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ABSTRACT

Multi-Grid Algorithms with Applications
to Elliptic Boundary-Value Problems

Craig C. Douglas

Yale University, 1983

This work is primarily concerned with solving the large sparse linear systems which
arise in connection with finite-element or finite-difference procedures for solving self-
adjoint elliptic boundary-value problems. These problems can be expressed in terms of
abstract variational problems on Hilbert spaces. Our (multi-grid) schemes involve a
sequence of auxiliary finite-dimensional spaces which do not have to be nested. We
approximate the solution using the largest (finite-dimensional) space. These schemes are
recursive in nature: they combine smoothing iterations in a space with solving one or
more correction problems using smaller spaces. Under certain circumstances, the solution
to a problem can be approximated well using smaller spaces. Since the smaller spaces are
required to have geometrically fewer unknowns than the largest space, the savings in
computation can be substantial. In fact, we prove that these procedures are optimal
order under appropriate conditions. Our general theory is discretization independent and

can be applied to problems which do not arise from partial differential equations.

As examples, we consider three particular discretizations of variable coefficient self-
adjoint second order elliptic boundary-value problems. The first is a finite-element
discretization on a convex domain in two dimensions. The second is a finite-difference
discretization in one dimension. The last is a finite-difference discretization on the unit

square.



1: General Theory

In this section, we discuss the approximate solution of an abstract elliptic variational
problem. Our scheme involves a sequence of finite-dimensional spaces Mj, i=12,..,k
We approximate the solution using the largest space. Under certain circumstances, the
solution to a problem can be approximated well using smaller spaces. Since we require
the smaller spaces to have geometrically fewer unknowns than the largest one, the savings
in computation can be substantial. In fact, we prove that these procedures are optimal
order under appropriate conditions. While this theory is applied to solving the large
sparse linear systems which arise in connection with finite-element or finite-difference
procedures for solving self-adjoint elliptic boundary-value problems in the next section, it

can also be applied to problems which do not arise from partial differential equations.

Our k-level scheme is related to the multi-grid techniques used by Bank and
Dupont [8], which is related to the techniques of Brandt [10], Bakhvalov [5],
Federenko [14, 15], Nicolaides [25, 26], and Hackbusch [18, 19, 20]. The earlier proofs are
for particular discretizations of model elliptic boundary-value problems. Their domains
are covered by meshes or triangulations which are refined uniformly. Only Van
Rosendale’s proof [29] allows nonuniformly refined domains. The proofs here use abstract
function space arguments which make no reference to the particular discretization,
domain, or method of refinement. Further, we do not require the solution spaces to be

nested as in the proofs of the cited references.

Assume we are given a triple,
{H, a(u,v), f(v)}, (1.1)

where H is a Hilbert space with norm |-||, a(u,v) is a continuous symmetric real valued
bilinear form on H & H, and f(v):H — R is a continuous real valued linear functional.

Furthermore, we assume that there exists a constant ag > 0 such that

a(v,v) > ao|]V||2 for all v € H.

The bilinear form a(-,-) induces the energy norm



Il = a(u,u).
We seek an approximation to the solution of

Problem 1.1: Given {H, a(u,v), f(v)}, find u € H such that

a(u,v) = f(v) for all v € H.

Problem 1.1 has a unique solution (see Ciarlet [11]).

We now consider the finite-dimensional approximation of Problem 1.1. Let .Mj,
j 2 1, be a sequence of Nj-dimensional spaces. Associated with each space Mj is a
continuous, symmetric, positive-definite bilinear form aj(u,v) and a continuous, bounded

linear form fj(v). We require that

N; ~ oN;_,, for some o > 2. (1.2)

i-v

We will see that o is important: when & > 2, we can always construct optimal order

algorithms to approximate the solution to Problem 1.1.

We assume that linear operators exist which project H onto .Mj and inject Mj into H

forany j > 1:

p;: H ~—=> Mj and
(1.3)

ij: ‘Mj 1> H.

For j > 1, the linear operators defined by

E: M., = M. and
-1
it T j (1.4)

RJ .MJ c;xt_o> Mj—l

interpolate between adjacent solution spaces. One natural definition of Ej and Rj is

E. = p..

; oy and Ry = p_ji. (1.5)

It is natural to define Rj as the adjoint of Ej:



Figure 1-1: Space Operators

In this case,

* * *

By = 4% = Py = By

If we assume that p; = ij*, then all of the operators can be defined in terms of the
injection operators ij. However, we will have occasion to use more general operators than
those in (1.5). Figure 1-1 shows the relationship between these operators and the various
spaces.

For j > 1, the finite-dimensional approximations of Problem 1.1 are

Problem 1.2: Given {Mj, aj(u,v), fj(v)}, find Y € Mj such that

aj(uj,v) = fj(v) for all v € M;.

Associated with each space ‘Mi are eigenvalues )\gj) and eigenfunctions (eigenvectors)

¢80, 1 <i < N;, satisfying

a(vyl) = N (vyd), for all v € M,
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where (-,-)j denotes the inner product in Mj. Let 6, be the Kronecker delta. Without loss

of generality,

0 <P <) < <

>
ZS

Il

=S

Wef)), = 6, 1<ik <N, and (1.6)
a,-(«/)?),«b{j)) — >‘9)5ik'
With each space .Mj, we define discrete norms

i=1

IMIE = £ 200y, forv = £ ¢ ol
i=1

where we have suppressed the j subscript on the norm and —2 < s < 2. Note that
[IIv]ll; = llIvll| is the usual energy norm on level j. Hereafter, we drop both the
superscripts from the eigenvalues and eigenfunctions (eigenvectors) and the subscript from

the dimension of the spaces.

We require the bilinear forms on adjacent spaces to have a consistency relationship.

As a consequence, the energy norms on two adjacent spaces are uniformly consistent.

Hypothesis 1.3 (Energy Norm Consistency): For all j > 1 there exists a positive constant

Cys independent of j, such that

aj(Ejv,ij) = C, aj__l(v,w), for all v,w € M;_,.

Since |||v]||> = aj(v,v). This hypothesis implies that for any v € M;_,, the energy norm
of v on level j—1 is equal to a constant times the energy norm of Ejv on level j.

We now define and analyze a k-level iterative procedure for solving Problem 1.2. The
process involves solving problems like Problem 1.2 sequentially for j=1, 2,..., k. The
k-level scheme has three parameters: m and n, which determine the number of smoothing

iterations used; and p, which is used in a recursion iteration.



Algorithm 1.4: MG(k, m, n, p)
Given an integer k > 0 and { Mj, aj(-,-), fj(')}};l’ we want to approximate w, € M,,
where a, (u,,v) = f,(v) for all v € M,.

(a) If k = 1, then solve directly.

(b) If k > 1, then one iteration of the k-level scheme takes an initial guess z, € M,

to a final approximation z 1 € My in three steps:

m+n+
(i) if n > 0, define z,, 1 <i < n, by

(3—2,_ V), = A;l[fk(v) — ay(z,_,,v)], forall v € M,. (1.7)

(ii) Let g € M, _, be the approximation of q€ M,._, obtained by applying p iterations of

the (k—1)-level scheme to the residual equation

a_y(av) = CTHA(Ey) - a(z,Ev)} (18)

fi_y(v), forallve M_,,
starting from an initial guess zero. Then set

z =z +Eq (r.9)

n+1

(iii) If m > O, then define z, n+2 < i < m+n+1, by (1.7).

In the correction recursion iteration (step (ii)), we approximately compute the elliptic
projection of the error in M, _, using p iterations of the (k—1)-level scheme applied to a
problem of Problem 1.2’s form with j = k — 1. In the smoothing iterations (steps (i)
and (iii)), error components whose oscillation are “large” are damped. A simultaneous
displacement procedure is used in this step. Later in this section we will see that A ! can
be replaced by a particular type of bound (see Hypothesis 1.6). We will also see that
(1.7) can be replaced by other iterations which are computationally more attractive, but
do not affect the character of our convergence results. The use of iteration (1.7) simplifies
the initial analysis of the convergence. Figure 1-2 contains a three-level, two-iteration
example of Algorithm 1.4 with p = 2. Note that computation begins with the largest

space and uses the smaller ones only to solve correction recursion problems.

There are three cases of note in Algorithm 1.4: (a) when n > 0 and m = 0, (b) when



Figure 1-2: Three-Level Example of Algorithm 1.4

Two iterations on level three, p = 2

Level
1 ds ds ds ds
/ N/ 0\ / N/ O\
2 n m+n m n m+n m
s \/ A"
3 n m+n m

ds = direct solve
n,m number of smoothing iterations

n=0and m > 0, and (c) when n > 0 and m > 0. Case (a) is the scheme analyzed by
Astrakhantsev [3], Bank and Dupont [6], Hackbusch [18, 19, 20], Nicolaides [24, 25], and
Van Rosendale [29] for finite-element discretizations of various elliptic boundary-value
problems. Federenko [14, 15] and Bakhvalov [5] analyzed this case for finite-difference
discretizations. Each of these authors assumed in their convergence proofs that p > 1.
Our convergence result is true even when p = 1. Brandt [10] gave a heuristic analysis of
(b) and (c) for finite-difference discretizations using local mode analysis. The motivation
for studying cases (b) and (c) comes from trying to understand the behavior of a large
finite-difference program which is described in Chapter 6 of Douglas [12,13]. It was
observed empirically that case (b) sometimes required fewer correction recursions to

achieve the same accuracy as case (a).

Before proving a convergence theorem for Algorithm 1.4, we need to state one
definition and two more hypotheses. The first hypothesis is a bound for the largest
eigenvalues and the other is an error estimate for the correction produced by the
(k—1)-level iteration. Finally, we prove a lemma describing the smoothing iteration’s

effect on the error.

Definition 1.5: The error on level k at the ith stage of Algorithm 1.4 will be denoted by

The first hypothesis states what form the bound for the maximum eigenvalue is



assumed to have.

Hypothesis 1.6 (Maximum Eigenvalue): There exist positive constants § and 02, each

independent of j, such that

4 < CzNJ.Z‘S, 1<j<k

The use of A, in the smoothing iteration (1.7) may be replaced by any upper bound

satisfying Hypothesis 1.6. The last hypothesis is a norm estimate:

Hypothesis 1.7 (Approximating Error Estimate): For some a with 0 < o < 1, there

exists a positive constant C, such that

- —2a$
NEa—ellli_a < C3NZle 4o

For problems derived from elliptic boundary-value problems, the value of a depends on

the spatial domain.

The following lemma is used in the convergence proof to analyze the effect of the

smoothing on elements in the solution spaces.

Lemma 1.8: Let n > 0 be any integer and zy € Mk. Then the smoothing iteration

(1.7) is a contraction operator:

lle,lll < lleglll- (1.10)

Further, for every fixed 0 S w < 2and 0 < a < 1,

lleglll, < C57ANE (20 + a)™/2 |liegll ., (1.11)
Proof: Let N = N, and 4 = 4. From (1.7) we can deduce that
(e,—e,_1v), = — A_lak(ei_l,v), forallve My,i>1. (1.12)

We can expand e in terms of the eigenfunctions:



Using (1.12) we can show that

n

N
e = i‘il B, (1 = \/A)" ¢, (1.13)
Since (1 — X\;/A)" < 1, we have that

llle Il < llelll-

The proof of (1.11) uses (1.10) and the Maximum Eigenvalue Hypothesis:

eI = £ g2xe(1 = x/a2

= 475 BN (1= WA

< A%max [x%1 — x)*| ) B2 A~
x€0,1] =1 ! !
< A% 20+ o) lleglll?_,

< OF NP(2n + o)™ ||ley|f2

w—a

Taking the square root of both sides of this inequality completes the proof.
QED

The convergence of Algorithm 1.4 is established in the Theorems 1.9 and 1.10. In
essence, these results say that the error on level k can be reduced by any positive constant
less than one provided the correction recursion problem on level k—1 can be solved
sufficiently accurately. Theorem 1.9 requires that p > 1 and is true for any k. Theorem

1.10 requires that k be finite and is true for any p.
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Theorem 1.9 (Convergence of Algorithm 1.4): Assume that Hypotheses 1.3, 1.6, and

1.7 hold. Let p > 1 be any fixed integer. For any constant 0 < 4 < 1 there exist a

nonnegative integer I which depends only on p and ~, such that

e inialll < Alleglll, for all m+n > 1. (1.14)

Proof: This proof is motivated by the work of Bank and Dupont [6]. The basic idea of 7
this proof is to show that the smoothing iteration (1.7) reduces the oscillatory components
of the error (corresponding to the larger eigenvalues) while the correction recursion
iteration (1.8) reduces the smoother components of the error. The proof is by induction
on the index k of the space. Assume the result is true for 1, 2, ... , k—1. We now prove

the result for Mk'

By Lemma 1.8 (with w = 1 + a),

llle, Il < llelll

and

e llye < C3/2NZ(2n + a)™/2 |llelll- (1.15)

We can estimate the effect of the correction recursion iteration (1.8). Using (1.8) and

the Energy Norm Consistency Hypothesis, we have for all v € M, _,,
a,_(av) = C7'a(e E,v)
or

a (B, q—e E,v) = 0. (1.16)

This shows that the exact solution q of the (k—1)-level correction recursion problem

corrects exactly all components in z which belong to M, _;. Take v = qin (1.16). Then
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ak(Eki—en,Ekc_l) =0= ak(Ek&,Eka) = 3k(en’Ek(_l)

= Eall < lllelll < llelll-

Using this, the Energy Norm Consistency Hypothesis, and the induction hypothesis gives

us
IE(a—alll = c7*2llla=dlll < ¢7/*lllalll = PllIEll

< APllleglll- (1.17)

We are now ready to estimate |||e We can define

m+n+l|”'

e = E,q—e

n+1 n

(Eca—e,) + E(a—q).
If S™ reflects the effect of m smoothing iterations on any v € M,, then
= SMe

em+n+l n+l’

Define C, = C3C3. Using Lemma 1.8 (with w = 1), (1.15), (1.17), and the

Approximating Error Estimate Hypothesis yields
llepmpnrdll < MST(Ea—e Il + [IS"E(a—alll
< Gyl (em + o)™ 2 NP ||IBq—e,lll,_, + [IE(a—a)ll
< Ggl2cg(em + @)™ Nl lll o + Plllelll
< [C 2m + o)™ 2n + a) 2 + A7) |[lelll- (1.18)

Choose I such that

C,(2m + o)~%?(2n + a)"*2 < 4 — AP, for all m+n > 1. 1.19
4
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Then

empnstlll < llleglll- (1.20)

Clearly, ~ and I can be chosen independent of the N
QED

When p = 1, the proof of Theorem 1.9 breaks down because the right hand side of
(1.19) is zero. If we assume that k is a small natural number, then we can define a

sequence {'yj}jl_;1 such that

ij_,,})_1=c5>0, 2<j<kandp >0,

¥, > 0, and

" =71<L
Corresponding to Theorem 1.9 is

Theorem 1.10: Assume that Hypotheses 1.3, 1.6, and 1.7. Let p > 0 be any fixed
integer. For any constant 0 < ~ < 1 there exist a nonnegative integer I which depends

only on p, 4, and Cs, such that

llemsnsalll < Allleglll; for all m+n > 1.

Proof: The proof follows the one for Theorem 1.9. Equation (1.17) becomes
NE(a=alll < AE_4lllelll-

and (1.19) becomes
C,(2m + a)~*%on + a)~*/? < Y — %_y forall m+n > 1.

QED

At first glance, it appears that choosing m = n in (1.18) would be better than
choosing either n =0, m > 0 orn > 0, m = 0. However, special case proofs show that

this is not necessarily true. Assume that n > 0, m = 0. By modifying the proof of
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Theorem 1.9, we can show that

legyilll < [CY%(2n + )72 + 4P] [lleglll-

For n large, this bound for the error reduction looks like
ClZ(am)™/2 < e = 7.

So
n > -;Ci/ae—z/a

is required to reduce the error by a factor of €. If 0= i, the error reduction (see (1.18))

looks like
C4 2n)™" < e

Once again,

T > %C;/a o — (e, % Ci/a 2 — /oy

is required to reduce the error by a factor of €. The amount of work, which depends on n

and 21, depends on the relative sizes of one and 2%. Thus, we have shown

Theorem 1.11: Assume Theorem 1.9 holds. Define ¢ = 4 — 4P. Then choosing n > 0,
m = 0 in (1.18) is better than choosing i'= @ > 0 only when 2% > 1. Alternately,

choosing '= 1 > 0 in (1.18) is better only when 2% < 1.

The practical significance of this is that if v — AP (or TN — fyﬁ_l) is large, it is more
efficient to do the smoothing at once, rather than splitting it around the correction

recursion. Similar analysis holds for the case of n =0, m > 0.

We now analyze the cost of one iteration of Algorithm 1.4. Let F(N) be the cost of
reducing the error by a factor of ~ for a problem with N unknowns. We assume that the
cost of the smoothing iterations (1.7) (or an iteration with similar properties) on the finest
level, level k, can be bounded by Cs(m-!-n)Nk = O;N,, where C; is independent of k.

The cost of the correction recursion (1.8) is pF(N, _,). Thus,
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F(N,) ~ pF(N,_,) + C;N,. (1.21)

Since N; ~ oN, _, (see (1.2)), the solution of (1.21) is
F(N,) ~ C,N, iéo (p/o).
Asymptotically in k,

CgN, 1<p<eo

F(N) < ¢ CgNlogN, p=o (1.22)

CgN°%®,  p >,

where the logarithms are base o [2]. One of the surprises of multi-grid is that
implementations (e.g., Bank and Sherman [7] or Douglas [12, 13]) exhibit the asymptotic
convergence rates for very small k's.

Choosing 1 < p < o leads to an optimal order algorithm, in the sense that the error
can be reduce by a fixed factor of « each iteration with work proportional to the number
of unknowns. When k is finite, the cost for the direct solution of the one level problem

may not be majorized by C,N.}. In this case, the algorithm is not optimal order.
71

We may want to reduce the initial error by a factor of N~%or some fixed q. The
obvious implementation would then require F(N)logN operations. We assume the

solutions Y of Problem 1.2 satisfy
llpju—ulll < KN;7%j > 1,

where K is a constant independent of Nj. Denote by ﬁ] the computed solution of the j-
level scheme (Algorithm 1.4). To avoid the extra logN factor, we use Ejﬁ;—l as the initial
guess to ﬁ}, J > 1, and prove that the initial error is small. Approximate solutions ﬁ; of

finite-dimensional Problem 1.2 are generated using the following:

Algorithm 1.12: MGN(j, r, m, n, p)
Given an integer j > 0 and {M,, a(-,"), fi(-)}g___l, we want to approximate u € Mj, where

aj(uj,v) = fj(v) forall v e M;.
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Figure 1-3: Three-Level Example of Algorithm 1.12

One iteration (r = 1) on level three, p = 2

Level
1 ds ds ds ds
y/ \ / N/ \
2 n m n m+n m
\/ A"
3 n m
ds = direct solve

n,m = number of smoothing iterations

(a) If j = 1, then solve Problem 1.2 directly.
b) If j > 1, then starting from an initial guess z, = E.u._., apply r iterations of
0 ] -1

MG(j, m, n, p) (see Algorithm 1.4) to Problem 1.2 to obtain I'I;

This algorithm actually has four parameters. The parameter r determines the number of
iterations of MG(j,m,n,p) to use. Recall that m and n are the number of smoothing

iterations and that p is the number of correction recursion iterations in Algorithm 1.4.

Figure 1-3 contains a three-level example of one iteration (r = 1) of Algorithm 1.12.
For the correction recursion problems, p = 2. Unlike Algorithm 1.4, computation begins
with the smallest space and winds its way “down” to the largest space. It is worth noting
that when n = 0 and z, = 0 in Figure 1-2, the two algorithms become much more
similar. In this case, the first recursion correction problem (see (1.8)) in Figure 1-2 has
fk(v) = f,(v).

The convergence properties of Algorithm 1.12 are stated in the Theorem 1.13.
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Theorem 1.13: Assume that Hypotheses 1.3, 1.6, and 1.7 hold. Let r > 1 be any fixed

integer. Suppose

@) lllpu—ylll < KN79j>1,
(ii) |Ip;u—E;p;_yulll < KN;%j > 2, and
(i) [llw,~ /Il < KN7¥

Then

(a) For any integer p > 1, there exists a nonnegative integer I such that for j > 1,

e~ < KNj’q,a for all m+n > 1.

(b) llpju=ll < 2KN7

(c) the cost of computing T is bounded by CgF(Nj), where

Cy = or/(0—1) is independent of j.

Proof: (a) The proof is by induction on the index j of the space. Assume the result is true
for 1, 2, ..., J—1. We now prove the result for .Mj. Define €j‘ = |||uJ—-1’i;||| for j > 1.

After r iterations of the j-level scheme,

¢ < 'fllluj—E,-uj_llll

< A { llwy=pjulll + [llp;u—E;p;_ulll +
IE,(p; _yu—w;_)III + 11E;(w;_, =T _)lIl }
< ¥ {KE + Cf? + CT/BONTY,

Choose ¥ < (2 + C%/ 24 Cl_l/ 3‘15)"1/ T and I according to Theorem 1.9 or Theorem 1.10.

Hence,

& < KN4
] — )
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(b) This is a simple consequence of the triangle inequality:

llp;u=lll < lllpju—wlll + [lo;—]l]
< 2KN].-‘1.‘S

(c) The cost of computing Wj is bounded by

F(N1)+r}z2 F(N) < CgF(N,) or/(o-1) = CyF(N,).
QED

It is worth pointing out that r is independent of j. This tells us that Algorithm 1.12 is
optimal order whenever 1 < p < 0.

In conclusion, we have shown that solutions to problems like Problem 1.1 can be
approximated in finite-dimensional spaces using an optimal order procedure. In the next
section we verify that Hypotheses 1.3, 1.6, and 1.7 hold for particular discretizations of

several elliptic boundary-value problems.



2: Applications

2.1 Model Problems

In this section, we discuss the application of the algorithms of Section 1 to the
solution of large sparse linear systems which arise in connection with finite-element and
finite-difference procedures for solving self-adjoint elliptic boundary-value problems. We
show a few examples in which the algorithms and theorems of Section 1 apply. We will

see that these can be optimal order results.

Section 2.2 is concerned with a finite-element procedure. Our model problem is the

Neumann problem

— v(Pyu)+ Su = fin2

(2.1)
u = Oon df,

where £2 is a polygonal domain in R%. We assume that P € CY(12), S € C(f2), and that

there exist positive constants p, p, s, and s such that
0<p<P(x)<p and 0<s < S(x)<s, for all x€N. (2.2)
Most of our arguments apply to the Dirichlet problem

- v{(Pvu)+Su = fin2

(2.3)
u = 0on dN
with only minor modifications. We comment on the extensions as they arise.
In Section 2.3, we discuss finite-difference approximations to the model problems
= (Pu), +Su = fin2 = (0,1)
(2.4)

u(0) = u(l) = 0

and
17
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- (Pu,), — (Puy)y + Su = fin 2= (0,1)x(0,1)

(2.5)
u = 0 on 902
We assume that f € L%(12) and that P and S are constrained as before.
2.2 Finite-Elements
We seek a weak form solution of (2.1): find u € ¥(£2) such that
a(u,v) = (f,v) for all v € ¥{(12), (2.6)
where
a(u,v) = ff)F’Vu’vv + Suvdx and
(2.7)

(fv) = ?l'lfv dx.

Then there exists a unique weak solution u € ¥!(£2) for all f € L%(2) (see Ciarlet [11]).
The spaces X°, for s a positive integer, will be the usual Sobolev spaces equipped with

norms

2 Bull2 = Bu.DP
ul|¢ = ¥ ||IDPuf|? = X (Du,D"u).
2 = % D% = & (%D
The spaces X° for s positive and non-integral will be defined by interpolation (see
Agmon [1] or Lions and Magenes [23]). For s negative, X° will be defined as the dual of
%75, The bilinear form a(-,) induces the energy norm ||Ju]]|> = a(u,u).

A modest amount of elliptic regularity for the solution of (2.8) is required.

Hypothesis 2.1 (Regularity): We assume there exists a constant 0 < a < 1, such that for

all f € ¥*~! there exists a unique solution u € ¥+ of (2.6) and

"u"1+a < C(P,S,ﬁ) "f"a_l‘
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For a complete discussion of what values of a correspond to specific domains {2, see

Kellog [22] and Babuska and Aziz [4].

We now consider a finite-element approximation of (2.6). Let Tj, J 2 1, be a nested
sequence of triangulations of 2. Take T, to be a fixed triangulation. For T € T,, denote
the diameter of T by hr, and let hp-dp denote the diameter of the inscribing circle for T.

Define

h, = maxh;, §, = ’l@‘ngrxr dy, andé, = 'lggrr: h/h,.
The constant é; is a measure of the shape regularity of the triangles in T, and 6, is a
measure of their uniformity. We construct Tj, J > 1, inductively: divide every T € Tj—l
into p? congruent triangles, where p is independent of j. When p = 2, this means we
construct four triangles in Tj by pairwise connecting the midpoints of the edges. Each
triangulation Tj will have shape regularity and uniformity constants §; and 6, and will
have hj = 'IrlnghT p hy.

With each triangulation Tj, we associate the Nj-dimensional space .Mj of Co-piecewise

linear polynomials. Following (1.2), we know that
~ oN,, (2.8)

where ¢ = p? asymptotically. Since the triangulations are nested, we have that Mj is a
subset of Mj +1 J 2 1. The spaces .Mj satisfy the following standard approximation

property [8, 9, 21, 27]: if u € ¥°, 1 < s < 1+a, then there exists a u € Mj such that

Ju—ullo + byllu—wl, < O(6yb,,2) b [ull, (2.9)

We briefly remark on the Dirichlet model problem (2.3). The definition of Tj, 121,
remains the same. Let Mj be a subset of )((1) and let it be the space of C%-piecewise linear
polynomial associated with Tj satisfying the Dirichlet boundary conditions. Then Mj is a

subset of M.

417 j 2 1, as before. With this modification, the results of this section will

remain valid.

Using the notation of Section 1, we define for each space Mj, 121,
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aj(u,v) = a(u,v), fj(v) = (f,v), and (u,v)j = (u,v) for all u,v € M;.

The interpolation and projection operators, Ej, P and ij (see (1.3) and (1.4)), are the

natural projections and injections.

Associated with Mj are eigenvalues )\gj), eigenfunctions 1{19), and a maximum
eigenvalue Aj of a(:,") fulfilling the requirements of (1.8), where 1 < i < NJ.. A simple

homogeneity argument shows that

4 < C(P,S,60,6l,{))hj“2 (2.10)

(see Strang and Fix [28]). For —2 < s < 2, we define discrete norms

I = £ a0y, for v = & ¢ ¢b), (2.11)

=1 i=1

where we have suppressed the j subscript on the norm. Note that [||v|]|; = [||v]|]| and
l[Iv]lly is comparable to [|v||,. In fact, the proof of the following norm equivalence is

almost identical to Lemma 1 in Bank and Dupont [6]:

Lemma 2.2: There exists a constant C = C(P,S,12,6,,6,,4) such that for 0 < s < 1,

clvlly < lvllly, < Clivily,

In order to establish the convergence of Algorithms 1.4 and 1.12 for the finite-element
case, we must verify Hypotheses 1.3, 1.6, and 1.7. It is immediate that (the Energy Norm
Consistency) Hypothesis 1.3 holds. Using (2.10) and the fact that Nj ~ Chj"2we can

verify that (the Maximum Eigenvalue) Hypothesis 1.6 holds.

A duality argument is used to verify (the Approximating Error Estimate) Hypothesis

1.7. When « is an integer, this is a standard result [11, 28].

Lemma 2.3: Let a be defined by the Regularity Hypothesis. Then

lla—e,llli_e < Cr* B lleylly 0
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Proof: By Lemma 2.2 and duality,

lla—e,llli_q < Clla=eyll;_g

= C sup -------- (2.12)
pEX " lpll 0y

For p € ¥~ 1 let 5 € ¥**! be defined by
a(n,v) = (p,v) forall ve WL
Taking v = i—-—en gives us
(pa—e,) = a(ng—e,)
= a(n—w,a—en), for any w € M, _,.
By the Regularity Hypothesis and (2.9),
(ra—e,) < ChY_ llnll,yy llla—eyll
< Cp b lloll g llla—e,lll-

Combining this with (2.12) yields

Ma—eylll;q < Cu® b llla—e,lll- (2.13)
However,
lla—e, I’ = ala—e,a—e,)
= — a,(a_en,en) (2.14)

< lla—eyllly_olllegllly 4o
Substituting (2.13) into the right-hand side of (2.14) gives us

lla—e,lll < Cu b lllelll} 40
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which we substitute back into (2.13) to complete the proof.

QED

This proves that Algorithm 1.4 converges at the rates specified by Theorems 1.9 and

1.10 for the finite-element case of this section.

One of the advantages of finite-element methods is that the theory of Section 1 can
be applied using a variety of norms. As an example, we prove a special case of
Theorem 1.9 for the L2 norm. It is similar to the results of Nicolaides [25] for the 1* norm
and is the analogue of Corollary 1 of Bank and Dupont [6]. To get L2 results, we assume
that the solution u has ¥? regularity, i.e., @ = 1. This assumption requires that 2 be

convex [17, 28].

Theorem 2.4: Assume the Regularity Hypothesis holds for « = 1. Let p > 1 be any
fixed integer. For any constant 0 < 4 < 1 there exists a nonnegative integer I, which

depends only on p and ~, such that

”em+n+1"0 < lleglly for all m+n > L.

Proof: The proof is by induction on the index k of the space. Assume the result is true

for 1, 2, ..., k—1. We now prove the result for M;. From (1.13) it is immediate that

lleallo < lleglly: (2.15)
Using an argument similar to the proof of Lemma 1.8 shows that

llell, < Cwu~?hyten+1)™ eyl (2.16)
Lemmas 2.2 and 2.3 with a = 1 yield

la—e,lly, < Cu? b fle,ll,. (2.17)

The analogue of (1.17) is derived using the induction hypothesis and (2.15) — (2.17):



la—dll, <

IA

IA

IA

<
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Pllally

Pllla—e,lly + lleyllo)
P{Cuh{lle,ll; + llegllo}
PP{Cn+1)7" + 1}leqlly

C'Yp"eo”(r

Using an argument similar to (1.18) gives us

”em+n+

and Theorem 2.4

o < c{em+1)"2n+1)"1 + P} leyl

follows.

QED

When p = 1 we can prove the analogue to Theorem 1.10.

It is useful to associate with Mj a symmetric, positive definite bilinear form bj(-,-),

which is comparable to the L2 inner product. We assume there exists a constant S,

independent of hj

0 < A,

, such that

v) < bj(v,v) < A(v,v) forall ve Mg, v # 0. (2.18)

For bj(-,-), we define generalized eigenvalues X; and eigenfunctions ¥, 1 < i < Nj, by

av¥) = Nb(vy)forallveM, 0 <X <X, <. <Xy =7,

b,(%%) =

b and  aAFF) = Noy, 1 <k <N,

It then follows that

;1. = max

------- < B  max ———=-=

veMj,v%O b, (v, v) vEMj,vaéO (v,v)

< C(P.S.12.8,.8,.Hh72
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For =2 < s < 2, define IHVIHEb similarly to H]v]l]g (see (2.11)). Note that

[IIvlll; , = llIvlll and [[|v]lly, is comparable to ||v||,. In fact, a norm equivalence similar

to that in Lemma 2.2 can be proved with |||v]||,, substituted for |||v]|]..

The smoothing iteration (1.7),

(z—2_V), = A 1 [F.(v) — a,(z,_,;v)], for all v € M,

requires the solution of a linear system involving the mass matrix at every step. In

practice this is too expensive. We can replace (1.7) with the smoothing iteration
by (z;—2,_,,v) = f/I‘k'l [(f,v) — a(z,_,,V)], for all v € M,. (2.19)

There are numerous choices for bj(-,‘), J 2 1. When the standard nodal basis is used,
(2.18) is satisfied by bj(-,-) corresponding to the diagonal of the mass matrix. This allows
smoothing by an under-relaxed Jacobi scheme.

The convergence of the k-level scheme (Algorithm 1.4) is summarized by the

following result. Its proof is almost identical to the ones for Theorems 1.9 and 2.4.

Theorem 2.5: Assume the Regularity Hypothesis holds. Define the k-level scheme
(Algorithm 1.4) using (2.19) instead of (1.7). Let ||| denote either the energy or L2 norm
(and be fixed). Let p > 1 be any fixed integer. For any constant 0 < v < 1 there exists

a nonnegative integer I, which depends only on p and #, such that

leminsill < llegll for all m+n > 1.

We can extend this theorem to cover the case of p = 1 analagously to Theorem 1.10.

We conclude this section by noting that for the finite-element method of this section,
Algorithm 1.12 converges at the rate specified by Theorem 1.13 for either the energy or
L2 norm. Let ||-|| denote either of these norms. Then Theorem 1.13 can be rewritten as

follows:
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Theorem 2.6: Assume the Regularity Hypothesis holds. Let r > 1 be any fixed integer.

Suppose

(i) Ju—u| < Kh3j>1, and
(i) lu, ;)| < K.

Then for any integer p > 1, there exists a nonnegative integer I such that for j > 1,

"uj_ﬁj" < Khjf1 for all m+n > L

Moreover,
[o—%) < 2K

and the cost of computing ﬁ; is bounded by CQF(N].), where
Cy = or/(0—1) is independent of j and o is defined by (2.8).

It is worth pointing out that r is independent of j. This implies that Algorithm 1.12 is

optimal order when 1 < p < 0.

2.3 Finite-Differences

As in Section 2.2, we seek weak form solutions to both (2.4) and (2.5). We prove that
the theorems and analysis of Section 1 apply to a particular discretization of (2.4) and
(2.5). Most of this section consists of an analysis of a constant coefficient problem. In
Section 2.3.3, we explain how to extend the analysis to the variable coefficient self-adjoint

problems (2.4) and (2.5).

2.3.1 One-Dimensional Definitions
Let k > 1 and N, > 0 be fixed integers. We define Nj = 2Nj_1 +1,j 21
Following (1.2), we know that & = 2. We define k uniform grids 21 <j<kby

b = (N +1)7, b = 9%=lh, and O = {ib |1 <i<N )

k

For the moment, we assume that P =1 and S = 0 in (2.4). The general case will be
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analyzed at the end of the section. We discretize (2.4) by approximating the second

derivatives by central differences to obtain a system of linear equations

A h f (2.20)

K% T N

where u, and f, approximate the solution u and the right-hand side f on 2%, The

Ny x Ny matrix A is given by

2 -1
-1 2 -1
-1 2 -1
A = h;l . (2.21)
-1 2 -1
-1 2 -1

-1 2

(see Varga [30]). Factoring and solving this algebraic system directly requires only 5N,
multiplications and 3N, additions [16]. We will show that the multi-grid algorithms of
Section 1 require O(N, logN, ) operations to solve this problem to accuracy comparable to
the discretization error, i.e., O(Ny 3.

We associate a solution space Mj’ 1 < j <k, with each grid. Let N = Ny. Then
M, = {v|]veRN} and
My = {v|vE M and (2.22)
v=<0,v,0,v,0,..,0, N,/ 0>}

The spaces M, _,, ..., M, are defined recursively.

We define piecewise-linear interpolation operators between adjacent solution spaces
E,: Mj_1 — M.i and R: Mj — Mj—l

by means of the matrices
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0 0 0
0 1
0 .5 0 .5 0 0
1
0 0o .5 0 .5 0 O
. 1
E, = 0o 0 .5 0 .5 0 0 (2.23)
1
0O 0 .5 0 .5 0
1 0
0 0 .5 0
andR = ET.

Problems on coarser grids are defined using the interpolation matrices. Linear

systems on coarser grids, Aj, 1 < j <k, are defined recursively:

= ETA E..

A 2 Ax_jrr1 Bo

Letr € RN be a right-hand side for level k. Then the (k—1)-level problem is defined by
A_ja=Elr=1_, deMm_, (2.24)

Half the rows and columns of A)_, are zero. We can re-order the matrix so that the
nonzero rows and columns are the first N, _, rows and columns. Then A, _, has a
submatrix whose form is identical to A,. The re-ordered solution space M, , has the

form

{(vEM |v=< v, Vg ..,V 0,..,0>1}.

k-1’
The (k—i)-level problems are defined similarly.

Before the theory of Section 1 can be applied, we must complete the definitions
required for the triples used by Problems 1.1 and 1.2. For j > 1, a bilinear form aj(~,-), a

linear functional fj(v), and an inner product (-,-)j are defined by

aj(u,v) = uT Aj v, fj(v) = h, f;rv, for all u,v € Mj, and

(2.25)

_ T
(u,v)j = hu v
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The bilinear form aj(-,~) induces the energy norm |[||u]|]? = aj(u,u) for all u € .Mj.
Associated with each aj(-,') are N = Nj nonzero eigenvalues )\gj) and eigenvectors 1119)
satisfying (1.6). Let Aj be the largest eigenvalue. For —2 < s < 2, discrete norms are
defined by

Wl = £ 200y for v = £ g, 4f) (2.26)

where we have suppressed the j subscript on the norm. Note that |||v]||, = |||v]]| is the
usual energy norm on level j. Hereafter, we drop the superscripts from the eigenvalues

and eigenvectors.

2.3.2 Two-Dimensional Definitions
Let k > 1 and No > 0 be fixed integers. We define Nj = zNj—l +1,j) 2 1. We

define k uniform grids .(ij, 1 < j <k, as products of the one-dimensional domains (2:

b = N+ 17, b o= b, and 0, = 0@

Each grid 01.2 covers the interior of {2 with N.i = NJ? points. Following (1.2), we know that
o= 4.

For the moment, we assume that P = 1 and S = 0 in (2.5). The general case will be
analyzed in Section 2.3.3. We discretize (2.5) by central differences to obtain a system of

linear equations
Byu, = hif,, (2.27)

where v, and f, approximate the solution u and the right-hand side f on 012‘ The Nj X Nj

matrix B, is given by
B, =h {A QI + IN® AL},

where I is the N, xN, identity matrix and A, is defined in (2.21).

We define solution spaces Mj, 1 < j < k, as the tensor-product of the one-
dimensional solution spaces defined in (2.22). Following the techniques of Section 2.3.1,

we define piecewise-bilinear interpolation operators between adjacent solution spaces
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E, = E, ® Ey Mj-l - Mj.

Problems on coarser grids are defined using the interpolation matrices. Linear

systems on coarser grids, Bj, 1 <j < k, are defined recursively:

k—j+1 b

T
B, Ef B

=i
Let N = N _andr € RN®RN be a right-hand side for level k. Then the (k—1)-level

problem is defined by
S _
By_ja=Er=1_,, d€EM_, (2.28)
Similar to the one-dimensional case, we define

aj(u,v) = ul B.i v, fj(v) = hj2 f;rv, for all u,v € Mj, and
(u,v)j = hj2 ulv.

The bilinear form aj(-,-) induces the energy norm |||u]|]? = aj(u,u) for all u € .Mj.
Associated with each aj(-,-) are Nj nonzero eigenvalues )\pw and eigenvectors qbpw satisfying
(1.6). Let 4 be the largest eigenvalue. For —2 < s < s, discrete norms [||v]]|, are

defined similarly to (2.26).

2.3.3 Convergence

In order to establish the convergence of Algorithms 1.4 and 1.12 for the finite-
difference cases of this chapter, we must verify Hypotheses 1.3, 1.6, and 1.7. In this
section, E will refer to either E, or E,. We begin by showing that (the Energy Norm
Consistency) Hypothesis 1.3 holds. It is derived using the definition of the linear systems

A

j—1 and Bj—l’j > 1.

Lemma 2.7: Let j > 1 be an integer. Then

aj(Ev,Ew) = aj_l(v,w), for all v,w € Mj—l'

That (the Maximum Eigenvalue) Hypothesis 1.6 holds is a simple consequence of the
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explicit formula for the eigenvalues of Aj and Bj—l‘

Lemma 2.8: Aj < 4dhj_,2where d is the dimension of the problem.

The proof that Hypothesis 1.7 holds is a simplified version of the proof of Lemma

2.3 with @ = 1. It requires Lemma 2.9.

Lemma 2.9: Let k > 1 be an integer and d the dimension of the probelm. Let
C(s,1) = 465-1/2 and C(s,2) = 82 Fors =10,1,0or2 and u € M

min [[[u-Bvlll, < Cls.d) b2*[[jull, (2.29)
VEM, _,

The proof is contained in Douglas [13]. This proves that Algorithm 1.4 converges at the
rates specified by Theorems 1.9 and 1.10 for the finite-difference cases of this section. As
a consequence of Lemma 2.9 we can estimate the constant C, in (1.18), which governs the
number of smoothing steps required in Algorithm 1.4. For the one-dimensional problem

(2.4), C, = 4 and for the two-dimensional problem (2.4), C, = 16-21/2,

Before we can show that the j-level scheme (Algorithm 1.12) holds, we need to define

projection and injection operators between the spaces H and Mj, 1 < j < k(see(1.3)):

>- M j as evaluation of u € H at the grid points of /2 and

ij: 'Mj 7> H as piecewise-linear interpolation.

These operators have properties which are worth pointing out, namely,

.

_ . . . _ . i-1
pji; = Identity on {2 and 1jEpj_1 L_1Pj—1 on 27",

We can verify that the assumptions of Theorem 1.13 hold using these properties and
simple known facts about the model problems. Details are contained in Douglas [13].

This shows that Algorithm 1.12 converges at the rate specified in Theorem 1.13.

We conclude this section by considering (2.4) and (2.5) when they are no longer
restricted to P = 1 and S = 0. We discretize (2.4) and (2.5) by central differences to get

Ny x N, linear system of equations. As before, we define coarse grid approximations of
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the problems using the interpolation matrices. We define inner products Ej'(u,v) using the
linear systems of equations. Energy norms are defined by ||||u]|||? = é‘j' u,v). The discrete
norms |||[uf||l, 0 < s < 2and u € Mj, are defined as usual. We prove the following

theorem in Douglas [13]:

Theorem 2.10: Let j > 1 be a fixed integer and d the dimension of the problem. Then
the following holds:

(a) the linear systems are symmetric and have Nj positive eigenvalues which are bounded
by Chjf',zwhere C is independent of j.

(b) For # =0, 1, or 2, there exist positive constants C, P and C, P such that
Cyglllullly < Hulll; < G plfull for all u € M,
(c) lIEyae,lllly < K(@) Gy, b eyl where K(1) = 1 and K(2) = 8Y/2

Theorems 1.9, 1.10, and 1.13 can be rewritten using the ||||-|||| norm instead of the |||-|||
norm. This proves that the variable coefficient Dirichlet problems (2.4) and (2.5) can be

solved using the theory of Chapter 1 in O(N, ) operations.
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