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Abstract

A Higher Level Parallel Programming Environment

Shakil Waiz Ahmed
Yale University
July 1994

The Linda Program Builder is a higher-level programming environment that supports
the design and development of parallel software. It is a window-oriented, menu-based
system which provides coordination frameworks for program construction. It han-
dles many of the bookkeeping details of parallel programming, allowing the user to
concentrate on the computational aspects of the code. The LPB maintains a program-
describing database which feeds information to the compiler for optimization, to a
visualizer for enhanced program visualization, and potentially to other tools in the
environment. The templates or coordination frameworks themselves can be custom-
constructed by invoking a template-building template.

The ideas of the LPB are not restricted to Linda or even to parallel programming.
Many of the ideas yield benefits in other environments. In fact, the LPB captures the
idea of an “open” or “dynamic” preprocessor as an alternative to new programming
languages.
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In the name of God, Most Gracious,
Most Merciful.

Read! In the name of thy Lord and Cherisher, who created —
Created man, out of a (mere) clot of congealed blood:
Read! And thy Lord is Most Bountiful,

He Who taught (the use of) the pen,

Taught man that which he knew not.

— The Holy Qur’an (96:1-5)
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Chapter 1

Introduction

1.1 Motivation

Conventional (sequential) programmers have traditionally had a variety of tools at
their disposal to aid in software development. With the increased demand for parallel
programming comes a need for tools that provide support for development of parallel
software. While there are a number of schools of thought on how to best express par-
allelism, a growing number of programmers are choosing explicitly parallel languages.
Such languages allow users to explicitly express parallelism and thus take advantage of
inherently parallel algorithms.

Given that explicitly parallel programming is gaining in popularity, how do we make
the programming easier for programmers? The transition from sequential to parallel
programming may be difficult for some users, and others will expect to find software
development tools in a parallel programming environment. Both these problems can be
addressed by a higher-level tool which eases parallel programming and provides parallel
programming guidance to users. In particular, the tool should provide an integrated
environment which guides the user through program construction; it should provide
other supporting tools (such as an optimizing compiler and debugger); and it should
be extensible.

For environments that use compiled languages, there are four key phases for pro-
gram construction: coding, compiling, debugging and performance tuning. The higher-
level tool could guide users in several different ways, but a few features should charac-
terize it and cover the four phases mentioned above. These features should include: (1)
the ability to capture programming experience and provide guidance based on this ex-
perience, and (2) the ability to use information from the construction phase to optimize
the compiler and enhance program visualization.

Capturing programming experience requires identifying repeated program patterns.
As more parallel programs are developed, some techniques and some kinds of algo-
rithms will surface again and again. We can partition these into classes of programs
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and add to these as new techniques and classes of algorithms are developed for pro-
grammer communities with specific needs. It would be useful to capture some of this
programming experience and package it in a way that other programmers could use as
a guideline, possibly even as some sort of “instant-program” package requiring only a
few ingredients from the programmer to cook up a complete program. Hence, we need
a framework which will offer users different paradigms that, upon selection, will lead
the user through program construction. The same framework also should allow users to
define guidelines and packages for future users, giving the system the adaptability to be
customizable to different needs and biases. At the same time, the frameworks should
not constrain the user. Traditionally, structure editors' have placed users in syntactic
strait jackets, not allowing them to deviate from structured input. This approach can
backfire; the objective should be to aid users, not to force them to adopt methodologies
or programming styles they may not like. Hence, the parallel program building tool
should be flexible in the sense that a user should be able to bypass guidelines at any
point and enlist help from the system only when desired.

To enhance the environment as a whole, the guidance framework should be inte-
grated with other tools. A programming environment should provide debugging aids
to a user. Parallel debuggers by nature tend to be more complex than their sequential
counterparts. To simplify their appearance and use, the debugging interface should
track the level of abstractions that the user employs. If, for example, while interacting
with the guiding system the user decides to use a particular distributed data structure,
this information could be reflected in the feedback which the debugger provides. A vi-
sual debugger could have different representations for the different kinds of distributed
data structures or processes that are used. The same applies to visual system for per-
formance tuning. Turn the visualizer into a runtime system (most parallel program
animations run on trace information) and the benefits to the programmer are quite
significant. :

The other important tool in a programming environment is the compiler. A com-
piler for an explicitly parallel programming language will recognize certain parallel
constructs and translate these into the appropriate object code. Can we assist the
optimizer in the compilation phase? As in the case of the debugging system, it may
be possible to use some information from the code construction phase to optimize the
compiler-generated code.

In summary, we want to construct a parallel programming environment which will
guide the user through code development, capture programming experience, provide
visualization and debugging aids, optimize the code, and also be flexible and adaptable.

!Structure editors require users to manipulate program structures and generally do not deal with
free text
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1.2 The Linda Program Builder

The Linda Program Builder (LPB) [AG92] [ACG94] was designed and built to address
the needs discussed in the previous section. It is a higher-level programming environ-
ment that aids in the design and development of parallel software. The LPB is an
Epoch-based?, menu-driven, user-friendly system that supports incremental develop-
ment of explicitly parallel C-Linda programs.

Epoch itself runs under X-windows and thus the LPB environment, by extension,
runs under X-windows. The LPB environment is menu-driven, but allows the full
flexibility of Epoch (Emacs) in editing all files. Several windows are open at all times,
offering command menus and information on the developing program’s current status.

With the LPB, programs can be constructed in one of three basic ways: (1) pro-
grams can be constructed interactively starting from scratch; (2) existing programs can
be parallelized using LPB commands to insert parallelization code; and (3) programs
can be freely constructed using conventional editing with perhaps an occasional sup-
porting LPB command. The first option requires guidance from the LPB throughout
program construction. The second option allows users to invoke a coordination frame-
work and insert segments from an existing program. This feature would be particularly
attractive to sites with sequential programs that need to be parallelized. Finally, the
third option allows the user to freely edit and use the LPB only when desired.

How does the LPB assist program construction? It captures coordination frame-
works for parallel programming. A coordination framework defines how the threads
of parallel computation are tied together. There are concrete real world analogies: a
soccer team follows a game plan specified by the coach. The game plan defines how
.the different soccer players will interact with each other to arrive at one common ob-
jective: to score goals and not let any in. Similarly, a coordination framework for a
parallel program specifies how the various threads of computation are working towards
a common objective. The LPB provides coordination frameworks to a user which are
then used to construct parallel programs.

Coordination frameworks in the LPB are built in C-Linda, but nothing about the
“parallel program builder” approach restricts it to Linda per se. By “program builder”,
we mean a tool which captures idiomatic use of a particular language, and guides
the user through program development by offering higher-level constructs that are
transformed into some base language. The sort of tool we describe might be built in
the context of any explicitly parallel programming environment. On the other hand,
the choice of Linda isn’t arbitrary either. Linda is “perhaps the best-known parallel-
processing language available today.”?

Coordination frameworks take the form of templates in the LPB. Templates are
program skeletons that look like hypertext documents. Users incrementally expand

*Epoch is a multi-window version of emacs developed by S. Kaplan of the University of Illinois,
Urbana
3Digital Review Oct. 21, 1991
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templates by clicking on buttons. Clicking on menu options paves the way for additional
actions. An experienced programmer may choose to bypass many of the point-and-click
facilities of the LPB. This is in sharp contrast to some related editing systems.

There have been many template-editor predecessors to the LPB, notably the Cornell
Program Synthesizer[RT89a}, but on the whole, they impose rigid frameworks on the
programmer. Requiring the programmer to follow an imposed template guarantees
syntactic correctness, but may cramp a creative programmer’s flexibility. Expressivity
is compromised because the user cannot develop any segments of code in his own style.
The LPB offers similar features to the Cornell Program Synthesizer, but doesn’t impose
them. Consequently, the LPB cannot guarantee syntactic correctness for the program
as a whole.

There is a tradeoff between expressivity and guaranteed syntactic correctness. To
guarantee syntactic correctness, the system has to be in charge of the code under
construction. Consequently, the system has to maintain a strong grip on any code
the user develops. Structure editors such as those generated by the Cornell Program
Synthesizer, require users to follow a strict framework under which the system and
the user follow well-defined roles: the system constructs the expressions; the user
fills in placeholders for expression segments. Clearly, this restricts expressivity. The
LPB’s goal is to serve as an aid to the user, not to be restrictive. By allowing coding
flexibility, however, the system cannot maintain control on the portions of code that
the user develops, and thus cannot guarantee syntactic correctness. The LPB serves as
an apprentice that is consulted when needed. This allows the user to be creative in his
code development, but also allows him to use as much help as he wants or needs. By
sacrificing guaranteed syntactic correctness, we thus gain in expressivity and flexibility.

The most important features of the LPB are its support of templates, distributed
data structures, high-level operations, and its construction of a program database. While
templates represent entire program structures and direct control flow, the LPB also
provides support at a data structure level. It supports constructing and manipulating
distributed data structures of different types. High-level operations provide abstrac-
tions to a user which get transformed into the base language before compilation. Fi-
nally, the program database contains program-describing information which is acquired
as the program is constructed. It forms the backbone of the LPB system and is the
medium through which the LPB interacts with other tools in the environment.

By using the templates and other supporting features of the LPB during program
construction, the user effectively makes semantic statements. This semantic informa-
tion could be as broad as a “master-worker” coordination framework or as specific as
the intention behind a particular operation. For example, the operation could be as
simple as incrementing the value of a counter shared amongst processes. The LPB
notes this semantic information and not only uses it during program comstruction,
but passes it to other tools in the environment. In particular, the compiler receives
this information and uses it to optimize the code. Similarly, the visualizer reads the
information and enhances its display to reflect semantic information.
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The LPB accomplishes the optimizations and visualizations mentioned above with-
out sacrificing portability of the LPB’s output. Both the Linda compiler and Tuple-
scope had to be modified to accommodate the semantic information from the LPB,
but this does not limit portability of the code that the LPB generates. In fact, the
LPB always generates an output file which can be passed on to any users with a stan-
dard Linda compiler or normal Tuplescope. The semantic information is passed to the
modified tools separately and hence does not affect portability of the end product.

1.3 Thesis

Although motivated by concerns of parallel programming, the LPB addresses issues
that are broader. In fact, the dynamic and adaptable nature of a program builder
makes it an attractive alternative to new programming languages. Hence, taking all
the issues into account, the thesis becomes:

To show that a higher-level program building tool can aid the construction
of parallel programs, improve their efficiency, enhance their visualization
and run-time monitoring, and also serve as an “open” or “dynamic” pre-
processor alternative to new programming languages.

1.4 Outline

The next chapter describes the LPB itself and discusses how to construct programs
with the LPB. It goes through an example of constructing a database search program
with the LPB and discusses some of the available templates. Following that, Chapter 3
describes how the LPB supports distributed data structures and high level operations.
The chapter introduces the abstractions feature, and describes the program database.

Chapter 4 deals with the LPB’s interaction with other tools. It discusses how
information is passed to the compiler and the visualizer is used. Results are presented
for some optimizations based on this information.

Flexibility and extensibility are the topics of Chapter 5. It discusses how the user
can extend the LPB environment. In particular, this involves using the template-
building template to construct templates which other users can use. The chapter goes
through an example of constructing a master-worker template.

Chapter 6 presents the LPB as a “dynamic” preprocessor alternative to new pro-
gramming languages. The argument relates program builders to “dynamic” prepro-
cessors and discusses their advantages over continuously developing new programming
languages to accommodate changing methodologies and needs.

Chapter 7 reports on some of the limitations of the current system due to the fact
that the Linda compiler and Tuplescope preceded the LPB and thus were not built
with the LPB interface in mind. The chapter presents a preliminary redesign of the
compiler and Tuplescope for better interaction with the LPB.
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To demonstrate how the LPB framework applies to other environments, Chapter 8
describes an environment that layers an object-oriented methodology on top of C. The
LPB infrastructure was used to rapidly prototype the environment.

Finally, Chapter 9 discusses related work from different angles and Chapter 10
presents conclusions.



Chapter 2

Program Construction with the

LPB

2.1 Templates

Coordination frameworks are expressed through templates in the LPB. A template is
a program skeleton for a particular paradigm that serves as a blueprint for program
construction. During program construction, users of a template expand code place-
holders within the template to incrementally construct code segments. A template
is different from high-level operations such as distributed data structure operations
or abstractions (Chapter 3): templates are designed to direct control flow and yield
complete programs; high-level operations and abstractions only yield partial program
fragments.

Templates are designed to capture programming experience and pass the experi-
ence on to users who may construct programs which are similar in nature to those
which a template encapsulates. Programming experience is classified according to re-
peated coding patterns or methodologies. A methodology for a class of programs is a
framework which outlines the common characteristics of that class — additional pieces
of information characterize individual programs. The template framework in the LPB
can be adapted to various methodologies — template designers can organize the place-
holders to yield a specific pattern of code development. The templates which are part
of the existing LPB system, however, are all focused on explicitly parallel programming
paradigms.

A number of templates supporting different parallel programming methodologies
have been implemented for the LPB. The master-worker template, for example, guides
the user through constructing parallel programs that use the master-worker coordi-
nation framework. This involves a single master process and several identical worker
processes working on different segments of the problem. The Piranha template is some-
what similar in nature — it helps the user write adaptively parallel programs [Kam94].
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The data paralle] template, on the other hand, supports the owner-computes style of
programming by providing filter, log and merge routines. A set of global reduction
operators completes the data parallel package. The LPB interface for data parallelism
thus smoothes the way for Linda programmers who use the data parallel model.

How does a user interact with templates? Templates are hypertext-like documents.
Upon selection of a template, a user is presented with a skeleton of a program. The goal
is to expand the skeleton by providing information to the LPB such that the latter can
construct a complete program. A skeleton has a number of highlighted buttons in it.
Clicking on a button with a mouse results in that particular button being expanded.
An expansion could result in code replacing the button, potentially vielding further
buttons. Alternatively, the expansion could result in an interactive session where the
user is prompted for information. This interactive session will eventually yield code
to replace the expanded button. . Again, this code could contain yet more buttons.
The buttons may be ordered in priority — i.e. some buttons may be dependent on
information that can only be acquired by first expanding other buttons. Eventually,
when all buttons have been expanded and the user has provided all the information
that he was prompted for, the LPB will have constructed a complete program.

A programmer can choose to follow a template all the way through, but he is
free to leave this framework whenever he wants and to return when necessary. There
is a tradeoff here between flexibility and potential consistency problems. Informa-
tion on the program being constructed is maintained by a program-describing database
(see section 3.5) Should a programmer decide to bypass the LPB and choose to in-
dependently code program fragments that the LPB expects to be in control of, an
inconsistency between the program database and the program itself might be created.
This could happen in one of two ways: (1) The programimer may write code which
the program-describing database does not know of, but expects to know of (e.g. the
database expects to keep track of all distributed data structure manipulations); or (2)
The programmer may delete code which the LPB has generated. The LPB will warn
the programmer when either of these two cases happen, but cannot overrule what he
has done. If the programmer’s solo effort is syntactically and semantically correct, the
resulting code will compile correctly, but will not benefit from enhancements that the
LPB can provide (such as performance optimizations or visualizer enhancements - see
Chapter 4).

How does the LPB prompt the user for information? Interactive sessions typically
consist of menus or input windows with directions on how to specify the necessary
information. Menus can be both context-dependent and context-independent. The
former case appears in situations where the user is specifically asked to identify a
selection. The latter case involves menus which are always available during an LPB
session.

There are a number of different context-independent menus. The Global Menu
contains a list of templates along with some basic commands that will save a file
or parse it for inconsistences with the program database. The Buffer Menu lists all



Chapter 2. Program Construction with the LPB 9

currently open modules, and clicking on a particular module name causes the edit
window to display that module. Even though a particular module is being displayed,
some actions such as modifying a shared data structure may affect all references to
that data structure scattered across all open modules. When this happens, all changes
in the appropriate modules are highlighted. These highlights will be visible when the
user displays the corresponding modules.

Linda uses tuples to coordinate parallel programs, and the Tuple Menu displays
all currently defined tuples [CG89] !. The LPB keeps track of all references to the
various tuples in a program. For every tuple, there are only certain operations that
can be performed on it. Hence, when a tuple is selected, the context-dependent Tuple
Commands menu lists only those operations which are permissible.

The list of permissible operations for a tuple will depend on the nature of the
tuple. The LPB supports various distributed data structures and different tuples are
dedicated towards supporting particular kinds of data structures. A tuple may be
used as a shared counter, a shared variable, counting semaphore or simply as a plain
Linda tuple. It may also be used as part of a distributed queue or shared linked
list. Consequently, the list of commands permissible for a particular tuple will change
according to the data structure that the tuple represents. If the currently selected
tuple is used as a counter, for example, the only operations allowable on that tuple are
increment and decrement operations and the commands menu reflects that.

The menus described above offer users support for building parallel program seg-
ments. These supporting features augment the services provided by templates. Users
can benefit from this if they wish support to develop parallel code independently of
templates, or in addition to code that an expanded template yields.

Finally, a context dependent information window completes the list of persistent
windows in the LPB environment. This window is basically a comment window for
tuples. Every time a tuple is selected in the Tuples menu, the information window
will reveal the available information on that tuple. The default information in this
window is type information on the fields of the tuple. However, this window is freely
editable and the user can modify it to include his comments on a particular tuple.
The information will always be carried with a tuple and helps users keep track of what
tuples are used for. -

To demonstrate the workings of how to construct a program with the LPB, an ex-
ample follows. In particular, a master-worker template is used to construct a database
search program.

!Strictly speaking, we should be speaking of tuple signatures of in/out patterns. “Tuples” actually
refer to run-time instances of a particular tuple signature. We use the term “tuple” very loosely in the
context of the LPB to refer to tuple signatures.
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2.1.1 Using the master-worker template

Experience indicates that one of the most common parallel programming paradigms
is the master-worker paradigm [Car87]. A master process starts a number of worker
processes, generates a number of task descriptors, waits for results for the tasks, and
having obtained results, tells the worker processes to stop. Each worker executes an
infinite loop where it obtains a task descriptor, computes the task and generates the
result for the task. In its simplest form, a master-worker coordination framework looks
like the following:

master() {
create workers
create task descriptions
gather results
stop workers

3
worker() {
while (1) {
get task description
break out of loop if told to stop
compute task
output result
3
3

Many variations of this basic skeleton are possible. We could, for example, generate a
worker for every task, and have the worker routines themselves evaluate to the result.
We could have the master generate all the task descriptors itself, or we could have it
generate just one, and each worker, upon receipt of a task descriptor, would then decide
whether to generate further descriptors. All these variations and others are supported
by the master-worker template.

To understand how templates in the LPB work, it will be helpful to examine an
example in detail. We use the master-worker template to construct a simple database
search program. Suppose we would like to search a large telephone directory for all
entries matching a particular string. This string could be any combination of numbers
and letters. Consequently, there could be multiple matches to our string. Our directory
has no particular ordering and hence we will search through the whole directory file.
This is a good case for the master-worker paradigm. The master process reads in
the entire database file and breaks it into records. The data describing the chunks
constitute the tasks descriptors for the workers. The workers search through the chunks
for the target string and return result tuples indicating when matches are found.
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When the LPB environment starts, an editing window and a number of menus
appear. We select the Master-Worker Template option of the Global Menu to begin
our program. This causes the corresponding template to appear in our editing window.
Figure 2.1 shows the initial master-worker template. The template begins with only
two buttons, one for the master routine and one for the worker routine. Clicking on
either of these buttons will cause it to expand. A logical first step would be to read the
phone database and generate the task descriptors, so we click on the master routine
button. The code expands into what is shown in Figure 2.2.

The master routine becomes the real main function in Linda. The LPB assumes
that the number of workers spawned for this problem will be passed as a command line
argument (but this can be changed by the user). The generated code in the real main
function checks the argument line and spawns off the worker processes by generating
the eval loop. Two buttons appear in the expanded code. The first one of these is the
out tasks button which will yield code to generate the task descriptors and gather the
results. Following this, the out poison button will yield code that tells the workers
to stop. Finally, the rest of the code in the function cleans up the finished worker
processes.

The next step is to expand the out tasks button by clicking on it. This yields
what is shown in Figure 2.3. To specify task descriptors, the user has to choose one
of several different task distribution models. Consequently, a menu of model choices
appears from which the user is asked to select a model. A message window appears
simultaneously with the menu — this is a help window with information on how to
proceed whenever input is required from the user. The message window disappears if it
is clicked on. There are four possible model choices for the task descriptors generating
phase.

One possible choice is a generic task bag such that the tasks descriptors are all
dumped into an unordered bag from which workers grab task descriptors. If, however,
the tasks must be completed in some order, then a task queue is the model to choose.
In this case, the user can choose between single sources and multiple sources for the
queuve. Finally, the user may wish to monitor the number of tasks in the bag. If
the number of tasks is potentially very large, then the bag could get filled with tasks
such that memory limits are exceeded. The solution to this problem is to monitor
the number of tasks in the bag, and every time a threshold value is reached, gather
results until the number of tasks has dropped to a low level threshold. This is known
as the “watermarked bag” approach and since we are considering a potentially very
large telephone directory in our example, this is the model we choose. This results in
the next input request which appears in figure 2.4.

The user is now asked to specify the loop boundaries for the task generation loop.
In some cases, the number of tasks is identical to the number of workers. In fact, if the
user chooses not to answer the boundaries question, this is what the LPB chooses to
default to and the loop is generated accordingly. In the case of our example, however,
we choose a different approach.
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Our telephone file is organized such that we have one record per line, consisting of
a name, a number and an address. Thus, it makes sense to issue one task descriptor
for every line in the file. Workers will grab these task descriptors and work on one line
at a time. Our loop condition therefore becomes dependent on whether the end of the
input file has been reached. We express this as a file read operation. Consequently,
we also need to open the file and here the flexibility of the LPB comes into play —
we simply declare a file variable in our program and issue the appropriate file opening
call early in our function. Having inserted the code for opening the file and having
specified the loop condition, we now proceed to define the task descriptors themselves
(figure 2.5).

The master-worker template asks the user to define the fields which constitute the
task descriptor tuple. An input window appears titled “Tuple: task”, and the user is
asked to declare the variables for the fields of this tuple. We will describe each task by
a line number and the line text. We thus declare an integer and an array of characters
to hold the number and string respectively. Armed with these declarations, the LPB
now has a definition for task descriptors and proceeds by asking the user to identify
the poison variable (Figure 2.6).

A task descriptor needs to convey one of two things to a worker process: it will
either give the worker data to work on, or it will tell the worker to stop computation
and break out of its infinite loop. The latter is done through something known as a
poison pill. A poison pill is simply an invalid value assigned to some field of the tuple
which is recognized by the worker as being “impossible”. The user is asked to identify
which of the fields of the task descriptor carries the poison variable — i.e. the user
has to identify the variable in the tuple that will be used to convey the poison pill.
A menu appears listing the variables which have been declared for the task descriptor
tuple. The user clicks on one of these (the line number variable is convenient in this
example), and is prompted for a value. -999 is clearly an invalid line number and so it
adequate for our poison pill value. Having specified this, the next step is to define the
result tuples (Figure 2.7).

After the master is done generating task descriptors, it waits for results. These
results also have to be conveyed through tuples which need to be defined. Much as in
the case of defining tasks, an input window appears titled “Tuple: result”, prompting
the user for variable declarations for the fields of the result tuple. The results have to
convey those lines in which matches were found. We will thus use a line number and a
text string once again. In fact, in the case of lines where matches are found, the results
will simply be returning the same values as the task descriptors. It thus makes sense to
declare the exact same variables as in the case of the task descriptor tuple. Now that
our result tuple has been defined, the loop for task generation and result gathering is
complete and the appropriate code has been inserted into the program (Figure 2.8).

Several important things have happened. Two tuples have been defined as is ap-
parent in the Tuples menu. The LPB has generated a loop which generates the task
descriptors, monitors how many are put out into tuple space and gathers results as
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needed. Within the loop, the tuple operations are clearly highlighted in red.

Only a few more things need to be done in the master routine. The lower and
upper bounds on the number of tuples to be held in the watermarked task bag need
to be specified. This is merely a matter of clicking on two buttons which prompt for a
number or expression. We also need to print out the results. If the line number of a
result is positive, we print out the text string in that result; if it is zero, we ignore it. It
may seem odd that we bother to return negative results, but this is necessary since we
don’t know a priori how many matches will be found. Consequently, we gather as many
results as we initially generated task descriptors for. If we were streamlining this code,
we could return negative result tokens that are small and don’t hold an unnecessary
string. There is now only one button left in the master routine which needs expansion
and this is the poison button. Clicking on this automatically generates the appropriate
tuple operation.

The last thing that still needs to be done for the master routine is to read and
distribute the target string that will be searched for. We assume that the target string
will be specified on the command line. To distribute the target to all the workers, we
have to define a new tuple. To do so, we click on the new-tuple-out command in the
Tuple Commands menu and the LPB responds by requesting a label for the tuple. We
call the tuple “target” and are presented with an input window Jjust like the one in the
case of defining task or result tuples. In this case, we need only one field which is an
array of characters to hold the target string. Once this has been defined, we are done
and the appropriate out operation is inserted by the LPB into the code (Figure 2.9).

With our master routine complete, we can concentrate on the worker routine. Click-
ing on it gives us the skeleton for the worker shown in figure 2.10. The first thing we
need the worker to do is to read the target string. For this, we make use of the tuple
operation support that the LPB provides. Clicking on the tuple label for the tuple we
want (the “target” tuple) in the Tuples menu causes the Tuple Commands menu to
display a list of options for that tuple. We would like to read the target tuple from
tuple space, so we click on the tuple-rd option in the Tuple Commands menu and the
appropriate tuple operation is automatically inserted into the code. The corresponding
variable declarations are also automatically made within the scope of the local func-
tion. Note that clicking on the target label in the Tuples menu also affects the Tuple
Info window which displays information on the current tuple selection.

Expanding the remaining buttons of the worker routine is a mere formality. The
task descriptor tuple, the poison pill, the result tuple — all of these have already been
defined and clicking on the buttons automatically generates code. In fact, the only
code segment which does need to be typed in is the actual computation (Figure 2.11).
The computation is a straightforward string search. If a match is found, the tuple
should be put out into tuple space. If no match is found, the line number must be
set to zero and the tuple must then be put out. We enter the appropriate code for
this and are now done with the program. We save it and hit the compile button. The
LPB responds by giving us a choice of compiling with or without Tuplescope [BC90]
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(Figure 2.12). We decide to compile without the Tuplescope flag. We then run the
program on an example in our process window (Figure 2.13).

We have constructed a parallel database search program using the master-worker
template. The LPB handled much of the administrative efforts in the parallelization
and guided the user through following the master-worker framework.

2.1.2 Hierarchical Templates

Templates could be hierarchical in nature. We can use existing templates as building
blocks for other templates. Suppose, for example, that our site frequently constructs
database search programs of the type we just built. We may wish to construct a tem-
plate which generates parallel database search programs. What we want is a template
that constructs parallel code for problems of the sort:

search target in all {...}

i.e. we want to search for some target in all elements of a large database. In order
to construct such a template, we could use the master-worker template as a building
block. One approach would be to simply have the template for database searches call
upon the master-worker template and have the user fill it out in much the same manner
as we have already seen in our example.

Alternatively, we could have our template call upon the master-worker template
with some slots already filled in. All the user would need to specify would be his target
and his database format. Users could thus very quickly generate database search
programs that search through a particular database in a specific manner. Hence,
customized templates could reduce software development time for different sites.

2.1.3 Other Templates

The LPB offers other templates in addition to the master-worker template. Two such
templates are described below. Some of the design decisions and assumptions are also
described. In general, the question of how and when to design and build a template is
an interesting issue which is discussed in Chapter 5.

Piranha Templates

Piranha templates are designed to guide the user through constructing Piranha [Kam94]
programs. The basic idea is similar in nature to the master-worker template of the pre-
vious section, but there are some important distinctions. At the top level, there are
buttons for four different routines. The basic idea behind Piranha is that it enables
users to write adaptively paralle] programs. We have a feeder process which provides
tasks to a number of piranha processes that run on different nodes of a network. The
number of nodes working on a problem can change dynamically with availability.
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The feeder routine is analogous to the master routine in the master-worker tem-
plate and the piranha routine corresponds to the worker routine. The user expands
these routines just as he would expand the corresponding routines in a master-worker
program.

In addition to these two basic routines, Piranha programs also have a retreat routine
and a copy routine. The copy routine copies the task data to local static variables which
are needed by the retreat routine. When the user expands the copy routine button,
it first generates some static variable declarations and then the actual copy function.
The static variables are copies of the variables of the fields in the task tuple. The
arguments to the copy routine are copies of the task tuple field variables and these are
then copied into the static variables.

The retreat routine is invoked if a process running on a node has to be killed
(Piranha processes are killed if certain conditions on a node are violated, e.g. the user
of a workstation may just have returned from his lunch break and have touched his
keyboard, indicating an intention to use his machine — in such a case foreign piranha
processes become undesirable). Suppose a Piranha process has consumed a task from a
pool of tasks and is working on it. If this Piranha process suddenly needs to be killed,
it has to regenerate the task it has already consumed so that another Piranha can
later work on it. The retreat routine regenerates the consumed task. In cases where
there are no dependencies between different tasks, the retreat routine is quite simple
— it merely involves doing an out of the consumed tuple. The LPB automatically
generates such retreat routines. The original values of the fields of the task tuple have
been stored in the static variables described above and can be used to regenerate the
original task tuple.

Data Parallel Templates

The data parallel template supports the owner-computes style of programming [CG94].
The basic idea behind this style of parallel programming is that each processor holds
some portion of a large, global data structure. The processor is responsible for all
computation on its share of the data structure. Ultimately, the complete data structure
itself will hold the end result, or the results from each portion need to be merged in
some way to yield a final result.

At the top level of the data parallel template, there are buttons for three key rou-
tines: a filter routine, a log routine and a merge routine. The filter routine constructs
a function which will determine which data belongs to particular processes. There are
a number of ways to do this, but the most common one supported by the LPB is the
uterative chunk approach. In this approach, a processor is responsible for some chunk
of a larger data structure. It works on the chunk, one element at a time, until this
chunk is done, at which point it proceeds to the next chunk that it is responsible for.
The code below lists the filter routine. The first step is to claim a chunk of the data
structure. This is done by doing an in on the “task” tuple — the stop variable will
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hold the upper limit of the chunk that the process will work on.” Once the stop value
is acquired, it is incremented by chunk and put out to tuple space so that another
process can claim this next chunk.

Each process goes through the list of elements in the global data structure and
determines which of the elements are its responsibility by calling the filter routine.
Given a chunk that the process has claimed, the filter routine’s job is to check each
element against this chunk. The counter variable count holds the number of the
current element. If count falls within the range of the chunk, the return value is true,
otherwise, this element does not belong to this processor. Consequently, in the latter
case, the routine increments count and returns false.

static count = 0;
static chunk;
static LINDA_ID;

int filter()

{
/*** Local variable declarations begin here ***/
static next = 0, stop;
/*** Local variable declarations end here #*¥*/

/*** Body of code for function begins here ***/
if ('next) {
in (“"task", ?stop);
next = stop;
stop = next + chunk;
out ("task", stop);
X
++count;
if (count == next) {
if (++next == stop) next = 0;
return 1;
X
else {
return O;

}

The log routine fills a static data structure with results as they become available.
When a process completes its computation, this data structure will hold all the results
for the portion of the global data that the process was working on. When a user
expands the log routine, he is asked to identify what kind of data structure he will use.
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The data could be a simple variable, a structure, an array of variables, or an array
of structures. Depending on the data structure type selected, the user is asked some
questions regarding the names and types of the variables involved. Once this has been
domne, the routine is automatically generated.

Finally, the merge routine gathers the different parts of resultant data together to
form the final answer. If the process happens to be the master routine, it will in the
results from each of the workers. If it is a worker routine, it will put a result out to
tuple space which contains its node identifier, and the static data structure constructed
in the log routine. The latter contains the results that it has computed.

There are also a number of combination operators that can help users in merging
data together in the final stage. These include simple combinators such as sum op-
erators, global minimum operators, and global maximum operators. These operators
work for any number of processors, not just powers of two. The user can also declare
new operators by writing macros for the operators.

The combination operators complete the data parallel package. The data parallel
template thus helps users write owner-computes style data parallel code in Linda.



Chapter 3

Distributed Data Structures and
High-Level Operations

Linda programs generally make use of distributed data structures such as distributed
arrays, task bags, shared variables and so on. Many of these crop up within the
coordination-framework templates discussed above. Structures such as task bags, wa-
termarked bags and distributed queues, to name a few, are often incorporated into the
choices presented during the construction of a program through a template. But if a
programmer needs to specify a data structure outside of a specific template, the LPB
still provides support. Why would a programmer wish to do so? There are a number of
scenarios where the situation could arise, but ultimately it stems from the basic need
for flexibility.

One of the most important design decisions of the LPB was influenced by the goal
to provide flexibility to the user in a manner that even experts would consider an aid
rather than a burden. Consequently, as has been mentioned in Chapter 2, the user has
the option of bypassing templates partially or even completely. A programmer may
decide to construct a program without invoking a template and rely on distributed data
structure support from the LPB, or he may decide to add some new data structures to
those provided by the template. The LPB will provide support for such actions.

The LPB also supports high-level operations and abstractions. These allow users
to call on operations which are not part of the base language but can be implemented
in terms of the base language. The high-level operations and abstractions typically use
distributed data structures of the kind mentioned above.

The following sections describe the distributed data structures that the LPB sup-
ports. The data structures are presented in order of increasing complexity. This is
followed by a section on high-level operations and abstractions and a section that
describes how the system supports the distributed data structures and high-level op-
erations.

31
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3.1 Basic Tuples

The simplest distributed data structure supported by the LPB is a Linda tuple!. Tuples
are ordered sets of data elements where the data elements can be of different types.
We shall use the term tuple category to denote tuple signatures from which tuples are
instantiated. In particular, the LPB provides a mechanism for users to define a tuple
category by specifying a label and declaring the variables for the fields of the tuple
category. Omnce a tuple category has been defined, Linda operations on tuples from
that category are easily supported by the LPB.

Defining a tuple category involves selecting an option, specifying a label and declar-
ing variables. By convention, the first field of a tuple is usually a string that serves
to label the tuple category. The LPB adopts this convention and enforces it: a tuple
category is always referred to by its label. To initialize a tuple category with a la-
bel, the user invokes any of the generic tuple operations for new tuples in the Tuple
Commands menu. Hence, if we wish to out a new tuple, we select the new-tuple-out
command in the menu and we are prompted for the tuple category label. Once we
have typed in a tuple category label, an input window appears with instructions to
define the variables for the fields of the category. We type in variable declarations in
this window as we would anywhere in a normal Linda program, inserting comments if
desired. When the declarations are complete, we click the input done button. The
appropriate tuple operation is inserted into the code and the corresponding variable
declarations are placed within the scope of the local function. More importantly, the
tuple category is now defined and designated by a label. Hereafter, whenever we wish
to manipulate tuples from this particular category, we click on the corresponding label
in the Tuples menu and then select an action. The choice of actions appears in the
Tuple Commands menu. Hence, to manipulate a tuple, we select a tuple category and
then based on the actions allowed on this tuple category, we select which action to call.
Choosing any one of the in, out, rd or eval operations in this menu will automatically
insert the operation and corresponding variable declarations. When a tuple operation
appears in the code, it is in red to distinguish it from other operations and free text.

As the LPB inserts tuple operations, it keeps track of their placement. Conse-
quently, it can offer support for quick reference to all uses of a particular tuple cate-
gory. Selecting the highlight-refs command will cause all references to the currently
selected tuple category to be highlighted across all open code modules. In fact, we can
change a tuple category definition and have this change propagate across all the mod-
ules automatically. Suppose we choose to add a field to a tuple or change the name of
the variable for a field. We select the tuple~modify command and are presented with
an input window with all the declarations for the selected tuple therein, Jjust as they
appeared when we originally defined the tuple category. We now simply change the

'Once again, we use the term “tuple” very loosely. Strictly speaking, we are referring to tuple
signatures from which tuples will be generated at run-time
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declarations as desired. All references to the tuple category are updated to reflect any
new changes and if new variable declarations need to be made, the LPB will take care
of this. The LPB always inserts the same variable declarations for a particular tuple,
regardless of where in the program an operation on the tuple is inserted. Users can
override this using the change-field-specs command which is described below.

By default, all the fields in an out are actuals, whereas all fields except the first
(the label) are formals in an in. This convention was chosen for empirical reasons: an
in will typically remove a tuple from tuple space and bind the values of the fields to
local variables. Needless to say, users will not always want all the fields in an in to
be formals — they may want any number of fields to be actuals. The LPB needs to
adopt some kind of convention, however, and since an in will usually involve at least
one formal, the LPB sets all fields to be formal and lets the user change whatever
fields need to be changed to actuals. To override a fields setting, the user has to select
the change-field-specs command in the Tuple Commands menu. A menu pops up
that lists the variables of the tuple category. Clicking on a particular variable will pop
another menu up which shows the status of the field for that variable (Figure 3.1). The
status of a field is either actual, formal or other. The current status is highlighted
and changing it merely involves clicking on the desired status. A user may also wish
to freely enter text for a field instead of relying on the variable name that the LPB
generates. To change the status to such a customized string, the user selects other
and then types in a string to replace the default field.

3.1.1 Tricky Situations

Supporting basic tuple operations requires taking care of some potentially tricky sit-
uations. Treating tuple fields which hold arrays is one such case because there are
multiple ways to express them. Another tricky scenario occurs when two declarations
of the same variable get inserted into the same function. The latter can be caused by
the LPB itself as we shall see. The LPB deals with both of these situations.

Dealing with Arrays

Dealing’ with arrays in Linda is a complex issue — there are multiple ways to out
or in an array since users can treat only parts of an array if they so wish. This has
direct implications for the LPB: the LPB has to make default assumptions on how to
treat fields in tuples which are defined as arrays. The user is not stuck with the LPB’s
default assumptions — the assumptions can be overridden by the user.

In Linda, if we wish to out an array and then in it as a formal, we may do so in
the following manner:

int af[20];

out(‘‘array’’, a);
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in(¢‘array’’, 7a);

In this example, we are using a fized array field, meaning that the length of the array
is fixed. Fixing array length is quite restrictive. To fix array length, we assume that
“the entire array needs to be put out to tuple space. Furthermore, we need an array
of the exact same dimension for the types of the fields to match. Since we need a
general scheme for treating arrays such that their coding can be automated, the above
approach is too restrictive. More interesting from our perspective is the varying field
format. The following are all legal out operations in Linda:

out(‘‘array’’, a:20);
out(‘‘array’’, a:len_a);
out(‘‘array’’, a:);

The first example will output the first twenty elements of array a into tuple space.
The second one will output len_a such elements, while the last example indicates a
varying length field whose length is the declared length of the array. The last case is
the most flexible case since any array with elements of the same type as a will match
this field when used as a formal, regardless of the declared length of the new array.
The corresponding in operation would be:

in(‘‘array’’, 7a:len_a)

where len_a must be an integer. The actual number of entries bound to a is returned
in len_a.

When an array is declared as a field for a tuple category in the LPB, the tuple
operations that.the editor will construct will take the above into account. Thus, in the
case of an out, the array name is taken and postfixed with a “:” so that it is put into
tuple space as a varying field. In the case of an in, on the other hand, it is prefixed by
a “?” to turn it into a formal, and postfixed with a “len_variable-name” so that the
number of entries actually read in can be returned (where “variable-name” is whatever
the name of the variable is). Consequently, the new variable len_variable-name is
automatically declared within the scope of the surrounding function.

Dealing with Variable Redeclarations

The other tricky scenario that can occur when automating tuple operation coding is
variable redeclaration. It has been mentioned several times that variables necessary
for a particular Linda operation are automatically declared within the scope of the
surrounding function (pages 32, and 37). What if we were to insert two operations on
the same tuple category within one function? Would the variables for the tuples get
declared twice? The LPB will not redeclare variables if they have the same name and
the same type. The code segment is parsed for this purpose. If, however, a variable
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has the same name as one that has already been declared, but has a different type, a
warning window pops up warning the user that a variable with a conflicting name has
been declared within the local function.

3.1.2 The Tuple Information Window

When a tuple category has been defined, selecting it in the Tuples menu will not
only change the commands menu to display the permissible commands for the tuple
category, but will also change the Tuple Info window to show information on the
tuple category. By default, this window will show information on the types of the
fields in the tuples. For arrays, for example, it will show the type of the fields of the
array, followed by the keyword “ARRAY” and a list of dimensions. This window is
freely editable and the user can enter his own comments for this tuple category. These
comments will always be associated with this particular tuple category and serve to
remind the user of any relevant information when using tuples from this category.

3.2 Shared Variables

Shared variables are accessed by different processors. Implementing a shared variable
in Linda typically involves putting it in tuple space. To modify a shared variable, a
program will remove the tuple from tuple space, update the variable, and put the tuple
back into tuple space. The LPB will ease the burden of coding for shared variables.

The LPB supports shared variables which are accessed by different processors. A.
shared variable is a special case of a generic tuple category. The difference between the
two lies in the fact that shared variables conceptually have an evolving state associated
with them. When a shared variable is initialized, it is set to some value and put out to
tuple space where all processes can access them. Another process may choose to read
the value of this shared variable (in which case it will execute a rd operation) or it
may modify the value. Modifying a shared variable consists of removing the tuple from
tuple space, binding the fields to some local variables, updating the values of fields,
generating a new tuple with these updated values and putting the new tuple out to
tuple space.

The LPB provides a number of constructs to manipulate shared variables. A user
- can initialize a shared variable by selecting the init-shared-var menu command. The
familiar input window will appear, asking for variable declarations for the data which
will be shared. When this has been completed, a new label appears in our Tuples
Menu, namely the name of the first variable we declared in the input window, prefixed
with the word “shared.”. Clicking on this label will cause the Tuple Commands menu to
change and display the commands allowable on a shared variable. This list is different
from that of a generic tuple category. Instead of the standard in, out, rd and eval
operations, we now have options to init, in, rd, and modify the shared variable. The
modify option provides an input window which shows an in on the tuple followed
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l LPB option [ Linda code ]
init out(“shared_name”, fieldl, field2,...);

modify in (“shared_name”, ?ield1, ?field2,...);
fieldl = expressionl;
field2 = expression2;
out (“shared-name”, fieldl, field2,...);
rd rd (“shared_name”, ieldl, 7field2,...);

in in (“shared_name”, ?fieldl, ?field2,...);

Table 3.1: Shared Variable Options in the LPB and the Equivalent Linda Code

by an out. The user edits the fields of the out or inserts some assignment statement
between the two operations to modify the state of the shared variable. Whatever is
typed in this input window is what will appear in the program. Finally, as we are used
to by now, any necessary variable declarations are automated . Table 3.1 shows the
LPB shared variable options and the corresponding Linda code.

3.2.1 Specialized Shared Variables: Shared Counters

A shared counter is a specialized form of shared variable. In a shared variable, the
fields could have any types. In the case of a shared counter, however, there is only one
field and this holds an integer value. When initializing a counter, the user only needs
to give it a label and an initial value. The label appears in the Tuples menu, prefixed
by the word “counter.”. The function of counters is simple: count either upwards or
downwards. Consequently, the actions that can be carried out on counters through
the Tuple Commands menu are correspondingly simple: init, in, rd, increment and
decrement (in addition to the usual commands for highlighting references or deleting
tuple operations).

3.2.2 Specialized Shared Variables: Counting Semaphores

Semaphores are a vital ingredient of a large class of systems programs. Linda tuples
can be used as semaphores. All that is needed is a string within a tuple to identify
the semaphore. An in on this corresponds to Dijkstra’s P operation, and an out on it
corresponds to a V operation [PS85]. Multiple P operations result in multiple outs of
instances of the same tuple category. The LPB supports semaphores: the user selects
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LPB option ] Linda code. |
init out(“counter_name”, ctr_name);

increment | in (“counter_name”, ?ctr_name);
out(“counter_name”, ctr_name + 1);

decrement | in (“counter_name”. ?ctr_name):
b b
out(“counter_name”, ctr_name - 1);

rd rd (“counter_name”, Tctr_name);

in in (“counter_name”, ?ctr_name);

Table 3.2: Counter Options in the LPB and the Equivalent Linda Code

the menu command and provides a label; the LPB then restricts the actions menu to
performing an in or out on the semaphore.

3.3 Distributed Queues

Distributed queues of various kinds are often required in parallel programs. They
may have multiple sources, sinks, or both. The synchronization and handshaking
necessary for coordination among the various sources and sinks can be achieved through
distributed head and tail pointers stored in tuple space. The LPB provides a set of
menu functions to create and manipulate queues. Upon selection of a create-queue
command, a popup menu offers choices for queue models (Figure 3.2). Once a model has
been selected, all the tuples necessary for maintenance of the queue are automatically
generated and initialized. A user is now free to select menu commands to add to or
remove from the queue as desired (Figure 3.3). All tuple operations, declarations, and
support code are automatically inserted in the appropriate places.

The different queue models are: single source with single sink, single source with
multiple sinks, multiple sources with single sink, and multiple sources with multiple
sinks. The single source with single sink model is similar to the sequential model. One
specific process adds entries to the tail of the queue; a process (possibly the same one)
removes entries from the head of the queue. When we move to multiple sinks, there
are more consumers of queue items, i.e. multiple processes will remove entries from
the head. Conversely, we can have multiple sources adding entries to the tail of the
queue with only a single process consuming entries at the head. Finally, we may have
multiple sources as in the former case, but also have multiple processes consuming the
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entries at the head.

To implement the queue operations, the LPB generates a tuple category to hold
queue elements, and possibly one for a head pointer or tail pointer depending on the
queue model chosen. Tail and head pointer tuple categories need to be generated if
these need to be shared by more than one processor. Tables 3.3, 3.4, 3.5, and 3.6 show
the different queue models, the LPB options for manipulating these queues, and the
Linda operation sequences into which these options translate.

| LPB option l Linda code l
initialize IHeadPtr_name = 0;
ITailPtr_name = 0;
add-to-tail pPtr_name = &I1TailPtr_name;

out (“name”, *pPtr_name, fieldl, field2, ...);
*pPtr_name++;

take-from-head | pPtr_name = &lHeadPtr.name;
in (“name”, *pPtr_name, ?field1, ?field2, ...);
*pPtr_name++;

Table 3.3: LPB Options and Linda Equivalents for Single Source, Single Sink Queues

3.4 High-Level Program Constructs and Abstractions

The LPB supports high-level operations which are implemented in the base language.
These operations are different from full program templates that direct control flow.
High-level operations are there for users who may wish to use operations which are not
part of the base language, i.e. they can take advantage of the functionality of high-level
operations and treat them as if they are part of the base language. The abstraction
feature of the LPB supports high-level operations and is a useful tool in constructing
and viewing programs. It supports top-down programming by presenting a high-level
view of program structure that can be expanded downwards at will, but also abstracted
back up again to a conceptually more appealing higher-level format. This allows the
programmer to concentrate on hierarchical program construction at a high level, and
to deal with “blocks” of code represented by abstractions.

The LPB supports high-level operations which are not supported by the base lan-
guage, but can be implemented by some sequence of operations in the base language.
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u,PB option

Linda code 1

initialize |HeadPtr_name = 0;
out (“counter 1Head_Ptr_name”, IHead Ptr_name);
ITailPtr_name = 0;

add-to-tail pPtr_name = &1TailPtr_name;
out (“name”, *pPtr_name, fieldl, field2, ...);
*pPtr_name++;

take-from-head | in (“counter 1HeadPtr_name”, |Head Ptr_name);
out (“counter 1HeadPtr_name”, IHead Ptr_name+1);
pPtr_name = &lHeadPtr_name;

in (“name”, *pPtr_name, Meldl, ?field2,...);

Table 3.4: LPB Options and Linda Equivalents for Single Source, Multiple Sink Queues

| LPB option | Linda code }

initialize |HeadPtr_name = 0;
1TailPtr_name = 0;
out (“counter1TailPtr_name”, 1TailPtr_name);

add-to-tail in (“counter1TailPtr_name”, NTailPtr_name);
out (“counter 1TailPtr_name”, 1TailPtr_name+1);
pPtr_name = &1TailPtr_name;

out (“name”, *pPtr_name, fieldl, field2, ...);

take-from-tail | pPtr_name = &IHeadPtr_name;
in (“name”, P*pPtr_name, field1, field2, r);
*pPtr_name++;

Table 3.5: LPB Options and Linda Equivalents for Multiple Source, Single Sink Queues
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l

LPB option

Linda code

initialize

add-to-tail

take-from-tail

IHeadPtr_name = 0;

1TailPtr_name = 0;

out (“counter1TailPtr_name”, 1TailPtr_name);
out (“counter 1HeadPtr_name”, 1HeadPtr_name);

in (“counter 1TailPtr_name”, NTailPtr.name);
out (“counter]TailPtr_name”, 1TailPtr_name+1);
pPtr_name = &lTailPtr_name;

out (“name”, *pPtr_name, fieldl, field2, ...);

in (“counter 1HeadPtr_name”, 71Head Ptr_name);
out (“counter 1HeadPtr_name”, 1HeadPtr_name+1);
pPtr_name = &1HeadPtr_name;

in (“name”, *pPtr_name, ?field1, ?field2, o)

Table 3.6: LPB Options

Queues

43

and Linda Equivalents for Multiple Source, Multiple Sink
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In the context of the LPB, these high-level operations appear as abstractions which can
be expanded into their equivalent base language representation. An expanded abstrac-
tion can be abstracted back again (buttons, on the other hand, can only be expanded).
This higher level representation is more concise and easier to understand.

A similar approach has been explored in the past. The basic idea may seem similar
to the Cedar [SZBH86] approach in its Tioga structured text-editor, but there is a
key distinction. Tioga treats documents in a tree-structured manner where each node
Is a paragraph or a statement. This hierarchical node structure allows detail to be
concealed in the interest of a conceptually higher-level view, much as in the LPB.
A related feature appears again in editors that provide outline modes, allowing for
a hierarchical perspective on text. Typically, these allow labels to be attached to
text segments and then allow the document to be viewed at a label level. Any of
these labels can be expanded into the text segment it represents. Note, however,
that the abstraction feature of the LPB involves considerably more than mere in-place
expansion. Expanding an abstraction involves actual code generation which may affect
code spread across several modules. This code is automatically generated, and it is not
a mere in-place insertion of a text segment the user has previously typed in.

As examples, we present the or-in construct and the shared linked list operations.

3.4.1 The or-in Construct

Linda programmers occasionally encounter situations where they would like to in any
one of a number of possible tuples. There is no explicit construct in Linda which allows
them to express this. As we shall see, explicitly coding this in Linda is nontrivial. It
has been debated whether an operation should be added to Linda which would allow
users to choose to in ome of several tuples. This would require changing the Linda
kernel to incorporate a new function and hardwire it into the language. This would be
a drastic step with numerous implications on the elegance and simplicity of Linda. The
undesirability of this is explored in Chapter 6. An alternative solution is to use the
abstraction feature in the LPB. We can create an abstraction for the or-in operation
such that it appears to be a Linda operation.

The LPB implements the or-in function as a higher-level operation. When the file
is saved, the abstraction expands into the equivalent Linda code which is then compiled.
The abstraction can also be expanded and abstracted again for viewing purposes. If
the user selects the menu option for an or-in, a menu pops up with a list of the tuple
categories that are known to the database. The user selects those tuple categories from
which tuples can be in’ed for the or-in. The or-in appears to be a regular program
construct, but the relevant lines in the code are highlighted (Figure 3.4).

Expanding the or-in abstraction will show the user how it is implemented in Linda
code. Clicking anywhere on the highlighted portion selects that higher-level operation.
Picking the expand abstraction button in the Tuple Commands menu causes the ab-
straction to expand. If the cursor is placed on the main section of the or-in expansion,
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and the abstraction menu item is selected, all the expansion details disappear, and
the abstraction reappears, making the or-in look very much as if it is a part of the
language.

The LPB implements the or-in construct by generating a new tuple category which
is labeled “or-in”. This category has one field for each tuple that is involved in the
or-in. Each field is a boolean and we can think of the tuple as a vector of booleans.
Whenever one of the tuples to be or-in’ed is put out into tuple space, an instance of the
“or-in” tuple category is also put out with a true value in the field that corresponds
to the tuple which was just put out. The rest of the fields have null values. Whenever
a tuple is removed from tuple space, the LPB inserts an in on the “or-in” tuple with
the corresponding field set to true and all other fields set to null.

What does this give us? By inserting these operations, every instance of a tuple .
which is involved in the or-in is flagged when put into tuple space, and the flag is
removed before the tuple is removed from tuple space. When it comes to the actual
or-in, the LPB replaces the abstraction with an in on the boolean vector. The fields
are all formals in this case, i.e. we are looking for available flags. Carrying out the
or-in now becomes a matter of looking through all the flags for the first one with
a true value and doing an in on the corresponding tuple when such a flag is found.
Needless to say, at least one of the flags must be true since no all-null boolean vectors
are ever put out — a boolean vector only goes out when a tuple is put out and hence,
by definition, the corresponding field must be true.

Figure 3.5 shows the expanded or-in abstraction. Note that the expansion causes
all relevant references to tuples involved in the or-in to be preceded or followed by a
corresponding operation on the boolean vector tuple. These changes will affect all open
modules. The ability to affect code globally is a key distinction between abstractions
in the context of the LPB and abstractions as we know them from other editors. There
are numerous editors which allow text segments to be labeled by tags. Users can step
up or down a hierarchy ladder by viewing tags as placeholders or having tags expand
into text segments which they represent (e.g. the Tioga editor mentioned earlier). An
LPB abstraction is clearly not merely an in-place expansion — it can have global effects
on the code.

3.4.2 Shared Linked Lists

A shared linked list is a linked list which can be accessed by multiple processors. Such a
list could be used to implement random-access queues, for example. The LPB provides
support for shared linked lists — it offers options to create and manipulate shared
linked lists.

The implementation for a shared linked list basically has two levels. The elements
in the list have index values. The first level of the list is the index list, where each
entry is represented by a tuple containing the index value and the next index value.
The index value is the key into another tuple which actually stores the data element for
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index | next index — index ! next index —1

l l |

index | data... index | data...

Figure 3.6: Linked List

that index. At the user level, the user simply selects an option from omne of initialize
list, insert node or remove node. The user actually views the code at this level of
abstraction. If the user chooses to expand the abstractions, they expand into Linda
code that manipulates the linked list. Hence, an insert node will expand into code
that first acquires a unique identifier for the node and then creates a new node. To do
this, we in the node after which the new one will be inserted, modify the appropriate
fields to insert a new node, and out the new node index. We can then out the node with
the data. Figures 3.7 and 3.8 show a linked list operation in pre- and post-expansion
format.

To initialize a list, a user specifies a label and declares variables to hold the values
for the nodes of the list. Thereafter, inserting a node requires identifying the list and
indicating where on the list the new node should be placed. Each time a new node
is generated, a new unique identifier has to be issued for this node. This is done
by an ID-generating function which the LPB constructs and places into the module,
within visibility of the user. The appropriate call to this function can be seen when the
abstractions are expanded. Table 3.7 shows the LPB options for manipulating shared
linked lists and the Linda code into which these options expand.

3.5 The Program Database

All the LPB’s distributed data structures are maintained by a program-describing
database. This database is the backbone of the LPB, maintaining all the information
necessary to implement higher level operations and provide user support. This infor-
mation is used to eliminate administrative memory-work and reduce keystrokes. For all
tuple operations, for example, variable declarations and code insertion are automated.
The database’s information allows cross-module propagation of updates to tuple ref-
erences when a tuple structure is modified. The database also supplies information to
the compiler and visualizer.

The LPB continuously updates its program-describing database. Every tuple, func-
tion, abstraction, higher level operation, or other significant component of the program
is entered into the database as it is used. The database keeps information on a tuple
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l LPB option

l

Linda code j

initialize shared

linked list

insert node

remove node

list_index = 0;

next.index = -1;

list_head.name = list_index;

out (“name_indexlist”, list_index, next_index);
out (“name”, list_index, field1);

list_index = i;

temp_index = get_new_name_d ();

in (“name_ndexlist”, list_index, ?next_index);
listiindex = temp_index;

out (“name_index list”, list_index, next_index);
next_index = temp.index;

list_index = i;

out (“name_indexlist”, list_index, next.index);
listiindex = temp_index;

out (“name”, list_index, field1);

listindex = i;

if (list_index == list-head_name) {

in (“name_ndexlist”, list_index, ?next_index);
list_head_name = next_index;

}
else { »

in (“name_indexlist”, list-index, ?next.index);
temp-index = next_index;

nextindex = list-index;

in (“name_indexlist”, ?list_index, next.index);
next_index = temp.index;

out (“name_index list”, list_index, next.index);
list_index = i;

}

in (“name”, list_index, ?field1);

Table 3.7: Shared Linked List Options and their Linda Equivalents
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category’s label, the variables used in its fields, the status of each of the fields, infor-
mation on the nature of the tuple category and its use, and a record of all the places
where references to the tuple category exist. The database also keeps track of which
buttons have been expanded, and of the general state of the template.

The archive is global across a user’s LPB sessions. It is saved together with the
program files, and automatically loaded when a file is read in.

3.5.1 Database Implementation

Since the LPB itself is implemented in epoch and uses epoch-Lisp, the database consists
of a series of lists. The main components to the database are the tuple table, the
function table, and the expansions table. When the database is saved, the lists are put
into functions and saved as function calls which can simply be loaded and executed to
initialize the database.

The tuple table holds information on all tuples, including distributed data struc-
tures. Each entry holds information on the variables of the fields in the tuple category,
the type of the tuple (i.e. what kind of distributed data structure it represents), a list
of places where there are references to the tuple category, and some information on the
nature of the tuple category. The list of references is itself a list which contains place
references, operation types, as well as lists of each field and their respective statuses.

The function table keeps track of functions in the program. This includes noting
the start and end points, return type of the function, and various pointers to different
parts of the function. Figure 3.9 shows the basic data structure layout for the tuple
and function tables. The following program is listed to demonstrate how the LPB
maintains its database. The program tests counters, shared variables and shared linked
lists. Some excerpts from the tuple table and function table follow the program listing.

[ HEEEARAAA A K KA AR R AKA A AA A A AR AR A AR AR KA A A K AR A K A A Kk
FUNCTION: int real_main
This is the real_main function
AR RAA A KA K AR A AR KRR A KA AR A AR Ao K kR Rk ok ok k
int real main(argc, argv)
int argc;
char **argv;

/*** Local variable declarations begin here ***/
int do_counter();

int do_shared();

int do_list();

/#** Local variable declarations end here *x*/

/*** Body of code for function begins here *#*/
eval (‘‘process’’, do_counter()):
eval (‘‘process’’, do_shared());



Chapter 3. Distributed Data Structures and High-Level Operations

eval (‘‘process’’, do_list());

int do_counter()

{
/**% Local variable declarations begin here ***/
long ctr;
int i;
/*** Local variable declarations end here ***/

/*** Body of code for function begins here **x/
ctr = 1;
out (‘‘counter_ctr’’, ctr);

for (i = 0; 1 < 15; i++) {
in (‘‘counter_ctr’’, ?ctr);
out (‘‘counter_ctr’’, ctr+i);

static int list_counter_lst= 0;
static int list_head_lst= 0;

int do_list()

{
/**%* Local variable declarations begin here **x/
int next_index;
int temp_index;
int list_index;
int iMem;
int 1i;
/*** Local variable declarations end here *x*/

/*** Body of code for function begins here **x/
iMem = 20;

list_index = 0;

next_index = -1;

list_head_l1st = list_index;

out (‘‘lst_index_list’’, list_index, next_index);
out (‘‘lst’’, list_index, iMem);

it

for (i = 0; 1 < 10; i++) {

53
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list_index i;

temp_index = get_new_lst_id ();

in (“‘lst_index_list’’, list_index, ?next_index);
list_index = temp_index;

out (‘‘lst_index_list’’, list_index, next_index);
next_index = temp_index;

list_index = i;

out (‘‘lst_index_list’’, list_index, next_index);
list_index = temp_index;

iMem += 5;

out (“‘lst’’, list_index, iMem);

for (i = 2; i < 3; i++) {
list_index = i;
if (list_index == list_head_1lst) {

in (‘‘lst_index_list’’, list_index, 7next_index);
list_head_lst = next_index;

}

else {
in (“‘lst_index_list’’, list_index, ?next_index);

temp_index = next_index;
next_index = list_index;

in (‘‘lst_index_list’’, ?7list_index, next_index);
next_index = temp_index;
out (‘‘lst_index_list’’, list_index, next_index);
list_index = i;

}

in (‘‘1st’’, list_index, 7iMem);

int do_shared()

{
/*** Local variable declarations begin here **x/
int len_arr;
int iIndx;
char arr{7];
int i;
/*** Local variable declarations end here ***/
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/*** Body of code for function begins here **x/
iIndx = 3;
strcpy (arr, ‘‘green’’);
out (‘‘shared_iIndx’’, ilndx, arr:);
for (1 = 0; 1 < 15; i++) {
in (‘‘shared_iIndx’’, ?7iIndx, ?arr:len_arr);
out (‘‘shared_ilndx’’, iIndx+3, arr:);

}
}

/A A AR ARk o o ook ok ook o ok ok sk oo ok ok ke ek ok ok ko ok ok ok
FUNCTION: int get_new_lst_id

This returns new unique identifiers for the link nodes

B R L T P e ey

int get_new_lst_id()
{

/*** Local variable declarations begin here **x/
/**x Local variable declarations end here *%%/

/**x Body of code for function begins here ***/
return ++list_counter_lst;

The above program generates a tuple table in the database. The following three
tuple entries are taken out of the database as it is saved, to demonstrate how the
information is stored. For each tuple, we have a tuple name, a list of variables, a
parsed list of variables, a tuple type, a list of places and the information that will
appear in the tuple information window. The list of places itself consists of a position
number and file name for a reference to that tuple, the operation that is performed on
that tuple, followed by a list of statuses of fields in that tuple operation.

(add-to-table
>((“‘process’’

‘“int do_counter();

PN
((““int’’ ‘‘do_counter’’ (function ‘‘()’’)))
‘‘tuple’’
((553 ‘‘example.cl’’ eval ((actual ‘‘do_counter’’)))
(490 ‘‘example.cl’’ eval ((actual ‘‘do_counter’’)))
(820 ‘‘example.cl’’ eval ((actual ‘‘do_counter’’))) )
‘‘Types of fields in tuple:

int FUNCTION, params:()
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,))
(fflst??
““int list_index;
int iMem;

3

((““int’’ ‘‘list_index’’ (simple)) (‘‘int’’ ‘iMem’’ (simple)))
‘flist??
((2309 ¢ ‘example.cl’’ in ((formal ‘‘list_index’’)
(formal ‘‘iMem’’)))
(1784 ¢ ‘example.cl’’ out ((actual ‘‘list_index’?)
(actual “‘“iMem’’)))
(1383 ¢ ‘example.cl’’ out ((actual ‘‘list_index’’)
(actual ‘‘iMem’’))) )
‘‘Information on list 1lst
Types of fields in tuple:
int
int

)))

(“‘counter_ctr?’’
‘‘long ctr;
2
((“‘long’’ “‘ctr’’ (simple)))
‘‘counter’’
((863 ‘‘example.cl’’ inc-null ((actual ‘‘ctr’’)))
(895 ‘‘example.cl’’ inc ((actual ‘‘ctr’’)))
(801 ‘‘example.cl’’ out ((actual ‘‘ctr’’))) )
‘‘This is a counter variable tuple.
Types of fields in tuple:
long
>7)

The same program constructed the function table listed below. Each function entry
lists the file the function resides in, the name of the function, the type of the function,
the starting point for the text of the function, the ending point of the parameter
declarations, the starting and ending points of the local variables, and the ending
point for the function.

(add-to-function-table ’(((‘‘example.cl’’ ‘‘do_shared’’ ‘‘int’’ )
(2325 2347 )
(2753 )
(2400 2452 ))
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((‘‘example.cl’’ ‘‘do_list’’ ‘‘int’’ )
(914 996 )
(2325 )
(1049 1124 ))
((“‘example.cl’’ ‘‘real_main’’ ‘‘int’’ )
(194 253 )
(569 )
(306 362 ))
((“‘example.cl’’ ‘‘do_counter’’ ‘‘int’’ )
(569 592 )
(914 )
(645 666 ))
((“‘example.cl’’ ‘‘get_new_lst_id’’ ‘‘int’’ )
(2969 2990 )
(3182 )
(3043 3046 ))
))

Finally, the expansion table maintains the list of abstractions and expansions. The
table includes locations, status (whether it is currently expanded or abstracted), and
what functions to call for expansion or abstraction along with a list of arguments for
them. The format is similar to the ones above.



Chapter 3. Distributed Data Structures and High-Level Operations 58

Function List

function

-
Ciee

next function

next var

type: shared)\ /declaration
counter, ete. /\ text

Figure 3.9: Tuple and Function Table Layouts



Chapter 4

Interaction With Other Tools

A major goal in designing the LPB was to build an integrated development environ-
ment. The LPB by itself is useful for the first phase of program construction, namely
the coding. There are another three important phases: compiling, debugging and per-
formance analysis. An integrated environment needs to support these other phases
too. The LPB environment supports construction, compilation and debugging phases
of a program, and although the infrastructure for performance analysis support exists,
it was not implemented.

Users provide information to the LPB which the LPB organizes and passes on to
other tools. During the program construction phase, the LPB gathers information
which not only aids the coding, but is also extremely useful for supporting the com-
pilation and debugging phases. By constructing a program, the programmer provides
a fair amount of information to the LPB. By selecting a master-worker template, for
example, the programmer tells the LPB that there will be a master process and some
worker processes.

The information acquired by the LPB may also relate to data structures. For
example, the LPB may be told that a shared linked list will be used and thereafter the
LPB generates all operations for manipulating that list, i.e. the LPB has information
on which operations scattered throughout the code are working towards the common
goal of updating a shared data structure.

There are two very important ways in which this kind of information can be useful:
(1) The compiler can optimize code based on this information, and (2) the debugger or
visualizer can use the same information to better visualize the execution of a program.

The Linda compiler [Bjo90] and the visualizer (Tuplescope [BCY0]) were modified
to enhance performance based on semantic information passed from the LPB. Although
the compiler has been modified to compile programs with LPB-supplied semantic infor-
mation, portability of the code was not affected. As we shall see, a standard C-Linda
program is always generated, and this can be passed to other users who do not have
the LPB or optimizing tools of its environment.
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To understand how the modified compiler and Tuplescope handle LPB-supplied
information, an understanding of the original compiler is necessary. We shall thus first
present a brief discussion on the original compiler and then describe how the compiler
and Tuplescope were modified.

4.1 The Original Compiler

Over the years, a number of Linda compiler versions have been built. The compiler
that was used for the LPB project was v2.4d' — we refer to this as the standard
system. The complete details of the compiler implementation, while interesting, are
not relevant to the LPB and they can be found in a number of standard Linda references
([Car87], [Bjo90], and [CGY2]). We shall concentrate on those aspects of the compiler
that were affected by the LPB information. Two key components of the compiler
needed modifications to smoothly integrate it with the LPB: (1) The analyzer and (2)
the run-time library.

4.1.1 The Analyzer

The analyzer’s function is to streamline associative memory lookup and provide infor-
mation to manage tuple space at runtime. It partitions tuples into different categories
and decides on a series of runtime functions to call for implementing the tuple opera-
tions.

A tuple pattern is associated with the text of each tuple operation. The different
flelds in a tuple operation constitute the pattern. The argument list of an out or
eval defines an out-pattern; the argument list of an in or rd define an in-pattern. At
runtime, tuples instantiated from the patterns are manipulated by the tuple operations:
An out or eval operation generates a tuple matching the pattern of its argument list
and puts it out to tuple space; an in or rd operation builds an anti-tuple of the pattern
specified in the argument list. The runtime system then tries to match a tuple to the
anti-tuple. The fields that specify a pattern may be actuals or formals. Actuals are
data values, while formals are place holders that are typically used with ins and rds.
Tuple matching is associative and the easiest implementation would simply keep all
tuples in a single, large collection. Unfortunately, this would mean searching through
the entire collection for a match to an anti-tuple.

An exhaustive search can be avoided by doing some work at compile-time. The
analyzer does something more sophisticated than an exhaustive search. Patterns can
differ (and thus never match) in two ways: (1) The number of fields may differ, and
(2) the types of the fields may differ. Hence, tuples generated from an out-pattern
with four fields can never match anti-tuples generated from an in-pattern with three
fields. Similarly, if there is a difference in type of a particular field between a tuple and

!The version number comes from the Linda compiler of Scientific Computing Associates, New Haven
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an anti-tuple, the two will not match. Consequently, the analyzer can partition tuple
space such that tuple patterns that can never match are not put in the same partition.

The analyzer scans the program for all tuple operations and creates partitions based
on the tuple patterns. Tuples and anti-tuples instantiated from these patterns will be
placed in the corresponding partitions at runtime. Consequently, when searching for a
tuple to match an anti-tuple, the runtime system will immediately know which partition
to search in and an exhaustive search of all tuples is no longer necessary.

The analyzer partitions further by applying a weaker version of the matching rules
to each partition in turn. The analyzer assumes that any fields which depend on run-
time data will match, i.e. fields that are non-constant actuals will match corresponding
fields in the relevant tuple or anti-tuple. This follows from Linda semantics since the
compiler cannot know a priori what the runtime values of the fields will be. Constant
actuals that are equal trivially match. Following these rules, the analyzer constructs
list of matchables for each pattern. When this stage is complete, the lists are recursively
collapsed to form matchability chains. Each of these chains becomes a new partition.

Each partition is scanned by the analyzer to determine patterns of field usage. From
the information it acquires at this stage, the analyzer selects a management paradigm
for the partition and generates the appropriate calls to the runtime library routines
that implement the tuple operations with the selected paradigm. Each of these library
routines is known as a handler.

4.1.2 The Runtime Library

The analyzer selects one of five tuple management paradigms for each partition: hash,
counting semaphore, queue, private hash (a variation on hash), and list (exhaustive
search). The last is rarely needed.

At runtime, a tuple is packed into something called a proto-tuple-packet or ptp. A
ptp contains a type signature and information about each field of the tuple. When a
tuple is put out to tuple space, the responsible process builds the ptp structure and
calls the handler routine that implements the tuple operation. The handler routine
locks the appropriate shared data structures and transfers the information from the
ptp structure into the shared space. When a tuple is removed from tuple space, the
reverse of this happens.

It is important to note that each tuple operation uses only one ptp structure. The
handlers can only operate on one ptp structure at a time. As we shall see, this fact
proved to be a hindrance to some potential optimizations of the new, LPB-optimized
compiler.

4.2 The New, LPB-Optimized Compiler

Given certain sequences of operations, the standard pre-compiler may draw conclu-
sions about the intended effects, but (like any compiler) it cannot in general infer the
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user’s intent in specifying particular sequences of operations. The LPB has superior
information in this regard.

Since the program is being constructed through templates or other higher level
conceptual frameworks, the LPB “knows” why the various operations are being used.
For example, the LPB knows that certain pairs of tuple operations are associated with
“counter” tuples which will always be updated in certain ways. Given a particular
distributed data structure, the LPB knows which tuple operations need to be used to
create and manipulate it.

This knowledge is valuable to a compiler. Given an understanding of what a series
of Linda operations is intended to achieve, the compiler can transform the series into
a semantically equivalent series of operations that are more efficient. In some cases
the LPB can fuse these operations together and perform a smaller number of discrete
operations over tuple space. We demonstrate this with three examples of increasing
complexity.

4.2.1 Shared Counters

A shared counter is represented by a tuple in tuple space with an integer field that
contains the value of the shared counter (Section 3.2.1). There is at most one instance
of this tuple in tuple space at any time. An update consists of consuming the tuple,
updating the value, and generating a tuple to replace the old one. Users who don’t
have the LPB, explicitly write pairs of in/out operations to update counters. The
first (in) operation simply consumes the tuple that holds the counter. The second
(out) operation introduces an updated tuple with the counter value incremented or
decremented by one.

The LPB provides a shorthand mechanism for dealing with counters. With the
LPB, the user defines a counter (using the relevant menu option), and thereafter selects
an increment or decrement operation on this counter. The LPB then inserts the
appropriate in and out commands into the code. While doing this, the LPB notes
that the two operations are related to each other because they are both updating a
counter. Furthermore, the LPB notes that there can only be one instance of a counter
in tuple space at a time. Since the in and out commands have been inserted into the
code, a standard compiler would understand this code as if a user had typed in these
commands from scratch.

When the Linda pre-compiler parses and analyzes operations, it links certain han-
dlers to particular tuple operations. For example, consider the following C-Linda code
generated by the LPB:

[ ks ok sk ok ok sk o o K Ko o KKk ok ok ok Kok ok ok e skl sk KoK o ok KKK Kok ok e sk ok ok ok ok ok ok oK
FUNCTION: int real_main

This is the real_main function

Aok Kok kKRR kR KKK KK KRR KRR K sk sk ok KKK K Kk ok ok ek ko
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int real_main(argc, argv)
int argc;
char **argv;

/**x Local variable declarations begin here *x**/
long demo;

/**x Local variable declarations end here *¥x/

/*** Body of code for function begins here **x/

demo = 1;
out ("counter_demo", demo); /* initialize counter */
in ("counter_demo", 7demo); /* increment counter */

out ("counter_demo", demo+1);

in (“counter_demo", 7demo); /* decrement counter */
out (“counter_demo", demo-1);

}

To generate this code, the user simply clicked on the initialize counter menu
option, gave the counter a name, and then clicked on the increment counter and
decrement counter options for that particular counter.

The original compiler (v2.4d) analyzes this code and places the tuple patterns into
a single partition since all of the patterns potentially match. It then decides on a
management scheme for this partition and replaces each of the tuple operations with
calls to unique routines. These routines fill ptp structures and call the handlers for the
chosen management scheme. The above tuple operations thus get replaced with calls
to the following routines:

int real_main(argc, argv)
int argc;
char **argv;

{
long demo;
demo = 1;
--lo_sdEWgH( demo); /* initialize counter */
_-lo_47IucU(&( demo)); /* increment counter */

--1o_yPEjjL( demo+1);
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--lo_h5mGje(&( demo)); /* decrement counter */
--1lo_CJ1HDs( demo-1);
}

The routines themselves are listed below:

int __lo_sdEWgH(argl) /* replaces first out %/
long argl;
{
PTP_VAR_FIELD_TYPE pvi.._lo_sdEWgH[1];
PTP_TYPE ptp;
int status;

pvi___lo_sdEWgH[0].actual.il = argi; /* copy the actual */
ptp.field_statics = psf___lo_sdEWgH; /* £ill ptp structure */
ptp.field_vars = pvf___lo_sdEWgH;

ptp.statics = &psd___lo_sdEWgH;

out_queue (&ptp) ; /* call queue handler */
}
static PTP_STATIC_FIELD_TYPE psf___lo_47IucU[1]={
{1, 1, &},
s

static PTP_STATICS_TYPE psd___lo_47IucU={1, 5, -1, 19, Y“count_ex.cl",
1, 22, 0, 2}; '

int __lo_47IucU(argl) /* replaces first in %/
long *argl;
{
PTP_VAR_FIELD_TYPE pvi___lo_47IucU[1];
PTP_TYPE PtP;
int status;

pvi.__lo_47IucU[0].formal.il = argl; /* note ptr to formal */
ptp.field_statics = psf___lo_47IucU; /x f£ill ptp structure */
ptp.field_vars = pvf___lo_47IucU;

ptp.statics = &psd___lo_47IucU;

in_queue(&ptp, 0, 1); /* call queue handler */

static PTP_STATIC_FIELD_TYPE psf___lo_yPEjjL{1]={
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{1, 0, 6},
};

static PTP_STATICS_TYPE psd___lo_yPEjjL={1, 5, -1, 20, "count_ex.cl",
1, 23, 0, 2};

int __lo_yPEjjL(argl) /* replaces second out */
long argl;
{
PTP_VAR_FIELD_TYPE pvi._._lo_yPEjjL[1];
PTP_TYPE Ptp;
int status;

pvi___lo_yPEjjL[0].actual.il = argil; /* copy the actual */
ptp.field_statics = psf___lo_yPEjjL; /* £ill ptp structure */
ptp.field_vars = pvf___lo_yPEjjL;

ptp.statics = &psd___lo_yPEjjL;

out_queue(&ptp); /* call queue handler */
}
static PTP_STATIC_FIELD_TYPE psf___lo_hSmGje[1]={
{1, 1, 6},
};

static PTP_STATICS_TYPE psd___lo_hS5mGje={1, 5, -1, 22, "count_ex.cl",
1, 24, 0, 2};

int __lo_hSmGje(argl) /* replaces second in */
long *argl;
{
PTP_VAR_FIELD_TYPE pvi___lo_h5mGje[1];
PTP_TYPE pPtp;
int status;

pvi___lo_hSmGje[0].formal.il = argl; /* note ptr to formal */
ptp.field_statics = psf___lo_hS5mGje; /* £ill ptp structure */
ptp.field_vars = pvf___lo_hSmGje;

ptp.statics = &psd___lo_h5mGje;

in_queue(&ptp, 0, 1); /* call queue handler */

static PTP_STATIC_FIELD_TYPE  psf___lo_CJ1HDs[1]={
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{1, o0, 6},
};

static PTP_STATICS_TYPE psd___lo_CJ1HDs={1, 5, -1, 23, "count_ex.cl",
i, 25, 0, 2};

int __lo_CJ1HDs(argl) /* replaces last out */
long argl;
{
PTP_VAR_FIELD_TYPE pvi___lo_CJ1HDs[1];
PTP_TYPE PtP;
int status;

pvi___lo_CJ1HDs[0].actual.il = argil; /* copy the actual */
ptp.field_statics = psf___lo_CJ1HDs; /* £ill ptp structure */
ptp.field_vars = pvf___lo_CJlHDs;

ptp.statics = &psd___lo_CJ1HDs;

out_queue(&ptp); /* call queue handler */

The generated routines show that the analyzer chose the “queue” management
scheme. The calls to the in_queue and out_queue routines are calls to the handlers
that manage the queue. The outline for the code of these routines from the runtime
library looks like this:

in_queue:

lock queue
while (queue empty)
if nonblocking return O

add myself to waiting list for queue

unlock queue

go to sleep ;55 See below for wake up call
lock queue

if rd
copy data from first element on queue
unlock
return 1

else

remove first element
unlock
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copy
free element storage

return 1

out_queue:

allocate element storage
lock queue

add elements to tuple space
wake up waiters

unlock queue

From the compiler-generated code and the outlined runtime library routines, we can
see that each increment or decrement operation involves two calls to library routines.
Each of these routines (in_queue and out_queue) has to acquire a lock and later release
the lock. Thus, every increment or decrement operation on a counter requires four lock
acquisition and release operations.

The LPB-enhanced compiler treats things differently. Once the user has defined a
counter, the LPB knows that apart from initialization, a counter update will always
involve a pair of in and out operations. Every counter update is noted as two special
tuple operations in a file. The compiler reads this LPB-generated information file and
scans the list of “special” tuple operations. The compiler places these tuples into their
own partitions and marks them with special handlers, tailored to meet their specific
needs. These handlers are different from the ones that a conventional compiler would
assign for these tuples. In particular, for counters, the LPB actually marks the in
operation in an increment or decrement with special increment or decrement handlers.
The second (out) operation, however, is marked as a “no op” and is thus ignored at
runtime — the analyzer generates only a procedure stub for the operation and does
not call any handler. The main function gets modified with calls to the proper runtime
routines: ‘

int real_main(argc, argv)
int argc;
char **argv;

{
long demo;
demo = 1;
--10_1x618b( demo); /* initialize counter */
--10_qZIeA9(&( demo)); /* increment counter */

_-lo_3RXfcs( demo+1);
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_-lo_To6ccf(&( demo)); /* decrement counter */
--1lo_gJDtcG( demo-1);
}

The routines themselves are:

static PTP_STATIC_FIELD_TYPE psf___lo_1x618b[2]={

{0, 0, 1},
{1, 0, 6},
};

static PTP_STATICS_TYPE psd___lo_1x618b={1, 6, -1, 17, "count_ex.cl",
2, 25, 0, 0};

int __lo_1x618b(argl) /* replaces the first out, the initialization */
long argl;
{
PTP_VAR_FIELD_TYPE pvi.__lo_1x618b[2];
PTP_TYPE PtP;
int status;

pvi___lo_1x618b[0] .actual.b.data = “"counter_demo";

/* Normally, this data is suppressed and could be here too, but
since the main part of the optimizations come from the
handlers, we don’t bother */

pvi___lo_1x618b[0] .actual.b.size = 13;

pvi___lo_1x618b[1] .actual.il = argl;

ptp.field_statics = psf___lo_1x618b; /* fill ptp structure */
ptp.field_vars = pvf___lo_1x618b;

ptp.statics = &psd___lo_1x618b;

out_counter(&ptp); /* call special counter handler */
if (!status) return O;

static PTP_STATIC_FIELD_TYPE psf___lo_qZIeAS[2]={
{0, 0, 1},

{1, 1, 6},

s

static PTP_STATICS_TYPE psd.__lo.qZIeA9={1, 6, -1, 18, "count_ex.cl",
2, 24, 0, 0};



Chapter 4. Interaction With Other Tools 69

int __lo_qZIeA9(argl) /* replaces the first in, i.e. the increment */
long *argl;
{
PTP_VAR_FIELD_TYPE pvi___lo_qZIeA9[2];
PTP_TYPE PtP;
int status;

pvi___lo_qZIeA9[0] .actual.b.data = "counter_demo";
pvi___lo_qZIeA9[0].actual.b.size = 13;
pvi___lo_qZIeA9[1].formal.il = argi;
ptp.field_statics = psf___lo_qZIeA9; /* fill ptp structure */
ptp.field_vars = pvf___lo_qZIeA9;
ptp.statics = &psd___lo_qZIeA9;
inc_counter(&ptp);

/* call special handler to increment counter in one step */
if (!status) return 0;

}

static PTP_STATIC_FIELD_TYPE  psf___lo_3RXfcs[2]={
{0, 0, 1},

{1, 0, 6},

};

static PTP_STATICS_TYPE psd___lo_3RXfcs={1, 6, -1, 20, "count_ex.cl",
2, 23, 0, 0};

int __lo_3RXfcs(argl) /* This is just a stub with no call to any handler */

long argl,;
{
PTP_VAR_FIELD_TYPE pvi___lo_3RXfcs[2];
PTP_TYPE ptp;
int status;

pvf___lo_3RXfcs[0].actual.b.data = "counter_demo";
pvi___lo_3RXfcs[0].actual.b.size = 13;
pvi___lo_3RXfcs[1].actual.il = argi;
ptp.field_statics = psf.__lo_3RXfcs;
ptp.field_vars = pvf___lo_3RXfcs;
ptp.statics = &psd___lo_3RXfcs;

/* Note that no handler is called */
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if (!status) return O;

}

static PTP_STATIC_FIELD_TYPE psf___lo_To6ccf[2]={
{0, 0, 1},

{1, 1, 6},

};

static PTP_STATICS_TYPE psd___lo_To6ccf={1, 6, -1, 22, "count_ex.cl®,
2, 22, 0, 0};

int __lo_To6ccf(argl) /* replaces the second in, i.e. the decrement */
long *argl;
{
PTP_VAR_FIELD_TYPE pvf___lo_To6ccf[2];
PTP_TYPE Ptp;
int status;

pvi___lo_ToBccf[0] .actual.b.data = “counter_demo";
pvE.._lo_To6ccf[0].actual.b.size = 13;
pvf___lo_To6ccf[1].formal.il = argl;
ptp.field_statics = psf___lo_To6cct; /* £ill ptp structure */
ptp.field_vars = pvf___lo_To6ccf;
ptp.statics = &psd___lo_To6ccef;
dec_counter(&ptp);

/* call special handler to decrement counter in one step */
if (!status) return O;

static PTP_STATIC_FIELD_TYPE  psf___lo_qJDtcG[2]={
{0, 0, 1},

{1, o, 6},

};

static PTP_STATICS_TYPE psd___lo_qJDtcG={1, 6, -1, 23, “count_ex.cl",
2, 21, 0, 0};

int __lo_qJDtcG(argl) /+* This is just a stub with no call to any handler */

long argl;
{
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PTP_VAR_FIELD_TYPE pvi___lo_qJDtcG[2];
PTP_TYPE ptp;
int status;

pvi___lo_qJDtcG[0].actual.b.data = "counter_demo";
pvf___lo_qJDtcG[0].actual.b.size = 13;
pvi___lo_qJDtcG[1].actual.il = argl;
ptp.field_statics = psf___lo_qJDtcG;
ptp.field_vars = pvf___lo_qJDtcG;
ptp.statics = &psd___lo_qJDtcG;

/* Note that no handler is called */
if (!status) return O;

The code generated by the LPB-optimized compiler is clearly different from the code
generated by the original compiler (v2.4d). The routines that replace the out calls in
the counter updates are mere procedure stubs — they do not call any handlers. Each
pair of in and out operations has become one increment or decrement operation.
Hence, at the in stage, the appropriate handler is called and at the out stage, no
handler is called.

The LPB-optimized compiler has chosen the “counter” tuple management scheme
over the “queue” scheme. This follows from the directions the LPB gives to the com-
piler. There are three counter handlers called in this example: an out_counter routine
that is called when the counter is initialized, an inc_counter routine that is called
to increment the counter, and a dec.counter routine that is called to decrement the
counter.

The three counter handlers are listed below:

int out_counter(ptp_ptr) /* handler for initializing counters */
register PTP_TYPE *ptp_ptr;
{

register COUNTER_TYPE *c_ptr;

c_ptr = ptp_ptr->statics->set_id + linda_c_tab;
/* Acquire ptr to shared structure to hold counter */

-spinlock(&(c_ptr->lock));
if (c_ptr->state == COUNTER_INIT) {
fprintf(stderr, "misused counter: ");
/* shouldn’t have more than one instance of a counter tuple */
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else {
c_ptr-$counter = ptp_ptr->field_vars([1].actual.il;
/* Copy data from ptp structure to shared data space */
c_ptr->state = COUNTER_INIT;
3
-spinunlock(&(c_ptr->lock));
}

int inc_counter(ptp_ptr) /* handler for incrementing counters */
register PTP_TYPE *ptp_ptr;
{

register COUNTER_TYPE *c_ptr;

c.ptr = ptp_ptr->statics->set_id + linda_c_tab;
/* Acquire ptr to shared structure to hold counter */

-spinlock(&(c_ptr->lock));
if (c_ptr->state == COUNTER_UNINIT) {
fprintf(stderr, "misused counter: ');
/* shouldn’t be updating an uninitialized counter */

¥ .
else {
if (ptp_ptr->field_vars[1].formal.il) {
*ptp_ptr->field_vars[i].formal.il = c_ptr->counter++;
/* update counter value in place (rhs) and copy to local var */
}
}
-spinunlock(&(c_ptr->lock));
}
int dec_counter(ptp_ptr) /* handler for decrementing counters */
register PTP_TYPE *ptp.ptr;
{

register COUNTER_TYPE *c_ptr;

c.ptr = ptp_ptr->statics->set_id + linda_c_tab;
/* Acquire ptr to shared structure to hold counter /

-spinlock(&(c_ptr->lock));
if (c_ptr->state == COUNTER_UNINIT) {
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fprintf(stderr, "misused counter: ");
/* update counter value in place (rhs) and copy to local var */

}
else {
*ptp_ptr->field_vars[1] .formal.il = c_ptr->counter--;
/* update counter value in place (rhs) and copy to local var */
}

_spinunlock(&(c_ptr->lock));
}

The increment or decrement handler locks the counter variable in tuple space,
updates it in place, and then releases the lock. In contrast, if a compiler compiled
the code with no LPB-supplied information, both the in and out operations would be
carried out, each requiring a lock to access the tuple, followed by a release of the lock.
Thus, the LPB-optimized complier saves two lock acquisition and release operations
and avoids an additional tuple operation. Knowing enough to throw away the second
operation entirely is very useful. As mentioned earlier (Section 4.1.2), the original
compiler was built to deal with only one tuple operation data structure at a time. For
this optimization, we are actually using two tuple operations at one time. Yet there
is no way to access both simultaneously. Hence, throwing out the second operation is
fruitful because we use the data from the first operation only. If we were to need data
from the second operation too, we would need to modify the compiler to handle data
from two or more tuple operations at one time, a change that proved to be necessary
for other optimizations.

This optimization of counters shows impressive results. For a sequence of fifty thou-
sand counter increments and fifty thousand counter decrements on a Sequent Symme-
try with 16 processors, the v2.4d compiler took 7.54 seconds. The new LPB-optimized
compiler took 2.98 seconds for the same sequence, better than a factor of two reduction.
Since we not only eliminate an entire operation in this optimization, but reduce space
and overhead constraints for even the single operation, this improvement by better
than a factor of two is no surprise. Running the same test on a Sun Sparcstation 2
and Sparcstation 10 yielded almost identical factors of improvement.

Although the improvements were similar on the various machines, the reasons for
the improvements need not be the same in all cases. In addition to eliminating the
acquisition and release of two locks, the LPB-optimized compiler eliminates an entire
operation and thus reduces the number of machine instructions executed. If the cost
of acquiring and releasing a lock is high, it will dominate the time cost; if it is low, the
time cost will be driven by the number of operations. To determine what the costs of
acquiring and releasing locks are, a number of tests were run on a Sparc 10.

We know that the number of lock acquiring and releasing operations has been
decreased by two. We also know that the C code for the LPB-optimized counter
operations is shorter than the standard compiler-generated code. Unless a particular
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Compiler With Locks Without Locks | Without Locks

200K incs/decs | 200K incs/decs | 2M incs/decs
standard (v2.4d) | 144.40 s 1.26 s 12.61s
LPB-optimized 80.53 s 0.47 s 4.68 s

Table 4.1: Timings for Counter Increments and Decrements with and without Locks

machine instruction or system call takes significantly longer than all others, the number
of machine instructions executed is usually a good indicator of the time a code portion
takes to execute. -

For the standard (v2.4d) compiler, an increment or decrement operation is trans-
lated into an in_queue and out_queue operation. The total number of machine in-
structions for this sequence is 596. For the LPB-optimized compiler, an increment or
decrement gets translated into the corresponding increment and decrement handlers.
This only involves 234 machine instructions. Consequently, the timing improvements
are in line with the number of instructions executed. Acquiring and releasing locks,
however, can require very expensive system calls. To determine whether our timing im-
provements are coming from the reduced number of instructions or the reduced number
of lock acquiring and releasing operations, some further tests were necessary.

For the purpose of the tests, the runtime library was modified slightly. A flag was
introduced which is true when all locks are to be ignored. This flag can be dynamically
set from within a program. This enables users to avoid acquiring and releasing locks.
For a single threaded program, this does not lead to any contention problems. A
test program was constructed to increment and decrement a counter and this was
compiled with both the standard (v2.4d) compiler and the LPB-optimized compiler.
The program was then run both with locks and without locks. The results are shown
in table 4.1.

The results clearly show that acquiring and releasing locks eats up the bulk of
time. The differences in time between the lockless and the normal versions are larger
than a factor of 100. This definitely means that the improvements in performance of
the LPB-optimized code over the standard (v2.4d) code are the result of eliminating
some lock operations. Acquiring locks on the Sparc 10 is expensive since locks are
implemented through the operating system using scheduling software. Consequently,
lock acquisition time dominates the time required for counter operations.

For machines where lock operations are cheap, the machine operation count would
play a more dominant role. This is the case with the Sequent Symmetry which has
hardware support for lock acquisition. Since the machine operation count for the LPB-
optimized code is less than half that of the normal code, however, one would expect
similar factors of performance improvement even if the lock operation cost were very
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low, and the results support this expectation.

4.2.2 Shared Variables

A similar optimization to that for counters was implemented for general shared vari-
ables (Section 3.2), although this case is slightly more complex. Updating a shared
variable involves removing a tuple from tuple space, binding the fields to local vari-
ables, generating a new tuple to contain the updated values and putting this new tuple
into tuple space. But what is happening conceptually? Conceptually, the shared vari-
able in tuple space has an evolving state. Although different processes update the
shared variable by removing a tuple from tuple space and replacing it with an updated
tuple, the shared variable is always there conceptually. This is similar to the case of
counters, except for a key distinction: There are no restrictions on the update opera-
tion. Consequently, it is much harder to migrate the operation to the Linda runtime
kernel. Any of the variable fields in the second operation of the in-out pair could be
function calls. Since we don’t know a priori what such a function call will evaluate
into, we cannot ignore the second operation as we did in the case of shared counters.
For a shared counter, the update is either an increment or a decrement and since we
know from the LPB exactly which of the two it is, we can update the value without
evaluating the second operation. For general shared variables, we no longer have this
luxury.

The original (v2.4d) compiler treats shared variable manipulations just as it treats
counters. It selects the in_queue and out_queue handlers for the in and out opera-
tions associated with the shared variable manipulation. The LPB-optimized compiler
replaces the calls to these two handlers with calls to two new routines.

The implementation of this optimization faced some problems that arose because
the v2.4d compiler was not implemented with an LPB interface in mind. As mentioned
in section 4.1.2, the compiler was designed to handle one data structure per tuple op-
eration. For shared variable optimizations, we need access to two tuple operation data
structures simultaneously. Hence, implementing this optimization involved some tricky
coding which would be eliminated when a new compiler is designed from scratch with
an LPB interface in mind. For a sequence of ten thousand shared variable updates on a
Sparcstation 10, the v2.4d compiler needed 16.64 seconds, whereas the LPB-optimized
one required 8.62 seconds. This improvement is again in line with expectations. A total
elimination of the second operation would result in a reduction in time by at least a
factor of 2. Since, however, the second operation could not be completely ehmmated
our reduction is slightly less than a factor of two.

As in the case of counters, the main cause of the improved performance is the
reduction in number of lock operations. This becomes obvious from running the same
kinds of tests as was done for counters. The cost of lock operations is clearly shown
by running the same tests as was done for counters. The results appear in table 4.2.
The number of machine instructions for the standard (v2.4d) compiler-generated code
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Compiler With Locks Without Locks Without Locks
100K modifications | 100K modifications | 1M modifications

standard (v2.4d) | 72.71 s 0.66 s 6.42 s

LPB-optimized 37.98 s 0.90 s 8.92s

Table 4.2: Timings for Shared Variable Modifications with and without Locks

is 803. This includes the in_queue and out_queue operations as in the case of the
counter. The number of instructions that are used for acquiring and releasing locks in
this are 562. For the LPB-optimized code, however, the machine instruction count is
618. The number of instructions used for acquiring and releasing locks in this is 281,
exactly half of the non-optimized case.

It is interesting to note that the “without locks” timings actually favor the non-
optimized version. This may seem surprising initially, but if we examine the instruction
count closely, it becomes clearer. Since 562 instructions in the non-optimized version
are used for lock acquiring and releasing, only 241 instructions remain in the version
run without locks. For the LPB-optimized version, 281 out of 618 instructions are
used for lock acquiring and releasing. That leaves 327 instructions in the version
without locks, i.e. this is a larger number than the non-optimized version without locks.
Consequently, the optimized version takes longer to run without locks. Clearly, for this
particular optimization, the LPB-optimization is only worthwhile if the lock acquisition
and release costs are relatively high. For machines with cheaper lock operation costs,
the benefits of the LPB-optimized code could diminish. In fact, for machines with lock
acquire/release operations of negligible cost, the LPB-optimized code may actually
take longer to run since the machine instruction count is higher.

Implementation details

Since the second operation of the in-out pair could not be eliminated, two new handlers
were required. The LPB thus notes both operations in the update with special markers
and they each get their own specialized handler. The first one locks the appropriate
variable field and binds the relevant variable value. The lock is not released at the end
of the operation since we know that the next operation will use the same space. Hence,
when the second operation is called, the lock is already in place and we do not need to
acquire it, proceeding immediately with evaluation instead. The result is placed into
the locked structure, and the lock is released. We thus save two lock acquire/release
operations which can be expensive at runtime. We also save on space since we do not
have to generate the space for a new tuple to replace an old one — instead, we recycle
the space from the old tuple.
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Figure 4.1: Inserting a Node in a Linked List

4.2.3 Shared Linked Lists

The optimizations for shared linked lists required some tricky modification of the com-
piler. A shared linked list has two levels (see Section 3.4.2, Figure 3.6). The first level
is the index list, where each entry is represented by a tuple containing the index value
and the next index value. The index value is the key into another tuple which actually
stores the data element for that index.

Manipulating a shared linked list can be a tedious venture for a Linda programmer.
Let us consider what happens when inserting a node into the list. With the LPB,
the user can select an LPB option to insert a node into a list, and the appropriate
abstraction is created. When expanded, there are several steps in the resultant code.
Figure 4.1 shows the effect of the operations. First, the LPB inserts an in on the node
index after which the new index node will be inserted. This node index is now modified
such that its “next pointer” points to a new node index which has a unique identifier.
The new node index, in turn, is modified such that its next pointer points to what the
old, in’ed node index used to point to as the next node. The updated old index is now
put out into tuple space and the new node index can also be put out. Finally, when
all this has been donme, the actual data node can be put out into tuple space. This
whole exercise required four tuple operations.

Since the LPB maintains a list of all operations that manipulate linked lists, it can
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pass this information to the compiler. The LPB-optimized compiler acts upon this
information and fuses together many of the node index manipulation operations. In
fact, all the node index updates are done in one large step after which the new data
node is put out to tuple space.

When manipulating a very large list with ten thousand insert and delete node
operations on a Sparcstation 10, the v2.4d compiler required 50.51 seconds. The LPB-
optimized compiler ran the same sequence in 27.13 seconds. Once again, we expect
the reduction in lock operations to cause the improvements in performance. Since the
number of C operations is also reduced (and hence the number of machine instructions
is likely to be lower), however, the improvements may hold even on machines where
lock acquire/release operations are very quick.

Implementation details

The LPB-optimized compiler deals with the entire index node insertion or index node
removal in one step. The problem is that we need to access multiple tuples simultane-
ously. We would like to update the old node tuple and insert the new one in one step.
Hence we need access to both these tuples at the same time. Furthermore, we need to
know two different variable values: the new index, and the old “next index.” How can
we accomplish this?

The trick is to “fool” the compiler into processing certain operations which are later
discarded. We basically construct a dummy operation that the compiler knows how to
ignore. We need a way to pass information on two tuples and some additional variable
information to the compiler inside one data structure. To pass this information to
the compiler, the LPB constructs a dummy in operation in whose fields it packs the
necessary variable values. It then tags this operation as a special LPB “linked list”
operation in the information file sent to the compiler. The analyzer proceeds to ignore
the in aspect of this operation and only uses the appropriate data structure to gain
access to the variables. At runtime, the compiler updates its own internally maintained
linked list index with the appropriate values. Once this is done, the out of the actual
node data can be done. This rather complex scheme proved to be rather fruitful as
the numbers above show. Of course, if the compiler were redesigned such that it could
better accommodate the information from the LPB, we would no longer have to resort
to such tricks to achieve the optimizations (see Chapter 7). The data structures and
code segments of the linked list handlers from the runtime library follow.

typedef struct list_table_entry {
/* this is the building block for the internal linked list for
node indices */
int iIndex; /* index value for the node */
int iNext; /* pointer to next index */
int iNextAbs; /* absolute address of next index */
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SPIN_LOCK lock; /* lock for a particular node */
} LIST_TABLE_ENTRY;

#define LIST_TABLE_SIZE 1000

typedef struct list_entry {
/* This table holds the internal linked list for node indices */
LIST_TABLE_ENTRY table[LIST_TABLE_SIZE];
int ilistHead; /* head of the list */
} LIST_TYPE;

The data structure is listed above and is fairly simple. In addition to keeping the
index and next index values, the table also keeps the absolute address of the next index
for quick access. The main runtime routines that manipulate the above data structures
are listed below. We omit some of the administrative routines for the sake of clarity.

int init_linked_list(ptp_ptr)
register PTP_TYPE *ptp_ptr;
/* initializes table for new linked list */

register LIST_TYPE x1st_ptr;
lst_ptr = ptp_ptr->statics->set_id + linda_lst_tab;

/* obtain pointer to start of table */
-spinlock(&(1st_ptr->table[0].lock)); /* lock first index element */

lst_ptr->table[0].iIndex = 0; /* first index is 0 */
lst_ptr->table[0].iNext = -1; /* initially no next index =/
lst_ptr->table[0].iNextAbs = ~1;

lst_ptr->ilistHead = 0; /* head is first */

-spinunlock(&(lst_ptr->table[0].lock)); /* unlock first element */
}

int insert_link(ptp_ptr)
register PTP_TYPE *ptp_ptr;
/* insert a new node index into list */

register LIST_TYPE *1st_ptr;
int iIndex, iAbs, iTemp, iTemplNext;

lst_ptr = ptp_ptr->statics->set_id + linda_lst_tab;
/* obtain pointer to start of table */
iIndex = find_list_elem (lst_ptr, ptp.ptr->field_vars[1].actual.il):
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/* find the absolute index of the element after which this one
will be inserted -- note how the reference index is passed
through the ptp structure */

iAbs = find_next_space (lst_ptr, ptp_ptr->field_vars[2].actual.il);

/* Find a storage place for the new node index */
-spinlock(&(1st_ptr->table[iAbs].lock)); /* lock new node */
-spinlock(&(lst_ptr->table[iIndex].lock)); /* lock node after which

new one is placed */
1st_ptr->table[iAbs].iIndex = ptp_ptr->field_vars[2].actual.il;

/* copy the current index value to new index node */
1st_ptr->table[iAbs].iNext = 1lst_ptr->table[iIndex].iNext;

/* make next field of new index node point to next index node */
1st_ptr->table[iAbs].iNextAbs = 1lst_ptr->table[iIndex].iNextAbs;

/* copy the absolute index value of the next index node too */
lst_ptr->table[iIndex].iNext = ptp_ptr->field_vars[2].actual.il;

/* make previous index node point to current node */
lst_ptr->table[iIndex].iNextAbs = iAbs;

/* update its absolute address of the next index node too */
if (iIndex == lst_ptr->iListHead) lst_ptr->ilListHead = iAbs;

/* update head pointer if it needs to be updated */
-spinunlock(&(lst_ptr->table[iAbs].lock)); /* unlock new indx node */
-spinunlock(&(1st_ptr->table[iIndex].lock));/* unlock prev indx node */

}

int remove_link(ptp_ptr)
register PTP_TYPE *ptp.ptr;
/* remove an index node from list */

register LIST_TYPE xlst_ptr;
int ilIndex, iTemp;

1st_ptr = ptp_ptr->statics->set_id + linda_lst_tab;
/* obtain pointer to start of table */

iIndex = find.list_elem (lst_ptr, ptp_ptr->field_vars[1].actual.il);
/* find the absolute index of the element which is to
be deleted -- note how the reference index is passed
through the ptp structure */
-spinlock(&(lst_ptr->table[iIndex].lock)); /* lock the index node */
lst_ptr->table[iIndex].iIndex = -1; /* delete it/free space */
iTemp = find_list_prev (1lst_ptr, ptp_ptr->field_vars[1].actual.il);
/* find absolute index of previous index node */
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if (iTemp == -1) {
l1st_ptr->ilListHead = lst_ptr->table[ilndex].iNextAbs;
/* if the head is being deleted, update the head pointer */
}
else {
-spinlock(&(1st_ptr->table[iTemp].lock)); /* lock prev indx node */
lst_ptr->table[iTemp].iNext = lst_ptr->table[iIndex].iNext;
/* make previous index node point to next index node */
lst_ptr->table[iTemp].iNextAbs = lst_ptr->table[iIndex].iNextAbs;
/* same for absolute address */
-spinunlock(&(1st_ptr->table[iTemp].lock));
/* unlock previous index node */
_spinunlock(&(lst_ptr->table[iIndex].lock));
/% unlock deleted index node */

The routines above are fairly straightforward to follow. Their most important
characteristic is the use of the ptp structure to reference variables. The ptp structure
is constructed with data from the dummy in operations and this is how the routines
access the variables that are packed into that dummy operation.

The following example demonstrates the manner in which the compiler is “fooled”.
There are three linked list operations in this code segment. The first one is a list
initialization. The second one is an insertion operation in a loop and the third is a
removal operation in a loop. The abstractions are italicized for clarity.

int do_list()
{
/*%% Local variable declarations begin here **/
int temp.index;
int list_index;
int iMem;
int i;
/**x Local variable declarations end here %%/

/**x Body of code for function begins here **x/
iMem = 20;
list_index =0;

initialize-list (indez_list); /* List initialization abstraction */
out (”index_list”, list_index, iMem); /* actual node put out */

for (i = 0; 1 < 10; i++) { /* loop to insert new nodes */
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i;
get_new_index_list_id (); /* get new unique id */

list_index
temp_index

insert-link (i,index_list); /* insert index node after index node i */
list_index = temp_index;
out (”index_list”, list_index, iMem); /* actual node put out */

for (1 = 2; i < 3; i++) { /* loop to remove nodes */
list_index = i;

remove-link (i,index_list); /* removes index node i */
in ("index_list”, list_index, ?iMem); /* actual node removed */

When the linked list abstractions are expanded, the abstractions are replaced with
the Linda operations that appear below. Note that a new variable, next_index has
been generated to implement the abstractions.

int do_list{()

{
/*** Local variable declarations begin here *¥x/
int next_index;
int temp_index;
int list_index;
int iMem;
int i;
/*x% Local variable declarations end here *%x/

/**¥* Body of code for function begins here *¥x/
iMem = 20;
list_index 0;
next_index -1; ;
list_head_1st = list_index; /* this is static variable that points
to the head of the list x/
out ("lst_index_list", list_index, next_index); /* index node */
\verb¥ Y{\bf out ("1lst", list_index, iMem):¥ /% actual node being put out */

for (i = 0; i < 10; i++) {
list_index = i;



Chapter 4. Interaction With Other Tools ' 83

temp_index = get_new_lst_id (); /* get new unique id */
in ("1st_index_list", list_index, ?next_index);
/* see what the next node index after this one is -- where

>this’ refers to the node after which the new one
is inserted */
list_index = temp_index;
out ("lst_index_list", list_index, next_index);
/* make new node index point to old next one */
next_index = temp_index;
list_index = i;
out ("1st_index_list", list_index, next_index);
/* make old index point to new one as next one */
list_index = temp_index;
iMem += §;
\verby Y{\bf out ("lst", list_index, iMem);), /% actual node being put out */

}

for (i = 2; i < 3; i++) {
list_index = 1i;
if (list_index == list_head_lst) {

/* special case if node being removed is the head of list */
in ("1st_index_list", list_index, ?next_index);
list_head_lst = next_index;

}
else {
in ("lst_index_list", list_index, ?next_index);

/* remove the index node first */
temp_index = next_index;
next_index = list_index;
in ("lst_index_list", ?list_index, next_index);

/* remove previous node index so it can be updated */
next_index = temp_index;
out ("lst_index_list", list_index, next_index);

/* make previous node index point to next one */
list_index = 1i;

}
\verby Y%{\bf in ("1lst", list_index, ?iMem);¥

/* remove the actual node */

}
}
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When the program is saved, dummy operations are generated so that the neces-
sary optimization information can be passed to the compiler. The first abstraction
is replaced with a dummy in operation which contains two variables, list_indez and
temp_indez. The second linked list operation, the node insertion, is also replaced by
a dummy in operation. In this case list_indez holds the value of the old index, i.e.
the index after which the new one will be inserted. The variable temp_index holds the
value of the new index. Finally, the last linked list operation, the removal of a node,
is replaced by a dummy in operation. The dummy operations are not indented and
hence stand out in the code.

int do_list()
{
/**x Local variable declarations begin here *¥x/
int next_index;
int temp_index;
int list_index;
int iMem;
int i;
/*** Local variable declarations end here *kx/

/*** Body of code for function begins here *¥x/
iMem = 20;
list_index = 0;
in ("1st_index_list", list_index, temp_index);
/* first dummy operation */
out ("1st", list_index, iMem);

for (i = 0; i < 10; i++) {
list_index = i;
temp_index = get_new_lst_id ();

in ("1st_index_list", list_index, temp_index);
/* second dummy operation */

list_index = temp_index;
iMem += 5;
out ("1lst", list_index, iMem);

for (i = 2; i < 3; i++) {
list_index = i;
in ("lst_index_list", list_index, temp_index);
/* third dummy operation */
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in ("1lst", list_index, 7iMem);
}
}

4.3 Program Visualization

Sequential debuggers allow users to examine a program as it executes. The user can get
a good overview by examining where execution of the program stands, what values are
in the registers and what is currently in memory. For asynchronous parallel programs,
the overview is not as clear. Potentially, each of hundreds of processes could be in their
own stages of computation, each with its own memory and registers. Trying to follow
the execution of each of the parallel processes is virtually impossible. Since debugging
is very important to program development, it is necessary to develop a system that can
help debug parallel programs easily. In particular, we need a system that can present
the status of a parallel program in a comprehensible manner to users.

The Tuplescope visualizer [BC90] is a graphical monitoring tool that was designed
as a possible answer to that question. It presents a dynamic image of an executing Linda
program. Tuples are shown on the screen and their movement to and from tuple space
is displayed as the program executes. Users can adjust speed of execution and observe
which processes manipulate different tuples. A common error in parallel programming,
namely deadlock, can be detected quite easily by observing tuple movement. Clicking
on a tuple displays its contents, clicking on a process icon shows the process’s last tuple
operation. A user can also “step” through a program, not in the sequential sense of
the word, but “step” through by stepping to the next tuple operation in the parallel
program. A different click calls up a “traditional” sequential debugger.

While Tuplescope has helped Linda programmers debug their code, information
from the LPB can enable Tuplescope to provide more useful information to program-
mers. Tuplescope was modified to use the same information from the LPB that the
LPB-optimized compiler also uses. A discussion of the LPB-based Tuplescope features
follows.

The LPB passes enough information to Tuplescope to allow a better organization of
the display. In particular, Tuplescope presents distributed data structures in formats
of their own. Consider a shared counter, for example. With conventional Tuplescope, a
counter looks like every other tuple category: it has its own partition and every time the
counter is is put into tuple space, a bubble appears in the partition window, indicating
the presence of a tuple. When a counter is updated, the bubble first disappears when
the process removes the tuple to be updated, and then reappears when the process puts
the tuple back into tuple space. Conceptually, however, the user thinks of a counter as
an evolving value which is always in tuple space until permanently removed. By using
information from the LPB, Tuplescope can bring its display conceptually closer to the
user’s level.
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The LPB tells Tuplescope which tuple partitions are reserved for counters and
which operations relate to counter updates, and Tuplescope creates special windows
for counters. A counter has its own window with a displayed value that changes as the
counter is updated, instead of disappearing and reappearing whenever it is updated.
Counter windows get a particular background color to distinguish them from other
shared variables. The value display area is highlighted in red when the counter is
uninitialized; it turns green when the counter has a value.

The situation for shared variables is very similar. Instead of having bubbles disap-
pear and reappear, shared variables get their own representation. Each shared variable
gets a window which shows the actual contents of the variable. This can be done with-
out worrying too much about space constraints on the screen because a shared variable
by definition is a single tuple, i.e. its tuple partition will never have more than one
tuple in it. Of course, if the contents of the shared variable are large, such as a large
array, the window may extend beyond the screen and users will have to move it around
to see particular portions of data. As in the case of counters, shared variable windows
have their own background colors and the values are shown in green or red depending
on whether the variable has been initialized or not.

Queues and linked lists also benefit from enhanced visualization in the modified
Tuplescope. Rather than show many identical bubbles of arbitrary order in a window
representing the elements of a queue, the modified Tuplescope acts on information from
the LPB and gives queues their own representation. Queues appear in windows of their
own in a list format. This list shows ordering among the different elements and the
contents of each element can also be seen clearly. The head and the tail of the list are
at the top and bottom of the list. Since the list could be arbitrarily large, a scroll bar
allows the user to scroll the list.

Linked lists are very similar to queues in nature, with the difference that an element
can be inserted at any point in the list. When this happens, a new element simply
appears in the correct place on the visible list.

Figure 4.2 shows a counter, a shared variable and a linked list as the original
Tuplescope would have displayed them. Figure 4.3 shows how the modified Tuplescope
displays the same data.

In the long run, the various templates the LPB offers could each have unique rep-
resentations in Tuplescope. Piranha programs, for example, tend to follow a particular
pattern which is related to general master-worker programs. The LPB is aware of
what typically constitutes a Piranha program and which process is the “feeder” or
“piranha” process. With this information, Tuplescope could display different icons for
the different kinds of processes.

The current implementation of Tuplescope was not designed with the LPB in mind.
We need an open interface which would allow the LPB to talk directly to Tuplescope.
The problem is similar to the problems we faced when passing LPB information to
the compiler. If Tuplescope and the Linda compiler were redesigned with more open
communications interfaces, that would open numerous doors for further interaction
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with the LPB. In particular, an interface language which allows the LPB to pass values
and graphic object descriptions directly to Tuplescope would be extremely useful. The
ultimate goal is to bring the visualization of the program to a level that is conceptually
as close as possible to the level of the user’s thoughts.

4.4 Interfacing to the Tools

The modifications to the compiler and Tuplescope to use LPB-information clearly
benefit the user. The question of how the LPB passes the semantic information to the
other tools still needs to be answered. More importantly, how does the LPB accomplish
this without sacrificing portability of the resultant code? Figure 4.4 shows a diagram
outlining LPB communication with the other tools. In a standard Linda environment
(with no LPB), the user has a conventional editor with which he creates standard Linda
program files. He then uses the standard compiler (v2.4d) to compile with or without
Tuplescope.

The LPB environment has a flag for optimizations. The optimizations on flag
can be toggled between “on” and “off” modes. Even with the flag in its “off” state,
there are certain optimizations which the LPB carries out by default. The counter and
shared variable optimizations fall in this class.

The LPB always generates a standard Linda file with a “.c]” extension. This file
can be taken by any Linda user and compiled with a standard compiler. The LPB also
generates a semantic information file with a “.Ipbsem” extension for which the LPB-
optimized compiler looks. If such a file is found, the LPB-optimized compiler uses it in
conjunction with the standard “.cl” file to optimize the code. Since a standard Linda
compiler does not look for the “.Ipbsem?” file, it simple compiles the standard “.cl” file,
and thus, portability is not a problem.

If the optimizations flag is “on”, some additional optimizations are enabled. This
includes the shared linked list optimization (section 3.4.2). For such optimizations,
the standard “.cl” file is still generated, as is the “.Jpbsem” semantic information file.
In this case, as in the previous cases, the “.cl” file contains the Linda expansions of
the linked list abstractions. In addition to the “.cl” file, however, a third file, with a
“.opt.cl” extension is created containing the dummy in operations designed to fool the
compiler (section 3.4.2). To go with this file, a “.opt.Ilpbsem” file is generated which
marks the dummy in operations as not being genuine in operations. When compiling
the “.opt.cl” file, the LPB-optimized compiler searches for the “.opt.lpbsem” file. It
reads the list of marked operations and is thus prepared for the dummy in operations
and knows how to extract the necessary information from them.

Finally, the LPB also maintains a file with a “.Ipbtup” extension. This contains
the necessary information for the program database (section 3.5).

(13
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Chapter 5

Constructing Templates with
the LPB

We have seen how templates provide coordination frameworks to users and guide them
through program construction. The LPB comes equipped with some templates for
parallel program construction using C-Linda. Programming methodologies can change,
however, and thus it may become necessary to develop new templates. In fact, different
user communities may employ varying methodologies and have different needs. Conse-
quently, it would be good for users to be able to capture their programming experience
for others and to be able to adjust templates with changing needs. How do we provide
such extensibility and flexibility in the LPB framework?

To answer this question, the LPB allows users to build their own templates. There
are two key issues in developing a template: (1) designing the template, and (2) build-
ing the template. Designing a good template involves analyzing usage patterns and
determining what program structures will best suit users; building a template involves
implementing the structures within the LPB framework.

The LPB presents a graphical interface to the user so that he can build his own
templates. The interface appears in the form of a template-building template. With
a design in mind, a template developer can use this interface to build his template.
An intuitive manner to do this is to construct templates in a similar way to how they
are used. Instead of simply clicking on existing buttons however, we first define the
buttons. In particular, we define a button, click on it, and then define what it expands
into. To understand the nature of the template-building template, a detailed example
will be helpful.

In the following sections, we shall investigate the issues involved in designing tem-
plates and then incrementally construct a simple template to demonstrate how the
template-building tool is used.

91
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5.1 Designing Templates

The goal behind templates is to package programming experience and pass it to other
users who can then use the templates to construct similar programs. The first step in
designing templates is to determine what constitutes a programming pattern and to
determine which patterns are worth encapsulating as templates. Programming patterns
can be empirically determined by evaluating current needs. Deciding which patterns
are worth encapsulating as templates, however, requires evaluating future needs and
trends. To some extent, the latter is a question of economics: a template is only worth
building if it will be used and if it reduces the time and effort of constructing and
maintaining programs.

Template developers must carefully evaluate the needs of their programming com-
munity and make an economical decision on what should be built. A numbercrunching
community will want a set of templates that encompasses a wider variety of numerical
applications; database programmers will want templates that reflect the data struc-
tures and search algorithms that they most often use. To a large extent, empirical
evaluation of usage and needs is an interactive process between the template designer
and the programmers in the community.

Once a particular pattern emerges as a template candidate, three key issues deter-
mine how the template will be designed: (1) program structure, (2) data structures,
and (3) graphical interface. Each of these categories requires some careful planning.

The first step in designing a template for a programming pattern is to determine
what the structure of the program will look like. Because of the hierarchical na-
ture of templates, a top-down approach is the most natural way to organize program
structures. The hierarchical steps that go into constructing the program need to be
abstracted out and organized. The number of subroutines in a program, the order in
which they have to be defined, the number of processes within the program — the
template designer needs to make note of all of these issues. He may decide to have one
button for each subroutine (e.g. one for the master subroutine and one for the worker
subroutine), or he may decide to have a button yield more buttons, or he may decide
upon a completely different scheme. Ultimately, his goal is to establish a clear logical
progression that will be easy to follow for users of the template. Each step should be
clear in what it is to accomplish and should yield smaller, more refined steps.

Data structures are the other major component of program templates. The tem-
plate designer has to guide users in choosing the right data structures, in filling them
with the appropriate data, and in accessing and updating them at the right times.
The designer has to identify the necessary data for a particular programming pattern.
There may be a variety of acceptable data structures, in which case the choices have to
be presented to the template user. The template designer must then decide how this
data is to be entered by the user. Depending on the nature of the data, the user may be
required to enter an entire data structure explicitly, or to declare some variables within
an established data structure, or perhaps even to initialize data within a well-defined
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data structure.

The program structure and data structures aspects of template design are far from
being mutually exclusive. In fact, the two are typically closely related. Data structures
may get allocated in some routines, initialized in others, and accessed in yet others.
Determining when and where these stages happen is very much a program structure
issue. It may not make sense to expand some routines until certain data structures
have been defined. If there are a choice of data structures, the program structure may

“change depending on what data structure the user chooses. It is the template designer’s
duty to establish how the data structures fit into the program structure.

When the program structure and data structures have been established, the tem-
plate designer selects interfaces for these structures. In designing the interfaces, the
designer must keep in mind the ease of entering data, the guidance the system provides,
and the ordering of expansions. The LPB provides numerous input interfaces which
can easily be called from the template-building template. The following section will
demonstrate how this is done.

The ease of entering data is something with which the template designer may need
to experiment to arrive at an optimum solution. In some situations, it is best to
require users to select a menu option. Other scenarios may require answering a simple
yes/no question or providing explicit code. Ultimately, depending on the nature of the
information required and the familiarity which users exhibit with particular interfaces,
the template-designer has to make a carefully weighted decision.

Guidance during program construction is vitally necessary for users. The template
designer should make buttons easy to understand and provide sufficient help windows
to keep the users informed at all stages during program construction, especially when
input is required. If buttons need to be expanded in specific orders, the appropriate
error messages should ensure that the user understands what the ordering is and, more
importantly, understand why that is so.

Clearly, there are several issues which are important to template design. None of
them are black and white issues with clear-cut right or wrong approaches. Each of the
issues requires careful investigation and evaluation by the template designer before a
final decision is reached. Ultimately, template building is an evolving process which
can only improve with more feedback from users.

5.2 An Example of Building a Template: Constructing
a Master-Worker Template

To demonstrate how to use the template-building template, we shall incrementally
construct a master-worker template like the one used in Chapter 2.

Suppose the master-worker template were not implemented and we wanted to im-
plement one for future users of the system. As we know, a master-worker program
consists of a master routine and a worker routine. The master generates a number of
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worker routines, generates a number of task descriptors, waits for the results to these
tasks, and then compiles the final result from these task results. The workers each
execute the worker routine: look for a task descriptor, secure it, work on the task,
generate the result for the task and then look for the next task descriptor.

To construct our master-worker template, we begin by clicking on Define Template
in our Global Menu (Figure 5.1). The LPB asks us for a template name, so we choose
to call the template “master”. Since we have started defining a template, the usual
menus are no longer relevant, and hence we are left with a Template menu and the
Buffer Menu.

The edit window shows the clean slate on which we will construct our template.
We define buttons for both the master routine and the worker routine. To do this, we
select the Insert Button option in the Template menu and we are asked for the text
of the button label. The first button will represent the master routine, so we specify
Master Routine as the button text (Figure 5.2) This will cause the LPB to insert a
button with yellow text on a green background at the current cursor position in our
edit window. We also need to create a button for the worker routine and so we move
the cursor down a few lines and repeat the procedure with Worker Routine as the
text for the new button. We now have two green and yellow buttons in our window.
The colors are significant: a green and yellow button indicates that the expansion for
the button has not yet been defined, i.e. we have a placeholder with no definition for
what it holds. Once we have defined what a button expands into, the colors change
to red and yellow. This choice of color isn’t arbitrary — red and yellow are the colors
that buttons have within ready-to-use templates, i.e. these are the button colors that
template users normally see.

When expanding a template, we know that clicking on a button expands that button
into code. Since the template-building template is, by definition, also a template, we
should expect clicking on one of its buttons to yield code. The expansions have not
yet been defined, however, so no code is produced. Instead, we are asked to define
the expansion by expressing the contents of the expansion. Hence, to define a button
expansion, we click on the button. This causes an input window to appear titled
“Button: button label’, where “button label’ is the text of the button label. In this
example, if we click on the Master Routine button, we are presented with an input
window titled “Button: Master Routine” (Figure 5.3). Eventually, when the ready-
to-use template is expanded by a user, the Master Routine button will expand into
whatever is entered into the input window. If we type in pure code, this code will
replace the button when the button is clicked on during program construction. We
may, however, also want to insert tuple commands into the code or to specify input
points in the code where user input will be required. These actions are supported by
the menus of the template-building template. The system prompts the user for any
necessary parameters.

Since every Linda program has a real main function, we decide to make our master
routine the real main function. We thus enter this function in the input window for
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the master routine expansion. To do this, we select the Insert Function option in
our Template menu and type in “real_main” when prompted for the function name.
We also type in “int” as the type of the function. The LPB now pops up another input
window titled, “int real . main” in which it asks the user to declare the arguments to the
real main function. We declare the usual command line arguments (argc and argv)
and click on our INPUT DONE button (Figure 5.4).

The above actions cause the LPB to insert a skeleton of the real main function.
To fill in the skeleton, we start by typing in the initial code that checks the command
line arguments for the number of workers. We are now ready to prepare the loop
which generates the actual workers. We specify the loop boundaries and insert the
eval operations. To do the latter, we click on the Tuple Operations option in our
Templates menu and a popup menu appears. The popup menu lists the various types
of tuple operations we can insert (Figure 5.5). We select the tuple eval option. The
LPB asks for a label of a tuple to eval and we type in “worker”. The inserted eval
operation appears as a highlighted placeholder in the input window. The color of the
highlight indicates that the text represents a placeholder.

The placeholders denote something that will happen when the template is actu-
ally used. In the above case, the placeholder denotes the stage in the code where
the appropriate eval operation will be inserted into the code when the template is
expanded.

With this behind us, we proceed to define two new buttons within the input window.
These are essentially buttons within a button expansion — i.e. when the button for
the master routine is expanded, it will yield code with these new buttons in it. The
new buttons are for generating the task descriptors and for gathering the results. The
familiar green and yellow labels appear. To define how these buttons expand, we click
on them. We start with the output task button (Figure 5.6).

Suppose that in addition to the actual button expansion, we would like a help
window to pop up when the user clicks on the output tasks button during program
construction. We can accomplish this by selecting the Message Window option in our
Template menu. This will cause green delimiters to be inserted into the current input
window, marked “Message window:” and “End message window”. Any text that
appears between these two delimiters will appear in a message window when the user
reaches this point during template expansion.

With the help window text specified, we proceed to develop the task descriptor
loop. Much as with the eval loop, we create the loop skeleton and then insert a tuple
out operation by selecting the appropriate option. We label this tuple “task” and the
highlighted placeholder appears in our window. During template expansion, the user
will be asked at this point in the code to declare the variables for the fields of this
“task” tuple. Essentially, the placeholder designates a standard tuple-out operation
on the tuple “task” that will be carried out at its point in the template. If the tuple
has already been defined, the user will not be prompted to declare the variables.

Suppose we were to insert another tuple-out call on “task” somewhere in the
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template design. The user is not required to redeclare the variables. Instead, before
the tuple operation placeholders expand, the LPB checks the database for existing
definitions on the tuple label. If the tuple has already been defined, the operation is
inserted into the code and the appropriate variable declarations are made.

When we finish defining the output task button, we click on the INPUT DONE
button and our output task button turns red and yellow, indicating that it has been
defined. We now concentrate on the get result button and essentially repeat the
same pattern we used during the output task button expansion (Figure 5.7).

Eventually, our master routine is completed and we concentrate on constructing
the worker routine skeleton. This involves inserting a function, writing some skeleton
code, and inserting some buttons, much as in the master routine case (Figure 5.8).
Finally, when the worker routine button expansion has been defined completely, we are
done.

As we have seen, building templates is simply a matter of invoking a template itself.
The approach for building a template is clearly similar in nature to using a template
to construct a program. This fact should make it easier for users to capture their
programming experience in the form of templates which can be passed to other users.
Essentially, the template-building template is a means by which the LPB provides
extensibility and flexibility within its framework.

5.3 Problems with the Template-building Template

There are some limitations to the template-building template which can make it dif-
ficult to construct complicated templates. The template-building template is a very
high-level tool which does not give the builder a great degree of control over the finer
details of construction.

Consider the case of inserting a tuple operation. To insert a tuple operation in a
template, the template-builder selects the appropriate menu operation, defines a label
for the tuple and the LPB inserts a placeholder. When the template is expanded by a
user, the user is prompted for variable declarations for the tuple if the tuple has not
yet been defined. The problem with this approach is that the template-builder has no
direct access to what the user declares during template expansion time.

Suppose a user will declare an array of integers or a single integer while expanding
the template. The template-builder wants the template to behave in different ways
depending on the declared variables. Unfortunately, the template-building template
does not allow the builder to express this kind of condition. He has no access to what
the user types in during template expansion. To access this data, the builder has to
query the tuple table in the program database. This can only be done through the
LPB library routines. While the set of library routines is fairly extensive, they require
a certain degree of familiarity before they can be used. Using the routines also Tequires
knowledge of epoch lisp.
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Alternatively, the template-building template could be made more sophisticated.
Conceivably, we could add constructs to the template-building template which give the
builder abilities to query the program database at any time and construct conditionals
based on these queries. If the demand for such constructs grows, this would definitely
be a worthwhile development.



Chapter 6

Extending a Base Language with
a Program Builder

The methodologies and higher level operations supported by the LPB address an is-
sue that is wider than CASE for parallelism. LPB-like program builders present an
attractive alternative to new programming languages.

Chapter 5 touched upon the issue of extensibility and adaptability in the LPB
framework. The template-building template allows us to capture programming expe-
rience to present as a guidance mechanism to other users. In addition, however, there
are other powerful extension features which the LPB provides. Consider the or-in ex-
ample from section 3.4.1. Using the abstraction mechanism of the LPB, we were able
to implement a proposed language addition without adding it to the base language
itself. This characteristic is important because it allows us to keep the base language
relatively static in nature — i.e. we can add constructs on a need-to-use basis without
changing the language or imposing these new constructs on those who don’t need them.
This ability to customize language appearance according to individual needs without
changing the language, has significant potential: it represents an alternative to creat-
ing new programming languages when programming needs change. Traditionally, when
users have asked for special-purpose constructs, a common solution has been to extend
languages or develop new languages to meet the needs. The program-builder approach
presents an attractive alternative. Users have also asked for frameworks that allow
them to capture programming experience for later use by other programmers. As we
have seen (section 5), the LPB also addresses this requirement. We present a deeper
examination of the issues below.

106
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6.1 Preprocessors as an Alternative to New Program-
ming Languages

The demands of programmers for higher-level tools and special purpose constructs ulti-
mately lead to one question: How do we capture programming experience and provide
special-purpose conceptual and practical aids to a programmer in a framework that
can adapt with changing methodologies? If we consider this question independently
of what we know about the LPB, there are four potential answers. We could (1) rely
on the base language, (2) build libraries of subroutines, (3) offer syntactic support,
possibly with the addition of (4) semantic support.

6.1.1 Relying on the base language

Relying on the base language is not particularly helpful. The need for additional
constructs arises when a base language is not expressive enough or powerful enough for
certain kinds of actions to be quickly and easily expressed. When the need for special-
purpose constructs arises, the natural tendency is to add these constructs to the base
language. In principle, this approach will work, but it presents some serious drawbacks.
What is useful or desirable today may no longer be so tomorrow. We may end up
making our language arbitrarily large and complex, only to never use the features
that were added along the way. Worse, every time new needs develop, constructs
will continue to be added to the language and hence to the compiler. Needless to
say, this gives the language a continuously evolving nature that would drive both
implementors and users alike insane. Languages need to be fairly static in nature for
users to familiarize themselves with the languages and develop any sense of expertise
therein.

6.1.2 Building libraries of subroutines

Building libraries of subroutines eliminates the problems of ( 1), but doesn’t quite fulfill
our needs either. For our purposes it is important that special-purpose constructs look
to the programmer as if they were language features: syntax must be clean, and the
compiler must be capable in principle of profiting from the programmer’s decision to use
these particular constructs. While individual subroutines could be optimized, it would
be difficult to optimize based on the relationship between different subroutine calls.
Constructs such as the or-in would be extremely difficult to implement with libraries
of subroutines because such constructs make global changes. Further, we intend for
our language extensions to incorporate an interactive graphical environment.

6.1.3 Syntactic and semantic support

Syntactic and semantic support can be provided in two different ways. We might
build a new language; alternatively we might build some sort of preprocessor, which
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recognizes our new constructs and translates them into some base language. The
key difference is ultimately one of degree and not kind, but a preprocessor generally
targets a higher-level virtual machine than the compiler. Other things being equal, a
higher-level virtual machine language is more human-readable and more portable than
a lower-level one. A good C++ preprocessor, for example, will target C as a target
language. The resultant code is generally more human-readable than the assembly
language code which a C++ compiler would generate.

The LPB is a preprocessor that targets C-Linda as a virtual machine; C-Linda is a
family of compilers that ultimately produces object code for different machines. The
object code in the latter case is linked to a runtime communication library designed
for a particular kind of interconnect and communication environment. C-Linda is a
“higher-level virtual machine language” than the languages targeted by the C-Linda
compilers themselves.

Hence when we have new language features to support, it is better in certain well-
defined ways to implement them within the LPB than to design new languages. C-
Linda is portable over many asynchronous parallel environments, and the advantages
of that are obvious. Those advantages, combined with the fact that people can read C-
Linda more easily than lower-level target code, mean that the preprocessor environment
is far more customizable and dynamic than a new language would be. Sites A and B
(or even users A and B) can freely customize their preprocessors to support only and
exactly the sort of constructs they need. The object code their customized systems
emit is portable: hence they are excused, in their customization labors, from low-level
hacking; Just as important, no matter how much A’s and B’s preprocessors diverge,
A can still run B’s codes and vice versa. And no matter how much they diverge, A
can still read B’s codes more easily than assembler, and vice versa. They share the
same relatively human-readable target code. Focusing the same arguments on a single
site, the preprocessor can be “dynamic”: language features can be added, changed
or deleted without requiring low-level re-implementation, and without destroying the
compatibility or readability of older-version codes. The base language remains the
lingua franca in which to exchange code with other users from different sites who may
have different customization needs.

These advantages all depend, of course, on (1) the preprocessor’s producing codes
that are acceptably efficient, and (2) the preprocessor’s being user-extensible in fact
and not just in principle. Assuming these conditions are met, the preprocessor beats
the new language option decisively for our particular needs: we suspect that “customiz-
ability” will be important in parallel and distributed programming environments, and
we know for sure that “dynamism” is desirable.

The disadvantage of program builders in this context is efficiency. Wiring an op-
eration into the base language allows the compiler to optimize its support. While a
program builder may not provide that level of optimization, it can provide the com-
piler with semantic information that can lead to a different kind of optimization, as we
have seen with the LPB. It is important to note that adding-customized, user-specified
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optimizations to the compiler is different from changing a compiler to accommodate
a new language. The user-specified optimizations are optimal and they are local to
a specific site; they do not affect anyone else. In combination with the above men-
tioned advantages, this amounts to a strong offsetting argument against the efficiency
disadvantage.

It is important to remember that a preprocessor can never be more powerful than
the base language. Anything that a preprocessor can achieve can also be expressed in
the base language. The preprocessor offers convenience and can offer fancy constructs
such as the or-in construct of the LPB, but ultimately it all is transformed to the base
language. Nevertheless, a preprocessor can still offer the advantages listed above.

The only remaining question is: what kind of preprocessor should we build?

6.2 Particular Characteristics of the LPB

The LPB is an odd beast in preprocessor-land. While the LPB can be thought of as a
preprocessor, it transcends traditional preprocessors (such as cpp or m4). The particu-
lar characteristics of the LPB style are: (1) Input: the LPB defines an environment—an
interactive graphical one—and not merely a language. (2) Output: the LPB emits not
only target code, but hints or directives to the compiler and visualizer. (3) Trajectory:
the set of language features supported by the LPB is user-extensible in ways that are
different from other systems.

6.2.1 Input

When requiring input for a specialized operation, the LPB will interactively direct a
user through a tree of options. In contrast, when using a conventional preprocessor, a
user would have to make a subroutine call which is specific enough to represent the en-
tire path down the tree. A conventional preprocessor can offer many such routine calls
with lengthy argument lists to create numerous powerful options, but this would be
hard to master and this scheme cannot provide active support during the construction
phase. The LPB provides active support such as guiding users through incremental
program templates or menu-driven queue model selections with automated code inser-
tion. There is an incremental methodology in the script of a program builder which a
conventional preprocessor cannot duplicate.

6.2.2 Output

At the output stage, the interactive nature of the LPB and the continuous acquisition
of semantic information enable it to pass useful information to other tools in the envi-
ronment. In fact, the LPB could become a “smart” assistant with the addition of an
expert database system that is able to identify and call up either (a) templates that
are likely to be useful for the type of program under construction, or (b) fragments of
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complete, real applications that are related in significant ways fo the program under
construction, and are thus potentially useful guides. The Linda group at Yale has
developed an expert database system with the right capabilities in principle [FG91];

retargeting it to the LPB is research for the near future.

6.2.3 Trajectory

The LPB language features are user-extensible in a number of ways. The template-
building template is a mechanism to add new specialized operations and new frame-
works for program construction. A user also has the option of implementing proposed
language additions (e.g. the or-in function) which globally affect key code segments.
The user can further specify how the new features will add to the LPB’s semantic
knowledge and provide directions on how much of this knowledge is passed on to the
other tools. Hence, when adding a new customized operation, the user not only speci-
fies how it transforms into the base lingua franca, but defines how it could be optimized
and how it is to be visualized. This level of extensibility distinguishes the LPB from
preprocessors (such as C++ in preprocessor guise [Str86]) that implement complete
and self-contained languages. In this context, “extensibility” does not refer to name
overloading or inheritance, although the word is often taken to mean that in the object-
oriented community. Extensibility refers to extending language features by means of
added constructs that a preprocessor implements.

This LPB’s extensibility also distinguishes it from conventional macro preproces-
sors. Macros are in-place expansions — they cannot globally affect code segments.
Furthermore, macros are not incremental in nature. An LPB construct can prompt
the user for information and guide the user down a tree of options to arrive at some
result. For a macro to simulate this behavior, a user would have to provide enough
arguments to specify the entire path down the tree. There is clearly a difference in
convenience.

Unfortunately, the current interface between the LPB and other tools requires some
non-trivial coding by the user to specify the optimizations and visualizations. This
problem can be overcome by changing the interface and modifying the other tools in
the environment to accommodate this. Chapter 7 discusses the new interface and the
necessary redesign of the other tools in the environment.



Chapter 7

Future Work — Some
Preleminary Designs

One of the limiting factors of LPB performance is its format of interaction with other
tools in the environment. This is not surprising since the other tools preceded the
LPB and thus were not designed to interact with it. Given that the LPB carries useful
semantic program information, it is desirable to change both the compiler and the
visualizer to best use this information. We need an environment where a user can
define an abstraction, specify how to transform it into a base language, clearly state
how to optimize it, and easily create a visualization scheme for it.

From Chapter 4 we know that there are limitations in both the compiler and the
visualizer which required tricks to circumvent. But the implications of this are stronger:
the limitations actually restrict the expressivity of optimizations and enhancements.

The compiler is constructed such that it deals with only one tuple operation at
a time. For each tuple operation, a corresponding data structure is accessed by the
compiler. Unfortunately, this data structure is limited to one tuple operation and only
one such structure is accessible to the runtime system for a given operation. There
is no way for the runtime system to access two tuples simultaneously. Most of the
optimizations that the LPB can suggest, however, involve fusing multiple tuple opera-
tions together. Implementing such optimizations may thus require accessing multiple
operations simultaneously. This leads to a dilemma: the LPB is ready to provide sug-
gestions on how to optimize code, but the compiler is unable to use the suggestions.
To overcome this dilemima, the internals of the compiler need some major changes.

Tuplescope suffers fromn a similar problem. The current LPB-suggested visualization
enhancements had to be hardcoded into the Tuplescope code. This required creating X-
windows widgets and writing the code to manipulate them. To investigate feasibility
and demonstrate usefulness, this approach may suffice, but for the purposes of the
average user, it is clearly lacking since the average user is not familiar with the internals
of Tuplescope code, nor should he be. We need a framework for users to quickly and
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clearly build visualization schemes for operations and abstractions.

7.1 Redesigning the Compiler

The Linda compiler needs to be redesigned to accommodate semantic information from
the LPB. In the process of redesigning, however, we must ensure portability, i.e. the
compiler must still compile standard, non-LPB generated programs. This point may
seem trivial since all conventional programs fall in a subset of LPB-generated programs,
but it is not that simple. An LPB-generated program will generate in/out pairs and
tell the compiler that the pair is a counter increment, for example. In absence of the
information that the pair updates a counter, the compiler has to be able to treat it
as a conventional pair of tuple operations. Redesigning the compiler requires clearly
understanding the kind of information the LPB will provide. To do this, examination
of the current interface is necessary.

Currently, the LPB-optimized compiler looks for a semantic information file that is
associated with a particular program file. If the semantic information file is not found,
the code is compiled as a standard C-Linda file. If the file is found, the information is
read and parsed. The information is expressed in a simple language. In a sense, we can
think of this as an interpreted language, i.e. the language specifies what optimization
actions to take, and the LPB-optimized compiler interprets these instructions.

The semantic information file contains a list of operations that need to be optimized.
Each operation is listed with its line number, a short description of the operation, and
a list of related operations. The list of related operations tells the compiler which
operations may need to be fused together. As we know, the interface between the
analyzer and the runtime kernel is built such that only one tuple data structure is
passed at a time. Consequently, fusing the operations together required some tricky
coding using duminy operations.

As we have seen in Chapter 4, the LPB-optimized compiler attaches a handler to
each operation. To determine how to optimize an operation, the analyzer goes through
a list of conditions. Evaluating the conditional yields a handler associated with this
particular kind of operation. This handler needs to be written by the developer of the
optimizations and added to the compiler. This in itself would not be so bad if that
were all that were required, but unfortunately the conditional needs to be changed
for every optimization that is added, i.e. for every optimization we add, we have to
introduce a new case in the conditional. This is a problem because it requires users to
reach deep into the compiler kernel and change code they ideally shouldn’t even see,
let alone modify.

A possible way around this problem is to have the LPB specify the handler to
call directly, letting the analyzer create calls to the handler without first evaluating
a conditional. The optimization developer still needs to write the handler functions,
but just puts these in a new file and attaches the object code of such a file to the
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compiler object code. Instead of going through a conditional, the analyzer directly
reads the handler label and introduces a call to this handler. This also means that the
LPB needs to provide the arguments for the handler. Of course, in order to write the
handler functions, the developer does need a public applications programming interface
to the compiler. Given such interface specifications, the developer will be able to write
routines that use compiler variables and functions without actually looking at the
source code for the compiler.

There is one more problem the new compiler needs to address. Recall the example
of the shared linked list (section 3.4.2). Omne of the problems in that example was
the lack of communication of data, specifically, the compiler needed additional data to
carry out the optimizations. The default interface is via the operation information. Qur
solution was to pack values into a dummy tuple operation and fool the compiler into
temporarily thinking of it as a genuine operation. The complications of implementing
that optimization can be avoided if the LPB directly fed data to the compiler, i.e. if
there were a more direct mechanism to interface than via operation information.

The various requirements above lead to a new interface language definition (Fig-
ure 7.1 shows the grammar). This interface language is basically a set of instructions
to the compiler which then interprets this information to optimize the program. Any-
thing in boldface is a lexical token. Newlines are not implicit “or” operators — those
are specified by the “|” character. The proposed language is quite similar to the lan-
guage that is currently defined. In fact, there are only two differences — but they are
important. Unlike the current interface language, the proposed one allows the LPB to
specify handlers directly and list variables to pass to these handlers.

As we can see from the grammar of the interface language, the LPB organizes
information by tuple categories. An LPB-partition consists of delimiters, a tuple
category identifier and a list of operations. FEach operation entry holds the line
number and file name, an LPB-assigned label, the optimization handler label, the list
of variables the handler will use, and a list of operations which relate to the current
one. The latter list is used to fuse operations together or for any other situations which
may require relating operations together.

The new interface language is -only useful if the compiler can act on the incoming
information. The newly designed compiler thus needs to call the handlers specified
by the LPB. It also has to be designed in a manner which allows several tuple data
structures to be accessed at once. In particular, for tuple operations in the related
operations list, it may be necessary to access all the data structures simultaneously.
In addition, the LPB may be passing a list of variables. The new compiler will have
to find these variables in the symbol table or pass them as arguments and use the
appropriate values in the computations within the handler.

With the new interface language and the new compiler in place, expressivity is
considerably improved. The user can now define his own optimizations without digging
into the compiler source code, and can have the LPB directly tell the compiler which
handlers to call. The user can also invent schemes that relate numerous operations
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LPB-info -
LPB-partition -

LPB-partition-type —

operations -
list-of-vars -
related-ops -
file-name -
line-number -
var-name -
LPB-label -
handler -
op -

LPB-partition LPB-info | €

"begin LPB partition" LPB-partition-type
operations

"partition end"

counter | shared-var | linked-list |
queue | identifier

file-name line-number LPB-label
handler list-of-vars related-ops
operations | €

var-name list-of-vars |
file-name line-number op
list-of-vars related-ops| e
identifier

integer

identifier

LPB-init-counter |
LPB-increment-counter |
LPB-decrement-counter |
LPB-init-shared-var |
LPB-modify-shared-var |
LPB-init-linked-list | LPB-insert-node
| LPB- delete-node | LPB-init-queue |
LPB-add-to-tail | identifier

inc-counter | dec-counter |
out-counter | in-counter | in-shared
lout-shared | modify-shared linit-list
linsert-node | delete-node linit-queue
ladd-to-tail | identifier

NOP | INC | DEC | identifier

Figure 7.1: The Proposed Interface Language
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together — he simply has the LPB mark the related operations and any necessary
variables, and then has it write the information into the semantic information file. The
semantic information file is then passed to the compiler. Of course, this system still
requires the user to develop his own runtime handlers, but he can now do so without
investigating the compiler source code.

7.1.1 Possible Further Improvements

While the above scheme is an improvement over the current implementation, further
developments may be possible. Consider the manner in which optimizations are spec-
ified. For every optimization, the user still needs to write his own handler. Although
this is better than having to change the compiler code, it still requires some degree of
knowledge of the compiler’s runtime system. Some degree of automization in generating
optimization specifications would obviously make the system more attractive.

The LPB idea of capturing programming experience could possibly be extended to
optimizations. Since we can capture programming experience and offer template menus
for program construction, why not do the same for optimizations? This would allow
us to categorize common patterns of optimizations and to offer these to users in menu
format. Indeed, we could guide users through optimization design. For example, we
could create an optimization class for simple fusing of operations for in-place updates
to tuples with locks. The shared counter optimizations would fall into this class. The
user would click on the appropriate menu option, provide some information on the
data, and the handlers would be ready. Ultimately, this level of refinement is necessary
if optimizations are to be easily specified by average users.

Alternatively, we could develop a meta-language for users to write their own opti-
mizations in. The current interface between the LPB and the other tools is through
an interface language. The idea is fairly simple: The compiler compiles a C-Linda
program, but performs certain performance-enhancing actions based on hints that it
receives. To decipher these hints, the tool interprets the instructions that are specified
in the interface language. There are two distinct levels. A standard program file is
generated which any compiler can compile. In addition, a list of hints is expressed in
an interface language. Any tool that is equipped with an interpreter to interpret these
hints can act upon these hints. Currently, the actions are directly specified by the
user in a language that is distinct from the interface language. If, however, the inter-
face language were extended such that the actions themselves could be expressed with
the interface language, things may look simpler for users. In that case, all the com-
munication as well as the optimization handlers would be expressed in this language.
Even if we have a menu-driven interface to develop optimizations, the generated code
could still be in this interface language. Thus, if we develop a comprehensive interface
language, we have a solid basis on which to develop the environment.
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7.2 Redesigning Tuplescope

The other tool that needs to be modified to interface better with the LPB is Tuple-
scope. The usefulness of designing visualizations based on LPB-supplied information
has been demonstrated in Chapter 4. Unfortunately, the current state of the system
requires users to develop such visualizations by changing the Tuplescope code. Imple-
menting visualizations for shared linked lists and queues involved writing non-trivial
code and creating the appropriate X-widgets and subroutines. To be useful, the ability
to use information from the LPB to design new visualizations should not be limited
to Tuplescope gurus. A user-friendly interface for user-designed visualizations is nec-
essary.

The proposed solution is to add a visualization design tool to Tuplescope. Users will
develop callback routines which are called by the runtime handlers. The Linda runtime
system will call upon a handler to execute an operation. This handler will first check
to see whether the Tuplescope flag is on. If the flag is on, a special Tuplescope callback
routine is called first. The new user-friendly interface ultimately has to generate these
callback routines.

The visualization tool is partially inspired by GUI builders such as the Microsoft
Windows Software Development Kit . The idea is to provide a graphical user interface
that helps users design the windows and icons for visualization, and supports the actual
code generation for the handler routines. Omne possible strategy would be to take an
existing development kit such as the Builder Xcessory [Sol92] and build our tool on
top of it. The main problem with this strategy is that these tools are not usually built
to be integrated with other tools. Furthermore, the needs of our tool are very specific
and closely tied to the LPB itself. Using a more sophisticated tool is overkill because it
provides many features that distract from the actual goal. F igures 7.2 and 7.3 outline
our proposed scheme.

A menu of tuple category labels is the heart of the scheme. This menu is very
similar to the tuple category menu we are familiar with from the LPB. In addition to
the category labels, however, it also has a New option which allows users to define new
categories of visualization. Each category has its own visualization format. Click on a
category label and the corresponding visualization window appears.

The category visualization window is titled, “Tuple Partition Window”. The user
designs his desired visualization format in this window. Once he has sized it to liking, he
divides it into display zones. Each zone is a subwindow of the partition window. These
subwindows have different formats: they could be process windows, text windows,
graphics windows, or list windows. A list window, for example, holds an ordered set of
text lines and has a scroll bar to scroll up or down this list. Graphics windows allow
icons to be displayed at different points — Tuplescope windows displaying bubbles
(see section 4.3) are such windows. To insert a particular subwindow into the partition

"Microsoft is a registered trademark of Microsoft Corporation
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TS Tool (First figure)

Tuple Labels

Window Menu

New —_—

process window
text window
graphics window
list window

Tuple Partition Window

—_—

Users select a subwindow type,
select its attributes, and then
place it in the partition window
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colors,
scrollbars,
etc.

Each new subwindow is assigned a handle

Handles (to windows)

Figure 7.2: Proposed Tuplescope Visualization Design Tool (part 1)
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TS TO()] (Second Figure)
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Figure 7.3: Proposed Tuplescope Visualization Design Tool (Part 2)
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window, the user selects one of the subwindow types in the Window Menu. He will be
prompted for some initialization data such as color, after which he has to size and place
the resulting window within the partition window.

Every time a subwindow is created, a handle to this subwindow becomes available.
This handle can be used in future to refer to the subwindow. Every subwindow handle
is inserted into the Handles menu. Each time a different tuple category is selected, the
partition window changes, and consequently, so do the handles into the subwindows of
that partition window.

The Runtime Functions menu lists the handler functions which are called directly
from the compiler. These functions direct display behavior. For every operation on a
particular tuple category, one should define a corresponding routine for Tuplescope if
one wishes that operation to affect the display. Clicking on a function name pops open
an editable window for the function code. Although the user writes the code, he is
not on his own — the tool will provide support as the following paragraphs will show.
It is important to remember, however, that the correctness of the visualization is the
responsibility of the implementor.

The goal in writing these Tuplescope functions is to define what happens to the
various partition windows and their subwindows. We have direct access to pointers to
the partition window and also can refer to all subwindow handles. For a particular
function, we need to carry out certain actions within these subwindows. We may wish
to insert or remove text, insert into or remove from a list, or insert or remove various
icons. The permissible actions appear in an Actions menu. Hence, to specify an action,
the user acquires a handle to the relevant subwindow from the Handles menu and then
selects the action from the Actions menu. Depending on the action chosen, different
inputs may be required from the user. In the initial design, there is no provision for
adding the the Actions menu. This could, however, become necessary, at which point
an Add Action option has to be added to the menu. This would call forth an input
window allowing the user to define his own actions.

Potentially, the most important feature of the Actions menu is the ability to refer
to other tuple categories. Clicking on the refer other tuple partition button lists
the other tuple categories, and clicking on one of those, in turn, gives access to handles
to all of the subwindows in that category. Given a handle to the subwindow of another
category, the callback routine for the current category can affect both the current
category window and the other category window. For abstractions (such as the or-in)
which involve more than one tuple category, this is be particularly useful. In an or-in,
a tuple is removed from one of several categories. Hence, we could have all the category
windows affected by the or-in change color to display that a tuple is being chosen from
one of those categories.

The icons that are inserted and removed from the windows need to be defined by
the user. The Icons menu lists the icons that have already been defined. An icon
editor allows new icons to be defined or existing ones to be modified. For each icon,
we can also define an expansion function. This function is executed when the icon is



Chapter 7. Future Work — Some Preleminary Designs ' 120

clicked on at run-time. When a tuple bubble is clicked on at run-time in the current
implementation, for example, a window pops up listing the tuple data. The expansion
function is provided for precisely such cases.

With this proposed Tuplescope tool, users could define their own visualizations
more easily than if they were to do so from scratch. The approach is quite simple:
draw the windows as they should appear, then write the handler functions controlling
these windows and actions on them which are supported by menus. The result of all
this is an environment which is more customizable by the average user than the current
one.

7.3 Additional Components

The new interface language, together with the suggested modifications to the Linda
compiler and Tuplescope, would make the environment easier to use and more customiz-
able for users. While these are definitely avenues worth pursuing, there are additional
components which could be added to the environment. We present ideas for two possi-
ble components that deserve further research. Neither of these ideas has been explored
in any depth.

7.3.1 A Performance Monitor

A performance monitor could make use of information from the LPB. Performance
tuning can be a vital component of parallel programming. Parallel programs are meant
torun fast, and alittle tuning of parameters can make a huge difference. A performance
monitoring tool such as Paragraph [HE91] can play an active role in this. Paragraph
is a graphical system that visualizes the performance and behavior of a program from
trace information. Although it is geared towards message-passing models, it can also be
used in conjunction with Linda, although not as meaningfully as it can with message-
passing systems. Paragraph allows users to view processor utilization, communication
traffic and other such performance data.

A performance monitoring tool that obtains information from a program builder
should be able to offer greater benefits than Paragraph. Suppose we build a tool that
uses information from the LPB. Depending on which template was used, a performance
model would be selected and displayed with the appropriate graphical displays. Various
performance metrics could be used. For example, in a database search program, we
may wish to examine the total number of ins and outs in a particular category. In
other examples, we may be interested in the total number of tuples in the program, the
number of tuples accessed by the different processes, the number of counter updates
from a process, the amount of time spent waiting for each tuple, or a wide variety of
other data. The LPB could tell the performance monitor what data to display and
how to display it.
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In conjunction with the LPB, the compiler, and Tuplescope, the performance mon-
itor would complete the environment, being useful in later stages of program develop-
ment when performance tuning comes into play.

7.3.2 Interfacing to an Expert Database

One of the goals of the LPB was to provide a framework in which programming expe-
rience can be captured. This experience is then presented to the user in the form of
templates. The identification of a particular template, however, is still up to the user,
i.e. the user needs to identify a particular paradigm and then select the appropriate
template. It would be useful if, given some description of a goal, the system were able
to call up templates which may be useful for the type of program under construction.
The system could also bring up fragments of existing programs which directly relate
to different segments of a template.

Fertig has developed an expert database system which has some of the necessary
capabilities {FG91]. Developing an interface to the LPB and using information from
the LPB program-describing database could prove to be an interesting project for the
future.

One can envision such a tool being a part of the LPB framework or vice versa,
i.e. the LPB could be part of a larger expert framework. The LPB could provide
certain types of information to the expert system, or the system in turn could run
a program that analyzes the LPB-generated program and extracts relevant data out
of it. The situation is similar to interactions between tools in other environments.
Consider automatic or semi-automatic parallelizers. A program-builder could pass
hints on how to parallelize to the parallelizing compiler which is part of the system.
On the other hand, a parallelizing compiler could look at the program and extract its
own parallelizing information out of the program.

There are clearly some interesting issues which deserve further research.



Chapter 8

Applying the Concepts to
Another Environment

As remarked in Chapter 1, the ideas expressed by the LPB are not limited to Linda,
indeed not even to parallel programming. Some of the concepts and lessons we have
learned from the LPB can be just as well applied to other environments. An immediate
concern is how to modify the LPB to accommodate different languages. What if we
wanted a PVM program builder or if we wanted to use Fortan instead of C as a base
language?

Modifying the LPB for different base languages is fairly straightforward. If Fortan
is desired instead of C, interfaces for user-defined program functions would need to be
changed and consequently also the data structures that hold function data. The main
features, namely the templates and abstractions, would still be the same.

Although we can apply the template and abstraction features of the LPB to almost
any language, there are some features we can add that are peculiar to a language.
Consider PVM, for example. The LPB support for tuples clearly does not apply to
PVM as it stands. But PVM users have to build data structures to send which need
to be unmarshaled at the receiving end. We can add features to the LPB to build and
unravel these data structures. In fact, instead of having tuple categories, we could use
message categories from which users can instantiate messages without worrying about
marshaling or unmarshaling data.

Potentially, we could add more sophisticated language-specific features to the LPB.
PVM users need to specify destination node identifiers when sending messages. Keeping
track of these identifiers can be a tedious task. For specialized cases, the LPB could
construct stylized schemes where the node addresses are handled by the LPB. If the
program uses a ring structure for communicating between nodes, for example, the
destination node for messages from a specific node is always known. Consequently the
LPB could automatically generate references to the destination nodes.

Capturing programming experience in the form of templates is an idea that could be
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used for most programming languages. This also applies to abstractions. Essentially,
the concept of a program builder which not only interacts with the user, but also
interacts with a compiler, visualizer or other tools is flexible enough for many different
environments.

Concretely, the LPB framework could be used to develop templates for other pro-
gramming languages. Users would be able to develop programs quickly, and benefit
from the programming experience of others. Some administrative duties can be handed
to the program builder itself.

A potentially very interesting use of the framework would be to develop tutorial
systems. A good teaching tool needs to guide users through program development.
Carefully designed templates can accomplish precisely that. Initially, the templates
can be made very rigid. As novices become more experienced, the templates can be
relaxed enough to allow users the flexibility of introducing their own ideas.

The framework can also be used as alanguage extending mechanism (see Chapter 6)
for most programming languages. Users can tailor environments according to their own
needs without imposing their modifications upon others. The end products, namely
the programs, are still portable. Thus, instead of ending up with numerous dialects of a
programming language, we can have one base language and customized environments.

Finally, the LPB framework can serve as a means to introduce a new programming
methodology without changing the base language. By using the template framework,
abstractions and the underlying infrastructure of the LPB, a totally new methodology
can be imposed without changing the language. The advantage of this is that the base
language remains constant while methodologies evolve. To demonstrate how the ideas
of the LPB can be used for precisely such a purpose, the LPB framework was used to
prototype an object-oriented C environment.

8.1 A Template-based Object-oriented Methodology Lay-
ered on Top of C

The LPB framework was used to layer an object-oriented methodology on top of C. It is
important to distinguish between layering a methodology on top of an existing language
like C, and developing an object-oriented language (e.g. C++). In the former case, the
user still programs in the base language (e.g. C), but the environment somehow ensures
that he thinks in an object-oriented framework.

Adopting an object-oriented approach to programming does not require changing
programming languages. The object-oriented methodology merely requires program-
mers to think in terms of data abstractions and to program in particular ways. Specif-
ically, object-oriented methodology requires procedures to be associated with data. A
class is a definition from which data will be instantiated at runtime. The data has
certain methods or procedures associated with it. Fach instantiation is referred to as
an object. Objects essentially carry their own environments with them: their own data,
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and their own procedures.

Each class has a public interface definition. Users who instantiate objects from a
class can only access data or procedures that have been defined as public. All else
is considered private and only procedures within the class can access private data or
procedures.

One attractive feature of the object-oriented methodology is name overloading.
Since objects carry their own environments, different objects can have procedures with
the same name. We can thus have objects from different classes, each with its own
print routine which tells the object how to display itself.

Finally, the concept of inheritance is a powerful feature that enables polymorphism.
Classes can inherit properties from other classes. For example, a class for cars could
inherit from a class for generic vehicles since cars share some basic properties with all
vehicles,

All the above features are the necessary ingredients of an object-oriented method-
ology. The problem is to incorporate these ingredients into a framework that does not
require a new language. The framework should be fairly strict in adhering to object-
oriented principles. A problem with languages such as C++ has been that they do
not insist that users follow the object-oriented methodology. Consequently, many pro-
grams developed in C++ have only elements of object-oriented design in them. Our
object-oriented framework will adopt a more restrictive approach, allowing users to
only write object-oriented programs.

We use the LPB environment to impose the object-oriented methodology. The user
still programs in C, but he is guided in an object-oriented framework which forces him
to think in this methodology. The end product is still in C. At first glance, templates
and classes appear to have some things in common. Templates allow the reuse of
program structure, much as classes allow reusing code. By combining templates with
a framework for classes, we obtain a powerful tool for object-oriented programming.

The object-oriented methodology was implemented using the template framework,
menus and abstractions. As long as the LPB templates are followed, the design en-
forces an object-oriented methodology. The user need not learn new comstructs or
use new syntax for writing code — the LPB oversees and enforces the object-oriented
framework; the user writes his code. The user does, however, have to know how to
navigate the LPB menus.

When a user starts the object-oriented environment within the LPB, a menu of
classes appears. The menu lists all the defined classes and includes a NEW CLASS option.
To view an existing class, the user clicks on its label; to define a new one, he clicks on
the NEW CLASS option. Each class has its own representation.

Each class has some standard features. When a class is selected at the class defining
stage, it is represented in the edit window. There are buttons for each feature. The
initialization code button expands into a window in which the user writes the
code that is executed when an object is instantiated from the class. The public data
and private data buttons require the user to declare the variables in each of those
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categories. Buttons for public functions and private functions are there for users
to declare the functions from those categories or to access already defined functions. In
particular, clicking on either of those two categories produces a list of defined functions
as well as a NEW FUNCTION option.

In accordance with object-oriented concepts, classes can use both layering and
inheritance. Hence, there is an is a button for inheritance and a has a button for
layering. Clicking on the is a button produces a list of classes from which the current
class can inherit. Clicking on one of these classes will cause the current class to inherit
from the selected class. This in turn affects the public interface of the class.

Users can define a public interface for a class, and can use existing public interfaces
to manipulate objects. To work on the public interface definition, the user simply
declares the necessary public data and functions. Users of defined classes, however, do
not have access to the definitions. In order to use a public interface, the user must
access an object that is instantiated from a class. If he clicks on a class label, a list
of objects instantiated from that class pops up in the Instantiations window. If he
wishes to instantiate a new object, he can do so by clicking on the INSTANTIATE option
in the Actions menu. Once a particular instantiation has been selected, the user clicks
on the object label and menus appear that list the public data and functions which
can be accessed for that particular object. To enforce access via the public interface,
menu choices are limited to public data and procedures. In this manner, all private
data and functions are protected — the user simply never has the option of accessing
something private.

Objects may need to refer to themselves. The self button within the class template
provides this ability. When a user writes a function within a class, a click on the self
button will insert a reference to the object through which the the self method was
invoked. Suppose a user instantiates an object obj from a class A. If a function £n in
the class A refers to self, then the function obj.fn will have a reference to the ob ject
obj itself.

A simple example will demonstrate how the environment works.

8.1.1 Example: Building a Stack-based Calculator

Suppose we wish to build a class for a simple stack-based calculator that only operates
on integers. We start by building a class for a stack of integers. We click on the NEW
CLASS option in the Classes menu and type in IntStack when prompted for a name
for the class. The IntStack class is now displayed in the edit window (Figure 8.1).
Our IntStack class will use an array of integers to implement the stack and an
integer to hold the index of the top of the stack. Hence, we need to declare the
appropriate variables as private variables and we need to initialize the top index to
point to the bottom of the initially empty stack. We click on the private data button
and declare our variables in the window that appears; we click on the initialization
code button and type in the initialization for the top index (Figure 8.2). Any memory
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allocations would have to be made in the initialization routine. Deallocation would be
handled by the system by means of a sophisticated garbage collector which monitors the
number of references to objects and memory. Although this garbage collector has not
been implemented as part of our prototype, it is fairly straightforward to implement.

The IntStack class needs public functions to push integers on the stack or pop
them off the stack. To define the push function, we click on the public functions
button and select NEW FUNCTION in the menu that appears. We then type in the name
and return type for the function. An input window for the new function pops up. This
window initially holds the function skeleton. An additional input window appears,
asking us to declare the parameters to the function. The push function requires a
single argument: the integer to be pushed onto the stack. We thus declare a single
integer in the parameter window (Figure 8.3).

Once the parameters are declared, the push function skeleton needs to be filled.
We do this by directly editing the input window for the function. To push an integer
on the stack, we simply copy the integer onto the top of the stack and shift the top
of stack index by one (Figure 8.4). We define the pop function in a similar manner.
The Public Functions menu now lists both of the newly defined functions and we are
done defining the IntStack class. ‘

Now that the IntStack class has been defined, we will use it to construct another
class. We declare a new calculator class. For the sake of this example, the calculator
is simple — it only operates on integers. The core of the calculator will be a stack
of integers instantiated from the IntStack class. Since we will be using an object
instantiated from the IntStack class, we click on the has a button to indicate layer-
ing. A menu pops up, listing the possible classes which the calculator class can use
(Figure 8.5). We click on the IntStack option and now are ready to proceed.

Instantiating an object from a class is fairly straightforward. Suppose, for exam-
ple, that we wish to instantiate an object of type IntStack in a function within the
calculator class. We define our function and move the cursor to the point where the
IntStack is to be instantiated. We then click on the IntStack label in our Classes
menu and subsequently click on the INSTANTIATE button in the “Actions” menu (Fig-
ure 8.6). The system responds by asking us for a label to which to bind the instantia-
tion. We type in “stack” and our instantiation is inserted into our code and highlighted
to show that it is an instantiation of an object (Figure 8.7).

This framework thus allows us to use class layering which allows ob jects to access
objects from other classes. This is useful, but no object-oriented framework is complete
unless it deals with inheritance.

8.1.2 Inheritance

Inheritance allows an object of one class to inherit all public properties from another
class and thus be treated as if it were part of that other class. In particular, if class
D inherits from class A — i.e. class D is derived from class A — then every object of
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type D can be used as if it were an object of class A.

The benefits of inheritance are substantial. It allows common behavior of related
classes to be abstracted to more general classes. It also allows classes to be specialized
incrementally. The object-oriented framework constructed with the LPB provides the
benefits of inheritance.

Consider the example of designing a spreadsheet using object-oriented design. We
define a generic cell class which has properties that will be shared by more specialized
classes. The generic cell class has three public functions: display, whichColumn, and
whichRow. It also has some private data that is used by its functions (Figure 8.8). Now
suppose we define a specialized cell class for equations. We call this cell EquationCell
and declare a public function called compute. More importantly, we click on the is
a button and declare that EquationCell inherits from (i.e. is derived from) class
Cell. If we now instantiate an object from the EquationCell class and bind this
instantiation to eqn_cell_ptr, this object appears in the Instantiations menu. We
click on this object label, and two menus appear: one listing the public functions and
one listing the public data. These are the functions we can use for this object. The
compute function from the EquationCell class is listed as expected. In addition to
this, however, the display, whichColumn, and whichRow functions are also listed in
the public interface. This is a result of inheritance — the EquationCell has inherited
all the public properties of the generic Cell (Figure 8.9).

8.1.3 Implementation

Prototyping the object-oriented framework using the LPB proved remarkably easy.
The underlying infrastructure is provided by the LPB. The LPB provides support
for creating templates, abstractions and menus, and provides input routines used to
declare functions and parameters. The relevant data are always stored in the program-
describing database.

Designing the object-oriented framework required creating the proper templates,
abstractions and menus. It also required creating a new data structure to hold classes
and their data and functions. The new data structure keeps track of class dependencies
and wraps data structures for individual functions within a class data structure. This
rather simple scheme was basically all that was necessary to impose the object-oriented
methodology.

Unfortunately, creating the data structure to hold the classes required some knowl-
edge of the LPB’s implementation. There is currently no interface to design or use
internal LPB data structures. Instead, an environment implementor has to use the
library of epoch lisp routines that constitutes the basis of the LPB. While this is easy
to do for someone familiar with the library, there is a learning curve to be mastered for
people who are not. This ultimately leads to the question of whether the LPB is useful
only to the end users or whether it can also be useful to the environment developers.

The benefits to environment developers may not be as significant as those to end
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users, but they are still worthy of mention. The LPB routine library has a collec-
tion of routines that can be used quickly to develop customized environinents. The
object-oriented C example is a case in point. The developer did not need to build
supporting routines from scratch. Instead, the library routines provided much of the
needed support. The entire object-oriented C prototype was implemented in a day.

In the long run, a better interface is desirable. The template-building template is
clearly insufficient to construct generic environments. In the object-oriented method-
ology case, for example, there is no simple syntactic pattern of use which Tepresents
layering or inheritance. Consequently, implementing the methodology required reach-
ing beyond the template-building template and using some of the LPB library routines.
There is potential here for future research. One could envision a meta language driven
by a graphical interface, allowing users to design data structures and routines to ma-
nipulate them.

The primary beneficiary of LPB-developed environments is the end user. The user
follows a new methodology, but sticks to a familiar base language. The most attractive
feature of the object-oriented framework in the LPB is possibly the fact that the user
still programs in C. Each function he writes is still in C and the whole object-oriented
methodology is imposed by the interface. Templates can guide users in constructing
programs, and the graphical, menu-driven interface gives users a good overview. Even
though the end user is the primary beneficiary of LPB-developed environments, the
LPB provides a good infrastucture upon which developers can build their environments
quickly.

Two of the LPB’s most attractive features are its support for debugging and op-
timizing. At first glance, neither seems particularly applicable to the object-oriented
environment we have prototyped. Although no debugging or optimizing features were
incorporated in the prototype, some come for free and others could be introduced rel-
atively easily. For example, undefined methods cannot be dispatched because the in-
terface only allows access to defined methods. Furthermore, the LPB could potentially
detect circular class definitions since classes are defined by invoking menu functions
which store classes internally in a table. It would be fairly simple to search the table
for circular definitions. Optimizing the object-oriented code based on semantic infor-
mation could follow if a particular runtime system is targetted. The optimizations
would follow the same strategy that the LPB currently employs for C-Linda.

There are some interesting issues regarding program evolution that were not pur-
sued in the object-oriented prototype. For example, if there are modifications to a
method in a class, will all uses of that method be updated with the appropriate type-
checking and error detection information? The LPB should be able to maintain enough
information to provide that level of updating. In fact, the case is similar to that of
tuple updates. Recall how tuples that have already been defined can be modified —
a user may decide to change the number or nature of fields of the tuple. All the
changes are propagated to all references to that tuple throughout the code. The LPB
can do this automatically because it maintains information on where references to a
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tuple occur. Similarly, since object usage is menu-driven in our prototype, it should be
fairly straightforward to maintain information on all references to objects from specific
classes and run checks on them whenever classes are updated in any way. Of course,
there are some non-trivial questions that arise from this. For example, if multiple users
are sharing an object library, modifying an object that is being used by a different user
might require obtaining permission from that user. The environment developer has to
make decisions on how much automatic updating to support.

The environment developer has to specify the transformation from the high level
features of a methodology to some base language. In our example, the transformation is
from our object-oriented methodology to C. It is easy to visualize transforming the user
code into some subset of C++. Although this appears to be self-defeating in light of
the earlier discussion on the desirability of keeping all code in C, there is something to
be learned from running the transformation as a Gedanken experiment. The mapping
from C++ to C is a solved problem — the early C++ preprocessors did precisely
that. In the case of our object-oriented environment, however, code maps to a very
small subset of C++, leaving out all the complications of the latter. This is because
our environment does not support the numerous features that C++ offers. Instead,
our environment supports only the basic necessities of object-oriented programming.
The lesson to be learned from this is that there is a simple transformation from our
object-oriented environment to C. This is because any programs generated with our
environment map to a small subset of C++ and C++, in turn, has a straightforward
mapping to C. v

The relationship to C++ raises an interesting question. If we decided to build
an LPB-environment on top of C++, what would it look like? C++ already offers
inheritance as part of the baselanguage. An object-oriented environment built on top of
C++ could still look very similar to our prototype system on top of C. Some of the LPB
environment’s features will already be supported by the base language and hence won’t
be a novelty. But there are additional benefits. One of the main problems with C++
is that it allows users to write code that is not really object-oriented. There is nothing
which enforces an object-oriented methodology. In that respect, the LPB environment
can enforce the methodology simply by nature of its interface. Furthermore, because
of the nature of information that the user gives to the LPB, the system could do error
checking involving things such circular class definitions or illegal method dispatches.
Finally, if new,refined object-oriented methodologies arise, they can be incorporated
into the LPB framework.

The object-oriented framework we implemented on top of C was just a prototype,
and thus only a flat transformation was implemented for demonstration purposes, i.e.
inheritance was not handled by the transformation to C. Extending the environment
to transform inheritance into C, however, should be a fairly straightforward exercise.
Furthermore, the LPB object-oriented environment does not support parameterized
types. Parameterized types would allow us to bind types at runtime. For example, we
could defined a generic stack class and instantiate an IntStack from the generic stack
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class at runtime.

The LPB object-oriented environment could be extended to support parameterized
types. Menus would offer a generic type which can be used as a placeholder when
defining a class. Internally, the LPB system would mark these placeholders as incom-
plete until type specifications have been provided. At the time of instantiation, the
user is then prompted by the system to declare what type he would like to instantiate
an object from that class with, i.e. the user is asked to fill the placeholder for that
particular instantiation. When the LPB generates the C code, the type information is
already in place.

Finally, there is the issue of passing classes to other users. The header file for
a program is constructed in the form of an LPB file and contains information only
on the public interface. The actual implementation of the public procedures and all
private data and procedures are passed to other users as object code. Thus, users can
instantiate objects from classes and use their public interfaces, but cannot access the
private data or procedures. > .

What we have learned from the exercise is that the LPB framework can readily be
extended to implement or prototype other environments. The ideas behind the LPB
are not restricted to Linda or even to parallel processing, although some of its features
support parallel programming directly. The object-oriented C environment example
has demonstrated how the LPB can be used to adapt tompletely new programming
methodologies and layer them on top of a base language.
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Related Work

The LPB relates to other work in various ways. The editor component of the LPB
is most closely related to structure editors. The visualization modifications to Tuple-
scope relate to visual programming environments, data visualizers, and debuggers for
parallel processing. Finally, there has been some recent work on parallel programming
environments that could provide hints on where research in the area is headed.

9.1 Structure Editors

The LPB’s most important template-based structure editor predecessor is the Cor-
nell Program Synthesizer [RT89b]. The Cornell Program Synthesizer allows users to
specify attribute grammars for languages and automatically constructs structure ed-
itors according to those grammars. The resulting structure editors are very rigid in
enforcing structure, not allowing users to deviate from the structures at any stage.
This is great for novices who need a strong guiding hand to produce syntactically cor-
rect programs, but can be restrictive on expert programmers who don not need to
be led by the hand. Creative programmers generate ideas at whim and like to code
them immediately. There are two ways in which a rigid framework can hinder cre-
ativity: (1) The additional overhead of going through fancy interfaces and following
incremental guidance can slow users down, and (2) a specific framework that insists
on a particular methodology can prevent users from creating methodologies of their
own. Other structure editor systems that are similar to the Cornell Program Synthe-
sizer include Aloe [FMMS81] and the related Gandalf [HN86] environments, MENTOR
[gea84], CENTAUR [BCD*89] and IPSEN [Lew89].

To overcome these problems and allow flexibility, the LPB allows users to bypass
templates at any stage. Unlike the synthesizer, the LPB does not enforce a rigid
framework. Instead, the LPB captures methodologies and supports them, without
imposing a strategy. The LPB produces source code, and the programmer is free to
ignore or modify this as desired. This flexibility is essential to any expert programmer.

140
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The key idea is to serve as an aid to users only when the aid i§ wanted. Unsolicited
help can be a nuisance if it hinders creative software development since it can prevent
programmers from developing original solutions different from the suggested ones. Of
course, all the flexibility comes at a price. Since we allow users to bypass templates,
we could end up in potential inconsistency problems (see section 2.1).

KBEmacs [Wat85] was designed with a similar motivation to the LPB. Like the
LPB, KBEmacs also used an Emacs-like environment and layered a higher-level pro-
gramming environment on top. The guidance frameworks in KBEmacs are known as
cliches. Cliches are program skeletons with placeholders that are filled in by users —
a concept which is similar to that of LPB templates. Unlike LPB templates, however,
cliches do not incrementally guide the user through option trees, nor do they provide
frameworks to implement global-effect constructs such as the or-in. The KBEmacs
emphasis is on formalizing guidance frameworks and did not investigate issues like the
above. Criticisms of KBEmacs include its very slow speed and lack of a taxonomic
library of cliches.

PSG [BS86] allows both structure and text editing, although the dynamic seman-
tics of the language are defined in a functional language which is used to interpret
the programs. In a sense, the approach is somewhat similar to the Cornell Program
Synthesizer because it generates language-specific programming environments from a
formal language definition. The language definition itself, however, has to be written
in the functional language. This requires the user to be familiar with the functional
language.

Odin [CO90] investigates the idea that tools should be centered around a persistent
centralized store of software objects. This is only vaguely related to the LPB in the
sense that the LPB uses a persistent store of tuple definitions from which users can
generate tuple operations at any time. The LPB notion of “persistent” is somewhat
more restrictive, however, because killing an LPB session also kills the persistent tuples.
If a new session is started with the same files, the tuple store is reactivated. In the
meantime, however, the “persistent” store disappears and if other unrelated files are
opened, a new “persistent” store is created.

9.2 Parallel Programming Environments

An interesting approach is taken by Enterprise [SSLP93] and HeNCE [BDG*92], which
allow users to express parallelism graphically. Users can thus specify communication
and synchronization through a different medium from the conventional textual one.
Both these systems use PVM and are closely tied to a message passing framework.
When developing a program with one of these systems, the user draws the nodes
representing the processes of his program, and then draws arcs to represent the com-
munication between the processes. For programmers interested primarily in developing
parallel software using message passing, Enterprise and HeNCE serve a useful purpose.
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The program builder approach is more general. We can use a program builder to
construct environments for other programming requirements (e.g. an object-oriented
environment, Section 8.1). The basic infrastructure of a program builder is not tightly
coupled to a particular framework and is thus more adaptable. One could, however,
build a more restrictive interface on top of a program builder for a select community
such as the programmers who prefer a message passing approach to parallel software. In
fact, we can build a PVM environment with the LPB (Chapter 8) which provides similar
benefits to HENCE by taking care of all administrative aspects of communication for
the user.

Extensible parallel programming environments such as SIGMACS [SG91] generate
a program database during compile time that can be used during later modifications to
the program. The LPB, on the other hand, maintains a dynamic program-describing
database that grows as the program is constructed. This allows the system to maintain
semantic program information that is very difficult to infer at compile time. There are
other systems that gather semantic information on a program. In Faust [Lev93], for
example, the system tries to collect semantic information on a program in order to
parallelize the program. At times, it may interactively ask the user for semantic in-
formation to help in its parallelization attempts. This is somewhat different from the
LPB approach where the semantic information is implicitly provided by the user during
the program construction stage. Systems like Faust probe deeper into the code to find
very specific kinds of information, to find dependencies in loops. On the other hand,
the LPB automatically infers semantic information at the program construction stage.
This information is used to guide program development, to check consistency, to docu-
ment, to provide optimizing information to the compiler [CG91], to enhance graphical
monitoring, and potentially also to benchmark programs by visualizing performance in
the spirit of Paragraph [HE91].

9.3 Visualization Tools

There is currently much research effort in visualizing the dynamic behavior of parallel
programs. PARADISE [KC91] is a good example. Users construct models using a
metalanguage. Similarly, DPOS [EK91] uses a metalanguage to define networks and
provides a set of tools for visualizing and debugging. Users construct programs in-
crementally in this framework and make use of the metalanguage to specify program
segments at high levels of abstraction. I-Pigs [Pon91] is an interactive graphical en-
vironment for concurrent programming, using a specially-designed graphical language,
Pigsty. Pigsty is based on CSP and Pascal, and currently limited to single processes
and one-dimensional arrays of processes.

The advantage of the LPB approach is that the user still programs in a familiar
base language. Information is implicitly provided by the user to the LPB while con-
structing programs, and this information is automatically conveyed to the visualizer.
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Tuplescope [BC90], the graphical monitoring tool, acts on this information and pro-
grammers can visualize dynamic information at a higher abstraction level than would
otherwise be possible. Furthermore, Tuplescope visualizes program behavior at run-
time, unlike systems such as Paragraph [HE91] which animate program behavior from
trace information after a program has already been run.

As Tuplescope is expanded further to accommodate more detailed and better visu-
alizations, it will become more interesting to investigate some of the work that has been
done in visual systems (systems that allow users to employ non-textual aids in con-
structing programs). There has been much work in the general area of visual systems
such as PECAN [Rei85], Garden [Rei86], Use.It [HZ76], PegaSys, [MHS86], PICT/D
[GT84], ThinkPad [RGR85), and PT [HAS8S].

Some commercial environments such as HP’s Softbench, ParcPlace C++, Lucid’s
Energize, or DEC’s FUSE [Fol92] use techniques similar to the ones in the systems
mentioned above.

9.4 The Linda Program Builder

The LPB features which stand out are its use of graphics and hypertext to display
and expand templates, the use of abstractions, and the ability to gather semantic
information and pass it to other tools. In addition, the other tools enhance their
performance using the semantic information. Finally, there is the general flexibility
~ and adaptability of the program builder approach. The flexibility and adaptability has
interesting implications: it suggests that the use of a program builder as a “dynamic”
preprocessor alternative to new programming languages may allow users to customize
their environments according to needs without confusing anyone else in the process
(see Chapter 6).
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Conclusions

To understand the implications of the Linda Program Builder and program builders in
general, we should first examine the accomplishments of the LPB.

10.1 Summary of Accomplishments

The Linda Program builder is a CASE (Computer Aided Software Engineering) tool
with a broader mission than simply to serve as a CASE utility. It supports construction
of parallel programs written in C-Linda, and also provides the infrastructure to develop
coordination or guidance frameworks for other environments. LPB abstractions are
used to build constructs which are transformed into a sequence of base language op-
erations. This allows language extensions to be added without changing the language
itself.

The backbone of the LPB is the program describing database. The LPB gathers
semantic information on programs as they are written and puts the information in the
database. When a user saves a program, the LPB generates a semantic information file
which is later read by the compiler and the graphical monitoring tool. The compiler
optimizes its code based on the information acquired from the semantic information
file; the graphical monitoring tool enhances its display based on the same information.

The LPB’s template-building template is a mechanism for constructing coordina-
tion frameworks. Programmers can construct templates capturing their experience by
invoking this mechanism.

To overcome difficulties integrating with the current LPB environment, both the
Linda compiler and visualizer need to be redesigned. If they are redesigned with an
LPB interface in mind, performance will be improved on a number of fronts: The LPB
will be able to provide more information to the other tools, and the tools will be able to
enhance their performance based on this. Specifically, the compiler can optimize code
and Tuplescope can visualize programs better. Consequently, the user also should see
improved performance since his debugging time is reduced. It will be easier for users to
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specify their own optimizations and visualizations. Preliminary work on the redesign
of the tools has been done and a new interface language linking the LPB and the tools
has been designed.

The concept of a program builder transcends the LPB. Its facilities for code genera-
tion and transformation, and for graphical and dynamic abstractions, suggest its use as
an alternative to new programming languages. It allows environments to be customized
according to needs without affecting portability of the code that is constructed.

Although the LPB in its current form caters to a particular programming com-
munity, it is not limited to any specific programming environment. The basic infras-
tructure and ideas can support very different environments. A prototype of an object-
oriented C environment was constructed using the LPB framework to demonstrate how
the LPB can be used to develop other environments.

10.2 Conclusions

A number of lessons have been learned from the LPB project. We have learned how
to construct a tool that aids programmers in developing explicitly parallel code. The
LPB supports basic tuple operations as well as higher-level functions, and offers com-
plete templates and program structures. It offers a framework that can help capture
programming methodologies and guide users through program development. As new
methodologies emerge, they can be added to the LPB in the form of templates which
are constructed via the the template-building template. The templates aid users with-
out imposing themselves on the users. Templates can serve an educational role in
teaching novices how to write particular kinds of programs. But they can also serve as
an aid to expert programimers.

Further, the LPB’s program-describing database can supply information to other
tools in the environiment, enabling optimization at compile-time, enhanced visualization
at run-time, and eventually also performance monitoring for efficiency.

There are some interesting implications of the LPB. It is characteristic of a po-
tentially significant trend in programming language design. It addresses the tradi-
tional conflict between keeping a language simple and simultaneously demanding that
it be higher-level. The proposed solution is to combine a simple, general coordina-
tion language with a higher-level, domain-specific system that provides the power and
higher-level abstractions that a programmer can selectively employ.

In sum, we can have our cake and eat it too. If we can capture the methods and
idioms that skilled programmers rely on without complicating the language itself with
a galaxy of high-level, special-purpose constructs, we have a solution to an important
problem.
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