+Supported in part by U.S. Army Research Office under
Grant No. DAHCO04-72-0001.

++Supported in part by Office of Naval Research under
contract N00014-75-C-0752.

On the Complexity of Resource Managers
by
. . + -+
Richard J. Lipton and Lawrence Snyder

Research Report #64

Abstract

When requests for resources cannot be granted they must be placed into
"wait queues." The complexity of managing these pending requests and ser-
vicing them when resources become available is investigated. Both upper
and lower bounds are obtained.

1. Introduction

Within an operating system a common decision is: should a particular
request for a resource (real or abstract) be granted? The criterion by
which one decides whether or not to grant a request has been carefully stu-
died: Knuth [1] studies, for example, the question of requests for memory,
while Habérmann [2] studies the questibn of requests for an abstract re-
source (represented as a vector.) However, when the request cannot be
granted what happens? This is the central question of this paper.

More exactly let us imagine a stream of requests arriving one at a
time to some resource manager. If a request can be granted, then his job
is simple: he just grants the request. On the other hand, if the request
cannot be granted he has two basic strategies. First, he can "forget" about
the ungranted request and begin to process the next one. This has the conse-
quence of forcing "busy waiting" [3]. If some request is not granted, then
the process making that request is forced to repeatedly make its request. As
is well known, this is wasteful of proeessor time. Second, he can "remember"
the ungranted request and then go on to process the next one. By remember we
mean that the manager will in the future "release" this request, i.e. he will
grant it as soon as the request can be satisfied.

A resource manager has then two main tasks: updating and selecting.

When a request cannot be granted he must update his state in the correct way.
Later on he must be able to find what requests can now be satisfied quickly.
The complexity of a resource manager must, therefore, include both the cost of
updating his state and the cost of selecting the next request to be granted.
For example, if a resource manager simply keeps a linear list of those un-
granted requests, then updating is trivial. On the other hand, selecting would
require a complete scan of the linear list. Our interest is in improving upon
this naive solution and in evaluating the amount of additional improvement

that might be expected.

This paper is organized into four sections. In section 2 the basic def-
initions of resource managers are giveﬁ. In section‘3 upper bounds, i.e.
algorithms, are given for these resource managers. In section 4 lower bounds
for these algorithms are given. These lower bounds show that our algorithms

are optimal - at least for a certain reasonable class of algorithms.
2. Definitions

Suppose we have a set of processes making requests for resources such
that at any point in the execution, at most n requests are pending due to
the unavailability of sufficient resources to satisfy any of the requests.
It is assumed that all pending requests are 'reasonable" in the sense that
if the resources of the system were not currently in use, any of the pending
requests could be satisfied. Thus, the pending requests are given by a set

P, of ordered pairs,

P = { <t1: ql>’ ceey <tn: qn> }

where t; is the time (monotonically increasing) of a request for a quantum
q of the resource. In addition, we suppose that a quantum, Q, has just
been released by one or more of the processes. The general task, then, will
be to choose a <ti’ qi> from P such that 9 < Q. The way in which the

choice is made depends upon the type of resource and the service policy.

We recognize three classes of resource requests.

Definition 2.1: A request is a time-space/fixed-unit (TSF) request if

qi e S = '{sl, ooy Sr}’ 1<14i<n.

TSF requests can be thought to represent memory requests in a system
where space is allocated in one of r fixed size blocks given by the set
S. Alternatively, the requests can be considered to be pending processes
waiting on a semaphore where the synchronization primitive is of the "PV
chunk" [4] variety and the "chunks" are known, a priori, to be of sizes
13 s S, When the "chunks" are not known a priori or the memory is allo-

cated in units of arbitrary size, we have the TSV type of resource request.

Definition 2.2: A request is a time-space/variable-unit (TSV) request if

the q; € BQ, the natural numbers, 1 < i < n.

A third type of resource request is motivated by the PV multiple type of
synchronization primitive [4] as well as various types of binary resource

assignment.

Definition 2.3: A request is a multiple binary attribute (MBA) request if

qg; ¢ B = {0,1}", 1<i<n.

Thus, MBA requests are r-bit binary numbers with each bit position represen-
ting a specific semaphore or resource. 0f course, a request q; is satis-
fied by the release, Q , (i.e. 9 < Q) provided Q coversf q..
The two service policies of interest are first fit (FF), grant
(ti’qi) e P with q; < Q and with minimum t, and best fit (BF) grant
(ti,qi) e P with 9, < Q and maximal possible 4 (maximal for qy € IN
translates to iargest, for qy ee{O,l}r it translates to with most number

of 1's)++ where for MBA requests, a maximal a has the greatest number

of positions.set.

3. Upper Bounds

The question to be investigated in this section is: for each type of
resource request and each service policy, how rapidly can an element from
P be chosen? The complexity criterion will be execution time as a function
of the number n of pending requests. Since the management process is
assumed to be on-going, there are as already stated, two parts to:ithe

complexity question:

insertion - the time required to add a new request <t,q> to the

pending requests data structure

searching - the time required to find the appropriate request, given a

release of quantum Q, and to delete the request from the

data structure.

The worst case bounds per request for insertion and searching are summarized

in tables 1 and 2, where c¢ means time is bounded by some constant independent

t x covers y if whenever X; 1s 0 it follows that y; 1is 0.

1+t Break ties here by using FF.

AP

R T

of n.
TSF TSV MBA
BF c OT(log n) c
FF c 0(log n) c

Table 1. Upper bounds on insertion, per request

TSF TSV MBA
BF c 0(log n) c
FF c 0(log n) c

Table 2. Upper bounds on searching, per request

The following informal descriptions of the algorithms should be suffi-

cient to establish the validity of the results in tables 1 and 2.

TSF-FF: Recall that there are r quanta. Keep r queues of requests in
ascending time order within each queue. Insertion requires appending to
the appropriate queue. Searching requires finding the minimum among the
heads of those queues . containing requests for quanta less than or equal

to the release Q. The constant is clearly dependent upon r.

TSF-BF: Same organization as for FF. Searching generally requires only the
fetch of the head element of the appropriate queue, although in the worst
case (queue for Sys «ses S empty, Q = sr), reference to empty queues
will cause the constant to depend upon x. A linked list organization

appears to avoid reference to empty queues at the expense of causing

t 0(f(n)) denotes some function g(n) with g(n) < Af(n) for some constant A.

the insertion constant to depend upon r.

The following result for TSV are éur main results:

TSV-FF: Keep the pending requests in an AVL [5] tree such that the symmetric
order is the ascending time order of the requests and the root node of
any subtree contains an auxiliary cell indicating the minimum quantum
request for any request in the left subtree of the root. Insertion into
AVL trees is O0(log n). Given a release Q, the search proceeds as
usual for AVL trees with the branch decision based first on whether the
left subtree, then the root and finally (the default) the right subtree

satisfies the request. Search and deletion times are both 0(log n) [5].

TSV-BF: Keep the pending requests in an AVL tree such that the symmetric
order of the tree is the quantum size of the requests in ascending order,
breaking ties with ascending time order. The search proceeds in the

normal manner.

Remark: The TSV problem is the dual of the FF and BF space allocation problems
where the q; are interpreted as available free space and the release Q is
interpreted as the size of the allocation request. Since the allocation prob-
lems can be solved effiéiently (in worst case) using AVL trees, the observation
of duality leads to a symmetric solution to the combined problem: suppose
there are two AVL trees, a free space tree (fs) of unallocated memory blocks
and a pending request tree (pr) of unsatisfied requests (none of which fit

in the currently available free space). Then figure 1 shows a flow chart that,

given an allocation request, satisfies it from fs (if possible) or inserts it

in pr or, alternatively, given a release, services a pending request from

pr (if possible) or inserts it into fs.

request release

¢ operation

\ 4
s < fs s < pr
i<« pr i<« fs

[J

v
search tree (s)

. n terms o success

failure -

search

l;nsert into i! | ldelete from s]

\L‘

Figure 1. Duality of the allocation and management problems

MBA-FF: Keep the pending requests in 25— 1 linked list queues, one-for “each

nonzero bit configuration. Insertion is constant. Let U be the cur-

rently unused positions and Q the release (U A Q = 0). Searching is
performed by finding the minimum time among all heads of the queue for
U v Q together with those queues found by removing one or more bits from

U v Q. Search time is constant, with respect to the number of pending

requests although it is proportional to 2F.

MBA-BF: Keep the pending requests in 251 linked list queues, one for

each nonzero bit configuration. Searching begins with queue U v Q. If

it is empty, then all queue heads defined by U V Q with one bit removed
are tested (ties are broken by time order). If these queues are all
empty, consider all queue heads with two bits removed, etc. The search
time is independent of the number of pending requests, but as before,

is related to 2r.

Before proceeding further, it is well to analyze just how practical the various
algorithms are in the context of criteria other than the number of pending
requests. The TSF algorithms for small r wuse storage efficiently and their
execution times are bounded by small constants. Of course, as r becomes
large, the situation approaches that of TSV and at some point it may be pre-
ferred.

The TSV algorithms employ AVL trees and, although their asymptotic
behavior is 0(log n), the difficulty in performing AVL manipulations suggests
that alternatives might be sought. Queues and stacks are more easily mani-
pulated structures and it may be that algorithms based on these data structures
can be found which do beat the AVL implementations for all practical cases.
But, as the next section will show, the asymptotic behavior of 0(log n) will
not be improved upon!

Similarly, the MBA requires the maintenance of a large number, 2r, of
queues; an unreasonable.assumption.for even modest values of r. Once again

we shall see that substantial improvement along these lines will not be possible.

4. Lower Bounds

In order to study the complexity of implementing resource managers,
it will be necessary to have a very general view of what a resource usage
is. We shall characterize resource usage by the way in which it reorders

requests. More precisely, let

eee T

1...m E ﬂl o

represent m resource events (requests and releases) for resource type R
in the time order in which they arrive at the manager and the resulting

order in which they are serviced, ﬂl e Mo For example

123456 >~ 32516%4
TSV

is a possible behavior for a TSV resource. We interpret the activity as

event 1: take 2 units
event 2: take 1 unit
event 3: release 1 unit
event 4: take 3 units
event 5: release 2 units
event 6: release 3 units

and the space available is initially zero. It is only necessary to study

those behaviors T ces ™ that can actually occur, in which case we say

R realizes 7, ... 7 %,
— 1 m

* We assume a FF policy in this section. A similar analysis could be carried
out for BF. '

10.

The permutation model of resource requests allows a simple and compact
way of defining and studying the complexity of various resource managers.
The basic theme - to be developed in the remainder‘of this section - is that
the complexity of a resource manager is directly proportional to the number
of permutations that the resource type can realize. Thus, in order to deter-
mine the complexity required for the management of a new resource, one need
only determine the number of permutations that resource type can realize.

Note also that the permutation model describes the "global" behavior of
resource usage and thus both pending requests and release are being considered.

To identify the pending requests, we have

inition: Ty eee T e ion. m. 1is pending i
Definition: Let 1 o be a permutation. Then ; 1s ending provided

for some j < i, my < "j'

Intuitively, of course, T is pending if at some point in the system
it is saved and subsequently (nj > ni) released by some “j' For example,

in 7 =325164 the pending requests are Tos T, and Tee

Definition: Suppose g = LETERE Tm is a permutation. Then ¢ is simple

provided no two adjacent LA and 7,

{41 are both pending.

A permutation can fail to be a simple permutation in essentially two
ways. First, a release could be "large" and release more than one pending

request. For example,

where

11.

event 1: take 1
event 2: take 2

event 3: release 3

Secondly, there can be a "cascading" effect in the case where resources can

be both seized and released. Thus

31 2
could be interpreted as

event 1: take 1 unit of A return 1 unit of B
event 2: take 1 unit of B

event 3: return 1 unit of A

where A and B are initially zero.* It is interesting to note that there are
two interpretations for 3 1 2 while 3 2 1 has only one, cascade, because
of the FIFO assumption on time.

The restriction to simple permutations is made to avoid such subtleties.
The next lemma indicates, however, that not too much is lost by this restric-

tion.
Lemma: There are at least (Lm/2])! simple permutations of 1 ... m.
Proof: Let t =[m/2] (Lx]= greatest integer < x.) Consider the permutation

= . + e oo +
T t+1 Xl t+2 x2 t+t xt

where x X, is some permutation of 1 ... t. Clearly, only the X

100"

are pending; hence m 1is simple. Moreover, there are t! such permutations. [J

* We have not previously considered this type of resource (which corresponds
to a Vector Replacement System [6]).

The construction of the lemma actually represents the basic situation

of section 3 where the Xy .. X are pending (and have been inserted in

the data structure) and then the releases t+l ... t+t cause the corresponding

X to be found in the search. The next theorem states that any permutation

of the pending elements can be realized.
Theorem 1: A TSV resource can realize any simple permutation.
Thus, any TSV can realize at least (|m/2])! permutations of 1 ... m.

Proof: Let 7 be a simple permutation. Let r r

1000 k

where pending requests get released. By definition there are releases at

be the places

places s; ... s . Now let r; be "take i units" and o be 'release i

' When there are no units initially available, it is clear that this

units.'

is a TSV behavior and thus = can be realized by a TSV.

It is interesting to note that the "power'" of TSV resources come from
the ability to vary the amounts. Considering TSF, it is easily seen that
it can only realize 2Cm permutations. The key to this observation is the
fact that there are only A possible distinct types of requests (A is some
constant). Thus, there can be at most A" realized permutations of 1 ... m.

We now proceed to the question raised at the end of section 3, that is,
can a manager of a TSV resource implement the possible TSV behaviors by mani-
pulating a fixed structure of stacks, queues and (for completeness) deques?
Such a strategy is a common - if not the standard - way to manage resources.
Pending requests are stored in these data structures until they are chosen

for service.

12.

13.

The problem is easily answered if we view the manager as a switchyard
in the sense of Tarjan [7]. A switchyard is an acyclic directed graph with
a unique source (the manager's input events) and a unique sink (the manager's
service permutation). Each vertex is either a stack, queue or deque., A
switchyard can realize = = Ty oeee T provided 1 ... m are placed in the
source and after some sequence of "moves" Ty eee T~ appears at the sink.

A "move" is the placement of an element from one vertex (data structure) to
another vertex by movement along an edge. Tarjan then argues that there are
at most

(4e)™
possible move sequences where e is the number of edges, v the number of

vertices (data structures) and m is the length of the input. This leads us

to conclude

Theorem 2: No "switchyard" manager can manage a TSV resource for all arbi-

trarily large input sequences.

Proof: By theorem 1 a TSV resource can realize any simple permutation and
from the lemma there are at least (Lm/2J])! such permutations. By Tarjan's
result there are at most (4e)Vm move sequences possible for the manager.
However, for large m, (lm/2])! > (4e)vm and thus some TSV behaviors cannot

be realized. 0

The theorem appears to imply that the simple mechanisms of queues etc.
are at fault. This is not the case as we now argue. Let us hypothesize that
the manager is given the entire sequence of input elements and then produces

the entire output permutation. This is strongly suggestive of sorting, and,

14’

indeed, an argument from sorting theory [5] implies that O(t log t) time
will be required by the manager where t = ((m/2])! To see this, we assume
that at each "step" the manager makes a binary decision based on the input.
These decisions can be abstracted by a binary tree with the output permuta-
tions at the leaves. The maximum depth of the tree indicates the worst case
number of steps required to arrive at the appropriate output permutation.

By the lemma and theorem 1, a TSV resource must correspond to a tree with

at least (Lm/2l)! 1leaves. But such a binary tree will have depth t log t.

Hence

Theorem 3: Any manager for a TSV resource requires O(t log t) time to

manage m input events, where t = (Lm/2]).
Turning our attention to MBA resources we observe the following:

Theorem 4: An MBA resource can realize at least (Lr;2J)! simple permu-

tations of 1 ... 2(r) , where r is the number of attributes.
Lr/2]

Proof: Let ¢t = (erzj)’ _ the binomial coefficient, and consider the permu~
tation

T = t+l x1 t+2 X2 oo t+t Xt

where X] eee X is a permutation of 1 ... t. There are t! such permuta-
tions and 7™ is simple. Suppose all attributes are 0 initially. Let
W l1<1i<t be the t ¥r-bit attribute sequences with |r/2] ones which

are incomparable, i.e. i # j implies LA does not cover Wj and wj

does not cover W . Now, each X, will request resources LA and each

15.

mtl will release W, . It follows from the incomparability of the LA

that T can be realized by an MBA resource.

Consequently, unless r is quite small, the complexity of servicing
MBA requests is quite high, even though it may be independent of n. Analysis
similar to that of theorems 2 and 3 can be carried out to establish that
management of MBA systems is, indeed, quite difficult. The conclusion to be
drawn is that systems providing MBA resources should limit the number of
attributes severely if reasonably efficient management of these resources is

to be expected.

16.

References

[1]

[2]

[3]

[4]

[5]

(6]

[71

D.E. Knuth. The Art of Computer Programming, Vol. 1. Addison Wesley:
Reading, Mass., 1968.

A.N. Habermann. Synchronization of Communicating Processes. CACM
15(3), 1972.

S.E. Madnick and J.J. Donovan. Operating Systems. McGraw-Hill: New York,
1974.

R.J. Lipton, L. Snyder and Y. Zalcstein. A Comparative Study of Models
of Parallel Computation. Proc. of the 15th annual IEEE Symposium on
Switching and Automata Theory, 1974.

D.E. Knuth. The Art of Computer Programming, Vol. III. Addison Wesley:
Reading, Mass., 1973.

R.M. Keller. On maximally parallel schemata. Proc. of the 1lth annual
IEEE Symposium on Switching and Automata Theory, 1974.

R. Tarjan. Sorting Using Networks of Queues and Stacks. JACM 19(2), 1972.

