufficiently dense choice of {eλt|λ ∈ ∂Sρ}. Uniform discretization

of ∂Sρ is employed for that matter. In particular, we use the skeletonization process described

in Section 3.4 to significantly reduce the number of required nodes (and thus the complexity of

solving (11)). Let λ1, ..., λN and t1, ..., tM be uniform dense discretization of ∂Sρ and [−1, 1],

respectively, and the factorization of (34) with error term ||X||2 < δ yields the k columns with

indices {i1, ..., ik}. Then the exponentials eλi1
t, ..., eλik

t satisfy (41) to precision δ.

Remark 3.2. Since the integral and its approximation in (32) are analytical functions of λ,

it follows that equation (32) also holds for all linear combinations of {eλt|λ ∈ Sρ}.

Remark 3.3. The skeletonization of (34) corresponds to a step size h = 2/(k−1) for functions

of the form fλ = eλt where λ ∈ Sρ. A new discretization of [−1, 1] with step size h̃ = αh will be

valid for all solutions of the form fλ = eλt where λ ∈ Sρ/α. Thus, our PIES can be applicable

to functions of higher frequency by reducing the step size. For example, halving the step size

will double the frequency of the functions that can be approximated by the skeletonization of

(34).

Remark 3.4. ρ determines the maximal frequency of the functions to which the PIES scheme

can be applied. Thus, by construction, the number of steps per wavelength to achieve the optimal

accuracy of the resulting scheme is approximately kπ
ρ .

3.5 Interpolation

We construct a highly accurate interpolation scheme for the desired solution of (1) with a

discretization t1, ..., tk

φ(tj) =

k∑
i=1

φ(ti)wij j = 1, ...,K k ≤ K (42)

by solving

Aω = b. (43)

for ω via the least squares solution (14) for the matrix ω = ωij , where A is defined as in (34),

and

b =


eλ1t1 eλ1t2 · · · eλ1tK

eλ2t1 eλ2t2 · · · eλ2tK

...
...

...

eλnt1 eλnt2 · · · eλntK

 . (44)

4 The Algorithm

In this section we describe the detailed algorithm for solving the IVP (1) by numerically solving

the corresponding Picard integral equation. We also describe an efficient scheme employing

the Picard solver which allows to adapt the step size to a prescribed error tolerance.
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4.1 A Deferred Corrections Solver for the Picard Integral Equa-

tion

Our strategy for solving the Picard integral equation (24) is to compute a provisional solution

by using the implicit Euler method (see section 2.4), then to iteratively solve the correction

equation (28). The input for the PIES algorithm is the provisional solution and the quadrature

weights necessary for computing the residual (25) via the scheme described in sections 3.3, 3.4.

Each deferred correction iteration consists of two steps: computing the residual function (25),

and then computing the corrections for the current solution approximation via the scheme (31).

The last step includes Newton iterations (see section 2.6) for the solution of the correction

equations (31). The correction is then added to the current approximation and the process is

repeated until a prescribed error threshold is met.

Picard Integral Exponential Solver (PIES): The input for the solver are the initial

approximation φ[0], the quadrature weights ωij , and the stopping criterion εI .

1. j = 0

2. Repeat J times or until |δ[j]i | ≤ εI , for i = 1, ..., n:

(a) Compute the residual equation (25) for i = 1, ..., n

(b) Compute the corrections δ
[j]
i via the implicit Euler (31) for i = 1, ..., n.

(c) Update: φ[j+1] = φ[j] + δ[j]

(d) j = j + 1

3. Return φ[j]

Definition 4.1. The solver described above involving J iterations and n nodes is denoted

throughout the rest of the paper by PIESJ
n . The corresponding solution generated by the

scheme is denoted by PIESJ
n (F,φa).

Remark 4.2. PIES is not a convergent numerical scheme. Namely, after a prescribed ac-

curacy is obtained, the scheme will not converge as the step-size is reduced. In practice, since

machine precision is finite, the user can always aim at that precision and obtain it regardless

of the scheme being non-convergent.

The usual estimate of the order of accuracy obtained with classical iterated deferred correc-

tions is [4] O(hmin((J+1)k,n)), where k is the order of the method used to obtain φ[0] and solve

the correction equation (27). Combining the results from [4] and remark 4.2, it is straightfor-

ward to obtain the following result:

Theorem 4.3. The solver PIESJ
n converges to the exact solution with order of accuracy

min(J + 1, ⌊log(1/ε)⌋) where ε is the prescribed accuracy of the quadrature weights as defined

in section 3.3.

4.2 Adaptive Implementation

Accuracy and step-size control are an important component in any numerical ODE solver. We

implemented an adaptive scheme to reduce the computational work for obtaining a prescribed

accuracy. The accuracy control relays on criteria we have used in practice to estimate the
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actual error. Moreover, a high order interpolation is used to reduce the number of deferred

correction iterations used each time the step size is reduced.

Accuracy control: Since the actual error |φ − PIESJ
n (F,φa)| can not be measured, we

describe below several criteria used for accuracy control in our adaptive scheme. In practice

the criteria have shown to be very reliable for monitoring the true error of the solver.

1. Internal consistency: we check that the correction process is indeed converging. That is,

the magnitude of the corrections δ (31) satisfy δ < εI at the last correction.

2. Overflow: in some cases the solution is so under-resolved that an overflow is detected.

In most applications we set an arbitrary threshold (typically 1010) to verify that such

instability in our process does not occur at any time step for every iteration.

3. Step-size variation: we check that the difference at t = b between PIESJ
n (F,φa) com-

puted with the step size h and PIESJ
n (F,φa) computed with step size h̄ < h are less

then εadpt at the last iteration.

Adaptive deferred corrections: In most cases the interval [a, b] is divided into subintervals

[tm, tm+1]. Specifically, the algorithm PIESJ
n is applied on [tm, tm+1] with the discretization

tm = t1, ..., tn = tm+1. The approximation obtained at tm+1 is then fed as an initial condition

for PIESJ
n (F,φ(tm+1)) applied on the next subinterval [tm+1, tm+2], and so on.

The input to adaptive implementation algorithm are the pre-computed quadratures and

the accuracy parameter εadpt. Then we apply PIES first with step size h and then again

with h̄ = h/2. If the prescribed accuracy εadpt is met (criterion 3 above), and criterion 1

holds for the last iteration J , then the finer approximation is kept. Otherwise, the step size

is halved again and the same procedure repeats. If the accuracy criteria are satisfied for s

subsequent subintervals (s is typically 2), then the step size is doubled. The finer iterations

are initialized with the interpolated values from the coarser approximation. At any stage if

an interpolation from coarse approximation is not possible a provisional solution is computed

by backward Euler method. The interpolation is computed as described in section 3.5. The

adaptive algorithm is described below.

a. for tm = a,m = 1, 2, ...

1. if tm = b return φ

2. Initialize φ[0]

3. Compute PIESJ
n (F,φ

[0]
tm) for step size h with discretization tm = t1, ..., tn = tm+1

(monitor overflow)

4. Initialize φ[0] for step size h̄ = h/2 by interpolation (see section 3.5)

5. Compute PIESJ
n (F,φ

[0]
tm) for step size h̄

6. if both approximations agree to accuracy εadpt and δ[J ] < εI

i. if s′ = s : h = 2h, tm = tm+1,

ii. if s′ < s : tm = tm+1, s
′ = s′ + 1

7. else s′ = 0, h = h̄.

b. return φ[J ]
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5 Stability and Accuracy Analysis

In this section we investigate the stability and accuracy properties of different PIES schemes

implemented. The chosen schemes are elaborated in Table 1.

Scheme ρ n ε+ δ J

DCL1 3.15 10 10−5 4

DCL2 3.15 34 10−15 13

DCL2B 3.15 34 10−15 9

DCL3 3.15 52 10−24 22

DCL4 6.30 42 10−15 13

DCR2B 3.15 34 10−15 9

Table 1: deferred corrections schemes.

DCL schemes correspond to schemes where a left hand quadrature rule is used (see section

3.3), while in DCR schemes a right hand quadrature rule is used. n denotes the number of

time steps used, ε and δ correspond to equation (41). We note that δ is smaller than ε by at

least an order of magnitude.

The stability domain defined in section 2.1 contains the region in C in which |Am(λ)| ≤ 1.

We also denote the limit of the amplification factor as |λ| → ∞ for PIESJ
m by

µ(m,J) = lim
|λ|→∞

Am(λ). (45)

The accuracy domain contains the region in which

|φ(b)− φ̃(b)| < ε, (46)

where φ̃ is a numerical approximation of the solution. Since both the analytical and numerical

solutions are analytical functions of λ the boundaries of the stability and accuracy domains

are well defined.

The stability domain boundaries are numerically constructed via the following procedure.

We start by taking a step from the origin p0 = (0, 0) along the positive imaginary axis to the

point p′1 and search in a small interval orthogonal to (0, p′1) around p′1 for the boundary point

p1. The search is done by using the bisection method (see section 2.5). Then another step

is taken to the point p′2 along the line that passes through p1 and p0. The procedure repeats

until it intersects the real axis.

The accuracy domain boundaries are constructed as follows. The first step is taken along

the positive real axis to a point p′1, and a boundary point is searched on the interval [p0, p
′
1].

The next step is taken in the orthogonal direction to the real axis, and the subsequent steps

follow exactly the same procedure as described above for the stability domain. For accuracy

higher than 10−12, extended precision is used. All other computations are done with double

precision.

The stability and accuracy domains of the schemes is Table 1 are depicted in Figs. 1 to

6. The behavior of PIES at large |λ| is demonstrated in Fig. 7 for left and right quadrature

rules. We specify the values of α and µ in the legend of Figs. 1-6.

Observations: our experiments motivate the following observations:
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Table 2: Number of Steps per Wavelength
Scheme/accuracy 2 digits 4 digits 8 digits 14 digits 16 digits 22 digits

DCL1 11 24 - - - -

DCL2B - 20 39 - - -

DCL2 - - 25 52 - -

DCL3 - - - - 27 48

DCL4 - - 31 62 - -

1. The region of instability is within the boundaries marked by Am(λ) = 1, and the domain

of stability extends to infinity. The accuracy domain is within the closed accuracy curves.

2. Increasing the accuracy of the scheme (by increasing the number of iterations along with

increasing the accuracy of the quadrature weights) increases the instability region.

3. All methods are A-stable with values for α that are specified in each legend. Typically,

A-stability with α = 90◦ prevails for up to 10th order for the DCL schemes tested.

4. The accuracy region of the method is close to the accuracy of the exponential fit: for

example, DCL3 is designed to obtain accuracy of 10−24 within the radius ρ = 3.15 with

k = 52. Fig. 4-right and Table 2 demonstrates an accuracy of 10−22 obtained within

a radius of 0.13 (in the λh plane) which corresponds to 48 steps per wavelength. We

elaborate the computed number of steps per wavelength in Table 2.

5. A comparison between DCL2 and DCL4 suggests that increasing the number of time

steps while preserving the same accuracy of the exponential fit increases the stability

region.

6. As seen in Fig. 7, right hand quadrature rules (rhr) are L-stable. However, for rhr-

based scheme α is limited: for example DCL2B with J = 7 is not A-stable, and further

experiments with J > 7 show that α grows relatively fast. Lhr-based methods are A-

stable (with α = 90◦) up to J = 9. Most important is that for all lhr-based methods

µ(m,J) < 1, which makes them practical for stiff problems.

6 Numerical Results

In this section the performance of PIES is examined for problems of different stiffness lev-

els and for different parameter choice. The experiments are chosen to give an informative

demonstration of the solver performance and to allow a comparison with other implicit solvers

(such as [5], [6], and [7]). We also present results for the adaptive implementation (section

4.2) in section 6.3. Throughout this section, our experiments employ the following three stiff

problems:

1. The cosine problem

φ′ = F (φ, t) = −2πsin(2πt)− 1

ϵ
(φ− cos(2πt)), φ(0) = 1. (47)
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The exact solution of (47) is

φ = cos(2πt)) (48)

The cosine problem becomes increasingly stiff as ϵ → 0

2. The non-linear problem of Van der Pol (VdP) equation

φ′′(t) + µ(1 + φ(t)2)φ′(t) + φ(t) = 0. (49)

Equation (49) can be transformed to the 2× 2 system

φ′
1 = φ2

φ′
2 = (−φ1 + (1− φ2

1)φ2)/ϵ (50)

via the substitution φ1 = x(t), φ2 = µx′(t) and t = t/µ, where ϵ = 1/µ2 is a parameter

controlling the stiffness. We examine the performance of PIES on the interval [0, 0.5]

to demonstrate its efficiency for different accuracy orders and stiffness levels. We also

perform experiments on the interval [0, 2], in which the VdP solution has a challenging

layer for small ϵ. Initial conditions for VdP equation depend on ϵ, and are specified in

table 3.

Table 3: Initial conditions for VdP system
Stiffness parameter y1(0) y2(0)

ϵ = 10−1 2 -0.65

ϵ = 10−2 2 -0.6654321

ϵ = 10−3 2 -0.66654321

ϵ = 10−4 2 -0.666654321

ϵ = 10−5 2 -0.6666654321

ϵ = 10−6 2 -0.66666654321

3. The nonlinear oscillating circle problem

φ′
1 = −φ′

2 − ϵφ1(1− φ2
1 − φ2

2)

φ′
2 = φ′

1 − 3ϵφ2(1− φ2
1 − φ2

2), (51)

where ϵ is the stiffness parameter. This is a nonlinear oscillator along the unit circle,

with other solutions rapidly spiraling towards its smooth manifold from the inner and

the outer domain. For stronger stiffness, the spectrum of the Jacobian does not behave

like a typical stiff spectrum in some vicinity of the manifold (because (0, 0) is a strongly

repelling fixed point). The exact solution of (51) φ(t) = (cos(t); sin(t)), and we solve

(51) on the interval [0, 3].

6.1 Non-Stiff Examples

To demonstrate the classical convergence order of PIES for non-stiff problems, we numerically

solve the cosine problem (47) and the VdP problem (50) with ϵ = 0.5 and ϵ = 1, respectively.
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The cosine problem is solved on [0, 10] and the error is measured by the L2-norm of the error

in time of PIESJ
34(F, 0) from the exact solution (48). The error is plotted as a function of the

number of function calls in Fig. 8-left. A similar test is performed with the VdP equations on

the interval t ∈ [0, 4]. The numerical solution is computed with PIESJ
34(F, 0) with J = 2, 4, 6,

and a reference solution is computed by PIES18
52 . The absolute difference between the two

solutions at t = 4 is plotted in Fig. 8-right for φ1 as a function of the number of function calls.

The results for y2 are similar.
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Figure 8: Error vs. number of function calls for non-stiff problems. Left: Cosine problem solution with

PIESJ
34(F, 0) with J = 2, ..., 6. Right: VdP solution with PIESJ

34(F, 0) with J = 2, 4, 6.

6.2 Stiff Examples

The performance of the non-adaptive PIES algorithm on stiff problems is illustrated in Figs.

9-12. First, we demonstrate in Fig. 9 the efficiency of PIES for solving the cosine problem

(47) where the error is measured by the absolute difference at t = 10, for ϵ = 10−3 and

ϵ = 10−6. In Fig. 10-left the efficiency of methods of orders 3,4,5,6, for the VdP system (50)

with stiffness parameter ϵ = 10−3 on the interval [0, 0.5], is demonstrated. In Fig. 10-right

convergence results for the stiffer case - ϵ = 10−6 with methods of orders 5,9,13 are shown too.

The errors in Fig. 10 are computed for the stiff component y2 at t = 0.5 using a reference

solution PIES16
52(F, 0).
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Figure 9: Error vs. number of function calls for stiff cosine problems. Left: PIESJ
52(F, 0) with J = 4, 8, 12

for the cosine problem with ϵ = 10−3. Right: PIESJ
52(F, 0) with J = 4, 8, 12 for the cosine problem with

ϵ = 10−6.
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Figure 10: Error vs. number of function calls for stiff VdP problems. Left: PIESJ
52(F, 0) of orders

J = 3, 4, 5, 6, 7 for the VdP problem with ϵ = 10−3. Right: PIESJ
52(F, 0) with J = 5, 9, 13 for the VdP

problem with ϵ = 10−6.

Fig. 11 presents convergence results for varying the stiffness parameter ϵ with the 7th-order

method PIES6
52. For this experiment the error is computed for y2(0.5) using the reference

solution PIES16
52(F, 0).
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Figure 11: Error vs. number of function calls for the VdP problem with varying stiffness, for the solution

PIES6
52(F, 0).

Fig. 12 presents the global error for the solutions of the oscillating circle problem (51) on

[0, 3] with ϵ = −103 and with ϵ = −105, as reported, for example, in [20] and [21].
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Figure 12: Error vs. number of function calls for the oscillating circle problem. Left: PIESJ
52(F, 0) with

J = 4, 8, 12 for a problem with ϵ = 10−3. Right: PIESJ
52(F, 0) with J = 4, 8, 12 for a problem with

ϵ = 10−5.
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Table 4: Number of function calls for adaptive and non-adaptive codes for PIES10
34 , with accuracy

ε = 10−9

ϵ Adaptive Non-adaptive

ϵ = 10−1 7582 6000

ϵ = 10−2 24K 51K

ϵ = 10−3 52K 450K

ϵ = 10−4 112K 5625K

ϵ = 10−5 176K 52M

6.3 Adaptive Implementation

We demonstrate the use of the adaptive scheme described in section 4. For this demonstration

the VdP system (50) is solved on the interval [0, 2] in which the solution contains a challenging

layer. Different stiffness parameter (ϵ) values are examined, so that as ϵ → 0 the problem is

stiffer and the layer is steeper. The efficiency of PIES10
34 with uniform step size is compared

with the adaptive code for accuracy ε = 10−9. The error is measured at t = 2 using a reference

solution computed with the adaptive code and PIES12
34 to accuracy ε = 10−12. The comparison

is given in Table 4.

6.4 Observations

1. Classical convergence is demonstrated for all methods for the non-stiff case. The perfor-

mance demonstrated in Fig. 8 is similar to the performance of the solver in [7] on the

cosine problem (47), and to the performance of the solver in [6] for the VdP problem

(50).

2. For the moderately stiff (ϵ = 10−3) cosine problem, high convergence is observed only

for sufficiently small time steps, the same observation holds for the VdP problem. In

particular, the method of order 13 converges with 9th-order (that is by all means suffi-

cient for our needs). For very stiff problems (ϵ = 10−6) only second order convergence is

observed for methods of all orders tested. Our observations are reinforced again by the

results demonstrated in Fig. 11 for varying the stiffness parameter ϵ. This phenomenon,

regarded as order reduction for stiff problems, is evident and discussed in detail in the

literature (see for example [5], [12]). The oscillating circle example manifests order re-

duction on both moderate and high stiffness. In particulary we observe reduction to fifth

and fourth order, respectively.

3. Our results compare favorably with the results of deferred correction methods suggested

in [6] (see Figs. 5.4 and 5.5 therein). For example, for the VdP problem with moderate

stiffness, a 7th order method obtains accuracy of 10−12 with 104 function calls, whereas

the same accuracy is obtained by PIES6
52 with 4 · 10−3 function calls.

4. Our results also compare favorably with the results reported in [7] (see Fig. 5.6 therein)

where for the VdP problem with ϵ = 10−3 an accuracy of 10−12 is obtained by 2 · 104, by
using either Gauss-Legendre, Gauss-Radau, Gauss-Lobatto or uniform quadrature nodes.

For ϵ = 10−6 PIES efficiency is inferior when compared with the deferred correction
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methods using Gauss-Legendre, Gauss-Radau, or Gauss-Lobatto [7]: we obtain accuracy

of 10−12 using 5 ·105 function calls, while in [7] for the above discretizations this accuracy

is obtained in the range of 104 − 105 function calls. However, it can be seen that in

this regime these methods demonstrate reduction to first order convergence while PIES

reduces to second order. Most noticeable, is that the convergence reported in [7] for

a uniform discretization stalls for ϵ = 10−5 and for ϵ = 10−6 even when step-size is

decreased. PIES keeps converging with 2nd-order to machine precision.

We note that the experiments with deferred correction presented in [6] and [7] use the

ladder method which suggests adaptively increasing the number of quadrature nodes (and

their overall accuracy) as the iterations continue. Such a scheme is not implemented in

our method and will further improve the efficiency of PIES.

5. Our results also compare favorably with the additive Runge-Kutta (ARK) schemes de-

scribed in [5]. For example, in the moderately stiff case a 4th order ARK method achieves

accuracy of 10−7 with 103 function calls (see Figs. 8 and 9 therein), whereas our method

achieves accuracy 10−9 for the same number of function calls. For the stiffer case the

efficiency of both PIES and ARK is approximately the same for the range of function

evaluations reported (see [7], Fig. 5.5 therein). However, the reduction of order of PIES

is to second order, while the reduction of order for ARK is to a first order. Thus, for

smaller step sizes we conclude that PIES can obtain higher accuracy than ARK.

6. The adaptive implementation is crucial for solving stiff equations in which the solution

is geometrically challenging to approximate (e.g. layers), and stiffness is high. The

efficiency is by orders of magnitude better than in the uniform step-size solver, which in

highly stiff cases is inefficient.

7 Conclusion and Future Work

We have described a Picard integral equation solver for stiff ordinary differential equations.

Our solver is based on an approximation of the solution as a linear combination of exponentials

on a uniformly discretized grid. The stability and accuracy properties of the solver, as well

as numerical experience suggest that PIES is a competitive alternative to other deferred

correction methods as well as for Runge-Kutta solvers. Future work entails the integration

of high order schemes such as Runge-Kutta, as well as predictor corrector schemes for stiff

problems. Applications to partial differential equations will be considered as well.
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