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Abstract

In this report, we describe how various visual servoing problems can be implemented without
explicit knowledge of hand-eye calibration or calibration between two stereo cameras. The
results seem to indicate that it is possible to perform many visually-guided tasks using minimal
calibration information.

1 Introduction

This paper discusses the basic ideas behind image encodeable tasks. The motivation behind image
encodeable tasks is to avoid sensitivity to hand-eye calibration in visual servoing systems. The
basic methodology is twofold: ' .

¢ Describe control objectives in terms of the visual observables that are independent of many
parameters of the hand-eye system.

e Use adaptive control techniques to perform online correction of any remaining calibration
parameters.

In this short report, we present two examples to illustrate the basic concepts. The first example
falls squarely in the realm of classical linear adaptive control, and serves to illustrate the method-
ology. The second problem leads to a nonlinear adaptive control problem. We then discuss what
appear to be useful visual stategies which rely on exploiting certain special visual structures. These
strategies lead to a simplified form of the control problem which appears to be more tractable. At
the time of this writing we are looking for solutions to the remaining adaptive control issues and
implementing our results.
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Figure 1. The geometry of the two dimensional visual control problem.

2 A Linear Adaptive Problem

To illustrate the basic mechanisms of adaptation that we are proposing to use, consider the following
problem. :

Example 2.1 Suppose that a robot manipulator is only allowed to move in the plane
parallel to the imaging plane of an observing camera. Referring to Figure 1, the dark
solid lines are the tracked features on the gripper and on a peg-like fixture onto which
the gripper is to be guided. Furthermore, assume that the orientation of the camera
system about the optical axis is approximately known, either though observing the
gripper and comparing its observed attitude to the robot’s estimate, or via an offline
calibration. The distance from the camera to the plane of robot motion is unknown.
The problem is to guide the gripper onto the peg.

If manipulator motions are commanded relative to the endpoint of the gripper (marked
C in the diagram), there are two independent regulation problems: aligning the gripper
with the peg, and moving it along the central axis of the peg until it contacts the surface.
The problem of alignment is straightforward: by measuring the difference in angles of
the gripper and the peg, the gripper can be rotated about its endpoint until alignment
occurs. Note that problem is independent of any calibration information and can be
solved using a standard linear regulator.

The regulation of translation is more difficult due to the unknown scale factor between
commanded and observed displacement, and the possibility of errors in the estimated
orientation of the camera coordinate frame. This problem can be formulated as a
continuous time adaptive estimation problem as follows [2]:

i) = u(t) (plant)
T (1) kRun,(t) (model)
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The constant k describes the perspective scale factor and R is a rotation matrix. These
factors can be combined into a single 2 by 2 matrix expressed as a 4 element column
vector M. Define the error between the output of the model and the observed output
plant to be e(t) = zp(t) — Tm(t), define I to be the 2 by 2 identity matrix, and let
U(t) = u(t)T ® I; where

[a,b]®Iz=[a 0 b 0}.

0 a 0 O

By observing a sufficiently rich set of plant trajectories the adaptive law
M(t+1) = M(t) - U(t)Te()

will cause M to converge asymptotically to M. Note that the problem is overparametrized—
we are recovering 4 parameters instead of the original two.

In order to control the system, we reverse the role of the plant and model, again combine
the scale and rotation factors, and introduce independent control parameter r(2) :

Mun(t) (plant’)
rp(t) (model’)

G (1)
@5(t)

Equating u(t) and 7(t) and applying the adaptive law

M(t+1)= M(t) - R(t)Te(t)

where e(t) = 2,(t) — ¢, (t) and R(t) = 7(t)T ® I, yields an adaptive system with the
following properties:

1. For a given set of trajectories, the control error will converge to 0.

2. If the set of trajectories is “rich enough,” the value of M will converge to M.

Figure 2 shows the results of a simulation using circular trajectories. We see that the
output error is driven to zero for all cases where the initial estimate was close to the
true plant parameters. The parameter error in the right graph shows that the matrix
M is not always recovered correctly, though in most cases M is close enough to correct
to drive the control error to zero. Due to the discrete time nature of the simulation,
one of the cases examined did not converge.

Let p, be the observed position of the gripper center (by differencing observations of
the two jaws), p, be the observed position of the center of the peg, o be the estimated
position orientation of the camera coordinate frame relative to the robot coordinate
frame, and o be the estimated orientation of the peg. We will generate a trajectory
using the following function:

d = Pp — DPyg

G(d) [ min(g1dy,0.1)/(1 + g2d,), min(gsdy,0.1) ]T y 01,92,93>0
Ar(t) R(a)G(R(-a)d)
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Figure 2. Left, the output error as a function of iteration; and right, the parameter error as a function of

iterations.

This system is designed to emphasize alignment motions followed by approaching mo-
tions with different choices of the gain coefficients governing the speed of approach and
the adherence to alignment with the axis of the peg.

Figure 4 illustrates the trajectories taken by the system (top) and the output and
parameter errors (bottom) for a variety of different parameter settings as the system
executes the approach task. The parameters used were g; = 0.1, g2 = 10.0, and g3 = 0.5.
From the data, we see that:

e The task was successfully executed for all but one parameter setting. Again, this
appears to be due to the effects of discretization and can be dealt with by damping
the system slightly.

e The output error is quickly driven to zero.

o The parameter error is not driven to zero because the trajectories are not compre-
hensive enough to successfully recover all parameters.

This example illustrates the basic properties of our approach:

1. Visually encoded tasks reduce the amount of hand-eye calibration required to perform regu-
lation. In the example above, only two hand-eye calibration parameters, k and 6 are needed
to perform the task even though four parameters are needed to define the full hand-eye
relationship.

2. Independent visual and kinesthetic measurement of robot motion permits refinement of the
remaining parameters of the hand-eye model while performing a task. Furthermore, these
parameters are only “estimated” as needed.
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Figure 4. Left, the output error as a function of iteration; and right, the parameter error as a function of
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Figure 5. The basic stereo positioning task.
3 A NonLinear Adaptive Problem

In the previous section, we described a simple case where a manipulation system is controlled using
a monocular camera. Given complete structural knowledge about what is observed and a sufficient
number of observable features, it is sometimes possible to solve six-degree of freedom manipulation
problems using only monocular cues. However, cases will arise where monocular cues do not suffice
for stable, accurate control. Here, we show how it is possible to perform visual servoing using
an uncalibrated stereo pair of cameras. The basic approach is illustrated for a planar problem in
Figure 5. Let P = (z,y) represent a point on a controlled system, and @ = (u,v) represent a goal
point. Define Af; to be the angular difference in line-of-sight to points P = (2,y) and @ = (u,v)
in camera 1, and Af, be the same angular difference in camera 2. We then note that Af; and AN
are independent of camera orientation in the plane. Furthermore, given a nonzero baseline, b, and
assuming that P and Q do not fall on the line through the optical centers of the cameras, A6 and
B, are zero if and only if P = Q. Hence, a regulator that reduces Af; and Af; to zero will move
point P to point Q. Furthermore, the independence of Af; and Af; from camera orientation
indicates that changes in pan-tilt angle to adjust field of view do not affect control in any way.

For the moment, let us assume that the origin of the hand-eye system is located midway between
the optical centers of the cameras, the baseline length is b = 2d, and the manipulator is a perfect
velocity controlled system with state = (z1,22) and control input u = (%1, %3), both expressed in
camera coordinates. We do not know R € SO(2), the relative orientation of the robot coordinate
system. This allows us to describe the problem as a linear system with a nonlinear output map as
follows:

z = Ru
6 9, _ arctan —"‘554 -
0 arctan (&t4) — o,
x2

where a; and a, are the pan angles of the two cameras.

We could try to get this into state-accessible form as we did in the previous section. Taking




-
-
-

o]
)
@

P
-
-~
-
—
=
-
.-
-
o=
-
="
-

-

SRR Rt

o
i~

Camera 1 Came_ra 2 Camera 1 Camera 2

Camera 1l Camera2
Figure 6. Positioning Tasks

é y—(z—d)y
1 _ z—b
[ 6, ] - y—(z+d)y

z+b
From this, we see that the direct relationship between § and u is nonlinear, and probably not
solvable using any standard techniques.

derivatives yields:

a-eﬂl 8-

Y

3.1 Simplifying the Problem

Although the general qualitative stereo control problem falls outside the realm of “standard” adap-
tive control, there are specific cases that look more promising. Specifically, observe that, while
qualitative stereo in theory provides the means for reaching goal positions without.detailed hand-
eye calibration information, it does not allow much control over the cartesian path of the approach.
Hutchinsen’s notion of a visual constraint surface [1] allows us to extend this idea to control path
of approach, and to perform a variety of more complex positioning tasks. Figure 6 describes a few
of the possibilities. Figure 6(a) shows how direction of approach can be controlled. One camera,
hereafter referred to as the dominant camera, is moved to point along the direction of approach;
it effectively holds the manipulator to the line of sight. The other camera, hereafter referred to
as the secondary camera, can be used to compute visual distances to the target and control the
speed of approach. This is effectively the strategy used by human when they try to do an accurate
approach task such as threading a needle. Figure 6(b) shows how a relative positioning task can be
accomplished. Again, by using camera 1 as an alignment tool, camera 2 can be used to compute

visual angles determining the angles from P to @; and Q. When the magnitude of the visual
angle between P and both @; and Q3 is the same, the point P is between the two goal points.




Finally Figure 6(c) illustrates how more complex motions can be accomplished by trading between
dominant cameras. First a motion along a ray emanating from the camera 2, is performed until
the manipulator “contacts” the line joining the focal point of camera 1 and the target. Camera 1
becomes the dominant camera and the motion proceeds as in Figure 6(b).

When manipulator motion is constrained to rays emanating from the dominant camera the
regulation problem takes a simpler form. In the dominant camera, the objective is to ensure that
the manipulator moves so that the angle between the controlled system and a reference point
remains constant. Conversely, the secondary camera seeks to bring the system to a halt when it
crosses a reference line of sight. The control problem can now be partitioned into two distinct
components:

Dominant Problem

The dominant camera system will control the direction of the control vector u. The
goal is to choose u so that the controlled system moves along the designed ray through
the origin of the camera system. The dynamical system with the dominant observer
can be described in the form:

& = Ru, ReSO2)

= arctan(zy/zy)

The control objective is to maintain y = y, where y, is a given reference angle. The
matrix R is an unknown parameter as is the initial value of the state vector .

At the time of this writing, we do not know the solution to this control
problem. However, its simple structure leads use to believe a solution is feasible.

Secondary Problem

The secondary camera system will control the magnitude of the control vector u.
Its structural description is identical to the dominant camera (note that it has its own
separate R and y, parameters). Setting |lu|| = |y — y,| will lead to a stable, convergent
control in the continuous case.

The examples presented above can be carried out by the appropriate switching between the
roles of the two observing cameras.

3.2 The 3D Problem

In practice, this form of visual servoing will need to take place in standard three-dimensional
Cartesian space. When moving to 3D, the problem formulation doesn’t change much, but some
changes need to be made. First, let us assume that the goal is as above, namely to move the
controlled system along a visual ray toward a goal point. Then we can formulate the problems as

8




Dominant Problem

The dominant camera system will again control the direction of the control vector
u € R3. The goal is to choose u so that the controlled system moves along the designed
ray through the origin of the camera system. The dynamical system with the dominant
observer can be described in the form:

¢ = Ru, ReSO(3)
[ arctan(zz/z1) ]

y arctan(zz/z1)

The control objective is to maintain y = y, for some reference value y,.The matrix
R is an unknown parameter as is the initial value of the state vector z.

At the time of this writing, we do not know the solution to this control
problem. Moreover, it is somewhat less likely to have a simple solution due to the
complexity of the SO(3).

Secondary Problem

The secondary camera system will again control the magnitude of the control vector
u. As before, its structural description is the same as the dominant camera, however
choosing its control law is slightly more difficult. However, if we assume that the z3
coordinate axis of both cameras is nearly aligned (as is the case in most stereo systems),
then setting [|u|| = |y1] will lead to a stable, convergent control in the continuous case.

Now, consider the slightly more complex problem of moving the controlled system from an
arbitrary point in space to a designated ray r in the secondary camera. The problem is that the
secondary camera must control some of the directional components since otherwise we can do no
better than guarantee bringing the system to some point in the plane defined by r and the z3
coordinate of the secondary system. We will again simply the problem by assuming that the z3
axes of both cameras is aligned. Then the solution is: !

Dominant Problem
The dominant camera system will now control the direction of the first two com-
ponents of the control vector u € R3. The structure of the system is the same as that

described above. Now, the control objective is to maintain y; = y, for some reference
value y,.

Secondary Problem

The secondary camera system will now control the magnitude of the control vector
u as well as its third component. We will choose uz = —y; and then |Jul] = |y1|. We

9




believe (we have not proved) that this will lead to a stable, convergent controller in the
continuous case.

4 Conclusions -

We have presented two visual servoing problems and examined their solutions using adaptive control
techniques. Both examples involve control in the plane, although there is some hope that the ideas
of the last section extend to 3-D problems. We are currently experimenting with heuristic solutions
to the unresolved adaptive control issues, and are seeking to implement the techniques on our
hand-eye system.
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