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ABSTRACT

Local-Mesh, Local-Order, Adaptive Finite Element
Methods with A Posteriori Error Estimators
for Elliptic Partial Differential Equations
Alan Weiser

Yale University, 1981

The traditional error estimates for the finite element solution of
elliptic partial differential eguations are a priori, and little
information is available from them about the actuwal error in a specific
approximation to the solution. Thus, in the traditional finite element
method, the ch&ice of discretization is left to the user, whé must base

his decision on experience with similar eguationms.

In recent years, locally-computable a posteriori error estimators
have been developed, which apply to the actual errors committed by the
finite element method for a given discretization. These estimators lead
to algorithms in which the computer itself adaptively decides how and
when to generate discretizations. So far, for two—-dimensional problems,
the computer—generated discretizations have tended to use either local

mesh refinement, or local order refinement, but not both.

In this thesis, we present a new class of local-mesh, local-order,

square finite elements which can easily accommodate computer—chosen



discretizations, We present several new locally—computable a posteriori
error estimators which, under reasonable assumptions, asymptotically
yield upper bounds on the actual errors committed, and algorithms in
which the cbmputer uses the error estimators to adaptively produce
sequences of local-mesh, local-order discretizations. We present
theoretical and numerical results indicating the expected and actual

behavior of our methods.
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CHAPTER 1

Introduction

The traditional error estimates for the finite element solution of
elliptic partial differential equations are a priori, and little
information is available from them about the actual error in a specific
approximation toAthe solution. Thus, in the traditional finite element
pethod, the choice of discretization is left to the user, who must base

his decision on experience with similar eqguationms.

In recent years, locally-computable a posteriori error estimators
(e.g., Babutka and Rheinboldt [8]) have been developed, which apply to
the actual errors committed by the finite element method for a given
discretization., These estimators lead to algorithms in which the
computer itself adﬁptively decides how and when to generate discreti-
zations. So far, for two—dimensiondl problems, the computer—generated
discretizations have tended to use either local mesh refinement (e.g.,
Babutka and Rheinboldt [10], Bank and Sherman [131), or local order

refinement (Babulka, Szabo, and Katz [11]), but not both.

In this thesis, we present a new class of local-mesh, local-order,



square finite elements which can easily accommodate computer—chosen
discretizations. We present several new locally-computable a posteriori
error estimators which, under reasonable assumptions, asymptotically
yield upper bounds on the actual errors committed, and algorithms in
which the computer uses the error estimators to adaptively produce
sequences of local-mesh, local-order discretizations. We present
theoretical and numerical results indicating the expected and actual

behavior of our methods.

Ve begin in Chapter 2 by con#idering bisection—-type local mesh
refinement with square elements. We present the class of "l-irregular”
meshes, a variant of a class of meshes suggested by Bank and
Sherman [14], such that any bisection—type locally-refined mesh ;an be
converted into a l-irregular mesh with no more than a constant times as
many elements, and the resulting finite element matrix (with bilinear
basis functions) has no more than a constant aumber of nonzeroes in any
row. Conversely, we show that there are simple bisection—type
locally—refined meshes with essentially dense finite element matrices.

We discuss simple data structures for handling l-irregular meshes.

In Chapter 3, we extend the finite element spaces considered in
Chapter 2 to include basis functions with locally-varying polynomial

orders.

In Chapter 4, we develop new a posteriori error estimators. We

present a new error estimator which has two main advantages over the



estimator presented in Babulka and Rheinboldt [8]:
1. Under reasonable assumptions, the new error estimator is

asymptotically an upper bound on the norm of the true error.

2. The new error estimator can be computed locally in each

element. (The error estimator in [8] must be computed over

more complicated local regioms.)
Under suitable assumptions, we show that, like the estimator in [8], the
new error estimator is no larger than a constant times the norm of the
actual error. We also present several cheaper error estimators, and
discuss their properties. Under suitable assumptions, Babu%ka and
Miller [4] have recently shown that the error estimator used in their
code (with piecewise bilinear basis functions) converges to the norm of
the true error. We have not yet proven convergence for our error

estimators.

In Chapter 5, we develop several heuristic models of error behavior
which lead to adaptive refinement procedures (c¢f. Brandt [16], Babutka
and Rheinboldt [7]). We present the asymptotic expected error and wqu
behavior for three problem classes consisting of problems with:

1. smooth solutionms.
2. soluti&ns with point singularities.
3. solutions with line singularities.
Except in the presence of line singularities, the expected error

converges to zero faster than inverse polynomially with respect to work.



In Chapter 6, we discuss some of the computational aspects of the
methods presented in Chapters 2-5. We consider efficient assembly of
the finite element system (cf. Eisenstat and Schultz [18], Weiser,
Eisenstat, and Schultz [31]), and efficient construction of the error
estimators. Ve present the asymptotic complexity of nested—dissection—
type Gaussian elimination for the three classes of problems considered
in Chapter 5. The operation counts and storage for the probiems with
singularities are linear (optimal-order) in the number of elements N, in
contrast to the operation counts and storage for uniform meshes, which

are proportional to N3/2 and N log(N) respectively (e.g., George [23]1).

In Chapter 7, we present numerical results obtained using prototype
cddes. We present the resulting error and error estimator behavior for
problems from the’three classes considered in Chapter 5. The error
estimators are usually accurate to within a factor of two. In some
cases, the error estimators appear to converge to the norm of the true

error as the mesh size decreases.

I am deeply grateful to my advisor, Professor Randolph E. Bank, for
suggesting the topic of this research and working closely with me on its
realization. I am honored to kmow him and to have worked with him, I
would like to thank my other advisors, Professors Martin H, Schultz and
Stanley C. Eisenstat, for helping to guide my research, and for their

unfailing intelligence, integrity, and support.

Many other past and present members of the numerical analysis group



at Yale have contributed much to my enjoyment of graduate school and my
appreciation and understanding of numerical amalysis. They are (in
order of appearance at Yale) Andy Sherman, John W. Lewis, Rati Chandra,
Rob Schreiber, Jack Perry, Dave Fyfe, Trond Steihaug, Craig Douglas,

Howie Elman, Ken Jackson, Tony Chan, John Kindle, and Benren Zhu.

I am grateful to hany other members—at—large in the numerical
analysis community. I am especially grateful to Professor Mary
F. Wheeler, for her emcouragement and guidance when I was an
undergraduate, and Professor Ivo Babu%ka, for his excellent and

influential work.

I am grateful to the Office of Naval Research (ONR Grant
N00014-76-C-0277, FSU-ONR Grant F1,N00014-80-C-0076), the Department of
Energy (DOE Grant DE-AC02-77ET53053), the National Science Foundation

(Graduate Fellowship), and Yale University for their fimancial support.

Most of all, I am grateful to my family, and my lovimg wife Mary

Ann.



CHAPTER 2

Local mesh refinement

2.1 Introduction
In this chapter, we consider bisection—~type local mesh refinement

with square elements. A sample mesh of this type is shown in Figure

2-1.
| |
| |
| I
| l EI
| —CO——
| I

V-

Pm——————————o ———9
Q———————Q —; —9p———9¢

O——————— 0 ———0 ——=0

Figure 2-1: A bisection—type locally—refined mesh

This type of mesh refinement has been intemsively investigated inm

recent years, mainly by Babu$ka and Rheinboldt and their students



(e.g., [4]). The data structures and computational algorithms required
to implement the finite element method with general meshes of this type
are fairly complicated (see Rheinboldt and Mesztenyi [25] and

Gannon [21]). Thus, Bank and Sherman [14] and Van Rosendale [30]
suggest using restricted classes of meshes which can be implemented with

much simpler data structures.

In Section 2.2, we present some standard terminology for dealing
with bisection—type local mesh refinement, and define the class of
"l-irregular” meshes, a variant éf a class of meshes suggested by Bank
and Sherman [14]. In Section 2.3, we consider a variant of a mesh
refinement rule sugges;ed by Bank and Sherman whiéh can convert any
bisection—t&pe locally;refined mesh into a l1-irregular mesh with no more
than a constant times as many elements, such that the resulting finite
element matrix (with bilinear basis functions) has no more than a
constant number of nonzeroes in any row. Conversely, in Section 2.4, we
show that there are simple bisection—type locally-—refined meshes such
that the resulting finite element matrices are essentially dense; Ve
also consider alternative mesh refinement rules. In Section 2.5, we

present data structure details for handling l1-irregular meshes.

2,2 Terminology
We now consider bisection—type local mesh refinement with square

elements., For simplicity, we take the domain to be the unit square,

2 := [0,1]1X[0,1] = {(I.y): OSIS_]-» 0_<_y_§_1}:



with boundary 82. The square region E = [xE,xE+hE]X[yE,yE+hE] is called

an element. The elements
[xE,xE+hE/2]X[yE+hE/2.yE+hE]. [xE+hE/2.xE+hE]X[yE+hE/2.yE+hE].

[xE. xE+h-E/2] X [yE.yE+h.E/2] , [1E+hE/2 , xE+h.E] X [yE.yE+hE/2]

are called the sons of E, and E is called the father of its sons. A

mesh M is defined to be an unordered set of elements. An element in M

is called refined if its four sons are in M, and unrefined otherwise.

The class of bisection—type locally—refined meshes with square

elements, or admissible meshes (Babulka and Rheinboldt [8, 10]), is

recursively defined by the following two rules:

1. {9} ié an admissible mesh.

2. If a mesh M is an admissible mesh, and E is an unrefined
element in M, then the mesh {M, the sons of E} is an

admissible mesh.

The level L of E is defined to be the number of genmerations between

Q@ and E. Thus, in an admissible mesh on 2, hE = (1/2)L. A neighbor of
E is defined to be another element at the same level as E that shares a

side with E.

A corner of an unrefined element is called a vertex. A vertex

which is a corner of each unrefined element it touches is called a



.
regular vertex. All other vertices are called irregular . The

irregularity index (Babulka and Rheinboldt [10]) of a mesh is defined to

be the maximum number of irregular vertices on a side of an unrefined
element. We call a mesh with irregularity index { k a k-irregular mesh,
A (regular) vertex on 92 is called a boundary vertex. All other

vertices are called interior.
In figures depicting meshes,

0 denotes a regular vertex,
o denotes a vertex (regular or irregular),
. denotes an irregular vertex,

(v) at a vertex denotes functiom value.

For example, Figure 2-1 depicts an admissible 2-irregular mesh with 4
refined elements, 13 unrefined elements (one labelled E), 12 regular
boundary vertices, 5 regular interior vertices, and 6 irregular vertices

(one labelled V).

*
This is the name used by Babulka and Rheinboldt [10]. Bank and
Sherman [14] use the name "green vertex”. Gannon [21] uses the name

"inactive vertex",
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Let M be an admissible mesh., A function g is called piecewise

bilinear on M if, on any unrefined element E in M,

v

glx,y) = g(xE.yE) (xE+hE-x)(yE+hE—y) /

+ g(xE+hE.yE) (x—xE)(yE+hE-y) / hé

+ 8(xg,ygthy) (xgthyx) (7-yp) / B
+ glxptbp,ypthy) (xmxp) (7-yp) / B

Let the finite element space S (= S(M)) be the space of continuous
piecewise bilinear functions on M., Let the regular vertices for M be
Vl""'VN . Let BI(x,y) (= B(VI)(x,y)) be the function in S which

satisfies the Lagrange conditions

BI(Vk) = SIJ = 1 ifI=17

0 if IT#7,

for J=1,...,N. BI is well-defined using induction on element level.
Moreover, {BI} is a basis for S, since each BI is in S, the BI's are
linearly independent, and each function in S is a linear combination of

the BI's.

The support of BI’ supp(BI). is defined to be the union of all
unrefined elements E such that BI is not identically zero in E. In
general, the support of BI may be non—convex or non-simply-connected.

Alternately, the standard tensor—product basis functions {QI} may be
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defined for S, so that each supp(B(V)) is a rectangle. Most of the
considerations applying to {BI] also apply to {§I]. However, supp(B(V))
is always contained in supp(B(V)) (see Figure 2-2), and we know of no

computational advantage for {EI}. Thus, we restrict our attention to

{B;}.

(0)-(0)=-——(0) (0)=(0)=(0) ————(0)

| | | |
(?)—(?)(1{2) = (?)(1{4)(}/2) =
(?)(1/2)(%)-————(?) (?)(1/2)(1)—-———(?)
| | I I | |
l l | | l |
(0) (0) (0) (0) (0) (0)

B(1/2,1/2) B(1/2,1/2)
Figure 2-2: Lagrange versus tensor—-product basis functions

2.3 The 1l-irregular rule and some of its consequences
Given an admissible mesh, we force possible additional refinement
by applying, as many times as possible, the following variant of a rule

of Bank and Sherman [14]:

refine any unrefined element with more than omne (2.1)

irregular vertex on one of its sides.

We call rule (2,1) the l-irregular rule. The l-irregular rule must
terminate, since it never increases the maximum element level in the
mesh, After the l-irregular rule terminates, the resulting mesh is

l1-irregular. Conversely, if any refinement forced by the l-irregular
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rule is omitted, the resulting mesh is not l-irregular, Thus, the
resulting mesh has the fewest elements of any l-irregular mesh

containing the original mesh.

The resulting configurations (up to symmetry) of the support of
B(V) for interior V are depicted in Figure 2-3. Because of the
l1-irregular rule, further refinement of an element in one of cases I-VI

produces another of cases I-VI, possibly at the next finer 1evel,

Each unrefined element E in the support of B(V) satisfies either
A : V is a corner vertex of E,
or
B : V is not a corner vertex of E, but
V is a corner vertex of the father of E, and

V is next to an irregular corner vertex of E.

Thus, it is simple to determine which basis functions are nomnzero
in E., Figure 2-4 depicts a sample E in its father, f(E), and numbers
the 6 relevant vertices. B3 and B4 are nonzero in E (V‘ is regular

since f(E) is refimed). 32 (Bl) is nonzero in E if V, is regular

(irregular), B5 (B6) is nonzero in E if V5 is regular (irregular).

There are exactly four basis functions nonzero in E. Since the
element stiffness matrices are small (4X4), and the mappings from local
to global basis functions are simple, the resulting finite element

system is straightforward to assemble.
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V (o] [s]
It | |
| | |
| | |
V2 Vé I}
| | |
| B | |
| | |
'4 '5 v6

Figure 2-4: f(E)
Furthermore, the basis functions are locally independent:

in each unrefined element E, . (2.2)

{BII : E in supp(BI)} are linearly independent,

E

where -|E denotes restriction to element E. We can show that (2.2)

holds if and only if

no irregular vertex touches unrefined elements (2.3)

at three different levels.

For example, in the mesh shown in Figure 2-1, irregular vertex V touches
unrefined elements at levels 1, 2, and 3, and the restrictions to
element E of the five basis functions nonzero in E are linearly

dependent.

Let N(V) be the number of basis functions with support intersecting
supp(B(V)), where V is a regular vertex in a 1-irregular mesh, N(V) is

the number of nonzeroes in the row of the finite element matrix
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corresponding to B(V). The minimum possible N(V) for an interior vertex
is 5, and the maximum possible N(V) is 13 (Figure 2-5). N(V) is 9 for
interior vertices in a locally uniform mesh. N(V) for boundary vertices

can be as small as 4. N(V) is 6 for boundary side vertices in a locally

uniform mesh.

0-—0-——---0 0-—0-—-—0
o I I |
0——-——0 0-—0-—- I 0——- |
| R B I I I
oV 0-— +=—V-—+——0 0-+-V-—+——0
R I I (R o-0-- | |
0-—0-—0 : i-——-<!>-—o 0-0-—0-—0
0-—-—-0-—0 :
N(V) = 5 N(V) =13 N(V) = 13

Figure 2-5: Minimum and maximum N(V) for interior vertices

Many refinement sequences arising in practice naturally yield
l-irregular meshes, so the l-irregular rule introduces no additional
refinement. We now show that, given an arbitrary admissible mesh, and

applying the l-irregular rule as many times as possible,

the number of elements forced to refine by the (2.4)
l-irregular rule is-no more than eight times the number

of refined elements in the original mesh,

Hence the number of basis functions introduced by the l-irregular rule

is no more than a constant times the number of original basis functioms.

Suppose there are LMAX levels in the mesh, Let
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O(L) := {original refined elements at level L},

R(L) := {elements at level L refined by the l—irregular rulel.

It suffices to show that each element E in R(L) shares a cornmer vertex
with at least one element F in O(L). We do this using induction from
L=LMAX back down to 0. There are clearly no elements im R(LMAX),
Supposé the statement holds for all levels with index greater tham L,
Since E is in R(L), the l-irregular rule forces E to refine because G, a
neighbor of E, has a son, H, which is refined at level L+1, and shares a
side with E, If H is in O(L+1), then G=F is in O(L), and (2.4) holds.
Otherwise, H is in R(L+1). By induction, there is an element I in
O(L+1) which shares a cormer vertex with H. Then the father F of I is
in O(L) and shares a cornmer vertex with E‘(Figure 2-6). So, (2.4) holds

in all cases.

(o] o0~ 0———0
Frr
o———F~—g—=~F~--0
frtxlxl |
(o] o——0———0~——0
I 18l |
o—G—o E |
N I
o——"0—0 o]

Figure 2—-6: H in R(L+1)

*
We do not know if (2.4) is sharp. The largest ratio of enforced

refinement to original refinement we have encountered is 5.735.
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In summary, given any admissible mesh, the 1-irregular rule forces
additional refinement such that
the resulting l-irregular mesh has no more than a (2.5)
constant times the original number of basis functions,
and
the resulting element stiffness matrices are of (2.6)
bounded size (4%4), and simple to assemble,
and
the number of nonzeroes in any row of the resulting (2.7)

finite element system is bounded independent of the mesh.

2.4 Alternative mesh refinement rules
In this section, we show that a refinement rule like the
l-irregular rule is needed for properties (2.6) and (2.7). Ve also

consider alternative mesh refinement rules.

Suppose, because of a sharp point singularity, that a mesh results
from refining only elements which contain the point P = (2/3,2/3).
Since

2/3=1-1/2 +1/4 -1/8 +1/16 - . . .,
the mesh is formed by successively refining the alternately upper right
or lower left son of the smallest refined‘element. If there are |
LMAX >> 1 levels in the mesﬁ, the active vertices are the ten boundary

vertices and the LMAX interior vertices

=N L 1 =
PL), B =) - (-Un', L=1,..., X

vV, = ( PL » B

L
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Let element E be the smallest element containing P. For any V, , it can
be shown by induction on I that B(VL) is nonzero at the points (PI-I’PI)
and (PI,PI_l) if and only if I > L. Setting I = LMAX, since

(P vax-1Pryax’ 229 (Pryax-Pryax-1) 8re cormers of E, E must be in the
support of each B(VL). Thus, the element stiffness matrix for E, and
the resulting finite element system, are essentially dense. Since the
mesh is 2-irregular, this example disproves the conjecture (Babu%ka and
Miller [4], page 17) that (2.7) holds for k-irregular meshes with k

bounded.

Assembly of the finite element sytem is fairly complicated (e.g.,
Gannon.[21], Rheinboldt and Mesztenyi [25]). If Gaussian elimination is
used to solve the system, the solution time is asymptotically
proportional to LMAXs. By contrast, if the l-irregular rule is aﬁplied,
assembly is simple. If the vertices are ordered according to the
maximum levels of the elements in their supports, solution time is

asymptotically proportional to LMAX (see Section 6.3).

In the previous example, (2.6) and (2.7) can be insured without
enforcing additional refinement, by using modified basis functions which
are identically zero in the element containing the singmularity. Figure
2—-8 depicts the modified basis function Q(Vi). ¥When there are two sharp
point singularities at |

P

1 (9716 + (2/3)/16, 10/16 + (2/3)/16)

and

)
]

(9/16 + (2/3)/16, 13/16 + (2/3)/16),
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(=)

Vv : regular
interior vertex

—  — —— —

i
]
!
i
!
O———————0———0 ———0

TTTTTTT I T

p———————p———————9

Figure 2-7: Singularity at P = (2/3,2/3), LMAX = 4

(?) (-}) (?) (?)
I I { 0 i o : g(Vi) zero
I (0)=(0)=(0) —————(0)
[ I 1ol I
| (.5)-(0)-(0) I
I I I
(0) (1)(.5)-(0)——(-1)
I I [
I | [
I [ |
I [ I
| [ I
| I I
[ I [
(0) (0) (0)

Figure 2-8: A modified basis function
however, the support of the basis function for V1 must asymptotically

intersect the supports of roughly half the basis functions in S, since
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it can only be zero at one point along the line segment from (1/2,1/2)
to (1/2,1). Thus, with any rule for forming basis functions, it may be
advantageous (purely from matrix sparsity consideratioms) to force

additional refinement.

We briefly mention alternatives to the l-irregular rule. Another
rule which insures properties (2.5), (2.6), and (2.7) (when applied as

many times as possible) is:

refine all unrefined side-~ and cormer— neighbors of any (2.8)

element which has grandsons (sons of a son).

Rule (2.8) is equivalent to a condition in Van Rosendale [30], page 59.
With this rule, only cases I-V in Figure 2-3 are possible, and (2.5),

(2.6), and (2.7) hold for both {BI} and {EI}. However, rule (2.8) may
force more additional refinement, and hence require more work, than the

l-irregular rule, and is no easier to implement.

Conversely, any rule which may force less additional refinement
than the l-irregular rule does so only when mneighboring elements with

size ratios at least 4:1 occur., For example, if we apply the rule

if an irregular vertex touches unrefined elements at three (2.9)

different levels, refine the element at the middle level,

as many times as possible (refining elements with lowest level first),

the resulting mesh will satisfy (2.6), and may have fewer elements than
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the resulting l-irregular mesh. Unfortunately, (2.5) and (2.7) may not
hold: for a problem with a sharp point singularity at (1/2+e,1/2+g), as
¢ approaches zero, the number of nonzeroes in the row of the finite

element system for B(1/2,1/2) may be arbitrarily large.

Figure 2-9 depicts the results of applying the l-irregular rule,

rule (2.8), and rule (2.9) to the mesh in Figure 2-7.

2,5 A mesh data structure

The data structure we use to represent l-irregular meshes is a
variant of a data structure presented in Bank and Sherman [14]. The
data structure has two main components: a refined—element tree IRCT,
stored in a 4XNIRCT array, and a vertex list IVERT, stored in a 2XNIVERT
array. For each refined element E, there is a 4X4 node in IRCT
containing pointers to the father of E, to any of the fourAsons of E
which are refined, and to the nine vertices which are cormers of the
sons of E. For each interior vertex V which bisects an element side,
there is a 2X1 node in IVERT containing pointers to the elements with
sides bisected by V. Other types of vertices have ofher information
stored in IVERT. Figure 2-10 depicts a sample refined element E, its

node in IRCT, and a sample node in IVERT.

The neighbors of any element can be easily found. For instance, in
Figure 2-10, the pointer location for the bottom neighbor of S1 is in
the node for E, while the pointer location for the right neighbor of S1

is in the node for the right neighbor E’' of E. The node for E' (if it
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Figure 2-9: LMAX = 4:
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ELY R
VeV, = = = = =
1 So 1 S, 1t | | A | \A | v, | \A |
e T T T e e |-—2-|
| S, | S, | | | ¥, | W | W, | Vg |
VWY, - - - - - |- |1 |—Een
I sy | s, | s, | Sg |
element E, with sons SO""’SS node for E in IRCT
| E | | E |
— I
| E’ | | null |
node for W, in IVERT node for W, in IVERT
E' refined , E' not refined

Figure 2-10: Nodes in IRCT and IVERT

exists) is pointed to in the node for W1 in IVERT.

Moreover, suppose the entire mesh is rotated 90, 180, or 270
degrees. Then IVERT and the top row of IRCT remain the same, and the
last three rows of each node in IRCT are rotated. For example, if the

mesh is rotated 90 degrees counterclockwise, the node for E becomes

ls® | - | - | ¢ |
PR
v \ s \
1 2
e e e
W W W W
S RNy RN Ay L
I S, | S, | Sq | So | .

Thus, the neighbors of any son of E can be found with the same procedure
used to find the neighbors of S1 , as long as indices into the last

three rows of IRCT are incremented by the appropriate value mod 4.
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This mesh data structure makes it relatively easy to comstruct the
finite element system for S, to evaluate the approximate solution, and
to refine the mesh. More data structure considerations are in Bank and

Sherman [14].



CHAPTER 3

Local order refinement

3.1 Introduction

Traditional finite element methods for elliptic problems employ
finite element spaces with low-order (e.g., bilinear) basis functioms.
These spaces are appropriate when the solutions to the elliptic problems
are not smooth. When the solutions are smooth, standard approximation
theory indicates that high—order piecewise polynomial basis functions
can yield much faster convergence. Thus, it is advantageous to be able

to use both low—order and high—order basis functionms.

Local-order finite element spaces have received recent attention by
Babutka, Xatz, and Szabo [3, 11, 12] and Babulka and Dorr [2]. Full
local-order, local-mesh methods in more than one dimension have not yet

been considered.

In this chapter, we extend the finite element spaces with
l1-irregular meshes considered in Chapter 2 to include basis functioms
with locally-varying polynomial orders. In Section 3.2, we consider the

C0 case, and in Section 3.3, we briefly consider spaces of smoother

25
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functions. In Section 3.4, we present simple data structures for the

spaces considered.

3.2 The Lagrange cass
Let M be a given 1-irregular mesh. In this section, we construct a
space S (= S(M)) of C0 piecewise polynomials such that, in each

unrefined element E in M,
smooth functions are locally approximated to order kE 2 2, (3.1)
Our local order refinement follows the basic approach of

Taylor [29] and Babu$ka, Katz, and Szabo [3]. On [0,1], let the

polynomials {pi(x): i=1,...,kmax} satisfy

pl(x) = 1-x,

pz(X) X,

and for i > 2,

pi(x) is a polynomial of order exactly i,

pi(O) = pi(l) = 0.

Since {pl,...,pk] is a basis for the polynomials of order k > 1, the P,

are called (Co) hierarchic polynomials.

On element E, pf(x) and pi(y) are defined by mapping [0,1] onto

[xE,xE+hE] and [yE.yE+hE]:
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Djpf(x) 1= Djpi((x—xE)/hE) hE—j,
and

Djpi(y) 1= Djpm((y-yE)/hE) hE—j.
j=0,...,kmax-1,

Let Bi(t) be the Legendre polynomial on [0,1] of order i. Since

pl(t) =1, and

1- - .
fo P; Py = 0o, i#j,

a convenient choice for {Pi} is

p,(x) = [ P, (®) at, ix2. (3.2)

0

Ve define S to be the span of three types of basis functions

{BI(x,y)}: vertex, side, and element.

The vertex basis functions are the piecewise bilinear basis

for all regular vertices V_,

functions from Chapter 2, with BI(Vj) =§ T

1J

The side basis functions are products of piecewise linear functionms
in one direction with quadratic or @igher—order hierarchic polynomials
in the other direction. Each side s ofran unrefined element, not
strictly contained in a side of another unrefined element, has side

basis functions with hierarchic polynomials of order up to
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(3.3)
ks o= max{kE : s contains a side of unrefined element E}.

A basis function for side s in Figure 3-1 is h(x)pg(y).

@ i O &

| s 1
| E  s—em—-

| s | 1

L R e X

Figure 3-1: A side basis function

The element basis functions for an unrefined element E are the

° ] 9 k.E . .

Element basis functions for E are nonzero only in E, and only occur when
kE 2 5.

Since Fhe mesh is l—irregular, each basis function BI for S is of
the form pfx(x) piy(y) in each mnrefined element E, where Ex is either E
or £(E), and Ey is either E or f(E). Moreover, (3.3) and (3.4) imply
that in each element E, any monomial xiym with i+m1 £ kE is a linear

combination of restrictions to E of basis functions,.so (3.1) holds.
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Figure 3-2 depicts the values of the basis functions in an element
in a sample local-order finite element. Note that many of the basis

functions are of order greater than kE = 3.

3.3 The Hermite case
The construction in the last section extends immediately to spaces

1 functions for any integer a > 1. The hierarchic

of globally C%~
polynonials satisfy Hermite interpolation conditions on their first a

derivatives at 0 and 1, so kE 2 2a. Ve:tex, side, and element basis

. . . 0
functions are defined as in the C case. There are
2 . .
a” vertex basis functions for each regular vertex,

(kE—4a)(kE—4a+1)/2 element basis functions for element E
(none if kE £ 4a),
and

Eizl (ks—2a+1-i) side basis functions for side s,
and condition (3.1) holds as before.

3.4 A mesh data structure for local order refinement
In this section, we extend the mesh data structure from Section 2.5

to handle local-order finite element spaces.

For each unrefined element E, we store -kE in IRCT, in the location
in the node for f(E) which will contain a pointer to the node for E if E

is refined.
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Figure 3-2: Local-order basis functions

Let the function MBV map the basis functions for S to the regular
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vertices in the mesh, such that

1. MBV maps each vertex basis function to its vertex.

2. MBV maps each side basis function for side s to the

last—created regular vertex at an end of s.

3. MBV maps each element basis function for element E to the
center vertex of f(E).

A sample mesh indicating MBV is shown in Figure 3-3.

; 'V : vertex basis functions

S : side basis functioms

E : element basis functions

C): basis functions mapped
to vertex V

w

j
G‘G
-
i
v,
<
w
P,
e &)

(1
|
|
S
|
I
I
I

sl E s E |l
I |
S
|
I
-

]
&

Figure 3-3: Basis functions mapped to vertices

We order the vertices and basis functions for S so that the basis

functions mapped by MBV to vertex V. _ are

Iv

ByvB(1v) * BvB(v)+1 * *°° ’ BuvB(Iv+1)-1 °
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and we associate a number IBFT(IBF) with each basis function BIBF .
encoding the spatial relation to the vertex MBV(BIBF) (e.g., left, lower

right, etc.).

With the data structure from Section 2.5, and two additional arrays
containing MVB and IBFT, we can easily determine the basis functions

which are nonzero in a given unrefined element.

As in Chapter 2, this mesh data structure makes it relatively easy
to construct the finite element system for S, to evaluate the

approximate solution, and to refine the mesh.



CHAPTER 4

A posteriori error estimators

4.1 Introduction

The traditional error estimates for the finite element method for
elliptic problems are a priori (e.g., Ciarlet [17]), predicting the
éxpected rate of convergence of the error to zero, but not saying much

about the actual error for a given finite element space.

In recent years, locally—computable a posteriori error estimators
have been developed, mainly by Babutka and Rheinboldt, which estimate
the actual error for a given space. The landmark paper in this area is
by Babulka and Rheinboldt [8], giving a method of constructing a
locally~computable error estimator which is within a multiplicative
constant of the norm of the actual error. Further results for
one-dimensioneal problems are given by Babu%ka and Rheinboldt [6, 7, 5]
and Reinhardt [24]. Further results for two—dimensional problems are
given by Babu¥ka and Miller [4]: ﬁnder suitable assumptions, they prove
that the error estimator used in their code (with piecewise bilinear
basis functions) converges to the norm of the actual error as the mesh

size goes to zero.

33
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In Section 4.2, we present some terminology for discussing
a posteriori error estimators for two—dimensional Neumann problems. 1In
Section 4.3, we briefly describe the error estimator presented in [8].
In Section 4.4, we presenf a new error estimator which has two main
advantages over the estimator in [8]:
1. Under reasonable assumptions, the ﬁew error estimator is

asymptotically an upper bound on the norm of the true error.

2. The new error estimator can be computed locally in each
element. (The one in [8] must be computed over more
complicated local regions.)

In Section 4.5, we prove the upper—bound property of the new error
estimator, and, under suitable assumptions, we show that the new error
_estimator is no larger than a multiplicative constant times the norm of

the actual error. In Section 4.6, we present several cheaper
alternative error estimators. In Section 4.7, we extend the estimators
to handle more general boundary conditions and differential operators.

In section 4.8, we summarize the results in this chapter.

In Chapter 7, we present numerical evidence that, in some cases,
our error estimators converge to the norm of the sctual error as the
mesh size goes to zero. Ve have not been able to prove this
convergence. Currently, we can only prove convergence for our error

estimators for one—dimensional problems [15].



35

4,2 Terminology

Consider the model Neumann problem

Lu := - Dx(a(x,y)Dxu) - Dy(a(x,y)Dyu) + b(z,y)u = f(x,y) (4.1)
in the interior of ¢,

du/d9n = 0 on 39,

where Dx , Dy , and 8/3n denote derivatives in x, y, and the outward
normal to 2 respectively, a(x,y) and b{x,y) are in Lo(0), f(x,y) is in
LZ(Q), 0<¢agalx,y) {a, and 0 < b < blx,y) { b. Variants of (4.1)

are discussed in Section 4.7.

Let w be an open subset of @ with piecewise smooth boundary dw.
For a non-negative integer k, and a function v in Cc(w). we define the

norm

2 Y k N i ip i-J 2
NVl 5= 2 i=0 2 j=0 ff @ D " vix,ynT dx dy.

Let Hk(w) denote the completion of C(w) with respect to the norm

111 . Hk(w) is equivalent to
K,
{v in Lz(w) : vl ¢ =}
k,» ’

if derivatives are defined in the distributional sense (e.g.,
Ciarlet [17], page 114). Let Hg(w) denote the completion of the
functions in Ca(m) with compact support in o with respect to the norm

||°||k © ° When k is omitted, k = 0 is assumed. For v,w in Ho(w)

N
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(= L2(w)). let
(v,w) := f£ v(x,y) w(xz,y) dx dy.
w
For v,w in Hl(w). let
a (v,w) := (#D vi,Dw) + (aD v,Dw) + (bv,w) .
M x ' x w0 y 'y e m

If w is the interior of Q, am(u,v) is obtained by multiplying (4.1) by a

function v, and integrating over w using Green's theorem. Let the

energy norm |||v|l|i 1= am(v,v). By the assumptions on a{x,y) and

b(x,y), there exists C ) 0‘ independent of v, such that

¢t livlly < HIvIN celivlly (4.2)
for all v in Hl(m).

On the boundary dw, for v and w in Lz(am). let

<v,w)am 1= £m v(o) w(o) do,

where do is arc length. We define the norm

s
C denotes a generic constant, not necessarily the same in each

instance.
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Ivi?

30 1= Lv,W

oo °

Let 9/0n denote differentiation in the direction of the outward normal

to w, with the limit in the differentiation taken over points inside w.

For brevity, we sometimes replace w by its closure in names for
spaces, norms, and inner products: for example, Ilvllk E stands for
» .

Hvll

k,interior(E) ° When the subscript o is omitted in norms and imner

products, © = interior(f) is assumed.

Given a l-irregular mesh M with unrefined elements {E}, we choose a
finite element subspace S (= S(M)) of Hl(ﬂ) as in Chapters 2 and 3. For
simplicity, we assume S is based on Co hierarchic polynomials, as in
Section 3.2. We also choose a larger finite element space S (= S(M))
containing S, constructed in the same manner as S, such that in each

unrefined element E,
smooth functions are locally approximated to order EE > kE .

Since S contains S, and the basis functions {BI} are hierarchic, the

basis

{BI : BI in S}

for S contains the basis

{BI : BI in S}
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for S. For each unrefined element E, we define S_ to be the space with

E

basis functions

8.1

g ¢ E in supp(BI), BI in S},

where {BIIE : E in snpp(BI)} are linearly independent because of (2.2),

(3.3), and (3.4), and we define S_ to be the space with basis functions

E

{BIIE : E in supp(By), By in S}.

We define §E—SE to be the span of the functions

{8, 1

'g ¢ E in supp(BI), By in S, B, not in S}.

I

For any function

v= } ByeS T Bylg

in SE » we define

I(v) =) Bes I Bl (4.3)
in Sp . Then v-IE(v) is in §EfSE , and for any function
v = )5 e§ V1P
I
in S, the function

I(v) := } Bes I By

is in S, and is equal to IE(v) in E,
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Let N(E) denote the set of unrefined elements which intersect with
E at more than one point. For example, in Figure 3-2, N(E) is the set of

labelled elements.
For convenience in discussing functions in the product space
Hy (@) := {v: v in H'(E) for all E},

let
a(v,w) := } E aE(v,w) for v and w in HM(Q),

and

2 2 .
v 2= L HIvHIE for v in Hy(0).

The weak form of (4.1),
a(u,v) = (£f,v) for all v in Hl(ﬂ).

has a unique solution u in Hl(ﬂ) (e.g., Ciarlet [17], page 19). Ve

impose the weak form of (4.1) in S to get a finite element approximation

U in S, where

a(U,v) = (f,v) for all v in S,

The error for S is e := u-U, Similarly, U in S is required to satisfy

a(U,v) = (f,v) for all v in S,
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and the corresponding error for S is e := u-T.

In this chapter, we consider ways of estimating the norm of the

error lllelll. Let

We assume the saturation condition that there exists 0 ¢ ; { 1 such that

Hielll < v Hlelll. (4.4)

If u is sufficiently smooth, then ; goes to zero as h goes to zero,

Thus, since
- =1
[ielll < Titelll < (=) = 1lHelll,
we concentrate our attention on estimating IHelll.

4,3 A Dirichlet & posteriori error estimator

Traditionally, the error estimates for the finite element method
have been a priori, predicting the expected rate of convergence of
lllelll to zero (usually as h := max{hE} goes to zero), but not saying

much about the actual error for a given S,

In [8], Babu%ka and Rheinboldt present a posteriori error
estimators constructed basically as follows. Let {Bj} be a subset of
the basis functions for S which form a partition of unity on Q. For

each J, let 2_ := supp(BJ). and let e. be the solution in Hé(nj) of the

J
local Dirichlet problem

J
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— — -4 1
aQJ(eJ,v) = (f,v)ﬂ:r aQJ(U.v) for all v in HO(QJ).

Under suitable assumptions, Babu%ka and Rheinboldt show that there exist

C1 > 0 and C2 > 0 independent of S such that

2 2 2
c, Mlell1® ¢ ), Heglllg <y THellI?.
In practice, since Hé(QJ) is infinite~dimensional, ey is not
computable, The most straightforward computable approximation of ey is
in

€y

§J := {p{x,y) : p in S, supp(p) contained in ﬂJ}

defined by the equations

aQJ(eJ,v) = (f,v)QJ - aQJ(U,v) for all v in §J . (4.5)

Then

2 2 2
¢y Well1? ¢ 5 MIegllIG <, Helli? (4.6)

1/2 is called an error estimator.

< 2
The quantity ( 2 T "IGJIIIQJ )

Each e, in (4.5) is a projection of & in the emergy norm onto a set

J

of functions, so the right hand inequality in (4.6) arises naturally,

while the left hand inequality is harder to prove.
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4.4 A Neumann a posteriori error estimator
The motivation for a Neumann a posteriori error estimator is that
it is more important to have an upper bound on [|lelll than a lower

bound. We construct an error simulator ;, such that e is the projection

of ¢ onto S with respect to the emergy morm. Then l|llelll ¢ 11111
arises naturally. Following Babulka and Rheinboldt [10], we call

[Helll an erroz

estimator, and for each element E, we call III:IIIE an

error indicator.

To motivate our comstruction of &, suppose u is in HZ(E). By

Green’'s theorem on element E,
aE(e,v) = FE(v) 2= (f,v)E + <aau/an,v>aE - aE(U,v) (4.7)

for all v in Hl(E), For a gi&en v, we can compute every gquantity in
(4.7) except adu/dn on the boundary of E. Suppose E shares side s with
element E’. On s, a possible approxzimation to aau/anlE is the average
value of aaU/anE on E and E’, where ngp is the outward normal from E.

Since
nEls =T nE'Is ’
we define the approximation
[adU/3n]l; := 4 1/2 { adU/dnl, - 230/dnl;, } , s not in 20 (4.8)

0 , 8 in 00 .
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Note
[280/8n]]; = - [adU/an]lp, .
The resulting approximation to FE(v) is
Fo(v) := (£,v)p + <[830/dn],v),p = ap(T,v). (4.9)

Since aE(',°) is elliptic, we can define an error simulator for e in E
by replacing FE with EE on the right hand side of (4.7). However, as hE
approaches zero, the finite element matrices for the error simulator

approach an indefinite matrix corresponding to the case when b(x,y) = 0.

Thus, we formulate error simulator equations which are
automatically consistent when b(x,y) = 0 and aE(°.-) is indefinite. We

approximate & by the function ;E in §E defined by the equations

aE(EE,v) = EE(v—IE(v)) for all v in SE , (4.10)

where IE(v) is defined by (4.3). Since aE('.°) is elliptic, EE exists
wsniquely. Since v need not vanish on 3E, (4.10) is a Neumann problem.

Moreover, since 1|E is in SE »
IE(l) =1,
so the consistency condition aE(EE,l) = 0 is automatically satisfied.

Equations (4.10) are eqguivalent to choosing EE in §E such that
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aE(eE,v) = FE(V) for v in SE--SE
0 for v in SE .

~

The corresponding matrix equation is A Y = f for the coefficient vector

~ ~
v of eE s, where

| i, X | A | o |
O - A A B Pt |,
|A3 A2| Ivzl Ile

the coefficients of the basis functions for S, are in ;1 » and the

E

coefficients of the basis functions for §E—SE are in ;2 °

We define the value of the error simulator e at (x,y) in @ to be

g(x.y) 1= EE(x.y).

where E is an unrefined element containing (x,y). When there is no

~~
danger of confusion, we refer to ¢

g 88 €. Note that e is in HM(Q), but

not necessarily in Hl(ﬂ).

4.5 Properties of the Neumanm error estimator

The most important property of € is that

Theorem 4.1: |llelll < lIElll.
Proof: Suppose v is in S. Since [aaU/anllE = - [aaUlan]IE, , and

[adU/8n] = 0 on 99,
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} g <[830/3nl,v>, = 0.

Thus,

}E%W)=§EunwE—%wmn=(ﬁw—ame

Since I(v) (page 38) is in S,

} E FE(IE(V)) = } E FE(I(v)) = (£,I(v)) - a(U,I(v)) = 0. (4.11)

Thus,

a(s,v) = a(e,v) = (f,v) - a(U,v) = } E ﬁE(v—IE(v)) = a(s,v), (4.12)

/and, in particular,

Hlell1? = ale,e) = a(z.e) < LI THlelll.

By (4.4), we have

Corollary 4.2: (1-y) Illelll < IlIsHIL.

This is a global inequality. We cannot generally expect
|||e|||E £c |||Z”|E : suppose u is smooth, S contains bilinmears,
hE = h in region R in O, and hE Sk » h away from R. In region R, U is
a finite element approximation to the solution to

in the interior of R, (4.13)

,L(uR) = f(x,y)
v =0

on dR.
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Let E be an element in the interior of R. Since the error simulator

equations in E are local, they are the same for (4.13) as for (4.1).

Since (Theorem 4.6) l'IZIIlE is bounded by local quantities behaving

and the boundary error in (4.13) pollutes the

like IIIU—nRIIIE ,

solution throughout R, we expect

IHlelTlg >> THelllg .

(In practice, this may be acceptable, since the error is bigger away
from R due to the coarse mesh, and the small size of the error simulator

is in accord with the fact that no more mesh refinement should occur.)

By the triangle inequality and (4.12),
THET = el ¢ 1He=el Il = ing{111e-£11]: £ in 5},

so we can get an a posteriori upper bound for |||;|||-|||e||| by
measuring the difference in the energy norm between € and any function
in S. For instance, by averaging ;, we can construct an approximation

~ ~ ~ o

€ave to ¢ in S: E7€ ve approximates the size of the jumps in & across

element boundaries. If
[11g- _ 11 <y Izl
ave
with vy < 1, then

HIEHT ¢ a-p~ Y (el

Of course, the jumps in € can be made as small as desired by adding



47

penalty terms to equations (4.10), but the resulting equations are

non—-local.

Ve now prove a local a priori upper bound for |||;E|||E in terms of

quantities depending on e. We assume there exists a constant kmax such

that

EE < kmax independent of S. (4.14)

We start with a few lemmas.

Lemma 4.3: IIIIE(aE)IIIES c IHle Il

E"'E°

Proof: Suppose v is in SE . Since the dimension of §E is fin@te and IE

is linear,
(bIE(v).IE(v))E £ C1 (bv,v)E ’

where C1 is independent of v and hE . (Otherwise, there would exist w

in SE such that (bw.w)E =0 and (bIE(w).IE(w))E # 0, which leads to a

contradiction.) Similarly, since the dimension of §E is finite, IE is

linear, and IE(l) =1,
(anIE(v),DxIE(v))E + (aDyIE(v).DyIE(v))E £
C2 ( (anv,va)E + (aDyv,Dyv)E ),

where C2 is independent of v and hE . Thus,
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2 . 2
IIIIE(v)|||E < m1n(C1.C2) |||v|||E .

. ~ ~ 1/2 ~
Lemma 4.4: |eE Ip(s o, g ¢ hg |||eE|||

E’ '0E = E°

Proof: The trace inequality

laE-IE(eE)laE £C {hg lleE—IE(aE)||E + by lleE—IE(eE)Ill,E} (4.15)

follows directly from Theorem 3.10 in Agmon [1].

Suppose v is in § For 0 { x,y £ 1, let

B

.vﬂ(x.y) i= v(xE + hE x, yp + by y)s

Iﬂ(x.y) f= IE(v)(xE + hE x, yp + hE ¥) .

Since the dimension of §E is finite, IE is linear, and IE(l) =1,

2 2 2
||v9-IQ||n £cC (||va9||ﬂ + IIDyvﬂllﬂ ),

and thus

2

2 2
||v—IE(v)||E £cC hE ||v||1'E ,

where C is independent of v and hE . The result follows by letting

v = :E in (4.15) and unsing (4.2) and Lemma 4.3.

Lemma 4.5: If u is in Hz(E).
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2 2 2 2 1/2
|aae/an|aE < Ch { ||e||1’E + hE ||e“2’E } .
Proof: Since u is in HZ(E). e is in H2(E). The result follows directly

from Theorem 3.10 in Agmon [11.

The following theorem shows that the error is large in local
regions where the error indicators are large (and u is sufficiently

smooth).
Theorem 4.6: If u is in HZ(E') for all E’ in N(E), then

{ Itell? ||e||2 3172,

”'8 g CEE' eN(E) 1,8 * 2,E'

Proof: For any v in §E .

aE(gE.v) (f.v—IE(v))E + ([aaUlan],v—IE(v)>aE - aE(U,v-IE(v))
= FE(V—IE(V)) - (aau/an,v—IE(v)>aE + ([aaU/an],v—IE(v)>aE

= aE(e,v—IE(v)) - ([aaelan].v—IE(v)>aE .

™

Let v = By the Cauchy-Schwarz inequality and the definition of

[']:
Ieal11.2 < THelll. Hla-I (G 11 +
E E - E E "E''E E

{ }E,GN(E) ladesanl, b, ) 11 G 1

By Lemma 4.3 and Lemma 4.4,
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- 1/2 (4.16)
Iz cc el + ent2 Y o o o0 Tadesonlp,

By Lemma 4.5, noting that (since the mesh is l-irregular)
hE1/2 hE,"”z < C for all E' in N(E),
1T < ¢ el +

2 }1/2

2 2
(Ul wnd, Hleli2 | 12,

¢ 2 E’ eN(E) 1,E’

The result follows by noting that E is in N(E) and using (4.2).

If v is in HZ(E), we expect the right hand side of Theorem 4.6 to
converge to zero at the same rate as |||e|||E . If the coefficients
a(x,y) and b(x,y) are sufficiently smooth, u is in Hz(ﬂ) (e.g.,

Ciarlet [17], page 138).

We now prove a global a priori upper bound for |||E|||. Ve assume
that u is in H2(E) for all E, and we assume the saturation condition

that there exists 0 ¢ ; { @ such that
- 2 .1/2 , =
() g by leoeranl 112 <7 1Ielll. (4.17)
If u is sufficiently smooth, then ? goes to zero if h goes to zero.

Theorem 4.7: There exists C independent of S and S such that

IHEI < € Helll.
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Proof: It follows from Theorem 3.10 in Agmon [1] and (4.14) that

2 -1 2 2 2
laae/anlaE £cC hy {llelll‘E + hE IIEIIZ,E }

-1 2
£ Chy Ilalll’E .

Then, using ade/dn = ade/dn + ade/dn in Equation (4.16),

~ 1/2 -
WG <e el + e n 2y 0 Tage/onl,p, +

Cimmw)“de"

Squaring, summing over E, using the triangle inequality, and noting that

the maximum number of N(+)’s in which any element appears is bounded,

- = 42 ,1/2
HHEHTE < e Hlellt + ¢ Helly + ¢ () | ny ladesanls 31/2,

The Theorem follows using (4.2), noting that [llelll ¢ Illelll, and

using (4.17).

4.6 Alternative error estimators
In practice, there are several alternative error estimators that

are less costly to compute than |||;|||.

4.6.1 Ignoring irregular cormers

We can compute an error simulator in element E by replacing IE(v)
with an analogous function I;(v) which interpolates v locally in E. The
resulting error simulator, in effect, ignores the irregularity of the

corners of E, and its system is slightly cheaper to assemble than the
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~

system Ay = f. In practice, the resulting error estimator appears to
be at least as accurate as |llelll. However, Equation (4.11) in the
proof of Theorem 4.1 break down when v is a side basis function for a
side s containing an irregular vertex (Figure 4-1): I‘(v), the analogue
to I(v), is not continuous across s. Thus, we do not consider this

alternative error estimator further.

(0) (0) (0) (0) (0) (0)
I | I | I |
I (1 | I (D1 I
(0) +(1) I (0) -(0) I
I (0| I | (Wl |
| I | | I |
(0) (0) (0) (0) (0) (0)
v I‘(V)

Figure 4-1: Ignoring the irregular corners

-

4.6.2 Using the matrix for a local Poisson problem
We can form and solve error simulator equations using a matrix

corresponding to an associated local Poisson problem., For v and w in

B (E), let
gE(v,w) := a(B) { (va.wa)E + (Dyv,Dyw)E 1,
|l|v|l|§ = ag(v,v),

where a(E) := inf{a(x,y) in E}.

Instead of choosing ;E in §E by (4.10), we can choose gp in S, such

that
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- _ (4.18)
ap(ep,v) =< Fp(v) for all v in S5

0 for all v in SE s
and
(gg.1)g = 0. (4.19)

(We impose (4.19) because gE(l,l) = 0.) We construct the error
simulator ¢ and the error indicators {IllglllE] from &g in the same way

we constructed & and {IIIEIIIE] from EE .

Equations (4.18) correspond to the matrix equation A v = f for the

coefficient vector v of gp(x,y), where

| A, A, | I v, | |l o |
P IR I B P |,
Y W I v, | I g, |

the coefficients of the basis functions for SE are in !1 . and the
coefficients of the basis functions for EE-SE are in 32 « Since

IllEIlIE = |l|g+C|l|E for any constant C, we can set

A58 =585,

reordering the unknowns if necessary, so that A is positive defimite.
For fixed kE , A depequ only on the regularity of the corners of E, and

not on hE .
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Theorem 4.8: If a(x,y) is Lipschitz-continuous, then
Helllg < Hlelllp < a+omp) Ielllg

as hE goes to zero.

Proof: By (4.10) and (4.18), since gE(v.v) £ aE(v.v) for all v in §E ,

~ 2-‘ ~ ~ ~
HEIH2 = a2, < ILellig 1LIEIL < ILlel 1l THE .
Similarly,
2 ~ ~
ll|§|l|E = ggle,e) = ag(e.e) < |||el||E |||§|||E ’

and if a(x,y) is Lipschitz—continuous in E, so that

a(x,y) £ a(E) + O(hE) in E, then by (4.19),
el < ¢ ng el o .
and

el ¢ (avomg) 1hlelll

as hE goes to zero.

Since mesh refinement occurs in a very regular fashion, we can
precompute the factorization of A, and only incur the cost of a
backsolve plus computation of the right hand side for each element. If

the hierarchic polynomials {pi] are chosen by (3.2), then since

P PR A
fo Pip.'i =0 » 1# J » max(ln_]) > 2,
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A is sparse. In practice, we replace the quantity a(E) with the more

convenient quantity a(xE+hE/2,yE+hE/2). Then

IHellly < +otmp) Illellly < +o(p)) TlHelllg .

4.6,3 Using a smaller matrix

We can also compute ;E in §E—SE by the equations

gE(sE.v) = FE(v) for all v in SE—SE , (4.20)

constructing the error simulator & and the error indicators {ILIEILIE}

from ;E in the same way we constructed € and {|||;|||E} from EE .

Equations (4.20) correspond to the matrix equation A2 ;2 = f2 s OF

Avs= f, for the coefficient vector v of ;E , where

A

| o | |l o | | | o |
=lAl | = | I = | | .
| o |

N
N<I

Ve now show

Theorem 4.9: There exists a constant C independent of hE such that

LIEILIG < Mlellly < € LRI, .

Proof: The left hand inequality follows from

- (12 _ =Te= _ =T, _ =T, _ = -
lllelllE = VAv = v'f = vTAV = g.(e,2) £ !l|e|llE IllilllE .
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The following approach to the right hand inequality is due to

Eisenstat [19]. Since A is positive definite, using block Gaussian

elimination, A4 22 = f2 ., where
_ Y S |
A.4 = (A2 A3 A1 A3)

is symmetric and positive definite. Then

2 _ T ,-T
lelllg = £, A7 £, .

Similarly, A2 is positive definite, and

-2 _ T ,-T
HIelllg = £5 A7 £, .

Since A, and A, are finite—dimensional,

4 2
C 2 = max vT A;T v/ vT A;T v { =,
v#0

In particular, let v = f2 o’

For example, if E has no irregular corners, a(E) =1, SE contains

bilinears, and §E—SE contains the biquadratic basis functions
3
(xE+hE—x) (yE+hE-y) (y—yE) / hE ’
(x-xp) (yg+hymy) (y-yp) / By,
(xgthg=x) (x-xp) (yg+he=y) / B,

(xgthpx) (x-xp) (y-yp) / h,i. ,



then

.
#
COON
>

A2=

oNvOoOWw
-t
w

and C = (11/6)1/2

4.6.,4 Using the residuals and jumps in normal derivatives

0
-1

= 1.354,

57

We may choose not to solve any linear systems.

By Green'’s theorem, for v in S

E—S

E »

aE(U,v) = (LU,v)E + <aaU/an,v>aE ,

SO

gE(EE,v) = (£-LU,v); + <[2d0/3n]-ad0/dn,v>, .

In particular,

= 12 _ pegm _ -
I1legllIg = (£-LU,ep) + <[200/n]-ad0/dn,ep>

and so

9E ’
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legllip < € (hg,a(E)) I1£-LOII + (4.21)

C, (hg,a(E)) |[aaU/an]-aaU/anlaE ,

where
C, (hp,8(E)) := sup IlelE/I_I_IvI_I_IE ,
veS+
C,(hy,a(E)) := sup lvlaE/|l|v|l|E ,

veS+

and S+ := {v : v = vo(x,y)+C, o in SE—SE , v# 0, and (v,l)E = 0},

For example, if E has no irregular corners, SE contains bilinears,

and §E—SE contains the biquadratic basis functions on page 56, then S+

is the span of

By (xpthx) (ygrhoy) (yp) - /12,

By ° (x-xp) (ypthoy) (y-yp) - 1/12,

hE'3 (xgthyx) (e-xp) (ygthymy) - 1/12,

hE‘3 (xgth-x) (x-xp) (y-yp) - 1/12,
and

/2

C,(h,a(E) = b / (22 a(en?

/2

1
Cz(hE.g(E)) {3 by / (11 a(E)) }

Babutka and Rheinboldt [9] suggest error indicators when S contains
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piecewise bilinear basis functions which amount to approxzimating
Hiell1? = 12/(242(8)) Ie-Lul1? + (4.22)
g~ bp/{242 E .
h/(6a(E)) |[a00/0n]1-000/2n]2,

for interior elements. Since 1/22 = 1.1 X 1/24 and 3/11 = 1.6 X 1/6,

the two schemes are in rough agreement.

If the mesh is uniform, S contains piecewise bilinear basis

functions, S contains piecewise biquadratic basis functions, u is
sufficiently smooth, and h goes to zero, then combining Corollary 4.2,

Theorem 4.8, Theorem 4.9, and (4.21),

Iell1? ¢ (a-7)2 {(12a(E))"1/2
E

hEIIf—LUIIE +
(ZQ(E));llzhEllzl[aaU/an]—aaU/anlaE}Z.

where ; goes to zero. Similar results hold for higher-order elements

and nonuniform grids.
In numerical tests, we have observed that quantities of the form
2 g Cp(bg-2(E)) ||f—LU||§ + C,(hp,a(E)) |[a8U/8n]-aaU/an|§E

‘or
} g (C(bp,a(E)) 1£-LUII, + C,(hp,a(E)) l[aaU/an]—aap/anlaE}2

only seem to approach |||e|||2 to within a multiplicative constant
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depending on u. In Chapter 7, we present numerical results using the

error estimator

g = 2 E gé )1/2,
where

e2 1= K(kp) (82/a(B) 11£-L0113 + 4B,/8(E) 11a00/0n]1-90/0nl2 ), (4.23)
and

i -1
E(kp) = (k1) (kp+2)) . (4.24)

€. is chosen to extend formula (4.22), and to perform well on the

=E
problem

- Diu - Diu = f(x,y) in 2 , u =0 on 80,
when u = sin(nx)sin(ny), kE and hE are uniform, and h goes to zero.

4.7 Extensions
If b(x,y) = 0 in @, in order to insure nonsingular linear systems,
we impose the Neumann consistency conditioms (uw,1) =0, (U,1) = 0, and

(;,I)E = 0, Ve still have
. 1
|||v|||E £C IIVIII.E for all v in H (E),

and globally,

ITell, < c THelll.
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Since (eE.l)E 0 implies IISEIIE £C hE IleElll,E ,

311, ¢ < e HIEN,

for hE sufficiently small. (Similarly, ||;||1 B £C III;IIIE .) Thus,

Theorem 4.6 and Theorem 4.7 hold for h sufficiently small.
If aE(°.') is of the form
aE(v.w) = (a(x,y) va,wa)E + (a(x,y) Dyv,Dyw)E +
(b(x,y) v.w)E + (c(x,y) va,w)E + (d(x,y) Dyv,w)E ’

then, under suitable assumptions, ||E||i E £C aE(;.;) and
||;||i E £cC aE(;,;) as h goes to zero (see Schatz [27]). Thus, Theorem

4.6 and Theorem 4.7 hold for h sufficiently small.

For problems with non—homogeneous Neumann boundary conditions

adu/dn = g(x,y) on 82 , g in Ho(aﬂ).

if we set
a(e,v) = (f,v) + <g,v> for all v in HI(Q).
a(O0,v) = (f,v) + <(g,v> for all v in §,

and

[adU/8n] := g(z,y) if s is on 32,
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then we obtain the same results as before.
For problems with homogeneous Dirichlet boundary conditiomns
v=0 on 34,
the solution u in H%(Q) satisfies
a(u,v) = (£f,v) for all v in Hé(ﬂ),

Similarly, the equations for U, ;, &, and € are now posed on subspaces
*
of Hé(ﬂ). Since all the functions of interest now vanish on 8Q, the

other results follow as before. Problems with non—homogeneous Dirichlet

boundary conditions which are exactly satisfied are handled similarly.

When Dirichlet boundary conditions are not exactly satisfied by U,

in element E touching 32, we define EE in §E by the equations

aE(eE,v) = FE(v-IE(v)) for all v in SE which vanish on 9%,

~

g = g on 9Q.

We define & from ;E as before. Let :b be any function in S such that

*
Equation (4.19) is no longer needed in elements touching 3Q.
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€, = E-E
0 b

for Theorem 4.1,

vanishes on 32, and let ¢, := g-¢, . By the same proof as

|||eo||| < |||eo|||.

$O
A=) el < IEHIT + HIE, 1.

Similarly, under the assumptions of Theorem 4.6,

~ 2 2 2 1/2
IHEIE <€) oy © Hellf oo+ ng, Hell? o 3424

Nz i
and under the assumptions of Theorem 4.7,
LIl < € Hlelll + IIIEbIII.
If
e = } sI BI R
where {BI} is the basis for S, we choose
's’=} = e, B,
) BIeSb ) S

where

Sb 1= span{BI : BI in S, BI(x,y) # 0, (x,y) in aQ}.

Since the area of supp(;b) is O(h), we expect |||;b||| = o(lllelll) as n
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goes to zero. Since e is nonzero on 8%, ¢ should be in §E rather than

SE—SE when E touches 38Q.

Analogous results hold for & and €.

As in Babu%ka and Rheinboldt [10], on an element side s of E which

touches 92, we replace the term

E(ky) 4b;/a(E) |[230/0n]-a00/0nl
with the term

3_:_1_(E)/hE |e|i
_in formula (4.23).

4.8 Summary

The error indicators discussed in this chapter are:

|||8E|||E » where & is in S, and

aE(EE.v) = - EE(V) for ail v in §E—SE
0 for all v in SE ’
IllEEIlIE . where g is in §E » (gg,1)p = 0, and
aplep,v) = ﬁE(v) for all v in EE—SE

0 for all v in SE »
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llleElllE , where &g is in SE—SE and

gE(eE,v) = FE(v) for all v in SE—SE R

and gE , Where

lice

2 _ 2 o112 _ 2
g = E(kp) {np/a(E) [1£-LUIIG + 4hp/a(E) 10200/8n]-200/8nl7, 1.

The corresponding error estimators are

I = ¢ ) o HIEg2 Y2,

E

lelll = ¢ 5 ¢ 1legll12 )12,

IEH = ) o 1LIE I3 Y2,

and

N 2 \1/2
g = ( } E &g ) .

*
We define the corresponding relative errors in the estimators

*
Babu¥ka and Rheinboldt call (the relative error + 1) the "efficiency

index” [10] or the "effectivity index"” [9].
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poi= CHIEHIL = Hlelll ) 7 HHelll,
p := CILlelll = FHelll » 7 Hielll,
p o= C HIEIl - THelll ) 7 1llelll,
and
p :=Cg = Illelll ) 7 1Helll.
We have shown, for sufficiently smooth u, that as h goes to zero,
a-y) [ielll < HHIEN £ T 1Helll,
(1) Hlelll ¢ Illelll <€ HHelll,
(-7 € L Allelll < ITIEIL < € Nlelll,
and

c el ¢ g

v

where the positive comstants C, C, and C are independent of h, and if u

is sufficiently smooth, ; goes to zero if h goes to zero.



CHAPTER 5

Heuristic refinement criteria

5.1 Introduction

The guiding principle in choosing a finite element space is to
minimize the norm of the error as a function of work. However, there is
not usually enough information available to choose an appropriate space
a priori. Imnstead, it is necessary to choose a seque;ce of spaces
adaptively. Each succeeding space in the sequence is chosen on the
basis of criteria computable from the preceding space, with the criteria
tending to satisfy the guiding principle when a heuristic model of error

behavior holds.

¥hen the polynomial orders of the basis functions are uniform, the
resulting refinement algorithms temnd to approximatelj equalize the sizes
of the errors in the elements in the next space. In finite element
methods, for example, this heuristic refinement criterion is used in
Fried and Yang [20], Babu$ka and Rheinboldt [8], and Bank and
Sherman [13]. When the polynomial orders of the basis functions vary
locally, the heuristic refinement criteria must be somewhat more

complicated (e.g., Brandt [16]).
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In Sections 5.2 - 5.5, we develop two heuristic models of error
behavior for local-mesh, local-order finité element spaces, and an
adaptive refinement algorithm which uses the models. In Section 5.6, we
discuss drawbacks inherent in the models. In Section 5.7, we present
the asymptotic expected error and work behavior for three problem
classes consisting of problems with:

1. smooth solutionms.

2. solutions with point singularities.

3. solutions with line singularities.
Except in the presence of line singularities, with appropriate local
mesh and local order refinement, the expected error converges to zero

faster than inverse polynomially with respect to work.

5.2 A model of work

The guiding principle in choosing a "good” finite element space 8
can be stated as

minimize |{lelll as a function of W, (5.1)
where |llelll is thé error in the emergy norm, and W is the work.
However, there is not usually enough information available to choose an
appropriate space a priori, Thus, we must choose a sequence of mnested
spaces

81 contained in 82 contained in ... Sn R
with finite element solutions Ul""’Un , taking 8§ = Sn (for instance,
because the work limit is reached). We choose each Si+1 adaptively, on

the basis of information obtained from Si . Since the spaces are
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nested, the errors [ei} and work counts [Wi} satisfy
e 111 > Flle, 11 2 .on 2 e I
and

W1 < Wz < eee € Wn .

The work counts can represent either storage or computer time. If
the work counts represents storage, W = Wn . If the work counts

represents time, W = 2 ?_ V., and if
i=1 i

WoLyW . 04r<l, 1&igln, : (5.2)

then W < (1—7)_1 Wn . Tﬁus, ¥ is usually proportional to Wn . Since it

is possible that n = i+l, in the remainder of this chapter, we take as

the "local guiding principle” a local version of (5.1):
given Si , choose Si+1 to minimize |||ei+1||| (5.3)

as a function of Wi+1

(subject to the possible enforcement of (5.2)).

Let S be the current finite element space Si in the sequence, with
mesh M, unrefined elements {E}, and error e. Let z := (x,y) denote a
point in 9. Let h(z), p(z), and w(p(z)) be piecewise constant functions

defined by



70

h(z) the local mesh size,

hE

p(2) = pp = k-1

the local polynomial degree,

the local work count,

wi(p(z))

YE

if z is in element E, We make the heuristic assumption that the work W

for S is
W= 2 E g - (5.4)

This is reasonable if W is the dimension of S, or (since the mesh is
l-irregular) the storage for the stiffmess matrix for S, or the number
of arithmetic operations needed to solve the finite element system for S
when the work is proportioﬂal to the number of elements in the mesh (see
Section 6.3). It ié not reasonable if the work grows faster than the

number of elements: then, W depends on S globally as well as locally.

5.3 A model of predicted error behavior
In this section, we construct a model of predicted error behavior
based on standard a priori error estimates, and derive heuristic

refinement criteria which tend to satisfy (5.3) when the model holds.

Let m(z) and ;(z) be piecewise constant functions defined by

m(z) max{ k : 'lullka (o},

p(z)

min{p(z) ,m(z)-1} ,
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if z is in element E. m indicates the maximum local smoothness of u in
E, and ; indicates the expected convergence rate in the energy norm
using polynomials of degree p (order kE). Standard a priori error
estimates (e.g., Ciarlet [17], Theorem 3.1.5 and proofs of Theorems

3.2.1 and 3.2.2) yield
2 ~ ~ 2;(2)
IHelll® < ff €(p(2)) a(z) 6(z,p(2)) h(z) dz, (5.5)
where a(z) is the coefficient in (4.1), and
6(z,p) := 3 21 ( pd pP*1Td (5 )2
j=0 x'y
is in LZ(Q) by the definition of ;.

Following Brandt [16], Chapter 8, we make the crucial assumption

that, for heuristic purposes, (5.5) holds in each element, with

equality:

Mell2 2 ¢, = ff c(3(2)) a(z) 6(2,5(2) n(z)2P(2) 4, (5.6)
so that
2 ~, ._
Hlell1> S ¢ =) gy

We also assume, for heuristic purposes, that
a and G are approximately constant in each E (5.7)

and
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C, G, and W are (formally) differentiable in h and p. (5.8)

Assumptions (5.4), (5.6), (5.7), and (5.8) comprise our first heuristic
model of predicted error behavior. The form of (5.6) is important, but
not the specific values of C(;) and G(z,;). We make assumption (5.8)
only for convenience: all derivatives with respect to h and p can be

replaced by divided differences.

In the following paragraphs, using (5.4), (5.6), (5.7), and (5.8),

we estimate the marginal efficiency of refinement in each element E,

obtaining

xéh’ Z - (at/omy) / (aW/ahy) (5.9)

for mesh refinement (h-refinement), and
2P 2 (aerap.) / (aW/ep,) (5.10)
E E E *
for order refinement (p-refinement). Let

A, = max{kéh),lép)}.
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Ve use these quantities in the following adaptive refinement algorithm:

1. Find the unrefined element E with the largest AE .

2, Determine the refinement cutoff ACUT < AE (e.g., as in

Section 5.5).

3. For each unrefined element E with AE 2 ACUT :

a. If Aéh) 2 Aép). refine the mesh in E,
b. If Aéh) < Aép), refine the order in E.

4. Take Si+1 to be the resulting finite element space.

We now determine léh) and Aép). First, we estimate S in each
unrefined element E. Sﬁppose the order‘in E has never been refined, and
(from s previous finite element space in the sequence) we have an
approximation §f(E) to the square of the error in £(E) before f£(E) was

refined. By (5.6) and (5.7),

~ 2(p+1)
SeE) = S 2 ,

so we estimate
p = ( 1n(§f(E)) - 1n(§E) ) / 1n(4) ~ 1,

On the other hand, suppose the order in E has been refined, and we have
an approximation §; to the square of the error in element E with kE one

less than its current value. If
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8 / 8g £ Popr (5.11)

for some constant Peyr <1 (e.g., as in Section 5.4), there may still be
higher derivatives of u in E which can be exploited, so we estimate
; = P - Otherwise, we retain ounr previous estimate of ;. In order for
our estimate of ; to be logically consistent, we restrict it to the

interval (0.pE].

Using our estimate of ;, by (5.7) and (5.9), we estimate

(n)

e

e

- {a(hé a C G h2P)/an} / {a(h; w b~ 2)/an) (5.12) -

—2pceu?® 7 ((-2) w1

]

(p/ w) tg
in element E,

There are two cases to consider in estimating lép). If p 2 ml,
refining the order will not change the error at all (inm (5.6)). Thus,

xép) = 0. On the other hand, if p < m1, by (5.7) and (5.10),
AP o otace)/epd /oW
E E ’
where w’ := dw/dp. If u(z) = C sin(@x) sin(@y) in E, where © is the

approximate "frequency” of u in E, then

2 ~ 2(p+1)
Il 2, , 5 ¢, 0,

and by (5.6), since c(p) = (pl)—2 for Taylor's theorem,
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e, 5 ¢, (pn7? i 2D 28 (5.13)
= ¢, (0 w2 172,

Since © is independent of h and p, by (5.13),

0= (p g /gpttal (5.14)
Using the crude bound 3(p!)/dp £ p pl/2,

3(gg)/9p = &g (2 1n(e b) - p),
so we estimate

x,(_:P) = QEp (2 1m(8h) +p) / w if p <l (5.15)

0 if p 2 w1,

In practice, we estimate §E by the squared error indicator l||;|||%
Cor 11ell12 . ILISHIZ . or ) in formulae (5.12), (5.14), (5.15), and

the formulae for ;E .

Expressions (5.12) and (5.15) indicate that AE tends to decrease as
E is refined. Thus, the adaptive refinement algorithm tends to
approximately equalize {lE}. When the order is uniform, this reduces to
"asymptotic equidistribution” of the errors among the elements (e.g.,

Fried and Yang [20]).
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5.4 A symmetrized model of predicted error behavior
In this section, we construct a second model of predicted error

behavior based on symmetrized a priori error estimates.

In considering combined h and p refinement, BabuSka and Dorr [2]

present an a priori error estimate of the form
el l11? ¢ ckmax) [fa(z) 6(z,m(2)) n(z) 2B ()2 (DD g, (5.16)

Since C and G are independent of p, this estimate is more symmetric in h
and p than (5.5). Moreover, it indicates the manner in which
convergence occurs when p > m1. Theorems and numerical evidence in
[11] show the exponment in p is optimal in the presence of singularities
of u not located at mesh nodes, and that .if all the singularities of u
‘are located at mesh nodes, the exponent of p can double. The effect of

this doubling will be considered at the end of this section,

We make the henristic assumption that (5.16) holds in each element,

with equality:
IHell12 = ¢ (5.17)
E E ‘

= Ckmex) [fa(2) G(za(m) m(2) PP 52D 4y

Assumptions (5.4), (5.7), (5.8), and (5.17) comprise our second

heuristic model of predicted error behavior. The resnlting estimates of
(h) (p) . . . .

{AE }, {AE }, and {AE] can be used in the refinement algorithm in

Section 5.3.
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In our éecond model, if the order in unrefined element E has never

been refined, then by (5.17) and (5.7), we estimate
P = (In(Egp) - 1a(gp) ) / 1n(4) - 1.

On the other hand, if the order in E has been refined, then if ; {m1,

e/ 4g = B (p/ (p-1))~2(= 1)

else if p > m-1,

e / & = (p/ (p-1)) 2(m 1)

-2(p-1)

Since the function (p/(p-1)) equals 1/4 at 2, and is monotone

decreasing with limit e'-2 as k goes to =, we decide whether to increase
our estimate of ;‘on the basis of (5.11), with PcyT © e‘z. In order for
our estimate of ; to be logically consistent, we restrict it to the

interval (0,pE].
As in Section 5.3, we estimate

xéh) =(p/w) i - (5.18)

If ; { ml1, we estimate

xép’ = g (-2 1a(h) +2 (=1)/p) / w'. (5.19)

Otherwise, we estimate

xép) = gp (2 (w1)/p) / w'. (5.20)
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In practice, we approxzimate §E by the squared error imdicator

IIIEIIlé (or lllglllé , |L|E|l|§ , Or eé) in formulae (5.18), (5.19),

(5.20), and the formulae for ;.

Suppose the exponent of p in (5.17) is doubled. Then ounr estimate

(h)
f KE

factor of 2 when p > m—1, and by a small factor when p < m1 and hE is

o is exactly as before, and our estimate of lép) changes by a

small. The main effect is to encourage order refinement when m is small

(b)

(p) is usually much smaller than kE » so the

and p > m—1, But then AE

practical effect on refinement behavior is slight. In general, the form

of (5.17) is more important than the values of the exponents.

5,5 Choosing the refinement cutoff

A simple choice for ACUT is

beor = C g

for some constant 0 < C < 1, where

A, = max{A_}.
E E E

If ACUT is too large, (5.2) may not hold. If lCUT is too small, we

may refine an element with small AE when it may be more efficient to
refine an element with large kE twice. We can avoid this situation by

letting A approximate the largest AE for a once-refined element.

CoT

This quantity can be estimated by the marginal efficiency of refinement

for element E after it has been refined once:
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It A, = (B

E E ° and the order in E has never been refined, we can estimate

~ 2
‘evr = (P / g ) g/ S

If AE = Xéh)and the order in E has been refined, then by (5.13) and

(5.12) (or (5.17) in our second model), we can estimate

~

~ =(p,*l) . (h)
ACUT = 4 E AE .
If AE = Aép), then in our first model, by (5.13) and (5.15), we can
estimate
e = 28P) (@112 7 (p 1) (W (Bot1) /W (B1) )
cor = e (Ogb E Pg Pg ,

and in our second model, by (5.17)-(5.20), we can estimate

EST = , (p)

aot = P B2 (pgt1) /o) 2EY) (W (B /W G ).

5.6 Drawbacks

(p)

The heuristic assumptions leading to our estimates of AE

may be
too crude to yield useful refinement information. We base an alternate

refinement algorithm solely on A(h) and ;:

E
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(k)

1. Find the unrefined element E with the largest AE .

. (h)
2. Determine ACUT 4 AE o

. . (h) .
3. For each unrefined element E with XE 2 ACUT :

a. If p > p, refine the mesh in E.
b. If p £ ;, refine the order in E.

4. Take Si+ to be the resulting finite element space.

1

If the order in element E is refined, ; is estimated by (5.11).
Then if &y and & behave similarly to |1le(-1II1Z and I1el1I] , »

tends to be one more than its (usunally) optimal value m-1. Conversely,

if §E << |||e(p—1)|l|; , then p tends to be less than m~1, The latter

situation arises most frequently when ks > kE on the sides of E, Thus,
in our current code, if ks 2 kE+1 on any three sides of E, or ks 2 kE+2
on any side of E, then the next time E is refined, the order is refinmed,

regardless of the size of S.

Lack of de-refinement penalizes early order refinement. For
example, suppose h  1/4 and kX > 3 are desired near the origin. If the

order is refined first, then k ) 3 everywhere (Figure 5-1).

The resulting finite element space may not satisfy (5.3), even if

the heuristic models of error behavior hold. For instance, if

20, (p)

E g ° it may still be more efficient to refine E in h if the

resulting decrease in EE is greater with mesh refinement than with order
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O [+ O [+ (o] O [+
I I I | |
I I | I | k=3 | k=3 |
I I I I |
| k= I k= | o 0 0
| | I | I
I | I | x=3 | x=3 |
| I | | |
O [+ [+ [+ o] (¢ [+
order refinement first
[+4 (o] o) O o O [s) [+]
I I | I I I
I I ] x=2 | x=2 | | x=2 | k=2 |
| I I I | |
I =2 l o} O o] o] [+ o
I I I I I I
| I | x=2 | x=2 | | k=3 | k=2 |
I I I I | I
(o] (o] (o] [+ o (o] o (o]

mesh refinement first

Figure 5-1: Early order refinement penalty

refinement, and if the other kE's are very small,

Rigorous models are preferable to the heuristic models used in this
chapter. A rigorous approach for one-dimensional problems is developed

in Babutka and Rheinboldt [7].

5.7 Expected error behavior
In this section, we model the asymptotic behavior of error with
respect to work for three problem classes consisting.of problems with:
1, smooth solutionms.
2, solutions with poipt singularities.

3. solutions with line singunlarities.
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We use the heuristic model from Sectiomn 5.3. We expect similar behavior

using the heuristic model from Section 5.4.

5.7.1 A smooth solution
Suppose u is smooth everywhere in £, and h(z) and p(z) are uniform.

By assumption (5.6),

and by assumption (5.4),

Minimizing ¢ while holding W fized, 2 p/h & — A 2/h W = 0 and

+

((C'/C) + 2 1n(h))E + A B/p W= 0 imply

-e—y/2

[

h

and

where
vy :=f + C'/C,

Thus, it is best to fix the mesh and only refine the order. Suppose
Clp) = AP , A > 1,

Since C'/C = 1n(A), then A e ! = A e-B—ln(A)

{1, so
E=(Ae )P
is exponentially decreasing in p. BRut W = pB e? is polynomial in p, so

if there exists A ( @ such that C(p) ¢ AP for sufficiently large p, then

¢ is expomentially decreasing with respect to V.
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5.7.2 A point singularity

Suppose u has an isolated singularity at a point ¢ in @, such that
near 6, u has 1+a derivatives in L2, and u is smooth aﬁay from o,
Suppose there are unrefined elements at levels 1 to L in the mesh for
SL' and at each level only the elements which touch the point o are

originally refined. Suppose p(z) uniformly equals L., Then

~ 2+2a .
EE = C(a) hE if E touches ¢

and

tg = Clp) 8527

if E does not touch o,

By the proof of (2.4), there are no more than a constant number of

elements at each level, so

¢ = 2 E°E
<G 1@ YL (2
<c w27k
and
¥6 2 i:1 o
= ¢, P,

2

If CI(L) < AL for some A ( 2 as L goes to », then £ is exponentially

decreasing with respect to W. Babutka and Dorr [2] make a similar
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conjecture, and under suitable assumptions, prove that convergence is

faster than polynomial.

5.7.3 A line singularity

Suppose u has a line singularity at a line o in &, such that near
6, u has l+a derivatives in L2, and u is smooth away from o¢. To fix
ideas, suppose p(z) is uniform, o traverses @ from top to bottom, and

there are elements at levels 1 to L in the mesh for S, , where at each

L

level the elements which touch the line o are present in SL . Then

C(a) hé+20 if E touches o

e

3

and

L]

242p
tE C(p) hE if E does not touch o.

There are at least 2L elements with level L touching o, so

£ ¢ e ol (271y242e

and

L
V> Cz(a) 2-.

Then
£ 2 Cila) W20
regardless of how p is chosen., Convergence cannot be faster thamn

polynomial, since the complexity of geometrically approximating o

asymptotically dominates the cost.



CHAPTER 6

Computational aspects

6.1 Introduction

In this chapter, we discuss some of the computational aspects of
the methods presented in Chapters 2-5. Since we have not yet
implemented all the procedures discussed, detailed operation counts are

omitted.

In Section 6.2, we consider the efficient assembly of the finite
element system (cf, Eisenstat and Schultz [18], Weiser, Eisenstat, and
Schultz [31]1). In Section 6.3, we investigate the complexity of sparse
direct elimination with nested-dissection-type ordering of the unknowns,
for the three classes of problems discussed in Section 5.7. The
operation counts and storage for the problems with singularities are
linear (optimal~order) in the number of elements. In Section 6.4, we

consider the efficient computation of the a posteriori error estimators.
¥e now outline the computational tasks to be performed.

There are four computational steps to perform for each finite

element space S in the sequence {Si}'

85
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1. Form the linear system A U = f, where

{BI] is the basis for S,

U(x,y) = 2 T UjBJ(x’Y)’

- E E _

Ary = } R A Apy = ag(By,Bp)
. E E _

£ = } £ £ £1 = (£,B)p .

After initializing A and f to zero, for each E,
a. Assemble XE and ?E, the element stiffness matrix and
right hand side for the basis {§I|E]' where {§I} is the

basis which would result if E had no irregular corners.

b. Obtain AE and fE from XE and ?E.'by changing variables

from {BI} to {BI}.
c. Add AF and £F to A and £.
2, Solve AU = £,
3. For each E, compute ”IE'“E , Ij_lglllE , IllelllE , 0T g .

4, Depending on the error indicators computed in Step 3, either

stop, or adaptively choose S ,» and go to Step 1.

i+1
Each integral f£ v(z,y) dx dy is approximated by

} G(E) ¥ G(E)

s=1 t=1 Ws wt V(xs:yt): (6.1)
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where (ws,xs) and (wt.yt) are the weights and points for the G(E)-point
Gauss-Legendre integration rules on [xE,xE+hE] and [yE,yE+hE]

respectively. Choices for G(E) are specified in Chapter 7.

6.2 Assembling the linear system

Consider Step 1.2 (Section 6). For simplicity, suppose
aE(v,w) = (a(x,y) v,w)E ’

the bilinear form for a weighted least squares problem, since

considerations for general aE('.') are almost identical.
Since {BIIE} is a subset of
E, , E .
{pi(x)pm(y) : i=1,...,kmax , m»=1,...,kmax },

sparse versions of the tensor—product assembly procedures in Eisenstat
and Schultz [18] and Weiser, Eisenstat, and Schultz [31] are

appropriate. If

"

§I pi(x)pm(y).

EJ pj(x)pngy).

then, depending on whether a(x,y) and f(x,y) are non-separable,

separable, or constant, KE and ?E can be computed using the formulae
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(a(x,y) BI’BJ)E =

} W (y)p (7)) I } . MR (xR (x> alxyy) 1,

(ax(x)ay(y) BI’BJ)E =

[) ¢ ey (xp (x> 8, ()1 [) | W (702, (70> & (y)1,
EpBpp = < Qw00 QL wep (y)p (7)) >,

(£(x,3),B))p = } e M (700 1 } L <wp (x)> fx,y) 1,

(fx(x)fy(y),BI)E =

f } . <wspi(xs)> fx(xs) 11 } ¢ <wtpm(yt)> fy(yt) 1,

~

1,8, = ¢ (} L W, (x ) (} VP (7)) O

The quantities in angle brackets (> can be precomputed independent of E.
The quantities in square brackets [] should be computed as intermediate

sums in each E. Since

~E ~E +E ~E ~E

Ay = AL mGon T AL Gom T AGLm (L) T AGLn) Gm)



89

only entries in XE with i { j and m { n should be computed explicitly.

Consider Step 1.b (Section 6). For simplicity, we discuss Step 1.b
only for element E in Figure 6-1, when kE is uniform, Other cases are

handled analogously.

0-—0-—0-————-0
I |
0-—0-—- I
I T EI I

0-—0-—0-———-C
[ . l
0-—0-—- I
I |
0-—0-—0-—-—-0

Figure 6-1: An element with one irregular corner

The {BI] nonzero in E have the values

p?(x)pE(y) i=1:oo-pkp i#z , m=1,...,k,
i m
re(xpt B () oLk
Suppose
£(E) _ X max(2,m) E
P (y) = L1 VoL pL(y). (6.2)

Since refinement is regular, the values {vm } can be precomputed

»L

independent of E, and AE and fE can be obtained from the formulae



90

E _!‘"E . .
A(i.m)(j,n) =93 AG,m (5,0 if2, j#2,
) R i=2, j#2
L "m,L “(i,L)(j,n) i=2, j#2,

E - 2
A, (i,m) i#2, j=2,

~E

k? P Vn,p | E L oL A0 (5,p 1 1720 32,

and

E e .
f(i,m) B f(i,m) i#2,

~E

2 L VoL fi, 2

The resulting computation is relatively expensive when,kE is small,
When a(x,y) is separable, fewer multiplies are required if Step 1.b is

omitted, and AE and fE are formed directly.

6.3 Solving the linear system

Consider Step 2 (Section 6), solving the linear system AU = f, In
this section, we investigate the complexity of sparse direct elimination
with nested—~dissection-type ordering of the unknowns for the three

classes of problems discussed in discussed in Section §5.7.

6.3.1 A smooth solution
As in Section 5.7, suppose U is smooth everywhere in Q. Suppose k
and h are uwniform, and there are N := h_z'elements. There are

(k-4) (k—-3)/2 element basis functions nonzero in each E. In sparse
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Gaussian elimination, if the element basis functions are ordered first,
their elimination induces no fill-in (i.e., they are statically

condensed [28]). This initial elimination requires = N((k-4)(k—3)/2)3/6

N((k—4)(k—3)/2)2/2 storage. Although this cost

e

multiplies and
dominates when k >> N, in solving problems to usmal accuracy,
elimination of the element basis functions is relatively inexpensive.
There are = (2k-3)N remaining basis functions (k-2 side basis functions

associated with each distinct element side, and 1 vertex basis function

associated with each distinct vertex).

Consider a nested dissection ordering of the side and vertex basis
functions, in conjunction with sparse elimination of A (e.g., George and

Liu [22]). A sample nested dissection ordering is shown in Figure 6-2.

ﬁ;ﬁ*u o0 O (% [ O 8\
T 1T Pyly b 1ol N
) o 0 O o0 o o0
If el s l21 |l
O [+ o [+ (=) o0—=0 o0
10 1 T T N O I O O B B
© (o] O O [+ o——0 o100
PN L b/ 1 1Al
T (~0“"G O T O O 0:)—?
o+ g——— 00— 0— 1 0~ 0—=—0——— 010
I tal 11 s 1l
o—t=—0——=0~—— 00— O~~~ 0~ 0010
1 1 N T O A O R I
o+ o———0-—— 01T 0T~ 0———0~~—0——10
I\ 1 TAIAL 1 LU
\g» O O o——0 o s O 9)

Figure 6-2: Nested dissection ordering with a smooth solution

The unknowns are ordered according to the groups numbered 1-6. Groups
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1-4 correspond to basis functions on uniform submeshes with N/4
elements: in each group the unknowns are recursively ordered using
nested dissection on the submesh. Since group 5 separates the unknowns
in the first four groups, the number of multiplies to eliminate the
unknowns in groups 1-5 is, to dominant-order terms, bounded by M(N),

where
M(N) = 4 MON/4) + ¢ (ent/%)3,

The rightmost term is a bound on the number of multiplies needed to
densely eliminate the unknowns in group 5. The solution to this
recurrence relation is 0(k3N3I2) (e.g., Rose and Whitten [26], Theorem
1), as is the operation count to eliminate the remaining unknowns in
group 6. Thus, the expected operation count, neglecting static

. . 3,3/2 - .
condensation cost, is O(k ). Similarly, the expected storage is

O(kleog(kzN)).

6.3.2 A point singularity

As in Section 5.7, suppose u has an isolated singularity at thg
point o=(0,0). Suppose there are unrefined elements at levels 1 to L in
the mesh, and at each level only the elements which touch 6 are present.

‘Suppose k is uniform.

There are N = 3L unrefined elements in the mesh. After static

" condensation, = (2k-3)N side and vertex basis functions remain.

Consider a recursive ordering of the side and vertex basis
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functions, in conjunction with sparse elimination of A. A sample

ordering is shown in Figure 6-3.

(o—-3 o o)
T | RN
I I I
I I I
I I I
I I I
I 2 I
I I I
O o ‘I' ‘I’
i )
(Ir | I I
I 1] I I
[0} O O o I
[ . I I
0—0~0———0 | I
0oo-o | I I
\0 0~0———0———=—"X0 0

Figure 6-3: Recursive ordering with a point singularity
The unknowns are ordered accordfng to the groups numbered 1-3. Group 1
corresponds to basis functions on a submesh with N-3 elements: the
unknowns in group 1 are recursively ordered on the submesh. The number
of multiplies to eliminate the unknowns in groups 1 and 2 is, to

dominant—order terms, bounded by M(N), where

M(N) = M(N-3) + C K.

The rightmost term is a bound on the number of multiplies needed to
densely eliminate the unknowns in group 2. The solution to this
recurrence relation is O(ksN), and the operation count to eliminate the

remaining unknowns in group 3 is 0(k3). Thus, the expected operation
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connt, neglecting static condensation cost, is O(ksN). Similarly, the

expected storage is O(kzN).

6.3.3 A line singularity

A As in Section 5.7, suppose u has a lime singularity along the line
o = {(0,y)}. Suppose there are unrefined elements at levels 1 to L in
the mesh, where at each level the elements which touch the line o are

present. Suppose k is uniform.

There are N = 3(2L) unrefined elements in the mesh. After static

condensation, = (2k-3)N side and vertex basis functions remain.

Consider a nested-dissection—type ordering of the side and vertex
basis functions, in conjunction with sparse elimination of A, A Eample
ordering is shown in Figure 6-4. The unknowns are ordered according to
the groups numbered 1-4., Groups 1 and 2 correspond to basis functions
on submeshes with (N-2)/2 elements: in each group the unknowns are
recursively ordered on the submesh. Since group 3 separates the
unknowns in the first two groups, the number of multiplies to eliminate
the unknowns in groups 1-3 is, to dominant—order terms, bounded by M(N),

where
MON) = 2 M(N/2) + € (klogN)>.

The rightmost term is a bound on the number of multiplies needed to
densely eliminate the unknowns in group 3. The solution to this

recurrence relation is O(ksN) (e.g., Rose and Whitten [26]), and the
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Figure 6-4: Nested—-dissection—type ordering with a line singularity
operation count to eliminate the remaining unknowns in group 4 is
0((k10gN)3). Thus, the expected operation count, neglecting static
condensation cost, is O(ksN). Similarly, the expected storage is

0(x2N) .

6.3.4 Discussion

The operation counts and storage for the problems with
singularities are optimal-order in the number of elements N. Ve expect
similar operation counts for more general problems with point or line
singularities. The optimality for the line singularity problem depends

. X N1/3--e

on the fact that we can systematically find sets of O(N )} elements
(¢ > 0) which separate the remaining elements into two or more disjoint

sets of equal size.
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We do not know an efficient (i.e., O(N)), automatic, way of finding
"orderings such as those presented. See George and Liu [22], Sections

7.2 and 8.2, for work in this direction.

In the example problems, the orderings of the interior unknowns
correspond to the reverse of the order in which the edges associated
with the unknowns are created. This correspondence does not always

hold. (For example, suppose u has a point singularity at (1/2,0).)

6.4 Computing the error indicators
Consider Step 3 (Section 6), the computation of the error

indicators |||e|||E , IllglllE , |l|e|l|E » OT Ep o Recall

§E(V) t= (f.v)E + ([a&U/ﬁn],v)aE - aE(U.v).

First, suppose E has no irregular corners. Then the possible quantities

to be computed in Step 3 are

~

1. {aE(BI’BJ)]' where {BI] is the basis for SE which would

result if E had no irregular corners. These quantities can

be computed as in Step 1.a.

I E

as in Step 1l.a.

2. {(f’EI)E : B_in S -SE]. These quantities can be computed

3. {aE(U,ﬁI) : §I in §E-S }. First, convert the representation

Uyl = } 5 Uy Bo(x,y)
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into the form
U(x:y)lE = 2 J UJ- BI(X.Y)-

For example, for element E in Figure 6-1, when k is uniform,

if
LERFED IS T RS ACR
Y a Vom 20 2E B,
then
ﬁ(i,m) - U(i,m) » 142,
2 LL(w “Loa Yy v P72
wheré
Lim) = <m , m# 2,
1 ,m=2,
Other cases are handled analogously.
Then, for |||;“|E , compute {aE(U,ﬁI)} with a matrix-vector

multiply. For IllEIlIE or Ill;llIE » compute {U(xs,yt)} by

the formula

U(xs'yt) = 2 m pm(yt) [ 2 i pi(xs) U(i.m) Y

(6.3)
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and then use the formula
(a(x,y) U'BJ)E = } ¢ <wtpn(yt)>

[), <wp,(x)> [ Uz ,y)alz,y,) 1 1.

4. {<[200/3n]1,B>..}. In a preprocessing step, compute and

I'9E

store the coefficients of the one—~dimensional polynomials

aU/anls on each element side. Then, for example, on the left

side of element E, compute {aaUYan(x;,yt)lE} and

{aaﬂlan(xE.yt

part of the left side of E. Form

)IE,}. where element E’, if it exists, shares

o~

<[ad0/001,Bp op g 60y =

+
} . W (3,)/2>[200/0n(xg,y ) | = ad0/0n(xp,y,) 5,1

for each §I = pl(x)pm(y). Other cases are handled

*
analogously,

5. 1EINZ , 1llell12 ) or 11151112 . Suppose the system for

*
The storage required can be reduced by intermixing the preprocessing

step with error indicator computation.
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the coefficients of EE is A v = f. Compute a lower

triangular matrizx L such that L LT = A, and solve L y = £,

(For L) and e, , L is independent of hE +) Then compute

E
vy = HIEI: .

6. ||f-LU||é » for g, . First compute {U(xs,yt)} as in (6.3),

E

and then compute

2 ~ 2
||f—LU||E = 2 ot (alx_,y)U(x_,y) - £lx_,y))".

7. I[aaU/an]—aaU/anlgE , for g - Preprocess an}anls as in the

computation of {([aaU/an],EI)aE}. Then, for example, on the
left side of E, compute
| [23V/3n]-280/n|2 =
dE(left)
Y, /4> (a00/0n(xp,y ) g + 200 an(xgy ) 0
t.t E’’t" "8E E’”t" "9E*" °

Now suppose E has an irregular corner. For simplicity, we omly
consider element E in Figure 6-1, when k and k> k are uniform.. Other

cases are handled analogously. Suppose

max(2,m) £(E)

E -
(¥ =2 pa v.pPp (7).

Since refinement is regular, the values {wm P} can be precomputed

>

independent of E, and the right hand side components have values

~

fi,m) = FEB(i,m)’
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when B(i,m) is in SE--SE and i # 2, and
m P i~ -~
fim = } P=k+1 "m,P | §L=1 vp,L Fg(B(;,1)) ]

when k ( m £ k and i = 2, The rest of the computations are unchanged.



CHAPTER 7

Numerical results

7.1 Introduction

In this chapter, we present numerical results obtained using
prototyf; codes written in FORTRAN, which implement some of the methods
discussed in Chapters 2 — 5. The problem set, containing one problem
from each of the three classes considered in Section 5.7, is specified
. in Section 7.2. In Section 7.3; we. ptesent the error behavior, which is
in fair accord with Section 5.7. In Section 7.4, we present the error
estimator behavior: the error estimators are usually accurate to within
a factor of two. In some cases, some of the estimators appear to
converge to the norm of the true error. In Section 7.5, we present more

numerical evidence of error estimator convergence.

7.2 The problem set
Prototype codes were writtem in FORTRAN, implementing some of the
methods discussed in Chapters 2 — 5. Numerical tests were conducted to

investigate the behavior of the methods.

The test problem set consisted of three Poisson problems with

101
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Dirichlet boundary conditionms,
- Diu - Diu = f(x,y) in the interior of Q,
u(x,y) = g(x,y) on 30,

with solutions specified in Table 7-1.

|| Problem || Solution class || Solution M
I I I I
I I 1 I
1 Il smooth Il wiz,y) = cos(ex+xy) 1
I I I I
I I I I
I 1l I 12 I
i 2 Il point Il w(x,y) = ¢ sin(0/2) , 1
1 1 I I
I Il singularity Il x=1r cos(®) , y=r sin(0) 1
i il 1 I
I i I I
I I I 1
I 3 Il 1ine H u(z,y) =< 0 t < -1/2 I
N I I : I
I Il singularity I sin(nt) =-1/2 < t < 1/2 ||
I 1 I I
Il I I 1 1/2 <t , I
Il I I I
I I Il t = 5z-y-1 1
I I I I

Table 7—~1: Test problems

The solution to Problem 1 is in Bk(ﬂ) for all k. The solution to
Problem 2 is the fundamental eigenfunction for a crack problem with

/2—8(9) for any ¢ > 0, but not

interior angle 2n; this function is in H3
in H3/2(Q). The solution to Problem 3 is a smeared shock wave with

shock-width 1/5 in x; this function is in HZ(Q), but not in Hz+e(9) for



any ¢ > 0.
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Ve tested the seven refinement methods specified in Table 7-2. All

adaptive sequences of finite element spaces started out with 2X2 meshes.

The adaptive sequences for methods + and X started out with kE = 2,

¥e used three heuristic refinement procedures, based on the

formulae in Chapter 5.

33

3]
higher than S,

H Methéd H by H kp
” U H wniform (1/2,...,1/32) H =2
II K ] =1/2 I} adaptive (Section 5.4)
I: 2 !E adaptive (Section 5.3) I‘ =2
== 3 :I adaptive (Section 5.3) II =3
:I 4 II adaptive (Section 5.3) EI = 4
:: + I: adaptive =I adaptive (Section 5.6)
:: X :: adaptive :, adaptive (Section 5.4)

Table 7-2: Refinement methods

In the "residuals and jumps" procedure, we set tE =g

EST

In the "true error” procedure, we set

|||e|||é . In the "approximate error” procedure, we set

Illglllé , with S composed of piecewise polynomials one order

2
2E °*

For simplicity, we set xCUT = Xi/2. To avoid ill-conditioned linear

systems, we restricted kE £1.

on a DEC-System 2060 computer.

Our tests were rum in single precision
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G(E)-point Gauss-Legendre quadrature rules (6.1) were used to

approximate integrals in each element E. In the original assémbly

phase, G(E) kmaxE , where

kmax max{kE, ¢+ E* is in N(E)}.

g -
In the error indicator phase, G(E) = kmaxE+1. In the evaluation of
|||e|||E, G(E) = kmaxE+3° With these values, for problems with smooth

solutions, the errors due to numerical quadrature are asymptotically

negligible (e.g., Ciarlet [17], Section 4.1).

7.3 Error behavior

In this section, the resulting errors for the adaptive sequences of
finite element spaces are depicted on loglo—log10 scales, The
x-coordinate of gach data point ié the number of nonzeroes in the
stiffness matrix‘, and the y-coordinate is I1lell]l. Since the true work
generally grows faster in k than the number of nonzeroes, the measure of

work is biased in favor of high—order methods.

Figure 7-1 presents the errors due to applying the "true error”

*
Our prototype codes should be made more efficient before computer

time is used as the measure of work.
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procedure to Problem 1. Since u(x,y) is smooth, nonuniform mesh
refinement does not improve the asymptotic convergence rate. The slopes
of the lines correspond to O(hk-l) error and O(h—2k4) work. Since k
increases for methods K, +, and X, these methods achieve faster than
polynomial convergence. Methods + and X perform some initial mesh
rfinement (see Figure 7-2, with kE labelled in each element), so they

are somewhat less efficient than method K.

Figures 7-3 and 7-4 present the errors due to applying the
"approximate error” and "residuals and jumps” procedures to Problem 1.

The errors are similar to the ones shown in Figure 7-1.

Fign;e 7-5 presents the errors due to applying the "true error”
procedure to Problem 2., The slope of the line for method U corresponds
to an O(hllz) convergence rate and an O(hnz) work count. Method K has
almost the same line, with slope corresponding to an O(k—l) convergence

3
rate and an 0(k4) vork count. The slopes of the lines for methods 2, 3,

3
With the work count proportional to the number of unknowns, method K
would appear twice as efficient as method U (see [11]). With a more

realistic work count, method K would asymptotically be the least

efficient method considered.
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and 4 are the same as the slopes for the same methods in Figure 7-1.
Local mesh refinement, in effect, transforms variables so the problem
looks like it has a smooth solution on a uniform mesh. Methods + and X
are fairly efficient in all cases, refining the mesh near the
singularity, and refining the order where the solution is smooth (see

Figure 7-6).

Figures 7-7 and 7-8 present the errors due to applying the
"approximate error” and "residuals and jumps"” procedures to Problem 2.

The errors are similar to the ones shown in Figure 7-5.

Figure 7-9 presents the errors due to applying the "true error”
procedure to Problem 3. The slope of the line for method U corresponds
to an O0(h) convergence rate and an O(h_z) work count. The line for
method K appears to level out, reflecting an 0(k4) work count and slow
convergence in k. The slope of the line for method 2 reflects an

/

improving (X N_l 2) convergence rate and an O(N) work count, where N is
the number of elements. At the modest accuracies required, the mesh is
refined not only along the line singularities at the edges of the
boundary layer, but in the boundary layer as well (see Figure 7-10). Ve
expect the slope of the line for method 2 to approach -1 asymptotically,
reflecting an O(N-l) convergence rate. The slopes of the limes for

L,

methods 3, 4, +, and X reflect convergence rates tending toward O(N
Figure 7-11 depicts a sample grid for method +. Note that the shape of

the boundary layer camnnot be discerned from the grid.
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Figures 7-12 and 7-13 present the errors due to applying the
"approximate error” and "residuals and jumps" procedures to Problem 3.

The errors are similar to the ones shown in Figure 7-9.

In this test, methods + and X appear to be the most robust, since
they are fairly efficient for all three problems, regardless of whether
the errors are large or small. Each of the other methods dqes poorly
for some problems in some cases. Table 7-3 summarizes the observed

efficiency a, where

I1lelll = (the number of nonzeroes) .

:} Method =: Problem 1 ‘I Problem 2 I{ Problem 3 I‘
i v I 1/2 i 1/4 Al < 172 I
1 I I || 1
Il x TV 1/4 I = 172 1
1 ] i 1 1
Io2 1 1/2 I 1/2 o> 172 1
1 Il- 1 | |—— I
I3 1 1 1 1 I = 1 1
I I I I-— 1
I 4 1 3/2 1 3/2 I = 1 1
| I I I I
I+ I 072 Il /2 I = 1 I
I I | | |— I
il x I x1v/2 Il /2 Il = 1 I
I I I 1 I

Table 7-3: Efficiency summary

7.4 Error estimator behavior
Figures 7-14 — 7-19 depict the relative errors E and p in the error

estimators for the tests run using the "approximate error” and .
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"residuals and jumps” procedures respectively.

In the "approximate error’” procedure, the error is usually

estimated within a factor of two (~.5 ¢ ; £ 1), and always

; appears to converge to zero in methods U and 2 for Problem 1, and in
methods 2 and 3 for Problem 2 (see Section 7.5). For Problem 1, p
varies somewhat erratically in methods + and X, especially when kE is

large. This may be partly due to ill-conditioning.

In the "residunals and jumps"” procedure, the error is always

estimated within a factor of two. In particular, in method 3,

~.25 ¢ p £ .20,

and p appears to converge to zero. In methods + and X, ] varies more
smoothly than ;, Thus, in this test, the "residuals and jumps”
procedure appears to be slightly more robust than the "approximate

error” procedure.

7.5 Error estimator comvergence

As further evidence of apparent error estimator convergence, we now
present the behavior of the four error estimators |llelll, ILIEIlI.
lllglll, and g, with relative errors_;, P ;, and p respectively, for a
sample variable—coefficient problem with a smooth solution. k and

h = 1/n are uniform. S contains piecewise polynomials one order higher -
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than S, Ve have observed similar error estimator behavior for other

problems with smooth solutions.

Table 7-4 depicts the relative errors in the error estimators for

the Dirichlet problem
- D (e*D u) - D (e*¥D u) + o/ (1+x+y) = f(x,y)
b4 x y y
in the interior of &,

u(x,y) = 0 on 39,

xy

where f(x,y) is chosen so that u(xz,y) = e’ sin(nx) sin(ny).

In Table 7-4, the error estimators are always within a factor of
two of IHlelll. Nome of the error estimators converge td IHelll with x
increasing and h fixed, bﬁt some appear to converge with h decreasing
and k fixed. Illelll and |l|§|l| appear to converge when k < 4.
|l|:|l| appears to converge when k < 4, but does not converge when
k = 4, The convergence rates are not clear. When k = 2 or 3, g behaves

like a constant times [llelll.
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Error estimator behavior

Table 7-4:
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Figure 7-1: Problem 1 - true error
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Figure 7-2: Sample grid for problem 1 (method +, residuals and jumps)
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Figure 7-3: Problem 1 - approximate error
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Figure 7-4: Problem 1 - residuals and jumps
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Figure 7-5: Problem 2 - true error
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Figure 7-6: Sample grid for problem 2 (method +, residuals and jumps)
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Figure 7-7: Problem 2 — approximate error
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Figure 7-8: Problem 2 — residuals and jumps
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Figure 7-9: Problem 3 — true error
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Figure 7-10: Sample grid for problem 3 (method 2, residuals and jumps)
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Figure 7—-11: Sample grid for problem 3 (method +, residuals and jumps)
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Figure 7-12: Problem 3 - approximate error
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Figure 7-13: Problem 3 - residuals and jumps
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Figure 7-14: Problem 1 - approximate error
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Figure 7-15: Problem 1 - residuals and jumps
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Figure 7-16: Problem 2 - approximate error
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Figure 7-17: Problem 2 — residuals and jumps
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Figure 7-18: Problem 3 - approximate error
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Figure 7-19: Problem 3 - residuals and jumps
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