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Abstract

In Valiant’s theory of arithmetic complexity, the following question occupies
a central position: Given an integer n, what is the minimal m such that the
permanent of an n X n matrix is the projection of the determinant of an m x m
matrix.

The lower bound of m > n is easy to see. The only nontrivial lower bound
known previously is due to von zur Gathen: m > |\/8/7 - n]. In this paper we
give two proofs of the following lower bound m > |/2- n). The first proof is
purely combinatorial, and the second one is algebro-geometric. As a consequence
of the second proof we obtain a generalization of a classic theorem due to Marcus
and Minc.

1 Introduction

It is notorious that in computational complexity theory, lower bounds are hard to prove. We
have very few hard-core separation results of complexity classes other than the classic space
and time hierarchy theorems [HLS] and AC® # NC?! [FFS]. In the vast terrain between
NC! and P#P, there is convincing evidence but no hard proof that any of the complexity
classes are distinct.

It is into this atmosphere, came the refreshing algebraic formulation by Valiant [V1, V2,
V3] of analogues of many famous Boolean conjectures such as P # NP.

In particular, the determinant and permanent problem embodies the central question
of separation of complexity classes in Valiant’s theory. It was hoped that these algebraic
formulations might help to place the hard complexity problems in a more structured setting
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with powerful algebraic tools available to tackle them.
Let F be any field and X = (r;;) be an n X n matrix, where z;;,1 < 4,7 < n, are
algebraically independent indeterminates over the field F.

Definition 1.1
detX = Z(—l)aign(a)zlal-'m:ﬂ «++Znon, (1)
o

perX = }: 21017202 - - - Tnon (2)
o

where o runs through all permutations on n letters, and sign(o) denotes the sign of the
permutation o.

Despite the similarity in their definition, the determinant and the permanent are exceed-
ingly different in their apparant computational complexity. For the determinant Gaussian
elimination affords a fast algorithm, while no sub-exponential time algorithm is known (nor
is it expected to exist) to compute the permanent. Moreover, Valiant proved that the
permanent function is #P-complete for any field F' of characteristic not equal to 2.

Definition 1.2 A polynomial f(z1,...,2,) € F[z1,...,2,] 18 called the projection of a
polynomial g(y1,...,ym) 4f there exists a mapping ¢ : {yj|]1 < j < m} — {z]1 < i <
n}UF, such that f(z1,...,2,) = g(é(¥1)s---, b (ym))- !

Projection as a reducibility among low level complexity classes is discussed extensively
in [V2][V3]. Valiant proved that determinant is “universal” with respect to formula size
under projection, i.e., every function, given by a formula, is the projection of a determinant
of size polynomial in the size of the given formula. Let p(n) be the minimal m such that
an n X n permanent is the projection of an m x m determinant. The determinant and
permanent problem is to determine p(n). Valiant’s anologue of P # NP will follow if one
can show a super exponential-polylog lower bound for p(n). A super polynomial lower
bound will separate NC! from P#F. On the other hand, a polynomial upper bound on
p(n) will collapse (non-uniform) NC? and P#F.

Valiant proved an exponential upper bound for p(n). The only trivial lower bound is
p(n) > n. In pursuit of non-trivial lower bound, von zur Gathen [G] has made a first step.
He proved

Theorem 1.3 p(n) > |/8/7-n| ~ 1.069n.

1We view the equality as that of the ring F[z,...,2,]. If the field F is infinite, then this is the same as
functional equality.




Furthermore he initiated an algebraic geometry approach that potentially may yield
much more. What relationship exists between the twin-looking determinant and permanent
functions has been pursued by many people from Pélya [P] on. Aside from the von zur
Gathen result cited above, there is a classic result due to Marcus and Minc [MM].

Theorem 1.4 If ch.F = 0, then there are no linear forms fi in the indeterminates Tij
(1<14,5,k,l < n) such that per(z;;) = det(fu).

In this paper, we prove the following generalization of the Marcus-Minc Theorem.

Theorem 1.5 For any infinite field of characteristic not equal to 2, there are no affine
linear functions 2 fi in the indeterminates z;; (1 <i,j < nand1 < k1< m) such that
per(z;;) = det(fi1), provided m < |\/2n].

As an immediate corollary we have the lower bound on projections of determinant to
permanent.

Corollary 1.6
p(n) > |V2n).

In the next section we give a purely combinatorial proof of a result which is asymp-
totically as strong as the one stated in the corollary. Readers may find it interesting as it
reveals certain properties of the problem not exposed in the later sections with the algebraic
geometry approach.

Starting from section 3 the treatment takes an algebraic flavor. We use argument from
algebraic geometry to establish the claimed lower bound. ‘

A general reference on permanents can be found in [M].

2 A Combinatorial Proof

Suppose X = (z;;) is an n X n matrix, where z;;,1 < 4,5 < n, are indeterminates, over any
field F of characteristic not equal to 2. We denote by X; (X’) the sth (jth) row (column)
of X. In this section we prove the following

Theorem 2.1

p(n) > Von - O(ns/ 4

2Linear forms are homogeneous linear polynomials and affine linear functions are linear polynomials not

neccessarily homogeneous.




Proof Let m < /2n — C - n3/4 for some constant C, and let Y be any m X m matrix
whose entries are elements from F or indeterminates z;;. Suppose perX = detY.

Let no be the number of entries in Y that are from F, n; be the number of indeterminates
z;j that appear exactly once in Y, and ny be the number of z;; that appear at least twice
inY. '

Clearly, every z;; must appear at least once in Y, since as a polynomial in this z;; over
the ring R = F[X — {z;;}] the permanent perX has degree 1, and hence not in R.

It follows that

no,n1,ng > 0, (3)
ny+ne = nz, (4)
no+n1+2n; < m? < 2n?-2007/4, (5)

Thus ng + ng < m? — n? and ny > ny — ng > 2n2 — m? > 2Cn"/4,
The n; indeterminates x;; that appear exactly once in Y will be called singles. Our
proof will focus on these singles. We first prove a simple lemma.

Lemma 2.2 Let V be a row or a column of Y and S(V) be the set of all singles on V.
Then either there ezists an 1,1 < ¢ < n, such that S(V) C X; or there exists a j,1 < 7 < n,
such that S(V) C X7,

Proof Suppose z;; and x; are 2 singles on asamerow of Y. If ¢ # k and 5 # [, then the
coefficient of the term z;jzi of perX (as a polynomial over the ring R = F[X — {zij,zu}])
is non zero. However, since they occur as singles in Y on a same row, the coefficient of
Z;jzr in detY is zero. This contradiction shows that either ¢ =k or j =1I.

Now suppose z4 is another single on the same row of Y. Then we claim either: =k = s
or j =1 =1t. Othewise,say ¢t = k and [ = ¢, then 5 # ! and k # s, thus j # t and ¢ # s,
a contradiction. Therefore it follows by induction that all the singles on a single row of Y
must belong to a single row or a single column of X.

The other case is completely symmetric. QED

For any row or column V of Y with at least 2 singles, we may associate a unique row X;
or a unique column X’ (but not both) such that S(V) C X; or S(V) C X’/. We say that
the row X; or column X’ claims V.

Certain singles may be 2solated in the sense that on the row and the column of ¥ in
which the single appears there are no other singles. We wish to exclude these singles, as
they do not help in the proof. Fortunately the number of these isolated singles is no more
than m, and thus the number of non-tsolated singles is at least 1.5Cn7/4,
We now define the notion of a single’s club.



For a non-isolated single z, i.e., there is at least one other single either on the the row
Vz of Y where x appears, or on the column V* of Y where x appears, we associate z with a
unique row or a unique column of X as follows: In the first case, the row V; is claimed by
a unique row or column V of X (S(V;) C V), we associate z with V; if the first case does
not apply, then V* is claimed by a unique row or a unique column V' of X (S(V;) C V'),
and we associate  with V’. We emphasize that in either cases, z is associated either to a
row X; or to a column X7 in X, but not both; furthermore, z belongs to the associated row
or column in X.

Define the single’s club of X; to be

M; = {z € Xi|z is a single associated with X;}.

The single’s club of X is defined analogously. Clearly

M; c Uu (6)
v claimed by Xx;

and similarly for M/, »
Furthermore I7, | M;| + 7_,|M/]| is exactly the number of non-isolated singles, which
is at least 1.5Cn7/4,
We claim that “quite many” M;, M”’s are relatively “big” in size. More specifically,
Proposition 1:

X, X7 1 [M;| > C/2-n¥/4 | M| > C/2- n3/4)| > C/2 - n3/4. 7)
Suppose otherwise. Since each |M;|,|M?| is at most n,
Zi| M| + S| M?| < C/2-23% . n42n-C/2 - n3/t = 1.50n7/4.

" A contradiction.

We next show that “quite a few” rows and columns of X, whose single’s clubs have been
included above, claim “very few” rows and columns in V.

Proposition 2:

X, X7+ M| 2 C/2n%4, M| > C /2034,
X;, X’ claim at most n'/4 rows and columns each }| > 4,/n. (8)
For the proof, suppose this is not the case. Then at least C/2-n%/4—4,/n many X;, X7’s,

whose singles’s club having at least C/2 - n3/4 members, each claim more than n/4 rows
and columns in Y. Hence the total number of rows and columns in Y claimed is more than

(C/2-n®4 - 4\/n) - n1/t =C/2-n - o(n) > 2m,




If 7 = s, then since they are all singles, s # ¢ and j # ¢, thus v = ¢ by Lemma 2.2. But
then z;, cannot be a single. Hence j # s, and therefore by Lemma 2.2 again, v = ¢. Thus
v # 1 and j = t. But then z;; cannot be a single.

This completes the proof of Theorem 2.1.

We note the following combinatorial fact:

. . . (11
Theorem 2.3 If A is an n X n 0-1 matriz with no 2 x 2 submatriz ( 1 1), then the
number of 1’s in A is O(n3/2).

For its proof, we view the matrix A as a representation of a certain graph on n nodes as
follows: An edge exists between node ¢ and j iff on some row there are 1’s at position ¢ and
J. Thus, the condition on the forbidden configuration implies that the graph is a subgraph
of K, which is an edge disjoint union of cliques; and the number of 1’s in A is the sum of
the number of nodes of these cliques. It follows that number of 1’s in A is at most o(n?/?),

Using the above result (with some care), one can establish the following theorem along
the above proof of Theorem 2.1:

Theorem 2.4 If perX = detY, where X isnx n and Y 1s m X m, and assume there are
Q(n?) singles in Y, then m = Q(n3/2),

3 An Algebraic Geometry Approach
In this section we prove:

Theorem 3.1 For any infinite field of characteristic not equal to 2, there are no affine
linear functions fu in the indeterminates z;; (1 < i,j <nandl <Lk, < m)such that

per(zi;) = det(fu), provided m < |\/2n].

The proof consists of two steps. First a general condition in terms of intersection of
algebraic varieties is established which implies perX # detY, where Y is any matrix with
linear functions as entries. This condition was first discovered by von zur Gathen. Then
we show that if m < |/2n], the condition is satisfied.

3.1 Intersection of Algebraic Varieties

We assume some familiarity with basic notions from algebra and algebraic geometry [AM]
[H]. Without loss of generality, we will assume our ground field F is algebraically closed.
We will be concerned with permanental and determinantal varieties. Let X be an n X n
matrix (z;j;).




Definition 3.2

P, = {Pe F“zlperX = 0}, (11)
D, = {Pe€F"|detX =0}
= {PeFY|rank of X <n—1}. (12)

Definition 3.3

SP, = {P€P|s2perX =0,¥i,j}, (13)
O0xij

SD, = {PeD,| 4 detX = 0,Vi,j}
0z;y

= {P € Dp|rank of X < n—2}. (14)

Given an n X n matrix X = (z;;), and an m X m matrix Y = (fy), where fi; are affine
linear functions, the following criterion is stated in [G] by von zur Gathen:

Theorem 3.4 Let IT be the image of F™® under the affine linear map defined by fi, which
18 an affine subspace in Fm, If T NSD,, #0, then perX # detY .

We give a proof outline.

e P, and D,, are algebraic varieties of dimP, = dimD, = n? — 1.

This is due to the fact that both permanent and determinant are irreducible polynomials
(Gaussian Lemma).
® (Due to von zur Gathen) Assume n > 3. SP, and SD,, are algebraic sets with dimensions
dimSP, < n? — 5 and dimSD, = n? — 4, respectively. Furthermore, SD,, is an algebraic
(irreducible) variety.

The exact dimension of SP, is unknown. Intuitively, the dimension of SD,, can be
proved by considering a generic instance of a matrix of rank deficient by 2, thus some two
rows are linear combinations of the rest. The upper bound of n2 — 4 on SP, can be obtained
easily. One improves the bound to n?2—5 by exhibiting a nontrivial polynomial that vanishes
on SP,.

e In an n dimensional affine space, if two algebraic varieties V; and V; intersect, then
dim(Vi NV3) > dimV; + dimV, — m.

e If perX = detY, then the dimension of the affine space IT is n2. This is equivalent to
saying that the affine linear map defined by fu from F™* to F™ is of full rank.

To see this, suppose otherwise. Then there is an invertible linear transformation T from
F* to F™* such that per T(X) = det(gr), where gi; are some new affine linear functions



on z;; and, say, z1; never occurs in the gy’s. Now differentiate both sides with respect to
Z11, and set the matrix on the left hand side to be

00 ... 0
01 ... 1
01 ... 1
We may do so since T is invertible. Now the derivative is zero on the right hand side,
this implies that the coefficient of z;; in the (1,1) position of TX is zero. Similarly one
can show that all entries in TX have a zero coefficient for z;;. This contradicts T being
invertible.
e Finally one realizes that if perX = det(fx), and IT N SD,, # 0, then SP, contains a
subvariety isomorphic to ITNS Dy, which has dimension at least n2+(m?—4) —m? = n?—4.

A contradiction.
This follows from the chain-rule of differentiation.

3.2 Rank Deficiency

We finish the proof of Theorem 3.1. The intuitive idea is that when the size of the “deter-
minantal matrix” Y is not too large relative to the number of variables, then there should
be enough freedom to assign the variables in X so that the matrix Y = (fx(zi;)) is rank
deficient by two.

From now on we will view X both as a matrix and as a column vector x = (xk)Z?__l. Let
Y = (f,-j(x));?jd, where f;;(x) = 2’,:11 cﬁ-xk - b;;, and cfj,b,-j € F. When convenient, we
will also view Y as an m? dimensional vector y. We assume perX = detY .

For any xg, Y (xo) determines a linear transformation from F™ to F™. We wish to find
an xg € F° such that the rank of Y (xg) is no more than m — 2. Equivalently, we can show
that the kernel of Y (xg) has dimension at least 2.

More generally, pick some s rows of Y, s > 2, and the submatrix determines a linear
transformation from F™ to F*, for any point xg € F"*. We wish to find some s rows and
an Xg such that the kernel of the linear transformation has dimension at least m — s+ 2. If
so, by the rank-nullity theorem, we are done.

Define

1 2 n2
1 2 n

¢ céH ... CF b;
12 12 12 12 .

C;= . . . ) ,B; = . , 1<t <m,

1 2 n? .

Cim Cim -+ Chm bim




C, B,
and C = . |,B= . | -Webavey=C-x- B.

The above discussion on dimensions of kernel translates to the following:
e Find a point x¢ € F™, s blocks (s 2 2 c,,Ci,,...,C;,, and an sr X sm matrix 4 =
diag{A,A,...,A}, where r = m — s+ 2 and

ai; a2 ... Qaim

a a2 ... am
A= . . .

ar1 Qr2 ... Qrm

is an ¥ X m matrix of rank r, such that

of B;,
Al xo=4-|"7 . (15)
Ci, B;,
Ci,
. ~ Ci, . . .
Among all block permutations C = . of C', we choose one with a lexicographically
(of

maximum “rank sequence”:

(rank(C;, ), rank (Ci‘ ) ,+..,rank(C)).
C‘.2

Let r; be the difference of /th and (I — 1) st entries in this rank sequence ( i.e., the increment
in rank by the lth block in & )- We proved in Section 3.1 that the matrix C is of full rank,
thus )72, n = n2. By the choice of our C~', rn2rp>...2ry Hforalll;1 <1 < m,
n<m-Il+1thenn? =YY", n<¥r = ﬂ";—"'ll Hence we have m > /2 -n — 1 as
promised.

Therefore, let’s assume for some s, s > 2, r, > m — s+ 2. We denote r = m — s + 2.

We will consider non-singular linear transformations of x, which in turn effects column
transformations on C. For the chosen 6', there is a cononical “lower triangular” form under
this linear transformations: For 1 < j < n?, if ¢; is minimal index such that ¢, # 0, then
the ¢;’s form a strictly monotonic increasing sequence ¢; < t2 < ... < t,2. Note that since
the matrix C is of rank n?, all ¢;’s exist. We choose the first s blocks of C, (&i;) smxnz-
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Now we take a slightly different view. We take the conditon (15) as a linear equation
system to be solved for x, and we wish to find an A of rank r such that 4 - (;;) is of full
rank sr. And if so, surely there must be a solution xq satisfying (15).

More specifically, we will consider (15) as a linear equation system on

TlyeeesTryTritlyee s Trydrye ey Tridodromy+ls s Tri+..4re—14rs

(setting all other variables z; = 0). The determinant of this linear system is ITj=, deti,
where det; = det(A - D;), and Dy is the Ith “diagonal” block in the canonical form (&),
i.e., the submatrix of the canonical form consisting of rows (I — 1)m + 1 to Im and columns
R+1toR+r,where R=r1+...4+17_1.

If we view def; as a polynomial in the indeterminates a;;, it is a non-zero element in the
ring Fa;j]. This is easily seen by applying a homomorphism & : aij — 0, where 1 < ¢ < r
and 5 # o for 1 < a < r, and thus,

aul auz eee Ay,

h(det;) = c - det

azgl a2t2 agg,_ (16)
. . . ’

Arty  Qrty ... Qpg,

for some ¢ # 0. Similarly all det;, 1 <[ < s, are nontrivial polynomials. Hence, the product
of (16) with [];_; det; € Fl[a;j] is a nontrivial polynomial, and therefore does not vanish
identically. (One can phrase this in geometric terms as follows: a higher dimensional variety
can not be expressed as a finite union of lower dimensional varieties.) Hence we have a rank
r matrix A (guarenteed by the extra determinant (16) in the product) such that the linear -
equation system on the chosen subset of X has a solution. QED

4 Conclusions

We discussed two proofs of lower bounds pertaining to a central question in Valiant’s theory,
the determinant and permanent problem. The second proof also establishes a strengthening
of a classic theorem due to Marcus and Minc.

The lower bound established here is still far weaker than what we would like to see,
namely superpolynomial.

As a negative note on improving the second proof, we observe that in section 3.2 we
must use the presumed identity perX = detY again in a major way. The following example
shows the inadequacy of doing otherwise.

11




Tiyj 1 ... 0O
Y = ‘?Jl . . . ’ (17)

:L','mjl .’B,'mj2 e 1

where m ~ /2n.
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