A Computational and
Evolutionary Perspective on the Role of
Representation in Vision

Michael J. Tarr and Michael J. Black

Research Report YALEU/DCS/RR-899
October 1991




A Computational and Evolutionary Perspective on
the Role of Representation in Vision*

Michael J. Tarrt and Michael J. Black!$

tDepartment of Psychology, Yale University
P.O. Box 11A Yale Station, New Haven, CT 06520

Phone: (203) 432-4637, Fax: (203) 432-7172
Email: tarr-michael@cs.yale.edu

*Department of Computer Science, Yale University
P.O. Box 2158 Yale Station, New Haven, CT 06520-2158

Phone: (203) 432-1223, Fax: (203) 432-0593
Email: black-michael@cs.yale.edu

Abstract

Recently, the assumed goal of computer vision, to reconstruct a representation of
the scene, has been criticized as unproductive and impractical. Critics have suggested
that the reconstructive approach should be supplanted by a new purposive approach
that emphasizes functionality and task driven perception at the cost of general vision.
In response to these arguments, we claim that the recovery paradigm central to the
reconstructive approach is viable, and moreover, provides a promising framework for
understanding and modeling general purpose vision in humans and machines. An ex-
amination of the goals of vision from an evolutionary perspective and a case study
involving the recovery of optic flow support this hypothesis. In particular, while we
acknowledge that there are instances where the purposive approach may be appropri-
ate, these are insufficient for implementing the wide range of visual tasks ezhibited by
humans (the kind of flezible vision system presumed to be an end-goal of artificial in-
telligence). Furthermore, there are instances, such as recent work on the estimation of
optic flow, where the recovery paradigm may yield useful and robust results. Thus, con-
trary to certain claims, the purposive approach does not obviate the need for recovery
and the reconstruction of flexible representations of the world.

*We thank Greg Hager and David Kriegman for their helpful comments and advice.
$This author was supported by a grant from the National Aeronautics and Space Administration (NGT-
50749) '




1 Introduction

Young disciplines often experience moments of doubt, “Are we doing the right thing?,” or,
“Is such and such an approach viable?” (Banaji, 1991). No where is this better exemplified
than in the study of computer vision (Jain & Binford, 1991). While progress has been made,
the goal of general vision, on the order of human visual perception, remains elusive. Recently,
this has led some to suggest that the entire endeavor is flawed, that we should discard the
dominant paradigm, and that it should be replaced with a new, more practical alternative.!
While this position may not qualify as a “paradigm shift” (Kuhn, 1970), it certainly advo-
cates a substantial change in direction. To justify this radical deviation, proponents of the
new, so-called purposive approach muster three lines of support: first, that machines fall far
short of the visual capabilities of humans; second, fhat current computer vision systems can
not actually do very much that is useful in the way of visual perception; and, third, that
the purposive approach is consistent with tile notion that biological organisms have evolved
brain machinery composed of independent processes, each devoted to solving a particular
visual task (Aloimonos, 1990).

Contrary to these arguments, we take an entirely conservative posture, suggesting that
the presently dominant reconstructive approach is viable, and, moreover, that there are well-
grounded computational and evolutionary reasons for its current, as well as possible future,
successes. In support of these claims, two kinds of evidence will be presented: first, a general
examination of the goals of vision in both artificial and biological systems; and, second, a
case study of the recovery of structure from motion and optic flow. Tht_ese arguments lead

us to conclude that the reconstructive approach provides a framework for understanding

1These suggestions are somewhat reminiscent of proposals that the entire field of artificial intelligence
should be scrapped; for instance, see Penrose, 1989, or Searle, 1981.
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both human and machine vision, and that, in particular, there are already instances where
successes have led to useful and robust vision systems. Moreover, this is not at the exclusion
of the purposive approach, but rather suggests a common ground that we believe to be more

fertile than either approach alone.
2 TUnderstanding Vision

In understanding vision, one must begin with the fact that many problems in visual per-
ception are considered to be “ill-posed” (Marroquin, Mitter, & Poggio, 1987) and that in
order to find a solution inference and constraint must be introduced. While these constraints
may be phrased in general terms, for instance the “rigidity” constraint of Ullman’s (1979)
structure from motion algorithm, it is also possible to narrow the domain, positing special-
ized constraints dependent upon the visual task at hand. This constitutes the crux of the
purposive approach. Moreover, there are instances in the natural world where the notion of
narrow constraint is obviously applied. In a now classic (but once ridiculed) paper, Lettvin,
Maturana, McCulloch, and Pitts (1959) demonstrated that a frog’s retina contains special
purpose hardware sensitive to small moving black spots; commonly understood to be “bug
detectors”. Clearly, this adaptation provides great advantages to the amphibian so equipped:
frogs mostly eat bugs and their effective detection, even at the cost of an occasional false
alarm, is presumably a key to frog survival. However, what is good for frogs is not nec-
essarily good for humans or “intelligent” machines. In particular, it may be impossible to
identify the specific tasks appropriate to this level of constraint in such complex systems.
Marr (1982) raises precisely this point in reference to the level at which knowledge or hy-

pothesis is brought to bear on visual perception. For while such constraints may not be



“general but particular and true only of the scene in question,” this suggests that “any very
general vision system must command a very large number of such hypotheses and be able
to find and deploy just the one or two demanded by the particular situation”. Moreover,
“this prospect casts a whole (new) complexion on the vision problem” (Marr, 1982, p. 271).
We contend that couched in terms of the purposive approach, the number of functionally
independent human visual behaviors, as well as their consequential constraints, is too large
a number to represent. Indeed, we doubt whether human visual behavior, or for that matter
the operation of any general purpose vision system, can be understood in such a narrow
context.

Even when one considers higher primates such as vervet monkeys, there is little evidence
that their mental representations are generally as abstract and as flexible as our own (Cheney
& Seyfarth, 1990). While it is true that “many animals are specialists, performing skills
with much greater sophistication in some contexts than in others” (Cheney & Seyfarth,
1990, p. 310), this is not the hallmark of human cognition. For example, many species of
birds acquire knowledge of bird song through domain specific “tunable blueprints,” an innate
special-purpose acquisition mechanism, while human children seem to acquire domain specific
know]edge through the operation of general acquisition mechanisms that are rooted in flexible
representational structures (Carey, 1985). Without such representations, knowledge will
remain compartmentalized and inaccessible, leaving the mental system without the capacity
to extend knowledge from one context to another (Cheney & Seyfarth, 1990). In particular,

it is this ability that distinguishes human information-processing from that of other species.




3 Religious Reconstructionism? and Fanatical Purpo-
sivism

It is also this flexibility that distinguishes the reconstructive approach from the purposive
approach. Reconstruction, or the recovery paradigm, focuses on deriving a functional de-
scription of the visible world including its geometric properties and the physical properties
of the visible surfaces. The goal then is to build a symbolic description of the scene. Once
derived, symbolic descriptions may be used in a variety of “cognitive” operations, such as
visual reasoning, planning, or propositional thought. Stated succinctly, “the goal of a per-
ception system, whether biological or machine, is to create a model of the real world and to
use this model for interacting with the real world” (Jain & Binford, 1991, p. 116). What this
paradigm means, from the artificial intelligence perspective, is that vision can be effectively
ignored; that vision is a self contained problem which will produce symbolic input to Al
programs.

In contrast, the goal of the purposive approach is to build systems that will accomplish
particular domain specific tasks, the output of which is successful task completion. The
study of vision in general is reduced to the study of the “tasks that organisms possessing
vision can accomplish” (Aloimonos, 1990, p. 349); independent of such tasks the study of the
general problem of vision is not even thoughf to be possible. For instance, the standard goal
of model-based object recognition is supplanted by a framework in which objects are viewed
in terms of the their roles, functions, or purposes. It is these properties, not the object’s
geometry, that serve as the basis for its visual recognition (Aloimonos & Rosenfeld, 1991).

Citing a specific example, “a chair is an object on which a person can sit.... To recognize a
bl

2We thank Jitendra Malik for suggesting this wonderful phrase.




chair, we should check for the presence of the functional primitive (the surface patch) just
defined” (Aloimonos & Rosenfeld, 1991, p. 124; this example is reminiscent of Gibson’s,
1979, idea of objects “affording” their functions). But these arguments belie the nature
of complex visual information-processing and the stated goals of computer vision/artificial
intelligence.? For there are no a priori reasons for supposing that general purpose vision is
impossible: unquestionably the evolution of vision in humans offers an existence proof for the
development of precisely the kind of flexible, reconstructive system to which the discipline
of artificial intelligence aspires.

Of course, in specifying end goals that entail the reconstruction of the scene one could
argue that computer vision is barking up the wrong tree altogether.? Aloimonos (1990) does
just that, asserting that the goal of computer vision should not be to build systems that mimic
human vision or to serve as general purpose perceptual systems, but to provide answers to
the question, “What am I going to use this visual ability for?” (p. 348). Yet, this conception
is at odds with one of the major tenets of the purposive approach, that machine perception
is not up to snuff with human visual capabilities. For while there is no denying that this is
the current state of affairs, this comparison leads to a different research agenda than does

”

the notion that we should give up trying to build “intelligent” vision systems and instead
concentrate on simpler domain specific problems.> The commonly understood goal of the

reconstructive approach is to both explain and implement complex visual behaviors; changing

the goal does not solve this problem, it simply avoids it. Taken together, these arguments

3 Any attempt to understand recognition at this level is also plagued by the fact that even seemingly well-
defined concepts such as “even number” appear to be neither definitionally or prototypically represented
(Armstrong, Gleitman, & Gleitman, 1983). Thus, for more complex concepts, such as “chair” or “fruit,” it
may be difficult, if not impossible, to operationalize their core functions or purposes.

4As well as much of perceptual psychology; although Gibson, 1979, would most likely concur with the
revisionists.

SOf course, this ignores the less extreme viewpoint that “intelligent” behavior may be understood as an
emergent property of simpler processes. : :




suggest that the purposive approach does not really provide an alternative explanation to
the reconstructive approach, but rather simply offers an alternative goal for computer vision
- one that can not hope to explain or accomplish many of the commonly held objectives of

artificial intelligence, cognitive psychology, or neuroscience.
4 Evolutionary Perspectives

It would be iniquitous to suggest that advocates of the purposive approach completely ignore
evolutionary considerations. Indeed, Aloimonos (1990) suggests that the purposive approach
is “consistent with evolution” (p. 348) in that individual visual abilities, such as avoiding
danger, locating food, and recognizing kin, would seem to have been selected for indepen-
dently of each other. This notion is reiterated by Cheney and Seyfarth (1990) when they
state that “natural selection, it appears, has acted not on general skills but on behavior
in more narrowly defined ecological domains” (p. 310). In this instance, we concur and
set forth the hypothesis that the characterization of natural selection as a “tinker” (e.g.
Dawkins, 1986) provides strong reasons to believe in some version of information-processing
modularity (Fodor, 1983) in the evolution of complex systems. However, this conception of
independent mechanisms should not be confused with the purposive agenda of decomposing
visual problems into continually simpler tasks. Bequeathing modularity upon a particu-
lar subsystem in no way entails that it is in any way purposive, but rather that it may
be generally characterized as modality specific, innately specified, hard wired, autonomous,
and not assembled (Fodor, 1983). Notice that all of these properties are orthogonal to the
information-proceésing goal of the module. Computational objectives need to be specified

independently and may take almost any form, including the recovery of scene attributes or




the purposeful execution of a specific visual task.

Recent studies on the .evolution of complex information-processing systems in humans
underscore this point (Cosmides & Tooby, 1987). For instance, Pinker and Bloom (1990)
have argued that natural language is the result of traditional Darwinian selective pressures.
In particular, they suggest that human language satisfies two important criteria for when
a trait should be attributed to natural selection: first, complex design for some function
(e.g. the computational objective), in this instance “the communication of propositional
structures over a serial channel” (Pinker & Bloom, 1990, p. 712); and second, the absence
of alternative explanations for such complexity. Similarly, we surmise that when human
vision is judged by the same two criteria it too should be considered the product of selective
evolutionary pressures.

First, it seems incontrovertible that the human visual system exhibits complex design.
But for what functions? It is here that we believe the traditional goals of the reconstructive
approach come into play, setting forth two clear objectives: the reconstruction of the scene
and the recognition of objects within the scene.® There are numerous lines of admittedly
introspective evidence that human vision is adapted for fulfilling precisely these functions:
for example, the recovery of object properties for recognition has implications for kin recog-
nition, social interaction, visual communication, predator avoidance, tool making, and food
identification; likewise, the reconstruction of a symbolic representation of the visual scene has
implications for danger avoidance, navigation, food location, tool use, and visual reasoning.

Second, we are dubious as to whether the purposive approach provides an alternative

6Contrary to the view espoused by several prominent theories of object recognition, e.g. Biederman, 1987,
recognition does not entail reconstruction, see Tarr, 1989; the converse is also true - Aloimonos, 1990, points
out that reconstruction does not entail recognition, and moreover, that the tasks accomplished by each may
be considered independently. ’




explanation for the evolution of such complex behaviors. Essentially, the purposive approach
offers a “divide and conqﬁer” explanation in which “the machinery of the brain devoted to
vision consists of various independent processes that are devoted to the solution of specific
visual tasks” (Aloimonos, 1990, p. 348). However, while these abilities may be based on
common principles, there are hypothesized to have evolved at separate times and in within
different neural hardware. Therefore, the purposive approach requires not one, but many
“miracles” of luck (for genetic change is merely a matter of chance) - repeatedly arriving at
common solutions for an almost infinite variety of purposive tasks beneficial to the survival
of our ancestors. In contrast, because the reconstructive approach presupposes that each
independent recovery mechanism contributes to a common representation that suffices for
general purpose vision, the development of complex visual behaviors requires only a single
chance occurrence for each adaptive visual principle.”

Notice that human visual cognition clearly displays some of the attributes that one would
expect to find in a flexible, general purpose vision system. For instance, it is well documented
that humans use mental imagery - a sophisticated subsystem for performing visual reasoning
via symbol manipulation over spatial representations (Kosslyn, 1980). The use of mental
imagery has been implicated in a variety of problem solving domains; not only is it useful for
solving the piano mover’s prboblem, but there is evidence that it is used in scientific reasoning,
creative discovery, and navigation (Finke, 1989). Anthropologists have also speculated that
an “increased ability to think in - and communicate by means of - specific visual images”
and “an emerging consideration of design possibilities by way of two- and three-dimensional

images” may have helped to spur the rapid development of new tools and weapons in hu-

7Although it may be argued the the likelihood of a single “miracle” is only slightly less than that of
several such “miracles”.




man evolution. Furthermore, while the actual initiation of image-based representations may
not be attributable to “the crossing of a neurological threshold”, there is no doubt that
certain types of neural hardware (and coincident information-processing capabilities) are a
prerequisite (White, 1989, pp. 98-99). Thus, without the presence of such flexible visual
representations, one of the most distinctive signatures of human behavior, tool use, might

have been impossible.

5 Computational Considerations

-

Where then does the necessary inference and constraint arise if not from the purposive ap-
proach? In actual fact, the seeds for solving this problem may be found in Marr’s (1982)
original formulation of the problem of vision. This perspective has been reiterated by Marr’s
collaborator Whitman Richards in a chapter entitled “The Approach” where he states that,
“The success of the perceptual act is intimately coupled with the observer’s ability to build in-
ternal representations whose assumptions reflect the proper structure and regularities present
in the world.... Fundamental to perception is thus the notion that there is indeed structure
in the world” (Richards, 1988, p. 11). The reconstructive approach is no more mired in
the ill-posed nature of visual perception than is the purposive approach! Constraints are
introduced, but at the level of the physical world.

Indeed, many of the assumptions of the purposive approach appear to be restatements
of constraints found in recovery algorithms. For instance, structure from motion algorithms
have often introduced the concept of multiple views (Braunstein, Hoffman, Shaprio, Ander-
sen, & Bennett, 1987), a constraint that is often construed in a manner akin to the idea of

“active” vision (Aloimonos, Weiss, & Bandyopadhyay, 1987). In particular, using the types




of assumptions found in active vision, structure from motion algorithms are more robust.
Aloimonos, an advocate of the purposive approach, raises exactly this point, stating that
“one can gét more constraints on the motion parameters using many frames” (Aloimonos,
1990, p. 351). Importantly, using active vision in this fashion in no way entails the need for
use of the purposive approach. In fact, many current instantiations of the recovery paradigm
implicitly make use of active vision, and may benefit further by making this explicit. How-
ever, this is not the same level at which “purposivists” have sometimes proposed constraints
be applied. For positing a multiple or even a many view constraint is entirely consistent

with the approach as espoused by even the most ardent neo-Marrian reconstructionists.
6 Case Study: Structure From Motion

One of the criticisms of the recovery paradigm is that it has failed to take into account
the real world; that is, current algorithms are not robust in the presence of noise and are
hopelessly inefficient. Given the current state of the art, both charges are valid. An often
cited example of these failures is the recovery of structure from motion (Aloimonos, 1990).
Elegant mathematical formulations of the problem have often glossed over, or ignored,
the serious issues of noise and correspondence. Let us consider for example the problem of
recovering a dense depth map from optical flow.® Theoretical results indicate that predictions
of structure are very sensitive to small errors in the optical flow field (Aloimones, 1990). To
make matters worse, current formulations of optical flow are ill-posed and error prone. Most
optical flow algorithms cannot produce flow fields with the necessary accuracy for meaningful

structure to be computed.

8We are not advocating this as a fundamental goal of computer vision, but rather as an example of recent
trends in the recovery paradigm that we find encouraging.
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Another criticism of optical flow is that current algorithms do not take into accc;unt the
real-time demands of an active perceiver, for instance a mobile robot. It has been suggested
that because the computation of optical flow is ill-posed and requires regularization, algo-
rithms for computing it are inherently iterative and ill-suited to real-time applications. The
purposive paradigm’s alternative to using optic flow is to find representations that are easier
to compute; for example normal flow, or qualitative descriptions of the flow field.

Do the failures of optical flow mean that structure from motion is pointless? We think
not. First, motion provides important structural information about the world, and it should
be exploited. Second, recent work using robust and dynamic algorithms address the main
criticisms lodged by advocates of the purposive paradigm. Therefore, we believe it is too
soon to dismiss optic flow as hopeless. In fact, we are entering an exciting period in which
robust approaches are being developed and the issues of incremental processing in a dynamic
environment are being taken seriously. Next we consider these criticisms in light of current

research.
6.1 Robust Optical Flow

First, we address the criticism that many current approaches to estimating optical flow
are not robust. That is, the flow estimates are sensitive to noise, or outliers, that do not
correspond to the assumptions of the approach. This can include sensor noise, specular
reflections, shadows, and transparency; all commonly occurring situations.

One approach for dealing with the problems of outliers involves the use of robust statisti-
cal techniques (Hampel et. al., 1986). For example the work of .S(':hunck (1989) uses a robust
clustering of constraint lines to determine optical flow. Also recent work by Black (1991)

reformulates the standard, gradient-based, least-squares optical flow equation of Horn and
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Schunck (1981) using robust statistics. Correlation-based approaches to optical flow can also
~ benefit from robust techniques which reduce the effects of outliers at motion discontinuities
(Black and Anandan, 1990). Additionally, hierarchical, coarse-to-fine, approaches (Anan-
dan, 1989) offer additional robustness by reducing the effects of high frequency noise at the
coarse levels.

Optical flow algorithms have also been criticized for performing poorly at motion discon-
tinuities. Most regularization schemes for recovering smooth flow fields have the detrimental
effect of over-smoothing at motion boundaries. If the recovery of structure is our goal, then
these boundaries are likely to be important. There are now many approaches which attempt
to solve this problem. The most notable of which are the Markov random field (MRF) ap-
proaches (Black & Anandan, 1991; Konrad & Dubois, 1988; Murray & Buxton, 1987). These
approaches represent motion discontinuities either explicitly using “line processes” (Geman
& Geman, 1984), or implicitly using weak continuity constraints (Blake & Zisserman, 1987).

Recently, Black (1991) showed that a robust statistical formulation of the standard
smoothness constraint provides an alternative way of viewing motion discontinuities. Singh
(1991) also employs a statistical approach to avoid smoothing discontinuities, but it is not
robust in a formal sense. Finally, in cases where the flow estimates are poor or uncertain,
it is useful to have an estimate of the flow vector’s certainty. Consequently, work on flow
confidence measures (Anandan, 1984; Simoncelli, Adelson & Heeger, 1991) is an important
contribution, for it may allow processes which use optic flow to ignore poor measurements

and still produce meaningful results.
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6.2 Temporal Persistence

The second main criticism of optical flow algorithms is that their computational expense
prevents them from being used under real-world conditions. Many previous approaches have
only considered the two-frame estimation problem and those which have considered longer
sequences typically have done so in a batch fashion (Bolles, Baker, & Marimont, 1987;
Heeger, 87). There have been recent advances on this front; in particular there are now a
number of incremental approaches that compute optic flow dynamically and refine the flow
estimates incrementally over an image sequence.

For example, Singh (1991) uses a Kalman filter (Gelb, 1974) to estimate optical flow
incrementally. There are a number of other analogous approaches for estimating depth
from motion (Heel, 1991; Matthies, Szeliski, & Kanade, 1989). While there are problems
with the Kalman filter approach, it brings us closer to the objective of dynamic optical
flow. An alternative incremental minimizétion approach (Black & Anandan, 1991) uses a
robust formulation similar to those already discussed and solves the difficult minimization
problem incrementally over a sequence of images. This approach is unique in that it explicitly
incorporates a temporal persistence constraint in the formulation of the optical flow equation.
Temporal persistence provides a powerful additional constraint, at the level of the physical
world, on the interpretation of visual motion and results in increased robustness.

In a different direction, various researchers have been looking at the real-time compu-
tation of optical flow. Notable is recent work on on implementing optical flow equations
using analog devices (Koch, Luo, & Mead, 1988). This work incorporates many of the ideas
presented for preserving motion discontinuities. The work of Nishihara (1984) also deserves

mention. His simple technique for correlation using zero-crossings can be implemented effi-
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ciently in hardware.
7 Final Thoughts

We conclude by reiterating that we are not denying a role for the purposive approach in the
study of vision, but that we believe it is better suited for understanding and mimicking the
overall visual behavior of frogs rather than humans. We acknowledge that there are some
aspects to human visual behavior, particularly those associated with “automatic” or “uncon-
scious” processing, that may warrant a purposive analysis. For instance, partial information
from optic flow may provide adequate constraints for navigation or wayfinding; likewise,
partial information about surfaces may suffice for grasping an object. Indeed, to date much
of the actual research done within the purposive framework has focused on precisely these
types of problems (Aloimonos, 1990). However, it is our position that it is crucial that the
modules computing such information be general enough that this same information may be
utilized in the reconstruction of the scene (and indeed this routinely occurs).® Therefore, if
the purposive approach does have a role in understanding general purpose vision, it seems
likely to be at the level of well-defined and narrowly constrained tasks, but without obvi-
ating the need for recovery and reconstruction. Moreover, the sometimes unstated goal of
much of computer vision, to develop complex visual processing systems capable of produc-
ing symbolic input to Al programs, is alive and well. This is true not only because of the
present day successes of the reconstructive approach in computer vision (some of which we
have discussed here), but because we believe such an approach holds out the best hope for

ultimately understanding and duplicating the adaptive nature of human vision.

9We retain some skepticism as to whether object recognition may be construed as purposive, since unlike
frogs, human recognition performance is not tied to any salient environmental conditions.
b
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