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Abstract

Functional languages have recently gained attention as vehicles for pro-
gramming in a concise and elegant manner. In addition, it has been suggested
that functional programming provides a natural methodology for programming
multiprocessor computers. This dissertation demonstrates that multiprocessor
execution of functional programs is feasible, and results in a significant reduc-
tion in their execution times.

Two implementations of the functional language ALFL were built on com-
mercially available multiprocessors. Alfelfe is an implementation on the In-
tel iPSC hypercube multiprocessor, and Buckwheat is an implementation on
the Encore Multimax shared-memory multiprocessor. Each implementation in-
cludes a compiler that performs automatic decomposition of ALFL programs.
The compiler is responsible for detecting the inherent parallelism in a pro-
gram, and decomposing the program into a collection of tasks, called serial
combinators, that can be executed in parallel. One of the primary goals of the
compiler is to generate serial combinators exhibiting the coarsest granularity
possible without sacrificing useful parallelism. This dissertation describes the
algorithms used by the compiler to analyze, decompose, and optimize functional
programs.

The abstract machine model supported by Alfalfa and Buckwheat is called
heterogeneous graph reduction, which is a hybrid of graph reduction and con-
ventional stack-oriented execution. This model supports parallelism, lazy eval-
uation, and higher order functions while at the same time making efficient use
of the processors in the system. The Alfalfa and Buckwheat run-time systems
support dynamic load balancing, interprocessor communication (if required),
and storage management. A large number of experiments were performed on
Alfalfa and Buckwheat for a variety of programs. The results of these experi-

ments, as well as the conclusions drawn from them, are presented.
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Chapter 1
Introduction

Functional languages have recently gained attention as vehicles for program-
ming in a concise and elegant manner. The merits of functional languages have
been well argued [4,25,75,16,60]. The development of functional languages has
benefited greatly from a large body of research on the foundations of program-
ming languages and models of computation. In particular, functional languages
have benefited from research on programming language semantics [68,69,77),
the lambda calculus [9,5] and type theory [57,15,72].

It has been suggested that functional programming provides a natural meth-
odology for programming multiprocessor computers. Several prototype ma-
chines have been built specifically for the purpose of executing functional pro-
grams in parallel. Until now, however, no functional language implementations
have been built on the multiprocessors that are commercially available. This
dissertation describes the first working implementation of a functional language

on two commercially available multiprocessors.

1.1 Objectives

This dissertation seeks to answer the following question:
Is it feasible to execute conventional functional programs on cur-

rently available multiprocessors, such that a significant reduction in

the execution time is achieved?

Some of the terms used in this question need to be defined:

1




o Conventional functional programs: We seek to create an implementation
for a functional language that cantains no special constructs for specifying
the parallel behavior of a program. Our implementation must be able to

automatically decompose functional programs to run on a multiprocessor.

If an algorithm is specified in a purely sequential manner, the implemen-
tation cannot hope to execute it efficiently on a multiprocessor. We do
not seek to transform sequential algorithms into parallel algorithms, but
rather to detect and exploit the parallelism that is implicit in a given

functional program.

o Currently available multiprocessors: The multiprocessors available today
are generally comprised of processors designed to execute programs writ-
ten in sequential imperative languages. No special hardware support is

provided for executing functional programs.

® Reduction in ezecution time: We are investigating whether a functional
program can run significantly faster on a multiprocessor than on a sequen-
tial (uniprocessor) computer. We we would ultimately like to show that
functional programming is the most appropriate method for programming
paralle] computers. However, in this dissertation we restrict ourselves to
the investigation of the advantages of using parallel machines instead of
sequential machines to execute functional programs.

In order to build an efficient multiprocessor implementation, a number of
new evaluation techniques were developed for executing functional programs.
These techniques include:

1. A compile-time analysis of the sharing that occurs during execution. This

analysis uses abstract interpretation, a program analysis technique based

on denotational semantics.

2. A heterogeneous evaluation model based on graph reduction and con-
ventional sequential execution. Graph reduction is the evaluation model
most commonly used by functional language implementations. While it
is a powerful method for exploiting the generality of functional programs,
it incurs unnecessary computational overhead in cases where its power is

not needed. The implementation described here uses the power of graph




reduction when required, but reverts to a sequential stack-based execution

of function calls whenever possible.

3. An automatic program paftitionjng technique that strives to exploit as
much of the parallelism in a program as possible while maintaining a
sufficiently coarse program granularity for efficient execution on current
multiprocessors.

The first two techniques described above can also be used to make sequential
evaluation of functional programs more efficient than it currently is.

Two multiprocessor implementationé were built to test a variety of run-time
support mechanisms for making effective use of the machines. A large number of
empirical results on the effectiveness of various processor scheduling algorithms
as well as a discussion of the strengths and weaknesses of the compiler are
presented in this dissertation.

We assume that the reader has some familiarity with functional languages,
graph reduction, and combinators. In the following section, we provide a very
short introduction to these subjects. Those readers who have a strong back-
ground in functional languages and their evaluation can skip to section 1.3. An

excellent discussion of these topics can be found in [61].

1.2 Functional Languages, Graph Reduction,

and Combinators

1.2.1 Functional Languages

_Functional languages are programming languages exhibiting the following char-
acteristics:
o Mathematical Notation: The programs are written in a high-level notation

resembling that of mathematics.

e Referential Transparency: There is no side-effect operator (such as assign-
ment). Thus the programs exhibit referential transparency, the property
in which identical expressions have identical values (within the same lex-

ical scope).




o Applicative structure: A program consists of a collection of function and
constant definitions, and an expression whose value constitutes the result
of the program. Each expression in the program consists only of constants,

identifiers, function applications, and perhaps nested definitions.

There are many functional languages. Some of the better known ones are FP [4],

Miranda' [72], LML [2], SASL [74], ALFL [28], and FEL (47].
Most modern functional languages exhibit some additional properties:

o Higher-Order Functions: Functions are treated as first class objects in
these languages. They can be passed as arguments to other functions
and may be returned as the result of a function application. Functions
that take functions as arguments or return functions as values are called
higher-order functions. Functional languages that provide the ability to

define higher-order functions are called higher-order functional languages.

Higher-order functional languages generally allow function applications
to be curried: If a function is defined to take several arguments, it can be
thought of as a function that takes one argument and returns a function

that takes another argument and so on.

o Non-strict Semantics: In functional programs written in languages with
non-strict semantics, no argument in a function application is evaluated
unless its value is required. The execution of a program written in a
non-strict functional language is more likely to terminate than the same
program written in a strict functional language. For example, non-strict
languages provide the ability to write programs that use infinite data

structures and still terminate.

For the rest of this dissertation, the term functional language will be used to
refer only to non-strict, higher-order functional languages. Of the languages
mentioned above, Miranda, LML, SASL, ALFL, and FEL are higher-order and

non-strict.?

1*Miranda’ is a trademark of Research Software Ltd.
?For the remainder of this dissertation, we will use the term lazy language informally to

mean a non-strict language.
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1.2.2 ALFL: A non-strict, higher-order functional lan-

guage

This dissertation describes an ifnplementation of ALFL, a non-strict higher-
order functional language [28]. - ALFL is similar in many ways to the other
lazy higher-order functional languages mentioned above. It provides implicit
typing and requires that any implementation perform run-time type checking.
ALFL functions are fully curried although many common infix operators, such
as arithmetic operators, are provided for convenience. Like many other func-
tional languages, ALFL provides pattern matching as an elegant way to define
functions based on the structure of their arguments.

An ALFL program consists of an equation group which is a set of equations
and a result expression delimited by braces. Each equation defines either a

function or a constant (i.e. a function with no arguments):

{ f1 Z11 ... T1my == €3

fn Tpy... znmn== €ns

result e;
}

Each expression may consist of applications of functions, applications of primi-
tive operators (such as + and -), and nested equation groups. ALFL uses block
structure and static scoping to resolve identifiers. Functions defined within the
same equation group may be mutually recursive. Here is a sample ALFL pro-
gram that defines and uses the higher-order map function to form a list whose
elements are the square of the elements of a given list:

{map £ 1 ==1=[] -> [1, £ (hd 1) ~ map £ (t1 1);
square 1 == map { 8q N == n*n;
result sq;

}
1;

result square [1,2,3,4,5];
}
The conditional operator in ALFL has the form p ->c,a where p, ¢, and a

are the predicate, consequent, and alternate respectively. The infix operator *




denotes the list construction operator (similar to cons in Lisp) and [] denotes
the null list.

The function map can be rewritten using ALFL’s pattern matching syntax:

{map £ (1 == [] ,
'’ f (x71) == f x " map £ 1;
square 1 == map { sq n == n*n;

result sq;

}
13
result square [1,2,3,4,5];
}

A function may be defined by a number of equations. The left hand side of
each equation is a pattern that specifies the forms the arguments must take for
the equation to apply. In the above program, if the second argument is [1, then
map returns []; otherwise the second argument is non-null and the identifiers
x and 1 are bound to the head and the tail of the list, respectively.

It is straightforward (via the insertion of conditionals) to transform a pro-
gram that uses pattern matching into one that does not. For simplicity, we
will not discuss any methods for compiling and executing pattern matching,
but rather we will assume that the pattern matching has been eliminated by a
previous phase of the compiler.

Figure 1.2.2 describes the abstract syntax of the simplified version of ALFL
that we have implemented. Arithmetic operators follow the usual precedence
rules and function applications associate to the left. For a more complete

description of ALFL, see [28].

1.2.3 The Lambda Calculus

The untyped lambda calculus is a formal model for specifying computation.
It it is an extremely simple language that consists of a few kinds of syntactic
objects and a few syntactic conversion rules. It is also very powerful,being
equivalent to a Turing machine in computational power. Its simple structure
provides a useful basis for reasoning about programs. In this section, we provide
an informal introduction to the lambda calculus; a formal, in-depth discussion

can be found in [5].




program := equation_group
equation_group := { (equation ;)*
result exp ; }
equation = id (id)* == exp
exp = id | constant | exp bin.op exp | -exp |
exp -> exp, exp | &xp
binop u= +|-|x[/] | |<[>]...

constant := integer | float | [] | predefined identifiers

Figure 1.1: The syntax of a simplified version of ALFL

Every expression in the lambda-calculus is a lambda expression, defined as

follows (using the notation used in [61}):®

exp = constant (constants)
| id (identifiers)
| exp exp (applications)
| Aid . exp (lambda abstractions)

In a lambda abstraction A such as A z.E, where E is some lambda expres-
sion, the variable z (following the A symbol) is said to be bound in A and is
called a bound variable. Any variabley in E (other than ) that is not bound in
a lambda abstraction inside E, or that occurs outside of the lambda abstraction
in which it is bound, is said to occur free in A and is called a free variable.

The lambda calculus provides several conversion rules for converting one
lambda expression into an equivalent one. Evaluation of a lambda, expression
proceeds by repeatedly applying conversion rules until no more conversions can

be applied. The conversion rule most often used is B-reduction:

This rule states that an application of an abstraction (Az. E) to an expression
M can be converted into the expression obtained by replacing all free occur-
rences of x in E by copies of the expression M (and renaming bound variables

in E as necessary to avoid name conflict with free variables in M ). This new

3Actually, the pure lambda calculus has no constants (or primitive operators). For our

purposes, we extend the lambda calculus these items.




expression is denoted by E[M/z]. The built-in constants of the lambda calculus
considered here include operators such as + and -~ with their own conversion
rules. For example, (* 3 2) = 6.

A given lambda expression may cc;ntain a number of expressions to which -
reduction can be applied. These expressions are called reducible expressions or
redezes. If f-reduction is always applied to the leftmost outermost redex first,
then the resulting evaluation order is normal order. Otherwise, if A-reduction is
applied to the innermost redexes before any others then the resulting evaluation
order is applicative order. The reduction process terminates when the lambda-
expression has been reduced to a normal form, in which there are no redexes.
Not all expression have normal forms, in which case the reduction process would
not terminate.

Consider the lambda expression (A x. + x x) (* 3 2). Applicative or-
der evaluation would proceed as follows:

Ax. +xx) (*x32) = (Ax.+xx)6

= + 6 6

= + 12
Notice that (* 3 2) was evaluated first. Normal order evaluation would pro-
ceed in the following way:

(A x. +xx) (*x32) =+ (x32) (x32)

= + 6 6

= + 12
Unfortunately, since every occurrence of x is replaced by a copy of the argument,
the expression (* 3 2) is evaluated twice.

If an argument is not used in the body of a function, however, normal order
evaluation may be more efficient since the argument would not be evaluated at
all. In fact, if the argument has no normal form, the normal order evaluation of
the application might still terminate while applicative order evaluation would
not. Normal order evaluation is normalizing, that is it terminates for any
expression that has a normal form.

In the lambda calculus, recursion is implemented via the Y combinator,

whose behavioris Y f = f (Y f) and can be defined as a lambda-abstraction:

Y = (Ah. (Mz. (z 2)) (Az. h (z 2)))




One can express a recursive function, say factorial, as a lambda expression

containing Y: |
Y (Afac. Az. IF' (= z 0) 1 (x z (fac (- z 1))))

For convenience, the lambda calculus is often enriched to allow one to pro-

vide names for lambda expressions. For example, given the definitions

y = 3
f = . +z1

the application (f y) would be evaluated by substituting 3 for y, substituting
Az. 4+ z 1 for f and performing f-reduction in the usual way. In addition, this
enriched lambda calculus allows explicitly recursive (and mutually recursive)

function definitions For example,
fac = dz. IF (= z0)1 (x z (fac (— z 1))))

would be a valid definition of factorial and would exhibit the same behavior as
our prior definition.

In ALFL and most functional languages, this definition can be written with
the bound variable z occurring on the left hand side:

fac x == x=0 -> 1, x * fac (x-1);
The translation of expressions from ALFL into the enriched lambda calculus is
straightforward. Where convenient, we will use ALFL notation for expressions

in the enriched lambda calculus.

1.2.4 Graph Reduction

~ Graph reduction [78] is the evaluation method most often used to execute func-
tional programs. It can be thought of as the graphical equivalent of reduction
in the lambda calculus, and supports higher-order functions and normal order
evaluation in a very natural manner. In graph reduction, the expression to be
evaluated is represented as a graph. During execution, reductions are applied
to the graph until it has been reduced to a normal form.

The graph structure provides a fundamental improvement in f-reduction

over the method described in the previous section. Performing f-reduction on
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the application (Az.E) M proceeds via the construction of an instance (copy)
of E with all free occurrences of z replaced by pointers to the argument M.

For example, the expression (Mz. + z z) (x 3 2) would be represented by

IE/@\@
A
/ '\

X ) X

where each node labeled “@” represents an application. When reduction is

performed, the graph is reduced to
12

®) 6
VAN
3 2

The operator + requires the values of both arguments; when the first argument
is evaluated, the subgraph representing (* 3 2) is reduced to 6. Since the sec-
ond argument to + is represented by a pointer to this subgraph, the value 6
is available without recomputing (* 3 2). Thus, graph reduction supports nor-
mal order evaluation without duplicating expressions. Normal order evaluation

without duplication (and recomputation is called lazy evaluation.®

4For convenience, we place the primitive operators at the nodes in the graph.
5In most implementations of normal order and lazy evaluation, reduction terminates when

a weak head normal form, in which there is no top-level redex, is reached.
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It should be pointed out that:
1. A redex may be shared (p.ointed to by several objects in the graph). When

the redex is reduced, the root of the redex must be overwritten with the

result in order to avoid having to reduce it again later on.

2. A lambda abstraction may be shared, thus new a instance of its body
must be constructed during 8-reduction, instead of substituting pointers
into its body directly.

Graph reduction can also be used to evaluate expressions written in the
enriched lambda calculus (or an equivalent functional language). For example,
the initial graph representing the ALFL program
{ £fxy==h(&xyy;

gab==a+b;

hcd==c* qd;

result £ (g 2) 3;

}

would be

/A

3
f’//fi:}ﬁk\\
g

2

Notice that the application of £ to two arguments is curried and is represented
by two application nodes. Reduction proceeds via the construction of an in-

stance of £’s body with its formal parameters replaced by pointers to the cor-
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responding arguments:®

According to the definitions of g and h, the reduction of the graph proceeds as

\ —»f)\ﬂ@\—’“

/\

follows:

AN
/@\

g 2

In the above example, the function identifier in an application always resided
at a leaf in the graph to support currying. Each interior node represented the
application of its left child to its right child. If a function is supplied with all the
arguments it needs (as in the above application of £), an uncurried application
could be represented by a node containing the function and arguments. For

example, the uncurried version of £ (g 2) 3 in the above program would be

6 Actually, this takes two reduction steps: For the first application, an instance of 2’s body
is constructed with the first argument substituted for x. For the second application, a new
instance of the subgraph resulting from the first application is created with the second argument
substituted for y.
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represented by:

)

In this case, the node serves as an activation record for the function call.”
This brief description of graph reduction will be elaborated upon throughout
this dissertation. For those readers who are completely unfamiliar with graph

reduction, an excellent discussion of the subject can be found in [61].

1.2.5 Combinators

A costly feature of graph reduction is that each time a lambda abstraction (or a
function identifier) is applied, an instance of its body must be constructed and
have its bound variables replaced by the arguments. We would prefer to be able
to compile the body of each lambda abstraction into a sequence of instructions
that compute a result (and overwrite the root of the redex). The arguments
to a lambda abstraction would comprise the contezt in which its sequence of
instructions is executed.

Unfortunately, free variables within the body of a lambda abstraction pro-
vide an obstacle to its compilation. For example, the result of evaluating the

expression

' (Az. dy. + zy) 5

is (Ay. 4+ 5y), anew lambda abstraction. Every application of (Az. Ay. + z y)
to a different argument will create a new and different lambda abstraction. We
must be provide the sequence of instructions representing (A\y. + z y) with a

way to access the value of the free variable x. There are basically two ways to

"In applications that cannot be uncurried, an explicit apply node is required.
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provide access to free variables:

1. A hierarchical environment structure could be maintained that provides
a path between the use of a free variable and the context (activation
record) of the lambda abstraction in which it was bound. In conventional

languages, this is usually impleihgnted by either a static chain or a display.

2. The lambda abstractions can be transformed into combinators. Combi-
nators are simply functions that contain no free variables and no nested
lambda abstractions. In a combinator body, all variables references are
to variables that occur in the formal parameter list. No hierarchical en-
vironment structure is required to support the evaluation of combinators
since the values of all variables in a combinator body have been passed
as arguments.

There is an advantage to using combinators instead of a, hierarchical environ-
ment structure that is particular to parallel implementations of functional pro-
grams. In a parallel implementation using environments, the use of a free
variable in a function could occur on a processor other than the one on which
the variable was bound. Thus, interprocessor communication would be required
to resolve the variable reference. This would not be the case with combinators,
since all variables are bound and are contained in the local context.

“Any lambda expression (and thus any functional program) can be trans-

lated into an expression containing only references to a fized set of combina-
tors [13,67]. In fact, the two combinators S and X,

Sfgz = fz(gz)
Kzy = =

are sufficient.

Combinator reduction is a special case of graph reduction in which all func-
tions are combinators. Although the S and K combinators are sufficient to exe-
cute any program, several other combinators have been added for efficiency [73].
Because the behavior of the fixed combinators is so simple, they can be viewed

as the instructions of an abstract machine (or even a real machine).® However,

8Several machines designed to execute fixed combinators have been built and are described
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this kind of combinator reduction tends to be very fine-grained and to incur
a high overhead in space (because of large combinator expressions) and time

(because of the large number of reductions required to perform rather simple

operations).

To improve combinator reduction, Hughes observed that instead of relying
on a fized set of combinators, one could derive a different set of combinators for
each program [40]. He called these derived combinators supercombinators. His

algorithm for deriving supercombinators is discussed in detail in chapter 2.

The translation of expressions in the enriched lambda calculus (or any func-
tional language) into supercombinators is called lambda lifting [45]. In its sim-
plest form, lambda lifting essentially adds all free variables in a function def-
inition to its formal parameter list. Any application of the function is also
modified to include the free variables as arguments. For example, the ALFL
program

{fx=={gy==x+y;
result g 1;

};

result f 7;

}

would be transformed by lambda lifting to

{fx== gx1;
Exy==x+%*y;
result £ 7;

}

Lambda lifting may also be applied to expressions in the ordinary lambda
calculus. Lambda lifting proceeds by giving each lambda abstraction a name
~ and creating a formal parameter list that includes all variables referenced in the
body. The occurrence of the lambda abstraction is replaced an application of
its given name to the variables that were free in its body. For example, lambda
lifting

Ax. (+x Ay, (xxy)) 1) 2

in chapter 9.
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would result in the following supercombinator definitions:

flzy = (xay)
f2z =42 (flzl)

The supercombinator expression corresponding to the above lambda expression
would be (f2 2).

This form of lambda lifting creates supercombinators that may be less ef-
ficient than those generated by Hughes’s method of lambda lifting. Hughes’s
supercombinators can be considered more lazy than the ones generated via the

above method (see chapter 2).

1.3 Dissertation Outline

The chapters in this dissertation roughly follow the order in which we compile
ALFL programs into target code for the various multiprocessor implementa-
tions. The last few chapters describe the implementations, and present execu-
tion timings for a number of different programs.

The compilation process described here does not include lexing and parsing.
but proceeds from an abstract syntax tree. In addition, several transformations

are assumed to have already been applied. These include:

o Common subezpression elimination: Common subexpression elimination
may be performed via the abstraction of multiple occurrences of a subex-
pression from the expression containing all such occurrences. For example,
the program

{ £ xy == (x+y) + (x * (x+y));
result £ 3 4;

}

would be transformed into:

{fxy=={gz==2z+1x%3z;
result g;
} (x+y);
result £ 3 4;

}
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o Partial Evaluation: Optimizations such as constant folding, integration
of non-recursive functions, and evaluation of simple expressions may have

already been applied us1ng techniques described in [34].
This dissertation is organized as follows:

e Chapter 1. Detecting Sharing of Partial Applications in Func-
tional Programs. This chapter describes an analysis technique for de-
tecting when partial applications of functions are shared. The analysis
is used to transform a lambda-lifted ALFL program into a new set of
combinators called refined supercombinators in the first phase of the com-
pilation process. Refined supercombinators are more efficient versions of
Hughes’ supercombinators. This chapter has appeared previously in a
slightly different form [20].

e Chapter 2. A Characterization of Parallelism and Granularity
in Functional Programs. This chapter digresses from the compilation
process in order to discuss formally the issues involved in decomposing
functional programs for multiprocessors. It characterizes the types of
parallelism that can be exploited as well as the costs involved with each
type. The transformations presented in chapter 3 are based upon the

insights provided in chapter 2.

e Chapter 3. Automatic Partitioning of Functional Programs.
This chapter describes the decomposition of a program (represented as a
set of refined supercombinators) into a set of serial combinators. Each
Serial combinator is a function that specifies the behavior of an individual
task. Parallelism is exploited by executing a large number of these tasks
simultaneously. Unlike ALFL functions and refined supercombinators,
serial combinators contain constructs for creating other tasks and syn-
chronizing their execution. A serial combinator call can only be executed
on a single processor and thus determines the granularity of the paral-
lel computation. The second phase of the compilation process strives to
define serial combinators with the appropriate granularity for the target
multiprocessor. A preliminary definition of serial combinators appeared
in [33].
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e Chapter 4. A Heterogeneous Graph Reduction Model. This

chapter describes a new evaluation model for graph reduction that com-
bines graph allocation of activati'on records (nodes) with stack allocation
of activation records. Graph allocation is generally required when a serial
combinator is higher order or non-strict (requiring the creation of a node
to represent the delayed evaluation of an argument) or if it spawns paral-
lel invocations of other serial combinators. If a serial combinator exhibits
none of these properties, then its activation records may be allocated on
a stack for greater efficiency. The compiler performs this analysis and
modifies the serial combinators to explicitly specify whether an applica-

tion should be graph or stack allocated.

Chapter 5. Alfalfa: Distributed Graph Reduction on a Hyper-
cube Multiprocessor. This chapter describes the implementation of a
heterogeneous graph reducer on the Intel iP SC hypercube multiprocessor.
The implementation is called Alfalfa and provides run-time support for
serial combinator execution. This support includes dynamic scheduling of
tasks among the processors, message handling, and storage management.
The last phase of the compiler, code generation for Alfalfa, is discussed
in detail here. A brief description of Alfalfa appeared in [21].

Chapter 6. Dynamic Scheduling in Alfalfa. This chapter explores
a number of methods for scheduling tasks onto the processors in Alfalfa
at run time. These methods fall into the class of algorithms known as
diffusion scheduling. Alfalfa was tested on five different programs using

a variety of diffusion heuristics. The results of these experiments are

presented along with conclusions about Alfalfa performance.

Chapter 7. Buckwheat: Graph Reduction on a Shared Mem-
ory Multiprocessor. This chapter describes an implementation, called
Buckwheat, on the Encore Multimax shared memory multiprocessor. The
description is brief since Buckwheat is essentially a simplified version of
Alfalfa. In Buckwheat, a shared queue is used for task scheduling. In
order to reduce contention for the queue, a hierarchical queue structure

is used. Buckwheat was tested on the same programs as Alfalfa; the re-
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sults of these experiments are presented, along with a comparison of the
effectiveness of Buckwheat and Alfalfa.

e Chapter 9. Related Work, Future Work and Conclusions. This
chapter provides a brief -de,scription of research projects that have had an
effect on the work described here. It also presents some ideas for future
exploration and summarizes the conclusions reached as a result of this
research.

For readers mainly interested in the mechanics of parallel graph reduction,
chapters 4, 5, and 6 provide a largely self-contained coverage of this topic.
Chapter 2 should be skipped by any reader not interested in (nor already famil-
iar with) the details of abstract interpretation. Those readers already familiar
with parallel graph reduction can read chapters 6, 7, and 8 for a description of
the manner in which graph reduction was implemented on the Intel iPSC and

Encore Multimax multiprocessors.




Chapter 2

Detecting Sharing of Partial
Applications in Functional

Programs

In this chapter, we describe the first phase of our compilation process. It

contains two components:

1. An analysis, based on denotational semantics, of the sharing of partial

function applications.

2. A source-to-source transformation of the functions defined in the source
program into a new set of functions that execute more efficiently on both

uniprocessors and multiprocessors.

2.1 Sharing in functional programs

A key aspect of graph reduction is its ability to share expressions (subgraphs)
during beta reduction. For example, given the program
{ £fxy==x+y;

ga==2al+a?2;

result g (f 3);

}

the expression (g (£ 3)) is evaluated by substituting a pointer to (£ 3) for

each occurrence of a in the body of g. This substitution is pictured in Figure 2.1.

21
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N
f 3

Figure 2.1: Sharing of expressions in graph reduction

If there are multiple references to an expression e we say that e is shared.
For reasons described in section 2.4.2 we are interested in determining which

partial applications are shared. Given a function definition of the form

fai...en= ...

any application of f to k arguments, k < n, is called a partial application of f.
An application of f to n arguments is called a complete application.We would

like our analysis to answer the following question:

For each function f defined by

fzi...epn= ...

and for each value of k, 0 < k < n, what is the maximum number

of times a partial application of f to k arguments could be shared?

2.2 A Naive Approach

A naive approach to sharing detection would be to examine how each partial
application is used. If a partial application occurs once and is not passed as
an argument to another function then the partial application is not shared. If

the partial application is passed as an argument to a function, the number of
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occurrences of the cofresponding formal parameter in the body of the func-
tion would seem to determine if the partial application was shared. If so, a
purely syntactic analysis in \;vhjch the bound variables in function definitions
are counted would suffice. However, such a syntactic analysis is insufficient for

two reasons:

1. Our source language, ALFL, is a lazy functional language. Although a
bound variable occurs multiple times in the body of a function, it may
never be used. For example in the program
{ £xy==x+y;

hab==1;
g c==hc c;

result g (f 1);

}

the bound variable ¢ corresponding to (£ 1) in the body of g occurs twice

but is never used.

2. Because ALFL is higher order, it may not be obvious which function a
partial application is passed to. For example, in the program
{ fxy==1x+y;
hc ==c1+c2;
g ab==a(fb);
result g h 1;

}

(£ 1) is passed to a function that the variable a is bound to. A more
sophisticated analysis is required to determine the behavior of this func-

tion.

2.3 Semantics-based sharing analysis

The method we use to detect sharing is one that has given promising results in
recent work on other aspects of functional languages [7,36]. We first define non-
standard denotational semantics for ALFL in which the meaning of a program
is an exact description of the sharing properties of the program. Unfortunately,

obtaining such exact information is undecidable since it amounts to running
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the program. Thus this method is not a tool that can be used at compile time.

We define an abstraction of the nonstandard semantics that will provide
us with useful, although less complete, _shﬁring information. The compile-time
“interpretation” of a program using an abstraction of an exact semantics is
called abstract interpretation. Abstract interpretation was invented by Cousot
and Cousot [12] as an analysis tool for conventional languages. Alan Mycroft
first used it for strictness analysis of programs written in first order functional
languages [58]. Recently it has been extended to analyze the strictness proper-

ties of programs written in higher order languages and programs that contain

lists [8,10,39,76].

In graph reduction, sharing can occur only when a variable that has been
bound to a partial application is used multiple times. Our analysis does not
perform common subexpression elimination (cse) and assumes that it has al-
ready been performed by the abstraction of common subexpressions from the

expressions in which they occur (section 1.3).

2.3.1 Representing Sharing Information

The first step in describing a nonstandard sharing semantics for ALFL is to
define a semantic domain. In this section we describe a domain S called the
sharing domain. The value of each expression in a program is an element of S

and must contain a description of the sharing properties of the eXpression.

Each value in S must contain information indicating whether or not that
value represents a partial application. If a variable is bound to to a value that
represents a partial application and the variable is used more than once, then
the partial application must have been shared. If a variable is not bound to
a partial application, no sharing will occur no matter how many times the

variable is used.

Different partial applications must be represented by different values, even
if the partial applications are lexically identical and have the same value in the

standard semantics. For example, during the evaluation of the program
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{ £xy==x+y;
gab==2a1l+bi;
result g (£ 1) (f 1);
the variables a and b in the body of g are bound to different partial applications

and no sharing of (f 1) occurs.

When an expression is evaluated, its value must also contain a list of the
partial applications that were shared during the evaluation of the expression.
For example, the result of executing the program

{ £xy==x+y;
jzw==12+ w;
ga==ha (j1);
hcd==(c1+c?2)*(d3+4d4);
result g (f 1);

}

should be a value in S that indicates partial applications of both £ and j to a
single argument were shared.
Since the value of an expression in the standard semantics may be a function,
a value in S must also be able to capture the behavior of a function over S.
Therefore, the value s € S resulting from the evaluation of an expression e is a
triple of the form (p, I, f) where:
¢ p indicates whether e represents a partial application and, if so, pro-
vides enough information to differentiate it from other partial applica-

tions. This information is called the p-value of e.

o [ is a list of partial applications that were used during the evaluation of

e and is called the [-value of e.

e f is a function over S that captures the higher order behavior of e and is
called the f-value of e.

The p-value

The p-value of an expression e is a pair of the form

[id n]
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where id is an identifier and n is a natural number (which serves as a count).
This tuple can be interpreted as follows: “Expression e represents the applica-
tion of the bound variable id to n arguments. The result of this application,
and thus the value of e, is a partial ap.pli_ca,tion.” If the p-value of an expression
e is [] then e does not represent a partial application.

For example, in the program
{ £ xyz == x+y+z;

gb==0D>2;

result g (f 2);

}
the p-value of (b 2) inside the body of g is [b 1] since the variable b is bound
to a partial application and was applied to one argument. Likewise, the p-value
of (£ 2) in the expression g (£ 2) would be [f 1] since (£ 2) represents an
occurrence of a partial application.

Suppose an expression e is a partial application with a p-value of [id j]
for some identifier :d and some value j. The p-value of an application of e to
another argument would be [id (j + 1)] as long as the result is still a partial
application.

Since the p-value of (b 1) does not indicate which function is partially
apiolied, how can it be determined that the partial application bound to b is
(£ 1)? When g was called, the p-value of its argument was [£ 1]. However, the
p-value of the corresponding formal parameter, b, was bound to [b 0]. After
the body of g has been evaluated, the identifier b is replaced by the identifier £
in the resulting p-value and the number of arguments that b was applied to in
g (namely 1) is added to the number of arguments that £ had been applied to
when g was called. After this substitution, the correct p-value for the program,
namely [£ 2], is returned.

In the standard semantics, when a function is applied its body is evaluated
with the values of the arguments substituted for the formal parameters. In
the sharing semantics described in section 2.3.2, two substitutions occur during
the evaluation of a function application. On entry to a function the p-value of
each formal parameter is bound to a “placeholder” (such as [b 0] above). After
the body of the function has been evaluated, any placeholder in the result is

replaced by the original value of the corresponding argument.
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Why not simply bind the formal parameter to the value of the corresponding
argument in a function application. A problem arises in the following program:

{ £ xy==xy;
gab==2al1l+b2;
result g (£ 1) (f 1);

}

Although both arguments to g have identical values in the standard semantics,

they represent different partial applications.!

Therefore, the corresponding
formal parameters, a and b, must be recognized as being bound to different
partial applications. If a and b were bound to the same value then it would
appear as though they represented the same partial application and that (£ 1)
was shared in the body of g. One solution to this would be to create a unique
identifier for every partial application. However, as discussed in section 2.3.4
creating new identifiers creates a termination problem for the analysis.

It may seem that another solution would be to label each syntactic oc-
currence of a function application in order to be able to differentiate between
different partial applications. In the above example, the two occurrences of
(f 1) would be given different labels and could be recognized as being differ-

ent partial applications. Consider the following program:
{ £ xyz == x+ty+z;

h a==a4;

gb==hb2+hb 3;

result g (f 1);

Notice that no partial application of £ to two arguments is shared. Two differ-
ent partial applications (each representing (f 1 4)) are created by executing
the body of h twice. However, both of these partial applications would incor-
rectly be labeled identically since they were created by the same sections of the
program.

Instead we use the names of the formal parameters of g as placeholders to
distinguish between the two partial applications of f. The process of binding

the p-values of formal parameters to placeholders on entry to a function and

1 Although common subexpression elimination could have been applied in this case, in gen-

eral it cannot determine that two expressions are semantically identical.
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back-substituting real values into the result is described in section 2.3.1.

The [-value

The I-value is the second element of a valuein S. It is a set of tuples, {t1,.. -, ta}

where each tuple, t; has the form
[id vo. . .vy]

The value of each v; represents the maximum number of times that an appli-

cation of the variable id to ¢ arguments has occurred. Thus, if v; > 2 then the

application of id to ¢ arguments is shared. For example, the tuple [b 1 2 1]

indicates that there is

e one occurrence of b applied to no arguments,
e two occurrences of an application of b to one argument, and

e one occurrence of an application of b to two arguments.

Given the program

{ £ xy == x+y;
j z w == z+y;
ga==ha(j1);
hcd==(1+c2)*(d3+d4);

result g (f 1);

}

the l-value of the result expression, g (f 1), would be:
{fler1,m111)[f121](3121]}

This [-value indicates that only the partial applications of £ and j to single
arguments were shared.

‘In the body of h, the l-value of the expression (d 3 + d 4) would be
{[d 2 1]}, since d occurs twice. There is no sharing of an application of d.

Formal parameter names (such as d above) occur in elements of an I-value
as placeholders in the same way they occur in a p-value. Before the value of
the function application is returned, all formal parameter names occurring in
the resulting I-value are replaced by the p-values of the corresponding actual
parameters (after converting the p-values to a form that is appropriate for an

element of an [-value)
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Merging [-values

During the evaluation of an expression e several applications of a variable :d may
have occurred. Thus the l-value of e would contain several tuples representing
the application of id. These tuples must be merged to indicate that id was
shared.

The function that merges two tuples representing applications of the same

variable is called merge_tuple and is defined as follows:

merge_tuple([id vo...v,), [id vg... v} ]) =

[¢d (vo + vg) max(vy, vy) ... max(vn, V) Vynyq... 0,

m]

where both tuples have the same id (and it is assumed that m > n). Only
the count of the occurrences of id applied to no arguments is increased, to
vo + v, when the tuples are merged.The number of occurrences of ¢d applied
to ¢ arguments, ¢ > 0, is the maximum such number in the two tuples, namely
max(v;, v]). If two tuples do not represent application of the same id, then
merge_tuple cannot be applied to them.

The function merge takes two l-values and merges them as follows:

merge(ly, 1) =
{merge_tuple(t,t') | t € l,t' € I and id(t) = id(¢')}
y .
{t| (t€lyand V¥ €l,, id(¢) # id(¢')) or
(t € Iy and V' €y, id(t) #id(t))}

where each t and ¢’ is a tuple and 2d(t) is the bound variable associated with t.
Given the program
{ £fx==x12+x23;
gbcd==5b+c+d;
result £ (g 1);
}
the l-values of both (x 1 2) and (x 2 3) in the body of £ will be {[x 11 1]}.
Since both these expressions occur in (x 1 2 + x 2 3), the resulting [-value
is:

merge({(x 1 11]},{[x111]}) = {[x211}}
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The f-value

The f-value is the third element of a value in S and reflects the value’s higher-
order behavior. If, in the standard semantics, an expression e denotes a func-
tion, the f-value for e is a function c;irer S. The precise definition of an f-value
is presented in section 2.3.2. The next section describes how the f-value is

used.

Function Applications in the Sharing Domain

Suppose the p-value of an expression e is [id j]. If the application of e to an
argument z represents a partial application, then the p-value of the result of
applying the f-value of e to the value of £ must be [id j + 1]. For example, if
the value of e is ([b 0], {}, f) then the value in S of (e z) would be ([b1], {}, f")
where f’ is a function capturing the higher order behavior of (e z). The function

add_p is used to for addition on the count in a p-value.

add_p(p, k) = if (p={]) then []
else let [id j]=p
in [¢d j + k]

In many cases, the count in a p-value is simply incremented and we define the

function :ner as follows:

incr(p) = add_p(p, 1)

Suppose e represents a partial application of a function g and needs only one
argument to become a complete application. When e is applied, the body of g
is evaluated. The environment in which the body of g is evaluated binds the
formal parameters of g to values in S that have placeholder p-values but whose
f-values are the same as the corresponding actual parameters. For example, in
the program

{ hxy == xty;
fa==2al+b2;
g b=="1 (h 1);
result g f;
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the variable b is bound to the function f. When b is applied in the expression
(b (h 1)), the body of £ is evaluated in an environment in which the variable

a is bound to .
(201,03, 1)

where f’ captures the higher order behavior of (h 1).

When the body of f in the above program has been evaluated, any occur-
rence of the identifier a in the p-value and I-value of the result has to be replaced
by the p-value of the argument to £. The function backsub_p takes the p-value
of the result of executing the body of a function and replaces the identifier
(bound variable name) with the identifier in the p-value of the corresponding
actual parameter. It also adds the count in the result p-value to the count
of the p-value of the actual parameter. The second argument to backsub_p
is an environment, arg_env, mapping formal parameters to the values of the

corresponding arguments.

backsub_p(p,arg-env) = let [idn] =p
in if arg_envfid] = {} then p
else let (p/, V', '} = arg_envfid]
in add_p(p',n)

The function backsub_l takes the I-value of the result of executing the body
of a function and replaces any occurrence of a formal parameter name in a tuple
by the p-value of the actual argument. It does so by expanding the p-value of
the argument into a form that is appropriate for an element of the [-value. This

expansion is performed by the function ezpand as follows:

expand(p) = let [id j]=p
infid 11...1]
N e
i1

where the last line of ezpand denotes a tuple consisting of id and j + 1 oc-
currences of the number 1. This expansion is appropriate because the p-value
[¢d j] representing a partial application of id to j arguments is equivalent to
the l-value element [¢d 1...1] (containing (j + 1) ones) indicating that :d was

applied to zero arguments once, to one argument once, and so on.
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To replace an identifier in an I-value element, we use the function repl which

is defined as follows:

repl(l_elt,p) = let [id vo.. .vnl]‘= lelt
[¢d’ vg...v}]= expand(p)
. [_elt if id # id’
in
[id vg...vi_y (V5 X vo) v1...v,] otherwise
The function backsub_l replaces all bound variables in an [-value with the
expanded versions of the p-values of the corresponding arguments as described

above.

backsubi(l,arg_env) =
let {t1...tm} =1
[¢d; vi ... v] = t;, for eacht; €1
. { {t:} if arg_env[id;] = {}
C | {repl(t, oYUl if arg_envidi] = (p}, U, f1)
in Us;
If a bound variable name occurs in the [-value of the result, then during the
back-substitution
" 1. the bound variable name is replaced by the p-value of the corresponding

argument, and

2. if the bound variable name occurs in the [-value of the result then value
of corresponding argument was used. Therefore, all the sharing that
occurred during the evaluation of the argument, as indicated by its I-
value, should be included in the I-value of the result.

After back-substitution, the l-value of the result may include several tuples
that contain the same identifier. This occurs when several formal parameters
are bound to the same partial application. Thus, after back-substitution all
tuples that contain the same identifier are merged. The function combine ac-

complishes this:
combine(l) = if (I = {}) then {}
else let {t1, to,...tn} =1

in merge({t;}, combine(ts,...,t,))
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2.3.2 An Exact Sharing Semantics

The semantics which we are about to give specifies the exact sharing that occurs
during an ALFL program’s execution. For simplicity, though, we assume that
all nested functions in an ALFL program have been lambda-lifted to the top
level. These top-level functions are the ones whose sharing properties will be

determined. The semantic domains and functions are:

P = (VxN)+{l} the domain of tuples
L = P(VxNT)
F = (SxP)— S
S = (PxLxF)+{error} the sharing domain
Env = V5
E . Ezp— Env— S the semantic function for expressions

E, : Prog— S the semantic function for programs

where A is the set of natural numbers and and P is the power set notation.
The semantic functions E and E, are defined below.
A constant is not a partial application and does not contribute to the sharing

of any other partial application. Thus

EfcJenv = ([], {}, err)

where ¢ is a constant and err is a function that returns an error if applied (for
simplicity, we are not concerning ourselves with constant primitive functions).

The meaning of a variable is whatever it is bound to in the current environ-
ment.

E[z]env = env[z]

The result of a binary operation is never a partial application, although

- sharing of partial applications may have occurred during the evaluation of the

operands. To distinguish between syntactic objects and semantic objects in the
following equations, all variables representing elements of S (or sub-elements

of a element of S) are written with a “™.

Efe; + ex]lenv = let (f)l,il,fl) = E[e;]env
(ﬁ2) z\27Ji:2> = E[[ezl]env

in ([], merge(ly, i), err)
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In a well-typed program, no partial application can serve as an operand in a

binary operation. Therefore, ; and f; above will be ]

The conditional is handled as follows:

Efe; — e, eslenv = let (p1, 1, f1) = Eler]lenv
in if (Oraclefe,] = True) then
let (po, [z, f2) = Ellea]lenv
in (o, merge(l1, 1), f2)
else let (Ps, I3, f3) = Efes]env
in (ﬁs,merge(fl, I3), fs)

To provide an exact semantics, conditionals must be resolved correctly. To do
so, we defer to an oracle to determine the correct meaning of each conditional.?
In the next section we provide an abstract sharing semantics that does not rely

upon such an oracle, but provides less precise sharing information.

Function application is defined as follows:

Efe; ex]env = let (ﬁl,fl,fl) = E[ei]env
(Ps, I3, fa) = fi(E[ez]lenv, pr)
in (133, merge(l3,l1),f3)

Since fl is the function that captures the higher order behavior of ey, fl is
applied to the value of e;. The sharing information gained from evaluating e;

is then merged with the result of the application.

The extra argument, p, to fl indicates which partial application fi rep-
resents. This is required in order for the p-value of a partial application of a
function to contain the name of the variable which the function happens to be
bound to.

The meaning of a program is the value of the result expression in an envi-

2This oracle is actually a shorthand for carrying the standard semantics around and con-

sulting it for the conditionals.




ronment in which all function names are bound to values in S.

EJ[{ Fi z11... 21, = €13
Fn Lnl+-+ Tnk, = En;
result e;

}H = E[e]end’
whererec

CTL’UI = [§1/F1, e ,§n/Fn]

and for each i, 1 <1 < n,
where f}! = A1 pi.(iner(p1), {}, f?)
where ff = AJ2 Do.(tner(pe), {},fzg)

where 5 = Ak, pi.

let arg_env = [gl/wil, tee ,@kl/wikl]
Foreach 7,1 <3<k,

(Dir iy 13) = 5

4 { [
! [wij 0]
i = (7, {}, )
(.1 f1y =

Efedlenv'( §1/zas .., G /zini]

A

P = backsub_p(p', ar g_env)
"= {expand(py,)}U
backsub_l(i’, arg_env)

in (p", combine(i"), 7

otherwise
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The utility functions backsub_p, backsub.l, combine, expand and incr were

defined in section 2.3.1.
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2.3.3 Abstract Interpretation of the Sharing Semantics

Since we are unable to resolve conditionals at compile time, we define an ab-
stract sharing semantics such that t,hé meaning of a program is a description
of the maximum sharing that could occur.

We define abstract sharing domain S’ whose elements are sets representing
alternate possibilities for the sharing occurring in an expression. The abstract

semantic domains and functions are:

P = (VxN)+{} the domain of tuples

L P(V x NT)

F' = (§'xP)—> & |

S’ = P(PxLxF')+ {error} the abstract sharing domain
Env' = Vo 5

E' : Ezp— Env— S the abstract semantic function

for expressions
E) : Prog—S' the abstract semantic function

for programs

The value of a constant is a singleton set:

E[[C]]env = {<[]> {}, 67‘7‘)}

As in the exact sharing semantics, the value of a variable is determined by the

current environment,

E[z]env = env[z]

In a binary operation, each operand may represent many possible sharing situa-
tions. The result of the operation has to account for each possible combination

by forming a “cartesian product” of the elements of the operations.

EI[[el + 62]]671’0 = let {(ﬁO) iO,fO)) AR (ﬁm in)fn)} = E,[[el]]env
{<ﬁ6, lo, f(;)a R (ﬁ:m l:m f:n)} = EI[[62]]env
in {([],merge(f;,i;-),err >)|0<i<n, 0<j<m}
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The conditional is handled in a similar manner:

E'le; — eg, ez]lenv =

let {(fo, io,fo) <5 (Pn, in, fn)} = E'[e;]lenv
(B Tos fo)s -+ (s Ty fr)} = E'fleaeny
{(#6, 8, 6') A8 1 Fi} = E'es]eny

in {(pJ,merge(l,, J) f) |0<i<n,0<j<m}U
{(p!, merge(l;, "), f) | 0<i<n,0< 5 < ¢}

An interesting aspect of the abstract semantic definition of function application

is that applications cannot be implemented lazily. A function (each f,- below)
must evaluate its argument.

E,[[el 62]]677'7) = let {(ﬁO) iO, fO), ceey (ﬁn, z‘m fn)} = E,[[el]]env
{(]367 6af(,)) (ﬁ{ma L ffln)} = E,ﬂe2]]env
{(1%307 1501 fzj()) (ﬁ:9q7 l:.lyq’ th)} =

fz({(P_,, ij)}> pi)) foreacht: <n,3<m
in {(ﬁijk’merge(lijk)li))fil;'k) |i<n, j<m, k<q}

The definition of E; simply extends the definition of E, to handle values that
are sets. Notice that in the definition of E’ for function application, a function

is passed a singleton set as its first argument. This is reflected in the definition
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of each f7 below.

EP[[{ Fl 11 .. 'xlk] == ey;

Fozp... Lok, == €nj
result e;

1 = E[e]end’
whererec
env' = [.§1/F1, .o ,~§n/Fn]

For eachi,1<: <n,
s = {([F: 0, {}, M}
where f! = Ay pu.{(incr(pr), {}, P}
where ff = A2 Do.{(incr(p2), {},f?)}

where f,k‘ = AUk; Dk,
let arg-env = [§1/Ti,. - Uk;/Tik;]
For each j, 1 < j < k;,
{(B3 5, f3)} = 9
ﬂ={n if ;= ]
? [z;; 0] otherwise
¥ = {05 {3 i)
(B0 Tos Fo)s - (Brus Ty )} =
E'lelenv'[ §1/zits .. Uk, [/ ik
For each j < m,
P = backsub_p(p;, arg-env)
i;-' = {expand(px;)} U
backsubi(l}, arg_env)
in {(p, combine({"), f1),] 0 < j < m}
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2.3.4 Termination

In order for our analysis to be useful, we need to guarantee that the value in S’
for any program can be dete;rhined in a finite amount of time. In particular,
each value in S’ is set of tuples and each tuple contains a function in the

subdomain

F'=(S%xP)— S

Each such function may be recursive and we must show that the fixed point (of
its corresponding functional) can be found in a finite amount of time. This is

the case if the following conditions are satisfied:

1. The subdomain P of p-values is finite: This is clearly the case since
a p-value is a pair containing a variable name (from the finite set V)
and a natural number less than some finite value. Since a p-value pair
represents a partial application, the size of the natural number is limited
by the largest number of formal parameters that can occur in a function

definition.

In section 2.3.1 we mentioned that it is undesirable to create a new identi-
fier for each partial application created during execution of the program.
If new identifiers were created in such a fashion it would be very difficult
(if not impossible) to insure that there were a finite number of elements

in the sharing domain.

2. The subdomain L of l-values is finite: Each [-value is a set of tuples that
describes the number of occurrences of partial applications. We can make
the set of possible tuples finite by setting a limit on the maximum num-
ber of occurrences of a partial application that the analysis can detect.
In most cases, we simply want to know if a partial application of some
function occurred more than once. If the number of occurrences of a par-
tial application reaches the maximum value then no further occurrences

of that partial application will be counted.

3. The domain F' = (S’ x P) — S’ contains a finite number of functions:
The number of functions of a given arity (the number of arguments that

a function can be applied to before the result is no longer a function) over
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a finite domain is finite. Thus, we can ensure that F' is finite by requir-
ing that the arity of each function in F’' be finite. This is a reasonable
restriction and is often enforcéd"by a type inferencing system.
In addition, we can define an ordering of the elements of S’ and prove mono-
tonicity properties about the functions in F'. The ordering of S’, based on

powerdomain ordering, is a subject of ongoing research.
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2.4 An Appiication: Efficient Full Laziness

Unlike supercombinators genefdfed by lambda-lifting, the supercombinators de-
fined by Hughes exhibit the property of being fully lazy [40]. Loosely speaking,
we say that a function is fully lazy if shared uses of any of its partial applica-
tions do not result in the evaluation of the same subexpression more than once.
(Examples of this will be given shortly.)

Unfortunately, the algorithm for generating supercombinators turns out to
be excessively conservative in preserving the property of full laziness. As a
result, the supercombinators are very often much more fine-grained than they
need to be, resulting (as with a fixed set of combinators) in more reductions
and greater consumption of space.

In this section we discuss a refinement of supercombinators that overcomes
this conservatism, resulting in larger and more efficient combinators called re-
fined supercombinators. We present an effective algorithm for translating a set
of lambda expression definitions into refined supercombinators. The algorithm

uses the sharing analysis of the previous section.

2.4.1 Supercombinators

Consider the function f, expressed in the syntax of the lambda calculus, defined |
by:
f=2XaXbde. * (+a*b)c

From f we can define the combinator a:
aabe=x(+a’*b)c

and a can be used in place of f. Now suppose the following expression is

 evaluated:

(Ag-(x(95)(96))) (F34)
Since g occurs twice, (f 34) is shared. Yet because of our choice of the combina-
tor @, both («345) and (a«346) will be evaluated independently. As a result,
(+3%4) will be computed twice. Hence the combinator & does not have the

property of being fully lazy, and results in more computation than necessary.?

3This combinator definition is essentially what would result from lambda lifting [44].
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To improve this situation, one might generate supercombinators from f, in
which full laziness is (conservatively) guaranteed by generating one combinator
for every bound variable. To see how ,‘t'his works, we first define a free ezpression
with respect to a particular bound variable v as an expression in which there
are no free occurrences of v. A mazimally free expression (mfe) with respect to
v is a free expression which is not contained within any larger free expression
(with respect to v). When the context is clear, we omit naming the bound
variable with respect to which an expression is maximally free.

The algorithm for generating supercombinators begins with the innermost
lambda expression and works out, abstracting at each level all mfe’s with re-
spect to the bound variable at that level. For example, for the definition of f
above, we see that the mfe of the innermost lambda expression is (+ a? b). This

expression is abstracted to form the supercombinator:
arc= *zxc

and thus f = Aa.Ab. a(+a?b). Next we note that a? is the mfe of the new

innermost lambda expression, so it is abstracted, forming the combinator:

Byb=ca(y+b)

and thus f = Aa. f(a?). Since there is no (non-trivial) expression in f that is

free with respect to a, the next (and final) supercombinator is:

va = f(a?)

and all occurrences of f in the program are replaced by 7.

The shared expression mentioned earlier, (f 3 4), will reduce as follows:

(f34) => (v34)
= (94
= (a13)

and therefore (+ 3% 4) is only computed once — thus achieving fully lazy
evaluation:
Even if a function definition contains no explicit nesting of lambda expres-

sions it can still be transformed into a set of supercombinators. This is possible
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because a definition of the form,
fzyzy... T, =€
can be transformed into
f=Azy. Az, ... zpe

and the supercombinator algorithm can then be applied.
A formal algorithm for generating supercombinators from a program P is:

1. Find the leftmost, innermost lambda expression L, of the form Av.ezp.
2. Find the maximally free expressions, e; ... ey, of exp with respect to v.

3. Create a new combinator (say a) defined by:

aiy...in v =explir/e1,...,iz/es]
where formal parameters 2, ..., do not occur free in ezxp.
4. Substitute (a e1...ep,) for L in P,

5. Repeat steps 1-4 until step 1 fails.

There are a few obvious optimizations to this algorithm, such as eliminating

redundant combinators, as in: a a b= a b.

2.4.2 Refined supercombinators

Although preserving full laziness is a worthy goal, the supiercombinator ap-
proach is too conservative. To see this, note in the previous example that the
original single-combinator definition for f would be perfectly satisfactory if no
partial application of f were ever shared, for then there would be no partial
. result that might be computed more than once. And because one combinator is
used instead of three, the single-combinator solution would be more efficient in
time and space. Using the sharing analysis from section 2.3 we can determine
whether or not a partial application of f is shared, and can choose either a
one-, two-, or three-combinator implementation for it, as appropriate.

Refined supercombinators are obtained by adapting Hughes’s algorithm to
use sharing information. These combinators are more efficient than supercom-

binators for most user-defined functions. Despite the elegance of higher-order
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functions created through partial application, they are seldom used and more
seldom shared. N

For purposes of our presentation; we modify the notation of a function
definition to incorporate sharing information. We write “g w yz =..." to
indicate, for example, that ¢ applied tc; two arguments is shared, but not to one
or three arguments. In other words, the breaks in the underline indicate which
partial applications are shared. We then generalize, in the obvious way, the
notion of a maximally free expression with respect to a single variable, to that
of a maximally free expression with respect to a set of variables.* We define
MPFE(exp, S) be the set of mfe’s of exp with respect to the set of identifiers S.

When generating refined supercombinators for a function definition such as

guzyz=...

we treat each “group” of formal parameters as a single unit by abstracting
mfe’s with respect to each group, working innermost out as before. Given the
previous discussion, the rationale for doing this should be obvious — we cannot
make the groups any larger, for that might violate full laziness, nor is there any
reason to make them any smaller, since no finer partial application is shared.

_ Here is the algorithm for generating refined supercombinators:

1. Let f1... fs be the names of the defined functions in the program.

2. Partition the formal parameters of each definition f; so as to reflect the

sharing of partial applications f;.

3. For each definition f;, repeat this step until there is just one partition of

bound variables remaining. Let x;; ... z;, be the right-most partition; i.e.,
f,' Til o evevnoas CI),'(k_l) Tik oo e Ty = €

Define a new combinator (say «) by:
QA VL. Vp Tig ... Tin = eXPi[V1]€1,...,0p/€p)
where vy ... v, are new variable names not occurring free in ezp;, and:

{e1,...,ep} = MFE(exp;, {Tix...Tin})

“In this case, the variables underlined together are in the same set.
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Then replace the previous definition of f; by:

fiTa.onion.. Ti(k-1) = & €TPy...ETPp

2.5 An Example E

Consider the following (somewhat contrived) ALFL program:
{ £fabcd-==((a*a)+b) * (a-b) + (2 * ¢c) + d;
gx==h(x1) 2+ x2 3;
hyz==yz;
result g (£ 1 2);

}

Applyihg sharing analysis, we obtain

{0, {le11)[n111][£11211]}, err)}

which indicates that the only shared partial application in the program is that
of £ to two arguments.

Converting the program into lambda-expression form and applying Hughes’s
supercombinator algorithm to the definition of £ proceeds as follows:

1. Initially,
f=Xabed + (+(x(+(xaa)b)(—ab)(x2¢c))d
and the first combinator generated is:
aid=(+1d)
2. Thus f can be redefined,
f=Xabec a(+ (x(+ (xaa)bd) (- ab))(x2c)
and the next combinator is:
Bic=a(ti(20)

3. Now,
f=Xab.B(x(+(xaa)b)(—ad))
and

ykab= B (x(+ kb)(—ab))
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4. Finally,
f=Xa.v(xaa)b

and

:5,a='y(*aa)

which means that f = é and can be replaced by § in the above program.

The same transformation is applied to g and h, resulting in three more combi-

nators.

However, using the above sharing information, the generation of refined

supercombinators for f proceeds as follows:

1. Initially, the arguments are grouped according to how f is shared:
fabed= +(+ (x (+ (xaa) b) (- ab) (+20) d
and thus the first refined supercombinator generated is:

nmed= +(+m(x2¢))d

2. Now,
fab=n(x(+ (xaa)b)(—abd))

and since there is no more sharing the second (and last) combinator gen-

erated is:
pab=n(x(+ (xaa)b)-ab))
Therefore f = y and can be replaced by p in the program.
Only one refined supercombinator will be generated for each of g and h in the
program.

.The compiler that we have implemented performs sharing analysis on a
lambda-lifted program and generates a set of refined supercombinators using
the algorithm described above. Naturally, this phase of the compiler can be used
to make sequential implementations of functional languages more efficient. The

rest of the chapters discuss issues of parallel execution of functional programs.



Chapter 3

A Characterization of
Parallelism and Granularity in

Functional Programs

In this chapter we develop a theoretical basis for the algorithms used by the
compiler to partition a functional program for multiprocessor execution. We
present a characterization of the potential costs and benefits of parallel execu-

tion of the expressions in a program.

3.1 Parallelism in Functional Languages

Automatic partitioning of functional programs is tractable because functional
languages exhibit the Church-Rosser property. Operationally speaking, the
Church-Rosser property (actually a corollary to the Church-Rosser Theorem)
_ states all orders of evaluation of an expression that terminate will give the same
result. The arguments in a function application, for example, can be evaluated
in any order we desire, including in parallel.

Since we are executing programs written in non-strict functional languages,
we need to preserve the termination properties of normal order evaluation.
In order to do so and still exploit parallelism, we use strictness analysis to
determine which arguments in a function application will always be needed.

Parallelism is exhibited in two ways in functional programs. The first is

47
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what we call horizontal parallelism, which results from evaluating the strict
arguments in a function application in parallel. If only horizontal parallelism
is exploited then the values of all strict arguments must be available before the
body of the function is executed. Horizontal parallelism is exhibited in strict
languages (such as Lisp) that utilize a call-by-value evaluation order. In lazy
languages, however, non-strict arguments are not evaluated before the function

call. In the program,

{fxyz==1x->2z, 1;
result £ (6+7) (8%9) (10+11);

}

the result expression could be executed by evaluating (6+7) and (8%9) in par-
allel (but not (10+11)). The body of £ would not be executed until the two

strict arguments had been evaluated.

A function may be able to do a significant amount of work before needing
the value of a particular argument. It may therefore be beneficial to start
executing the body of a function before the values of its strict arguments have
returned. If an argument that is still being evaluated is referenced, the function
must block until the needed value arrives. This type of parallelism, which we
call vertical parallelism, results from executing the body of a function and its

arguments in parallel. For example, in the program,

{ £fxy==gx->y+, y-1;
g x == ...

result f.&6+7) (h 5);

}

where g and h are very complex functions, there is no reason for f to wait for
the value of (h 5) before executing (g x). Vertical parallelism results from

executing (g x) and (h 5) simultaneously.

In the next section, we analyze the various costs and benefits of utilizing

horizontal and vertical parallelism.
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3.2 Communication Costs and Granularity

In any multiprocessor system,"t'l:lere is an overhead cost involved in creating par-
allel computations, or tasks. In many architectures this cost is significant and,
depending on the particular tasks being executed, may outweigh any benefit
gained from exploiting parallelism.

In chapters 6 and 8 we discuss the overhead costs associated with two par-
ticular multiprocessor architectures. All parallel architectures incur overhead

for the following actions:

1. Creation of parallel tasks. This involves creating a new process state which
contains the information needed to execute a task. This action may be
as inexpensive as creating a simple activation record or as expensive as

invoking an operating system call to create a heavyweight process.

When a task is created, some communication must occur between the
processor that initiated the creation and the processor that will execute
the new task. This communication may be as inexpensive as accessing a

shared queue of tasks or as expensive as sending a message over a network.

In the multiprocessor implementation described in chapter 6 the commu-
nication cost involved in task creation is significantly greater than the
cost of creating a structure to contain the process state information. In
the following discussion the term communication cost includes all of the

costs involved in creating a task.

2. Communication between parallel tasks. During execution, interprocessor
communication may occur between tasks in order to provide synchroniza-
tion or share data. This may either involve accessing a shared variable
or sending a message. Whether the communication involves enforcing
mutual exclusion on areas of shared memory or invoking message passing

routines, a non-trivial cost is incurred.

3. Cleaning up completed tasks. After a task has finished executing, the pro-
cess state of the task must be removed and, if necessary, a value returned

to the task that invoked it.

The costs listed above lead to the notion of the granularity of a parallel com-
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putation. Granularity is a measure of how much computation occurs on each
processor between periods of communication and is an indication of how often
the execution of a task will incur communication overhead. If the grain size
is large, resulting in a coarse-grained computation, a large amount of compu-
tation is done between periods of communication. Thus communication costs
are incurred relatively infrequently. If the grain size is small, resulting in a fine
grained computation, then the communication overhead will be incurred often

during the computation.

We will be partitioning functional programs into expressions that will be
evaluated by individual tasks. Because functional programs contain no side-
effect operators, two tasks executing in parallel cannot have an effect upon each
other. Therefore, they will not have to communicate with each other while they
are both executing; communication is needed only when a task is to be created
or has finished executing and needs to return a value. The total overhead due to
communication is therefore directly proportional to the number of tasks created
during execution and the granularity of the computation is directly related to

the execution time of each task.

Although it is clearly desirable to keep communication overhead low, there
is'a tradeoff between coarse- and fine-grained parallelism. If a large grain is
desired, then a program will be partitioned into fewer tasks than if a small
grain size is used. Each of these large grained tasks will execute longer, but
the potential for exploiting parallelism will be reduced because each task may
perform work serially that could be performed in parallel. On the other hand, if
the granularity of a computation is too fine, any benefit gained from creating a
large number of tasks may be outweighed by the communication costs involved.
We use the term wuseful parallelism to describe the parallelism in a program
that, if exploited, results in a reduction of the overall execution time. If every
partitioning of an expression increases its execution time, then the expression

contains no useful parallelism.

On a multiprocessor with relatively low communication costs, fine grained
tasks may exploit the parallelism in a computation without being heavily pe-
nalized for the large amount of communication needed. The higher the com-

munications cost of a multiprocessor, the more likely it is that a coarse-grained
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computation will perform better. Thus, the optimal grain size varies with the
communication costs of the hqs't, machine.

In the following discussion, we use the term fask loosely to represent either
one of the expressions into which a program is partitioned or the evaluation
of such an expression. Althouéh technically a task is the latter, where the

meaning is unambiguous we will use it in either way.

3.3 Program granularity in dynamic load bal-

ancing systems

There are two methods for scheduling the execution of tasks in a multiproces-
sor. The first, static scheduling, is performed before the computation begins.
Either the programmer or the compiler partitions a program into tasks and
specifies exactly which processor will execute each task. The number of pro-
cessors generally determines the number of tasks into which the program is
partitioned.

The second scheduling method is dynamic scheduling, also known as dy-
namic load balancing, in which the allocation of tasks to specific processors
is performed during execution. Generally, the decision of where to allocate a
newly created task is based on the current state of the system. If the system
is heavily loaded, then several tasks that could be executed in parallel may
be executed on the same processor. Therefore, the creation and completion of
tasks may or may not incur the overhead of interprocessor communication.

In chapters 7 and 8 we describe a number of dynamic scheduling algorithms.
. In this chapter, we discuss the compile-time partitioning of programs into tasks
that will be allocated to specific processors using dynamic scheduling. The goal
of compile-time partitioning is to ensure that the granularity of the computation
is never fine enough to cause a degradation of performance if each task were
allocated to a different processor. That is, the partitioning of the program
should be optimized for the case where an idle processor is available to execute
each task. The dynamic scheduler may choose to allocate several tasks onto

a single processor. However, if it chooses to execute several tasks in parallel,
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there must be a possibility that performance is improved over executing them

sequentially.!

3.4 Finding the Appropriate Granularity

As mentioned above, our goal is to find the appropriate granularity into which
a program should be partitioned assuming that each task will be executed on a
different processor. In this section we outline an exact (but infeasible) analysis
that will guide us in choosing the heuristics that will be used by the compiler.

We have seen that any application of a function to one or more strict argu-
ments has the potential for exhibiting parallelism. If communication overhead
were zero, we would exploit the full parallelism in a program by executing all
strict arguments, along with the body of the function, in parallel. Thus even
for a simple expression like

(4%5)+(6%7)
two tasks would be created to evaluate (4%5) and (6%7) in parallel. Obvi-
ously, tasks that accomplish the parallel evaluation of such a simple expression
constitute a very fine grained computation. )

In the previous example, we assumed that communication overhead was
zero. Since there is no multiprocessor architecture that provides zero-cost com-
munication, it is unlikely that such a fine granularity would prove worthwhile.
How then do we partition a functional program into tasks of the appropriate
granularity? If we are given an expression e, how can we determine whether or
not the evaluation of e should be decomposed into a number of tasks?

Since every expression in a functional program is an application of a function
(or primitive operator) to zero or more arguments, the expression e that we are

interested in is of the form
(f er.. en)

where f is a function (or primitive operator) that is applied to arguments e,

1There is an alternative method called run-time partitioning, in which a program is decom-
posed into tasks at run-time. Because there is a high overhead associated with this method
and because our goal is to develop compile-time methods for program decomposition, we will

not discuss run-time partitioning further in this dissertation.
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through e,. In the above example, the expressions corresponding to f, e;, and
ez would be +, (4%5), and (6%7), respectively.
In the analysis, the communication overhead is broken down into two parts:

e The time spent by the 1oca1 processor spawning a task onto a remote
processor: We consider this cost, denoted Cj,., to be a constant whose
value depends only upon the implementation. Even though the cost of
creating a process state may vary from task to task, the cost incurred
locally of sending it to another processor is generally far greater (at least
on loosely-coupled multiprocessors) and is generally constant. For sim-
plicity, we assume that Cj,. is incurred before the task is actually sent to

the remote processor.?

¢ The sum of the communication delays (latencies), denoted Ci,;, that occur
when a task is spawned and when its value is returned: C),; is twice the
delay that occurs between the time a message is sent and is actually

received. Again, the analysis considers this to be a constant.?

Suppose we are given an expression e of the form (f e;...e,), where f is
strict in all of its arguments. If the lowest possible cost of evaluating each
e; (whether sequentially or in parallel) is known, our analysis should indicate
whether or not it is worth decomposing e into a number of tasks. If the answer
is negative then the evaluation of e should proceed as the evaluation of e, ...¢e,
in sequence followed by the instantiation of the function application. The eval-
uation of each e; proceeds in the manner providing the lowest cost for each e;.

To be more precise, we define the following terms:

e T(e) is the minimum cost of executing an expression e either sequentially
or in parallel (either T)(e) or Ty(e), below).

o T,(e) is the cost of evaluating e in parallel. This cost is, of course, depen-

dent on the way e is partitioned.

o T,(e) is the cost of executing the components of e, namely e;...e,, in

2For simplicity, we have ignored the cost of receiving a value returned by a completed task.

This cost can be incorporated into Cj,. without significantly altering the accuracy of our model.
3This is a reasonable assumption of tasks are always spawned on neighboring processors.

The task scheduling methods described in chapter 7 exhibit this property
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sequence plus the cost of evaluating the body of f. The cost of executing
each e; is T'(e;). Therefore,

Tf er.. en) = (o T(ed) + T(flers- v en)

=1
where flei, . .., en) represents the application of f to the arguments after
all e; have been evaluated.

In the preceding discussion f is assumed to be strict in all of its arguments.
This restriction will be relaxed.

The analysis proceeds bottom-up: Given an expression e, the analysis is
recursively applied to each component e; of e in order to determine the best
way to evaluate e;. Then, based on the value of T(e;) for each ei, the analysis

determines if it is worthwhile to partition e into parallel tasks.

3.4.1 Analysis of Horizontal Parallelism

In this section, we concentrate on the costs and benefits of exploiting horizontal

parallelism. Eventually, we extend the analysis to allow for vertical parallelism.

Horizontal parallelism in binary function calls

Suppose we are given an expression of the form (f e1 e2), where f is strict in

both arguments.? If (f e; e3) is evaluated sequentially then

T,(f e1 e3) = T(ex) + T(e2) + T(fle1,eal) (3.1)

The simplest way to exploit the horizontal parallelism in (f e1 e2) would be for
the local processor to create tasks on two remote processors to evaluate e; and

e;. The execution time would be

Tp(f €1 62) = max(cloc + T(el) + Clat, 2C'loc + T(e2) + Clat) +
T(fle1, e2) (3.2)

4Note that this subsumes the case of an expression of the form (e1 ez) in which case f is

simply the strict version of the apply function.
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if the task evaluating e; were created first, or

Tp(f €1 62) = ma'X(CIoc + T(eZ) + CIa.t) 2C’Ioc + T(el) + Clat) +
T(f[er, e?]) (3.3)

if the task evaluating e, were created first. Suppose that T'(e;) > T(e;). Thus

ma‘x(cloc + T(el) + Clat) 2C’Ioc + T(eZ) + CIat)
S 2C’Ioc + T(el) + CIa.t
= ma‘x(zcloc + T(el) + Clat, Cloc + T(e2) + Clat)

and equation 3.2 results in a lower value for Ty(f e; e;) than equation 3.3. This
indicates that it is better to start the remote evaluation of the more complex
argument first.

Partitioning of (f e; e;) would be worthwhile only if

Tp(f €1 €3) STo(f € €3) (3.4)

Again assume that T'(e;) > T'(e;). Substituting the definitions of T, and T,
(from equations 3.1 and 3.2, respectively) into the inequality 3.4 we see that
there are two possible cases:
1. If T(e1) > Cioc + T(e3) then the value of e, arrives before the value of e
and inequality 3.4 is satisfied iff Cj, + Cjpy < T(ey).

2. Otherwise, if Cj,, + T(e;) > T(e;) then the value of e, arrives first and
inequality 3.4 is satisfied iff 2Ci,, + Clor < T(ey).

This analysis is based on the assumption that the tasks for both e; and e,

are sent to remote processors to be executed. A better way to evaluate e would

" be to send only one argument to a remote processor and execute the other

locally. If e; is evaluated locally then the parallel execution time, denoted T,,
is described by

T,(f e1 €2) = max(Cioc + T(e1), Cioc + T(€2) + Crat) + T(fler,ea])  (3.5)

If e, is evaluated locally then

T,?(f €1 62) = max(CIoc + T(el) + CIa.ta Cloc + T(eZ)) + T(f[ela 62]) (36)
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The communication costs, Cj,, and C,; are incurred only once because only
one argument is evaluated on a remote processor.

To minimize the parallel executiérl time of (f e; e;) the argument with the
shorter execution time must be evaluated remotely. If T(e;) < T(e;), then

equation 3.6 minimizes the parallel execution time because
max(T(e1) + Ciat, T(e2)) < max(T(e1), T(e2) + Cia)
Parallel evaluation is worthwhile only if

ma'x(cloc + T(el) + Clat) Cloc + T(e2)) < T(el) + T(e2)

which holds if either

T(Cg) S T(el) + Clat and Cloc + Clat S T(e2) (37)

or
T(e1) + Ciat < T(e2) and Ci,. < T(eq) (3.8)

Although strict binary function calls exhibiting only horizontal parallelism
may seem too simple to warrant examining, they occur very frequently. The

primitive binary operators such as + and * behave in precisely this fashion.

Function calls with multiple arguments

Suppose we are given an expression of the form (f e;...e,) where f is only
strict with respect to some of its arguments. For simplicity, assume that fis

strict in e; ... ex and not in ex41...e,. In this case,

k
T(fer...en)= (; T(e:)) + T(flex,- -, exllext1s- .. €xn)) (3.9)

where fleq, ..., €ek][€kt+1, ... en] is the computation needed to evaluate (fer...en)
after e; ... ex have been evaluated (but not ez, ... €n).

Since we provide no mechanism for supporting eager evaluation—the pre-
mature evaluation of non-strict arguments—only the strict arguments can be
executed immediately. If all of the strict arguments were sent (in left to right

order) to remote processors to be evaluated then

To(f e1...en) = max(ty, tg,..., t)+ T(flet,. .- ekllert1,---€n])  (3.10)



57

where, for 1 <1 <k,
t; = 20{06 + T(e ) + Clas (3 11)

Equations 3.10 and 3.11 take mto account that the local processor incurs Cj,.
for each task sent to a remote processor. The task is spawned at time Cjo., the
second expression at time 20106,. and so on.

Instead of spawning the arguments in left to right order, the parallel execu-
tion time is minimized by spawning the arguments in decreasing order of their
complexity. That is, for strict arguments e; and e;, if T(e;) > T(e;) then e;
should be spawned before e;. Suppose e; is spawned after e;. If e; is the pth
expression spawned and e; is the (p + ¢)th expression spawned then the total

execution time is described by

Tp(f er...en) =max(...,tp, ... tpsqs.-.) +T(flexs. .., exllert,---en]) (3.12)

where
p = pCIoc + T(CJ) + Clat
torg = (P + ) Cloc + T(e;) + Clat

If e; and e; exchange their positions in the order, then

T,(f er ep) =max(... b, ..yt 0. ) + T(fler, ..o, exllensrs. . ea]) (3.13)

where

t, = pCoc + T(e;) + Clas

torg = (P + @)Cloc + T(e;) + Clat
and all other terms in equation 3.13 are the same as in equation 3.12. We can
see that ¢,, < 1,,, and ¢, < ¢, and therefore

T,(fei...ea) STp(fer...€n)

Thus execution time is minimized when the arguments are spawned in decreas-
ing order of complexity.

Assume the arguments are spawned off in decreasing order of their com-
plexities and, for simplicity, that T'(e;) > T(es4;) for all ¢ < k. What must be

true in order for

T(fer...en) STy(fer...e,) (3.14)
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to be satisfied? Suppose that ¢,, is the largest term described in equation 3.11.
That is, t,, 2 ¢; for all ¢ < k. Thus |

mCIoc + T(em) + GI_alt 2 iCIoc + T(ei) + Clat

for all ¢+ < k. In this case,

T(f er...en) = mCie+ T(em)+ Ciar + T(flen,. .., ex)lers1s---€n))
< T(e)+...+T(ex) + T(flery- -y exllers1s-- - €n))
= T,(f er...en)

iff \
mCIoc + Clat < E T(ei)
=1
1i#m

When exploiting horizontal parallelism, one of the strict arguments should
be evaluated locally. The other strict arguments should still be spawned off
in decreasing order of complexity. The problem remains to determine which
argument to evaluate locally. The answer is not obvious:

o The expression that is evaluated locally does not incur the communication

latency Ciqs. This favors the choice of a complex argument to evaluate

locally.

o The local argument cannot start evaluating until all of the remote ex-
pressions have been spawned, namely at time (k — 1)Cj,.. This favors
the choice of an expression of low complexity to evaluate locally since
the more complex expressions should start being evaluated as early as
possible.

If e; is evaluated locally then the parallel execution time, denoted TJ, is de-
scribed by

Tg(f e1...e,) =max(ty,..., ) + T(fles,...,exllers1,- .. n))

where
t; ifi<y
ti =19 ti— Cio ifi>j (3.15)
ti+(k—i—1)010c—-01at 1f2=]
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Because e; is evaluated after all other tasks have been spawned, each e;, 7 >
7, is spawned Cj,. sooner than if all of the arguments were evaluated re-
motely. However, the time at which e; finishes executing is changed by adding
(k—1—=3)Cioc — Cia. This afnqunt may be negative. Since (k — 1)Cjoc — Clat
is a constant, we refer to it as K. The evaluation of e; completes K — jCj,,
later than if all expressions were evaluated remotely.

We can minimize Tp(f e1...€e,) by comparing the values of TI(f e;...€,)
for each value of 5, 1 < j < k. The solution can be found more directly,
however.

We define M to be the time required to evaluate all of the strict arguments
remotely.

M = max(t1,...,tn)

We define M; to be the time required to evaluate all of the strict arguments

remotely, except for e; which is evaluated locally.
M; = max(t],...,t)

where each t; is defined by equation 3.15. In addition:

1. Since the arguments are sorted in decreasing order of complexity and each
successive argument is spawned off Cj,. later than the previous one, for
any 1,j such that 7 < j,

ti 2 tj - (] - Z.)C’loc (316)
This indicates that each argument returns no sooner than Cj,. before the
next argument.

2. By equation 3.16, for any ¢, j, such that : < j,

ti + K- 'iCloc = ti + K - jCloc + (] - Z')C’loc
tj - (] - i)CIoc + K — jCIoc + (] - i)CIOC
= t;+ K — 7C0c (3.17)

v

Again suppose that t, > t; for all 1 < k. Either e,, should be executed
locally or some e,, p # m, should be. It is clear that p must be no greater
than m: Otherwise t/, = t,, and M, > t,, = M. There are several cases to be

considered:
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e Suppose K — mC,. > 0. This means that T,(f e1...e,) cannot decrease
by executing e,, locally. Is there any e,, p < m, that should be evaluated

locally? If so, then ¢, is reduced by Ci,c but £, is increased by K — PCloc.
For all p < m, :

M, > t,+ K — pCy, (by definition of M,,)
2 tm+ K —mCp,. (byequation 3.17)
>t (since K — mC,, > 0)
= M

If evaluating e, locally causes the total execution time to increase then

benefit can be derived from executing any argument locally.

e Suppose K — mCj,. < 0. There are two cases to consider:

1. Assume that for all i < m, t; < ¢, — Cioe (that is, all expressions
spawned before e,, return at least Cj,, before em does). If e, is

executed locally, then

Mm = max( tl)- S tm—-l) tm + K — mCIoc,
tm+1 - Clom ey tk - Cloc)

If e,, p < m, is executed locally, then
Mp = max(tl, ey tp_l, tp + K — pCIOc, tp+1 - Cloc, ey tk — Cloc)

By our hypothesis, for all i < m, t; < t,, — Cj,,. By definition of ¢,
tm — Cloc 2 t; — Ci,c for all ¢ > m. Therefore,

MP = ma’x(tp + K — pCIoca tm - Cloc)
By equation 3.17
tp + K — pCloc Z tm + K- mCIoc

and thus M, > M,,. This shows that in this case it is best to evaluate

em locally.

2. If there is an ¢ < m such that

t; >t — Cioe (3.18)
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then it can -be shown that e; should be executed locally, where
o ~Cloc £ K —JCle £0

In other words, j = [K/Cio]. This says that we should chose the
most complex argument to evaluate locally such that the local eval-
uation of that argument completes before the remote evaluation of

that argument would have. In this case,

Mj = max( iy ooy ti_1, tj-l-(K--j)Cloc,
tj+1 - Cloca vy tk — Cloc)
= max(tn, t; + (I{ — j)C[oc, tn — Cloc)

where ¢, = max(t1,...,¢;_1) and therefore K — nCj,, > 0. In order

to prove that Mj; is less than M, for any p # j, we consider the

different possible values for M;.

— Suppose M; = t, and we choose to execute some e, locally. If

p =n then
My > ta+ (K ~1)Cloe > Ty = M;
If p > n then M, > t, = M;. Otherwise, if p < n then
tp 2t — (n — p)Cloc
and

tp + K — pCIoc = tp + K - nCIoc + (n - p)Cloc ;

2 th— (n - p)Cloc + K — nCIoc + (n - p)Cloc
= tn + K — nCIoc
2 t,

and therefore M, > M;.

— Suppose M; = t,, — Cj,.. Forall p < m,

Mpz tm"Cloc = Mj
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since ¢,, — Cjq, is a term in each M,,. By inequality 3.18, if p = m,
then .
Mp >ty — Cloe = Mj
since there is an i < m such that ¢; > ¢, — Cjpe.
— Finally, suppose M; = t; + (K ~ j)Cj,.. If we choose to evaluate
ep locally and p > j then
M,,thth+K—jCIOC=Mj

since t; is a term in M,. If p < j then by equation 3.17

\%

Mp - tp +K —pCloc
t; + (K — 7)Cioc
M;

v

Now that we have specified which argument, if any, should be evaluated
locally, it remains to be seen if parallel evaluation is worthwhile. Suppose, for

some j < k, e; is to be computed locally. In this case,

T(f er...en) = M;+T(fles,...,ex]ler41,. .. €4))
=t +T(fler,. -, ex)lersn, ... €n))

where ¢ > t; for all ¢ < k. As in equation 3.9,

k
To(fer...en) = (Z;T(e,-)) +T(fle1,...,ex)lext1s-- . €n))

If ¢, = t,, = mCl,c + T(e,) then inequality 3.14 is satisfied iff

Cioe + T(em) + Ciot < (3 T(e)

=1
or, equivalently,
k
MCloc + Crar < Y, T(e:)
iEm

Ift], =ty — Cloe = (m — 1)Cyy. + T(e,,) then inequality 3.14 is satisfied iff

k
(m - 1)Cloc + T(em) + Clat S (Z T(C,))

=1
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that is, iff
k
(m - 1)Cloc + Clat S E T(ei)

=1
i#m

Otherwise, if e,,, was evaluated locally then
t = (k—1)Cp. + T(em)

in which case inequality 3.14 is satisfied iff

k
(k— 1)Cloc < (; T(e;))

which is equivalent to

k
Cloc < (X T(e:))/(k — 1) (3.19)
Zm
Inequality 3.19 demonstrates that if the local expression is the last one to
finish being evaluated, then Cj,, must be no greater than the average time of
local execution of all of the other expressions. Otherwise the parallelism in -

(f e1...e,) cannot be exploited.

Evaluating a set of arguments locally

We may wish to evaluate several arguments locally, choosing a set S of such

arguments in order to minimize the parallel execution time T;,g :

T,;g(f ey...e,) = max(mog,..., my, m)+T(fles,...,exllext1,...€xn))

where
S ={ejpy-.-1€j,} C {e1,...,ex} and ji < jip
m; = max( (ji + 1 —¢)Cioe + T(€ji41) + Ciass
(Ji +2—-1)Cloc + T(ej;42) + Cias,

(jt'+1 -1- 2.)C’Ioc + T(eji+1—1) + Clat))
m = (Lo T(ej)) + (k — p)Cioc
In order to find the set S that minimizes Tl;q (f e1...ey,), one could perform a

search (which is exponential with respect to k) over the possible alternatives for
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S. Any set S that minimizes TI;S' (f €1...e,) will exhibit a property that provides
the basis for our heuristic partitioning algorithm described in section 4.3: For
every e; such that T'(e;) < Ciq, €; E.S' This is easily seen because the cost (to
the local processor) of creating a rernote task for each such e; would be greater
than the cost of evaluating e; locally. If a set S does not contain an expression
e; such that T(e;) < Ci., then the set S’ = S U {e;} of expressions to be
evaluated locally will result in a lower total execution time. Those arguments
ej, j > 1, that are evaluated remotely will be spawned off Cj, sooner, and while
the local evaluation of the expressions in S’ will take T'(e;) longer, it will start

Coc SOODNET.

Evaluating sets of arguments on each processor

The most general method for exploiting horizontal parallelism is to evaluate

sets of arguments on each processor. Let
S={S1,...,5p}

where
Si={eir, . -r€in}
a;nd
US:i={es,...,ex}
and each S; is a set of arguments that gets evaluated on a single processor

assume S, gets evaluated locally). In this case,
P

Tf(f ey e,) = max(tl,...,t,) + T(fle1,. .., exllexs1,- - -€nl)

where

=

{ iCloc + (T, T(e4)) + Crar if 4 < p
PCloc + 23'21 T(ep;) fie=p
Again, a straightforward (although expensive) way to find the set S that mini-
mizes T, (f €1 ... e,) would be to perform a search over the possible alternatives
for S. The systems described in chapters 6 and 8 do not, however, have the
ability to combine a set of expressions into a single task to be executed on a

remote processor.
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3.4.2 An Analysis of Vertical Parallelism

At this point, we incorporate the possibility of vertical parallelism, which occurs
when the body of a function is entered while some of the strict arguments are

still being evaluated.

Strict binary function calls

We again consider an expression of the form (f e; ez). The simplest way to
achieve vertical parallelism would be to evaluate both arguments on remote
processors while the body of f is evaluated as much as possible locally. Let f~
represent the evaluation of that part of the body of f that can be performed
without the values of any arguments. Let f*[e;,e;] represent the evaluation of
the body of f after its arguments e; and e, have been evaluated (exclusive of

that already computed by f~). We can rewrite T,(f e; e;) as follows:
To(f €1 €2) =T(e1) + T(e2) + T(f7) + T(fF[er, e2])

Assume that T'(e;) > T(e;). By the same reasoning used in section 3.4.1 it

is best to start the remote evaluation of e; before e;. Therefore,

Tp(f €1 62) = max( Cloc + T(C]) + Clata 2C’loc + T(e2) + Clat, (320)
2C’loc + T(f_)) + T(f+[€1, 62])

In order to determine if T, < T,, the possible values of T, are considered

separately.

o If 2Ci,.+T(f~) is greater than both Cj,.+T(e1)+ Clo; and 2C,.+ T(e3) +
Clat then

To(f €1 e2) = 2Cioc + T(f7) + T(f¥[e1, €2])
Therefore T,(f e1 e2) < Ts(f e1 e2) iff 2Cy,. < T'(e1) + T'(e2). That is,

Cioc must be less than the average cost of the expressions being evaluated

remotely.
o If Cloo + T(e1) < 2C1e + T(ez) and T(f-) < T(e3) + Ciat then
T,(f e1 €3) = 2C10c + T(e2) + Clar + T(f ey, €2])
and T(f €1 €2) < To(f €1 e2) iff
2Coc + Clat < T(e1) + T(f7)
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e Otherwise, if T(e1) 2 Cloc + T(ez) and T(e1) + Clat 2 2C)c + T(f™) then
T,(f e1 €)= Cioo + T(ex) + Crat + T(f*ers e2])
and T,(f e1 €2) < To(f e ez) only if

Cloc + Clat S T(e2) + T(f_)

The only vertical parallelism exploited was the concurrency between the evalu-
ation of the arguments and the work that f could do without the value of any
of the arguments. However, f may be able to perform a significant amount of
work with the value of only one of its arguments. It should resume processing
as soon as the value of either argument returns.

If we restrict the function f to be a combinator (such as a refined super-
combinator from chapter 2) then the values of all identifiers referenced in the
body of f (with the exception of global combinator names) are passed as ar-
guments. Therefore, if we assume that constant folding has occurred during
compilation, there is no work that f can perform without having the values of
any arguments. If this is the case, then it makes sense to evaluate one of the
arguments locally - but which one? Should it be the one that f could perform
more work with, or the one that takes longer to execute (as is the case when
we were only allowing horizontal parallelism)? As it turns out, the answer is
not so simple.

Let f[e,] denote the work that f can perform after only e; has been evalu-
ated. When the value of e, becomes available, the rest of the body of f can be
computed and is denoted f12[eq, €s). Likewise, F2[eq]) and f2![ea, e1] denote the
work that f performs after e; returns and then after e, returns, respectively.

An important assumption is that

T(flea)) + T(F*[er, €2]) = T(?[e2) + T(f* [e2, €1]) (3.21)

That is, if both arguments have already been evaluated by the time they are
needed, then whether one performs f! and then f12 or f* and then f?! the
total execution time will be identical. This is a reasonable assumption if one

considers the body of f to be a number of independent computation steps.
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The cost of executing (f e; e;) in parallel is either

T,(f e1 e2) = max(’Cloc + T(e2) + Cras,
. Cloc+ T(e) + T(f7) + T(fea])) +
T(f**le1, e2]) (3.22)

when e; is computed locally, or

sz(f €1 62) = max( Cloc + T(el) + Clah
Cioc + T(e2) + T(f7) + T(f*[es]) +
T(f*'[es, 1)) (3.23)

when e, is computed locally.
We need to determine under what conditions T‘}( f e e)< T:( f e1 e2).

There are three separate cases that must be considered.

1. Assume
T(er) + T(f7) + T(f'[ea]) = T(ez) + Crar
and
T(ez)+ T(f7) + T(f*[ea]) = T(e1) + Cra
If so,

T,(f e1e2) = Cuoc+ Ter) + T(f7) + T(f'[ex]) + T(f*[es, e2])
< Cloe + T(e2) + T(f7) + T(f*[ea)) + T(f*'[e, en])
T:(f (#1] 62)

iff T(Cl) S T(eg).

Therefore, if the remote argument (whether it is e, or e;) returns before it
is needed then it is best to choose the argument with the shorter execution

time to evaluate locally.

2. Assume

T(er) + T(f7) + T(f'[es]) = T(ez) + Crar (3.24)
and

T(ex) + Crat 2 T(e2) + T(f) + T(fles)) -~ (3:25)
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If so,

T,}(f e1 e3) Croc + T(er) + T(f7) + T(f'[e1)) + T(f*?[e1, €2])
Cioc + T(€1) + Ciar + T(f*[e2, €1])

T,?(f er ez)

IA

iff
T(f7) + T(f'[es]) + T(f**[er, e2]) < T(er) + Crar + T(f*'[e2, 1))

which, by equation 3.21, is equivalent to

T(f7) + T(f*[ea]) < Crar (3.26)
The assumption indicates that:

o If e; is computed locally then the value for e; will return before f1[e]
has completed. Therefore, the local processor will not have to wait

for the value of e, at any point during the evaluation of (f e; ej).

o Otherwise, if e, is evaluated locally, then f?[e;] will finish before the
value of e; arrives, and the local processor will have to wait for the

value of e; before staring the execution of f%1[e,, ¢;].

It would seem that the parallel execution time would be less in the case
in which the local processor does not have to wait. However, if the other
choice were made, more of the computation might occur in parallel. In-
equality 3.26 shows, surprisingly, that the decision should be based only

on the communication overhead and certain properties of f and not on

‘the relative execution times of e; and e, (once inequalities 3.24 and 3.25

are satisfied).

. Assume

T(e2) + Ciat 2 T(er) + T(f7) + T(f[en])

and

T(e1)+ Clar 2 T(ea) + T(f7) + T(fz[ez])
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If so,
T;}(f €1 62) = Cloc + T(62) + Cla,t + T(f1'2[e'l, 62])
S Cloc + T(el) + Cla.t + T(f2’1 [627 61])
= TZ(f (] 62)
iff

T(e2) + T(f e, €]) < T(er) + T(f>' ez, €1])

which, (again using equation 3.21) is equivalent to

T(ez) + T(f*[e2]) < T(er) + T(f'[en]) (3.27)

The assumption states that the local processor will have to wait for the
value of the remote argument. Inequality 3.27 indicates that the local
argument should be chosen such that the amount of work that the local

processor can do before waiting is maximized.

Once we have determined which argument is better to compute locally, we

must determine if the parallelism available is worth exploiting; that is if

Tp(f (4] 62) S T_,(f €1 62) (328)

Assume that T,(f e; e2) is minimized by evaluating e; locally, in which case
T,(f e1 e2) is determined by equation 3.22. There are two cases to be considered:

1. If
T(e1) + T(f7) + T(f'[ea]) = T(e2) + Crar (3.29)

then
Tp(f €1 62) = Cloc + T(el) + T(f_) + T(fl[el]) + T(fl'2[61, 62])

Therefore T,(f e; e2) is less than Ty(f ey e), as defined in equation 3.1,
lff C!oc S T(eg).

2. If
T(e2) + Crar = T(e2) + T(f7) + T(f[en]) (3.30)
then f must wait for the value of e, to return. Inequality 3.28 is satisfied
iff

Cloc + Clat < T(e1) + T(f™) + T(f[er))
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The communication cost (local overhead plus latency) must be less than
the work that can be done on the local processor before requiring the

value of e,.

Function calls with multiple arguments

We now extend the treatment of vertical parallelism to determine the best way
to evaluate an expression of the form (f e, ...e,) where f is strict in only some
of its arguments.

Again we assume that f is strict in only its first k¥ arguments. The first
question is: In what order should the arguments be spawned?

The answer will be based upon two pieces of information:

1. The minimum execution time for each e;, namely T'(e;).

2. The order in which the values of the arguments are needed in the function
f and the amount of work that can be done with each argument before
the next one is needed. In the previous section we assumed that f could
resume executing when the value of either of its arguments was available.
However, if the number k of strict arguments is large then the complexity
of the code for f would have to be on the order of k! to handle the values
of the arguments in any order. Therefore, we specify an order in which f

can use the values of its arguments.

Assume that f requires the values of its strict arguments in the ordere; . . . ¢
and that f*is the work that f can perform after the value of e; has returned
and before it needs the value of e;;;. The work that f* performs may include
creating new tasks to evaluate the non-strict arguments. After f* finishes
executing, the evaluation of the function application (including the appropriate
non-strict arguments) is complete.

Suppose that p; ... py is a sequence of integers that determines the order in
which the strict arguments are spawned. That is, each e; is the p;th argument
spawned. For example if p3 = 5, then ez was the fifth argument spawned. If
the arguments were spawned in the order in which they were needed by f, then
pi=11<i<k.

We would like to determine the value of each p; such that the total execution
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time is minimized. The total parallel execution time is given by the following

equation: '
To(f €1---eq) = My + T(f*)
where

M, = max(kCioe, p1Cioc + T(€1) + Clat)
M, = max(M; + f1, psCioe + T(€2) + Clat)

Mk = max(Mk—l + fk—la kaIOc + T(ek) + Clat)
Each M; represents the time at which:

1. the value of e; is available, and

2. f is ready to use the value of e;

Again a straightforward method for minimizing the parallel execution time
would be an exponential search over the possible orders in which the arguments

are spawned.
For the purpose of developing heuristics to be used by the compiler, there
are several pieces of information that can be extracted from the above analysis:
1. If e; and e;4, are needed at the same time, that is if T(f') = 0, then

the expression with the longer execution time should be spawned first. If

f =0 then

Mt' = ma'x(M'—l + fi_l)picloc + T(et))
M1 = max(M;, pit1Croc + T(eis1))
= max(Mi—l + fi—lypicloc + T(Ci), pi+lCloc + T(ei+l))

Assume T'(e;y1) > T(e;). We show that if p;y; > p; then the total exe-
cution time can be reduced by interchanging the order in which e; and
ei+1 are spawned. Suppose pi1 = p; + ¢, for some positive integer q.

Therefore,
My, = max(M;_1 + fi_l,piCloc + T(e;), pi + ¢Cloc + T(e€i41))
If we switch the order in which e; and e;y; are spawned then

M/, = max(M;_1 + 77, (pi + ¢)Cloc + T(&:), PiCiroc + T(€i41)
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Since T(ei41) 2 T(e;),

Di + qCIoc + T(61+1) _>_ (pi + Q)Cloc + T(ei)

and .
Pi + 4Cioc + T(€is1) 2 pi+ qCuoc + T(es)
Therefore M;, , > M;;,. We can show that if, for all j > i + 1,

M; = max(Mj_; + £, p;Cloc + T(e;))

then M < M; and therefore M} < M}. The proof is trivial and proceeds

by an induction on the value of j (and is left to the reader).

2. If two arguments have the same execution time then they should be
spawned in the order in which they are needed.® In other words, if
T(e;) = T(e;) and M; < M; for any values of p; and p;, then execu-

tion time is lower when p; < p; than when p; > p;.

Assume otherwise, namely that p; = p; + ¢ for some positive integer q.

Since T'(e;) = T(e;),
M,- = max(M-_l + fi_l, (pj + ‘I)Cloc + T(ei))

and
M; = max(Mj_l + fj_lapjcloc + T(ei))
Since M; > M;,

M; = max(Mj-1 + 77, (pj + 9)Cloc + T(e:))

If we interchange the order in which e; and e; are spawned, then
M| = max(M;_y + 1, p;Clo + T(e)) < M;

For any ! such that : < I < j,

MII = max(MII_l + fl_l,plcloc + T(C[))

5 A sophisticated analysis called Path Analysis has been developed by Bloss and Hudak [6]

to determine this order




73

and it can be shown by induction on the value of I that M| < M; (because
M| < M;). Therefore,

M; = ma‘x(M_;-l + fj—l’ (p.‘i + Q)Cloc + T(ei))
< max(Mj-1 + f71,(p; + ¢)Coc + T(e:))
MJ' '

Again by induction, if M] < M; then M| < Mj, and the total execu-
tion time is reduced if the arguments with the same execution time are

spawned in the order that they are needed.

3. By the same reasoning used in section 3.4.1, any arguments whose exe-

cution time is less than C),. should be executed locally.

3.5 Task Lifting

So far we have only considered the case in which each subexpression e; in
the expression (f e;...ey,) is turned into a task. This task may generate more
parallel tasks. For example, if each e; is of the form (e;; €;2. . . €in;) then after the
task for e; starts executing, tasks for each expression e;; may be generated. This
situation is pictured in figure 3.1 and shows that the task for e; is responsible

for creating the task for each e;;.

Figure 3.1: Task creation during execution
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It may be possible for the creation of the task for each expression e;; to be
“lifted” out of the task for e; and to occur at the same time that the task for
& is created. This situation is pictured in figure 3.2 and would require that the

task for e; be responsible only for waiting for the value of each eij when needed.

Figure 3.2: Task creation for ”lifted” expressions

If this lifting were not performed, the creation of the tasks for each e;; would
not occur until after the task for e; started executing on a remote processor,
which would be at least Cj,:/2 (the latency for a one-way message) after the
task for e; was created. The lifting allows the creation of tasks for each e;; to
occur earlier.

Lifting has a drawback, however. Without lifting, the task for each e; incurs
Cioc creating a task e;; for each value of j. With lifting the parent task—
evaluating (f e;...e,)—incurs C,, for e;; for all values of 7 and j. Without
lifting, the task evaluating each e; incurs the cost of sequentially éreating sub-
tasks for e;1...ein;, but runs in parallel with the tasks for em, for all m #
t. Therefore, the total overhead execution time is affected by the mazimum
numbe;r of sub-tasks created (one for each e;;) in the task for each e;. If lifting
has occurred, then the creation of all tasks for the subexpressions e;; occurs
sequentially and the total execution time is affected by the total number of such
subexpressions. In short, without lifting the overhead cost of task creation is
parallelized while with lifting it is sequentialized. This situation is pictured in
figure 3.3.

Under what circumstances would be it be worthwhile for lifting to occur?

For simplicity we assume that only horizontal parallelism is being exploited and
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11

©

Figure 3.3: Sequential task creation due to "lifting”

in the expression (f e;...ex), f is strict with respect to all of the arguments.

Without lifting,
T,(f (e11---€1ny) .-+ (€k1 - €kn,)) = max(ty,...,t)
where for each ¢,

t; = 1Clo + ma'x(til’ ) tin,') + T(eil[ei% ceey ein.‘]) + Clat

and for all 4,7,
t,‘J‘ = jCloc + T(eng) + Clat
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For some q and r, ¢, is the largest value over all ¢;, and ¢,, is the largest value

over t,; for all j and

Tp(f (611 e 61n1) e (Ckl e Ck:'nk)) =
(q + T)Cloc + T(eq'r) + T(eql[eq2) e )eqn]) + 2C’Ia.t

With lifting,

T(f (e11---€1n)... (k1 ... €kn)) = max(#,,...,1};)

where

t: = (Z:;___l_ nm)CIoc + max(tﬁl, e ’tin.') + T(e,-l[e,-g, ey ein]) + Clat/2
ti; = JCioc + T(ei5) + Clas

For some ¢’ and a ' such that ¢}, is the largest value over all ¢/, and borpr 18

the largest value over t;,; for all j,

THSf (e11- - exn) - (Cht .. €xn)) =
(X802 nem) + 1) Clos + T(egrn )+
T(qul [qug, e ,qun]) + 301,_-”5/2

In order to see if lifting is worthwhile, the values of T, and Tzﬂ have to be com-
puted. Obviously, if Ci,. is quite large and the evaluation of each e; can be
broken down into a large number of tasks, lifting will probably not be worth-
while. On the other hand, if Cj,; is much larger than Cj,. and the number of
subexpressions, e;;, in each expression, e;, is small, then lifting may be worth-

while,

3.6 Sequentiality in Functional Programs

In a program the evaluation of two expressions may not be able to occur in
parallel with each other, even if their execution times are sufficiently large. If

so, they said to be sequentially ordered with respect to one another.
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There are two fundamental reasons for the evaluation of two expressions to
be sequentially ordered. The ﬁrgt reason is that there may be data dependencies
between them. Before a value can be used in one expression, it may have to
be computed by the other expression. In the previous section we saw that it is
beneficial to evaluate one of the érguments to a function call locally, since there
is little the body of a function can do without the value of any of its arguments.
There is sequential ordering between the evaluation of an argument and the
evaluation of the part of the body of the function that requires the value of
that argument. These two expressions can therefore be evaluated on the same
processor without the loss of parallelism.

The second source of sequentiality in a program arises from the desire to
preserve the termination properties of normal order evaluation. An expression
e cannot be evaluated unless its value will be needed. Therefore, the expres-
sion that determines if e will be needed has to be evaluated before e is. All

sequentiality of this kind is due to the conditional expression,

(61 — €3, 63)

in which the predicate e; must be evaluated before e, or es.

It is principally because of the existence of the conditional that function
applications may contain non-strict arguments.® Although strict arguments in
a function application can always be evaluated in parallel, there is often little
parallelism available between the evaluation of strict arguments and non-strict
arguments. Although the execution of some non-strict arguments may overlap
with the execution of some strict arguments, at least one strict argument must
be completely evaluated before any non-strict argument can start executing.

Note that the term sequentially ordered refers to the order of evaluation
among two or more expressions and does not imply that each such expression
must itself be evaluated sequentially. In the above conditional, each of e;, es,
and e3 may contain substantial parallelism. However, the conditional opera-
tor supplies no additional parallelism beyond that supplied by its arguments

and can thus be considered a sequential operator. Other examples include the

6The other source of non-strict arguments lies in functions, such as the K combinator, that

discard some of their arguments




78

standard boolean operators such as and and or.

3.6.1 Practical Sequentia;l'ity

Even if an expression contains some pérallelism, unless that parallelism is useful
(as defined in section 3.2) the expression should be evaluated by a single task
on one processor. Therefore, we define an expression to be practically sequen-
tial if it contains no useful parallelism. Notice that whether an expression is
practically sequential depends upon the communication costs of the particular
multiprocessor being utilized.

Definition: An expression e is practically sequential if for any method of eval-
uating e in parallel,

Ti(e) < To(e)

where T,(e) is dependent on Cj,. and Cj,.

Intuitively, an expression e is practically sequential if all subexpressions of
e are either sequentially ordered or are too fine grained to warrant evaluating
in parallel.

In the next chapter we return to the discussion of the compilation process.
The heuristic algorithms used by the compiler are based on the results of this

analysis.




Chapter 4

Automatic Partitioning of

Functional Programs

In this chapter we describe the second phase of our compilation process. A
program which has been transformed into a set of refined supercombinators is
partitioned into a set of serial combinators. Each serial combinator specifies
the behavior of a single task and determines the granularity of the parallel
computation. The analytical treatment of parallelism in chapter 3 has provided

the basis for the partitioning algorithms described in this chapter.

4.1 Heuristics

We now briefly describe the heuristics used by the compiler to partition the
“program. While these heuristics are based upon the analysis of chapter 3, the
amount of information available to the compiler is far less than is assumed in
the analysis. Even if the compiler had sufficient information, the complexity of
solving for T, for the various cases discussed above would make the compilation

time prohibitively long.

A more complete description of the algorithms used to partition the program

can be found in section 4.3.

79
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4.1.1 Determining Execution Times

The analysis of section 3.4 assumed that the execution times of various expres-
sions in a program were known. These execution times are in general uncom-
putable. In order for a compiler to p:artition a program based on this analysis,
it will have to rely on methods aimed at estimating how long an expression will

take to evaluate. The methods fall under the following categories:
1. User supplied information: The compiler can use information supplied by
the user in estimating the time required to evaluate a given expression.

Some possibilities are:

e Explicit specification of execution times: The user may be able to
specify how long a given expression will take to execute. In many
cases it would be sufficient for each function definition in the pro-
gram to be annotated with the expected execution time of a call to
that function. To be accurate, the expected execution time of an in-
vocation of each function would have to be independent of the value
of the arguments. Otherwise, the user may be forced to give an ex-
pected execution time for each function application in the program.
Based on these user-supplied execution time estimates, the compiler
can decide which expressions are worth evaluating in parallel and
the order in which parallel tasks for various expressions should be

created.

e Specification of program behavior: The user may be able to annotate
the program with information on how the program will behave. For
example the user may be able to specify, for each recursive function
in the program, how the depth of the recursion depends on the values

of the arguments.

If the execution time of a given function is dependent upon the value
of its arguments, the decision to decompose an expression involving
that function may have to be made at run-time (this is what the
Stardust interpreter [27] does). The compiler would have to gen-
erate code that would use the values of the arguments to aid the

dynamic scheduler in deciding where to evaluate each invocation of
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the function.

2. Execution Profiles: Supplied with information gained from previous pro-
gram runs, the compiler may be able to estimate the execution time of
various function invocatfbr;s in the current run. This requires some consis-
tency in execution times over the range of inputs. The program must also
be executed often enough to compensate for the expense of taking per-
formance measurements during the first run and for increased execution

time of the first run due to poor (or non-existent) partitioning.

3. Compiler Analysis: The compiler may perform a complexity analysis on a
program without any external assistance (such as annotations or profiles).
Naturally the analysis would have to be rather simple.

Since the goal of this research is to investigate the viability of automati-
cally partitioning functional programs, we use the third method listed above
to estimate execution times. The complexity analysis used in the compiler is
painfully simple and consists of the following:

o The complexity of each expression that does not include a recursive func-
tion call can be determined by adding up the cost of the instructions (e.g.
memory references, arithmetic operations, etc.) required to compute its
value. In this way an accurate estimate of execution times of arithmetic

expressions and other simple non-recursive expressions can be produced.

o The compiler has to assume that the complexity of a call to recursive
functions is essentially infinite. Therefore, a separate task will be created
to evaluate a recursive call. Unfortunately, calls to recursive functions
that take a very short time to evaluate may be sent to remote processors.
Since all invocations of recursive functions are considered to have the same
execution costs (namely co), the ability to reduce the total execution time
by ordering the spawning of remote tasks in an optimal way is lost.

As a heuristic, the execution times of recursive function invocations can be or-
dered by the size of the body of the function. If each pass through the body of
a recursive function f takes more time than each pass through a recursive func-
tion g then we assume that an invocation of f takes longer than an invocation

of g. This only works, of course, if the depth of the recursion of all functions is
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roughly equivalent.

If the expression in the function position is not the name of a user-defined
function or primitive operation then it may not be obvious whether or not
the function is recursive. It may bee a bound variable or some other higher-
order expression. In this case, an abstract interpretation of the program can be
performed to determine the nature (recursive or non-recursive) of the function.
This is analogous to the use of abstract interpretation to detect sharing in

functional programs described in chapter 2.

4.1.2 Heuristic Partitioning Based on Imperfect Infor-

mation

Using the simple complexity heuristic described above, the expected execution
time of a given expression is either some finite value or co. Most of the expres-
sions that do not involve recursion are simple arithmetic expressions that are
not complex enough to warrant creating a task for. In the analysis presented in
section 3.4, it was clear that any expression whose complexity is less than Cjo,
should be executed locally as part of a larger task. Expressions can be broken

down into three categories:

1. Those expressions with complexity less than Cj,,.
2. Those expressions with a finite complexity greater than Cj,..

3. Those expressions with an infinite complexity.

Using this limited information, the compiler has to determine which expres-
sion (aside from the ones with complexity less than Cy,.) to compute locally
and to decide upon an order in which to spawn those expressions that are being
executed remotely.

In most multiprocessors, the cost Cj,, of creating a task on a remote proces-
sor is generally far greater that the complexity of any non-recursive expression
found in a program. Therefore, the expressions will generally fall into two
classes, those with complexity less than C),, and those with infinite complexity.
In order to simplify the heuristics, we assume that only these two classes of

expressions exist.
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Primitive Operations

When a strict primitive operatidn, such as (e; + ejy), is encountered in a pro-
gram, the compiler has to decide which, if any, operand should be executed on
a remote processor. According:‘ to the analysis of section 3.4.1, if any operand is
evaluated remotely then it should be the least complex argument. The compiler
relies on the heuristic complexity analysis and information about Cj,. and Cj,;
to determine if either inequality 3.7 or 3.8 is satisfied. If so, then the primitive
operation is worth partitioning. :

If the primitive operator is the conditional operator, the heuristic decompo-
sition methods can be applied recursively to each of the predicate, consequent,
and alternate components of the conditional. However, neither the consequent

nor the alternate can evaluated in parallel with the predicate (nor each other).

Function Applications

In a function application, any strict argument whose complexity has been de-
termined to be less than Cj,. is computed locally. Since the strict arguments
with sufficient complexity to be spawned remotely usually have the same com-
plexity, namely oo, the order in which they will be spawned will be determined
by order in which they are needed in the body of the function.

In many cases, none of the arguments in a function application will have
an execution time less than Cj,.. In this case, one of the arguments should be
evaluated locally. Since all of the arguments will generally have a complexity
of oo, the argument that is needed first will be evaluated locally.

Determining the order in which the arguments to a function application are
needed within the body of the function can be difficult, especially in the pres-
" ence of higher order functions. A sophisticated analysis, called path analysis,
has been developed by Bloss and Hudak [6] to determine this order.

4.2 Serial Combinators

Since we are decomposing a functional program into tasks that will each be

executed on a single processor, we need to completely describe the behavior of
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each task in such a way that a compiler can generate code for it. In this section,
we assign a procedural description to the work that a task performs. One way
to view this procedural description 1s as an intermediate representation of the
source program in which explicit synchronization between parallel components
of the program has been included.

The procedural description of each sequential piece of the program is ex-
pressed as a serial combinator. A serial combinator is a function whose body
contains constructs for creating and synchronizing the execution of tasks. The
body of each serial combinator is executed sequentially.

Each call to a serial combinator creates a new task, along with a new node
in the program graph to hold the state information for that task task. Like any
combinator, a serial combinator does not require a hierarchical environment
structure. Maintaining a hierarchical environment structure on a multiproces-
sor could require interprocessor communication to resolve variable references,
since the environment may be spread over a number of processors. Every
variable accessed by a serial combinator, however, can be found in the local
environment represented by its activation record.

A serial combinator is defined to be a function with the following properties:

.1. It is a combinator.

2. Its body is practically sequential and consists of:
e expressions that are either sequential or too fine-grained to decom-
pose,

e constructs that explicitly create tasks by invoking other serial com-

binators,
e constructs for initiating the evaluation of non-strict arguments, and
e constructs for suspending evaluation until the values computed by

remote tasks arrive,

3. It is the largest possible function that satisfies properties 1 and 2. That
is, its body could not occur as a subexpression within the body of another

serial combinator.
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The third property listed above reflects the fact that the program should be
partitioned into as few serial combinators as possible without reducing the po-
tential for exploiting useful pa,iéilelism. If a practically sequential expression is
decomposed into several serial:combinators, its execution time will be adversely
affected by the overhead of the serial combinator calls. Since each serial com-
binator specifies the work to be performed by a single task, some unnecessary
overhead may be incurred by the task scheduler if there are a greater number
of serial combinator invocations than necessary.

Even though serial combinators control the execution order by creating tasks
and initiating the evaluation of delayed expression, they must preserve the
termination properties of normal order reduction. In section 4.2.5 we discuss
how delayed serial combinator applications are also represented as nodes in the

program graph and are used to preserve the lazy semantics of ALFL.

4.2.1 Serial Combinators and Tasks

Serial combinators were chosen to specify the behavior of a task because they
are natural extensions of the functions used in uniprocessor graph reduction.
On a uniprocessor system, graph reduction provides the mechanism for lazy
evaluation and maintaining shared expressions via the creation of nodes in the
graph. On a multiprocessor, the evaluation of serial combinators via graph

reduction accomplishes all of the following;:

1. It supports lazy evaluation via the creation of nodes representing delayed

expressions in the same manner as uniprocessor graph reduction.

2. It supports sharing of expressions via the manipulation of arcs between

nodes, also in the same way as uniprocessor graph reduction.

3. It provides a representation for the state of a task via the nodes in the
graph. The state information that must be contained in each node in-

cludes

e local variables and information concerning their state (either uneval-

uated or evaluated),

e an instruction pointer, and
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e synchronization information (whether the task is executing or sus-
pended, and which values if any are needed before the task can

resume).

4. It provides a multi-threaded d.ynamic chain as a mechanism for parallel
activations of serial combinators to return values to the task that spawned
them. The dynamic links for many currently executing functions may
point to the same activation record.

Multiprocessor serial combinator reduction subsumes all the functionality
of uniprocessor graph reduction. Thus, every function in the partitioned pro-
gram will be a serial combinator and every serial combinator will generate a
node in the graph, whether or not explicit synchronization or lazy evaluation
is required. In chapter 5 a new model of graph reduction is discussed that lifts
this requirement. A detailed description of how multiprocessor graph reduction

is actually implemented can be found in chapters 6 and 8.

4.2.2 Constructs for creating tasks and synchronization

Refined supercombinators, like functions in ALFL, are represented in a standard
parse-tree form call LIF, for Lambda Intermediate Form.! The representation
of serial combinators, however, must make the evaluation order of their bodies
explicit. Serial combinators are represented in Serial Combinator Intermediate
Form or SCIF. SCIF is a parse tree representation that includes constructs
for creating tasks, synchronizing tasks, and initiating the evaluation of delayed
expressions.

These added constructs are the spawn, wait, and demand constructs. For
ease of explanation, we will represent serial combinators using S-expression

syntax much like that of Lisp. Each construct is described below.

The demand construct

The demand construct has the form

(demand (vy...v,)

1LIF is very similar to another intermediate representation for functional programs called
FLIC [59].
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body)
and indicates that the values Qf variables v; ... v, should be demanded in par-
allel. The evaluation of body begins as soon as the values of v, ... v, have been
demanded and does not wait for the values to return. Because serial combina-
tors preserve the termination prc;perties of lazy evaluation, we must be certain,
using strictness analysis, that the values of v; ...v, will be needed at some
point in the computation.

Demanding the value of a variable may create a task to evaluate a delayed
expression. Thus, the order in which variables occur within a demand construct
is significant. Using the heuristics of section 4.1, the variables are ordered
according to the complexity of the expressions that they are bound to (if that

can be determined) and when their values are needed within body.

The wait construct

A wait construct has the form

(wait (v1...v,)

body)

and indicates that the values of v; ... v, must be available before the evaluation
of body can begin. If the values of v; ...v, are still being computed by remote
processors then the evaluation of the serial combinator is suspended. Evaluation
is resumed when the needed values have returned. Each of v; ... v, must have
already been demanded or spawned (see below). Although the evaluation of a
serial combinator call may be suspended, the local processor is free to execute
any other available task. The order in which the variables occur in a wait

construct is irrelevant.

The spawn construct

The spawn construct has the form

(spawn ((vq expy) ... (v, exp,))
body)
and specifies that each expression exp; should be evaluated by creating a new

task, along with a corresponding node in the program graph. Every function call
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that creates a node in the gré,ph must be an invocation of a serial combinator.
Therefore, each ezp; must be a serial combinator call. When exp; becomes
evaluated, the value returned by the éc');‘responding task is bound to the variable
v;. Since the evaluation of exp; has already commenced, v; should not occur
in a demand construct at any point in body. The evaluation of body proceeds
without blocking on the values of v, ...v, and thus each v; must occur within

a wait construct when its value is needed.

The spawn construct is the only way to specify the creation of a node.
Therefore all serial combinator applications must occur within a spawn con-
struct. If the compiler determines that one of the serial combinator applications
in the spawn construct should be evaluated locally (based on the analysis and
heuristics of section 3.4), the corresponding task will be executed on the local
processor without invoking the dynamic scheduler. In this case, the variable-
expression pair in the spawn construct is marked “local”. An example of the

use of the spawn and wait constructs is:

(spawn (((v1 (f x y)) (local v2 (g x y))))
(wait (vi v2)
(+ vi v2)))

The order in which variable-expression pairs occur in a spawn construct is
significant and indicates the order in which the corresponding tasks are created.
The order of the variable-expression pairs is determined using the heuristics of
section 4.1. Expressions within a spawn construct may contain references to

variables bound within the same spawn construct.

In the above example, it may seem strange that the variable v2, which was
computed locally, occurs in a wait construct. The evaluation of (g x y) may
suspend, and it is possible for the value of v1 to become available before the
value of v2. If this happens, we do not want the evaluation of (+ vi + v2) to
begin when v1 arrives, but rather to wait until the values of both variables are

available.
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The let construct

A final construct that is of less interest but is still useful is the let construct. It
has the form o
(et ((vy ezp) ... (v, exp,)
body) '

and is similar to spawn with the exception that each ezp; is an expression
that can be executed immediately as part of the current task on the local pro-
cessor without invoking graph reduction. This means that exp; is restricted to
an application of a primitive operator that requires no activation record. Each -
exp; will be evaluated in a conventional manner (using registers, temporary
locations, etc.) on the local processor.

The evaluation of body continues as soon as the values have been computed.
Naturally, no v; need appear in a demand or a wait. The let construct is
primarily used to show that certain arguments in a serial combinator application
are not worth evaluating in parallel but should still be evaluated immediately.

An example of the use of the let construct is
(let ((vi (+ x y)) (v2 (x y 2)))
(spawn ((local v3 (f vi v2)))
(wait (v3)
(+ v3 2)))) ,
The order in which variable-expression pairs occur in a let construct is irrelevant
since all the expressions will be evaluated sequentially.

It is worth noting that the constructs described above can be viewed of as
annotations to expressions written in the lambda-calculus (or some equivalent
functional notation). As such, these constructs could be provided to allow a
programmer to specify explicitly the desired parallel behavior of his program.

Research into para-functional programming [30,35,31] has explored the possi-

bility of including these kinds of annotations in functional languages.

4.2.3 The placement of spawns and demands

In section 4.3, we present the algorithm for translating refined supercombina-
tors into serial combinators. In this section, we discuss the placement of the

synchronization constructs in a serial combinator.
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To maximize the amount of useful parallelism, the serial combinator invo-
cations should be spawned as soon as it is known that their values are needed.
Likewise, variables bound to non-strilé't‘ arguments should be demanded as soon
as it is known that their values are needed. For the spawns and demands to oc-
cur as soon as possible during execution, the spawn and demand constructs in
the SCIF tree representation of each serial combinator definition must occur as
high in the SCIF tree as possible. That is to say that each expression spawned
and each variable demanded is lifted, or hoisted, up the tree from where it orig-
inally occurred to the first place in which it can be determined that it will be
needed.

This is a different issue from the lifting of expressions out of tasks, described
in section 3.5. Since a serial combinator specifies the behavior of a single
task, lifting an expression within a serial combinator body does not move the
expression out of the task in which it would ordinarily occur.

An expression is first determined to be safely evaluable at at one of two
places:

1. At the branches of a conditional: Before the predicate of a conditional is

evaluated, those expressions or variables that occurred in either branch
(but not both branches) of the conditional cannot be spawned or de-
manded. Once the predicate has been evaluated, all serial combinator
calls whose values will be needed in the appropriate branch can immedi-
ately be spawned. For example, suppose the following expression com-

prises the body of a function in LIF:
fxy) > (gxy +hxy),1

where f, g, and h are all sufficiently complex to occur in spawn con-
“structs and the values of x and y are available. The corresponding SCIF
expression could be (ignoring the need for a wait construct),
(spawn ((local vi (f x y)))
(if v1 (spawn ((v2 (g x y)) (local v3 (h x y)))
(+ v2 v3))
1))

Notice that the calls to g and h cannot be hoisted any higher without

being premature.
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2. At the top of serial combinator definitions: If there are serial combinator
applications that will always be evaluated within a serial combinator body
then these a,pplica,tions'svhould occur in a spawn construct at the top of
the serial combinator definition. Likewise any variable that may be bound
to a delayed expression and will eventually be referenced should occur in
a demand construct at the top of the serial combinator definition. In the
previous example, the spawn construct containing the call to £ occurred

at the top of the serial combinator body.

4.2.4 The placement of waits

In order to minimize the time that tasks spend waiting, each serial combinator
should accomplish as much as possible before encountering a wait construct.
Therefore wait constructs should occur as low as possible in the SCIF tree for
each serial combinator. In contrast to spawns and demands, a wait construct
containing a set of variables should therefore be hoisted as little as possible
above the place where the variables are first referenced.

The most obvious place for a wait construct is immediately before a variable
reference, where it would contain only that variable. Suppose that the variable
reference occurs within an arithmetic expression (or any other expression that
does not utilize graph reduction). Such an expression should be evaluated
using the registers and stack of the local processor to hold the operands and

intermediate values. If the expression
+ (xxy) (-2w) (4.1)

occurs within the body of a function and and only the values of x and y are

. known to be available then z and w will have to occur in a wait construct. A

straightforward translation of the expression into SCIF would be
(+ (* x y) (- (wait (z) 2z) (wait (w) w)))

However, there are two problems with this SCIF expression:

1. Intermediate values: If evaluation of the expression has to suspend until

the value of z or w has arrived then the value of (* x y) may already
have been computed and would need to be saved. There are several ways

to accomplish the saving of intermediate values during suspension:
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e The activation record for the serial combinator containing the ex-
pression is made large enough to contain all intermediate values
that could possibly exist during suspension. This could result in

a significant waste of space.

¢ An area of memory is set aside for storing intermediate values during
suspension. As the execution of each serial combinator invocation
is resumed, the corresponding intermediate values have to be lo-
cated and restored into the registers. The cost of maintaining such

a mechanism could be significant.

In either case, the occurrence of a wait in an arithmetic expression (or
any other primitive operation) adds a significant overhead to the context

switch during suspension.

2. Multiple Suspensions: After the value of z had returned, the task evalu-
ating the expression would resume executing. However, before any useful
computation could be performed, the task would again be suspended if
the value of w had not yet arrived. Therefore, the execution of the task
would have been suspended and resumed fwice even though resuming

execution after the value of z returned provided no benefit.

A better translation of expression 4.1 into SCIF would be
(wait (z w) (+ (x x y) (- z w))) (4.2)

Once the evaluation of the arithmetic part of expression 4.2 begins, all the
needed values are available and execution will not have to suspend. This means
that no intermediate value will have to be preserved during a suspension. In ad-
dition, only one wait construct (and thus only one suspend/resume) is sufficient
to evaluate expression 4.2.

In general the execution times of expressions involving only primitive op-
erations are short. Therefore, the lifting of a wait construct out of such an
expression would not cause a task to wait much earlier than necessary.

The only places a wait construct can occur without creating the problem
of storing intermediate values during suspension is at the top of the body in a

serial combinator definition and at a conditional. For example,
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fxy->gx, hy
can be translated into SCIF as, follows:

(spawn ((local vi (f x y)))

(wait (v1) :
(if v1 (spawn ((local v2 (g x)))
(wait (v2)
v2))
(spawn ((local v3 (h y)))
(wait (v3)
v3))) ))

Not all conditionals should be allowed to contain wait constructs, however.
If a conditional expression is nested within another expression, a wait construct

might create the problem of storing intermediate values. For example, if
(x (+ xy) (if w 2z 2))
has to block on the value of z, a translation of the expression into

(wait (x y w)

(* (+ xy)
(if w (wait (2)
z)
2)))

would require storing the value of (+ x y) during suspension. One solution
would be to transform the original expression such that the conditional is not

nested:
w-> (x+y) *Z (x+y)*2
The SCIF version would be

(wait (x y w)
(if w (wait (z) (x (+ x y) z))
(x (+ xy) 2)))
However, such a transformation can only occur if the conditional will always

be executed (i.e the expression is strict with respect to the conditional).

The other alternative is to treat a nested conditional expression as an invo-

cation of the serial combinator IF, defined as follows:
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IF p c a == (wait (p)
(if p (demand (c)
(wéit ()
. €))
(demand (a)
(wait (a)
a))

The SCIF version of the previous example would be
(spawn ((local vi (IF w z 1)))
(wait (vi x y)
(x (+ x y) vi)))
A wait construct may occur within a conditional expression that is nested
within another conditional expression. For example,
(if x 1 (if y 2 3))
can safely be translated into
(wait (x)
(if x 1
(demand (y)
(wait (y)
(if y 2 3)M))

We are guaranteed that no intermediate value will be generated by the predicate
of the outermost conditional.

For the rest of this chapter, we will assume that all conditionals that should
not contain wait constructs have already been translated into calls to the IF
combinator. This will simplify our presentation of the translation of refined

supercombinators into serial combinators.

4.2.5 The creation of delayed expressions

In graph reduction, the delayed evaluation of an expression is represented by
a node in the program graph. The node serves as a closure, containing all the
information that will be needed when the expression is ready to be evaluated.

We have not yet described how the creation of nodes representing the de-
layed evaluation of expressions is specified in serial combinators. The evaluation
of an expression is delayed when the expression occurs as a non-strict argument

in a serial combinator application. As mentioned in section 4.2.2, every serial
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combinator application must occur in a spawn construct. The arguments in
these applications are assumed.to be non-strict unless they are simply vari-
ables that have already been Bound to expressions in spawn, demand, or let
constructs. Given the expression

f (g 1) 2 '
if £ is not strict in its first argument, the SCIF version of the above expression

would be

(spawn ((local vi (£ (g 1) 2)))

(wait (v1)
vi))

Since (g 1) was not explicitly spawned, a node in the graph is created to rep-
resent its delayed evaluation. If the value of the corresponding bound variable
in the body of £ is demanded then evaluation of (g 1) will commence.

If, however, f is strict in its first argument (and g is sufficiently complex)

then the SCIF version of the above expression would be

(spawn ((vl (g 1)) (local v2 (f vi 2)))
(wait (v2)
v2))

In this case, we can see that the evaluation of (g 1) has already started by the
time £ is called. In chapter 6 we describe the mechanism for passing unevaluated

(or currently evaluating) arguments to serial combinators.

Lazy creation of delayed expressions

In his dissertation, Hughes [37] describes an optimization that reduces the cost
of representing delayed expressions by insuring that at most one node is created
for each non-strict argument in a function invocation. In conventional graph
. reduction, several nodes may be created to represent a non-strict argument.
For example, in the serial combinator expression
(spawn ((vi (f (g (h x 1) (hy 2)) 3)))
vi)

where f is not strict in its first argument, the straightforward way to create a
delayed expression for (g (h x 1) (h x 1) y) would be to create a node rep-
resenting a delayed invocation of g and two other nodes representing the delayed

invocations of h. Figure 4.1 illustrates how three nodes are used to represent
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the delayed expression (g (h x 1) (h y 2)). We call this optimization lazy

£
213

/
/)I\\

h h
x |1 NEAE

Figure 4.1: Multiple nodes representing a delayed expression

creation.? A new serial combinator foo is defined as follows:
fooxy==g(hx1) (hy2);
Our original expression becomes (£ (foo x y) 3).
Only one node is needed to represent the delayed expression (foo x y) as

shown in figure 4.2. Only if the value of (g (h x 1) (h y 2)) is needed will

N

/

£

PE

foo

xly

Figure 4.2: A single node representing an arbitrarily large delayed expression

2Hughes left it unnamed.
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the subgraph pictured in figure 4.1 be constructed. In general, a subgraph
representing a delayed expression may be arbitrarily large. Thus lazy creation

can provide a significant savings.

4.3 Serial Combinator Generation

4.3.1 The Serialize algorithm

The serialize algorithm transforms an LIF expression into an SCIF expression,

taking an LIF expression e and returning a tuple:
(¢/y 5, w, d, 1, C)

where

e ¢'is an SCIF expression which may contain spawn, wait, demand, and let

constructs.

¢ s is a set of variable-expression pairs that should occur in a spawn con-

struct before e’ is evaluated.

e w is a set of variables that should occur in a wait construct before ¢’ is

evaluated.

e d is a set of variables that should occur in a demand construct before e’

is evaluated.

e | is a set of variable-expression pairs that should occur in a let construct

before e’ is evaluated.

e C is a set of new serial combinator definitions that were generated by
serialize.
We define serialize later in this section.
The serialize_prog algorithm transforms a program—represented as a set of
refined supercombinators—into a set of serial combinators. Here is the defini-

tion of serialize_prog(P) where P is a refined supercombinator program:
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1. Let P = { F1 ZTy1... L1k == €1

Fn Tpy oo Lok, == €ny .

result e}
9. For eachi, 1 <i<n,let (e}, si, wi, di I;, C;) = serialize(e;)
3. Let (¢/, s, w, d, |, C) = serialize(e)

4. For each i, 1 <1 < n, redefine each F. to be a serial combinator:
Fizy...¢q == order _constructs(el, si, wi, di, li)

where order _constructs creates an expression that contains the neces-
sary spawn, wait, demand, and let constructs for s;, w;, di, and [, re-
spectively. The body of the expression (after these constructs) is ef.

Order _constructs is defined later in this section.

5. Let Cp be the set containing the definition of each serial combinator F;
generated in the previous step. In other words, C, contains the serial
combinator version of each function defined in the source (or refined su-

percombinator) program.
6. Let ¢ = order constructs(e’,s,w,d, 1)

7. The serial combinator version of the program P consists of the set of new

combinator definitions described by
n
c,ulJ G
i=1
and the result expression e”.
In simple terms, serialize decomposes a function application or binary ex-
pression as follows:
1. For each strict argument of sufficient complexity, serialize creates a serial
combinator definition and puts a call to that serial combinator into a

spawn construct.

2. Each strict argument that is not worth spawning is placed in a let con-

struct.
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3. For each non-strict argument, a new serial combinator definition is created
and a call to that serial combinator is substituted into the expression.
Since this call is not explicitly spawned, a node in the graph is created to

represent its delayed evaluation (see section 4.2.5).

Here is the formal definition of serialize. It takes an expression e and

performs the following actions:

o If e is a constant ¢ then return (¢, {}, {}, {}, {}, {})
e If e is a bound variable z then return (z, {}, {z}, {z}, {}, {})

e If e is a conditional (if e; e; es) then:

1. Let (e, s1, w1, d1, i, C;) = serialize(e,)
(eh, S2, wa, da, lp, Cy) = serialize(e;)
(e, s3, ws, ds, l3, C3) = serialize(es)
2. Let d' =d; U(dyNdy)
3. Let e/’ = (if ¢}
order_constructs(ey, sy, (wy —wy), (dz —d'), 1)
order _constructs(es, s3, (ws —wy), (dz —d'), I3))

4. Return (¢/, s1, wy, d, 11, (C1 UC, U C3))

o If e is a strict binary operation, say (+ e; e;), perform the following
steps. We assume, using the complexity measure T defined in chapter 3,

that T'(e;) < T'(ez). Otherwise substitute e; for e; and vice versa.

1. Let (e}, s1, wi, di, i, Ci) = serialize(e;)
(€3, s2, wa, da, Iz, C3) = serialize(es)
2. If
T(ez) £ T(e1) + Ciot and Cioe + Clor < T'(e2))

or

T(el) + Clat S T(ez) and Oloc S T(el)
then e; can be evaluated in parallel with e;.®> Therefore:

(a) Create a new identifier V

3These are just inequalities 3.7 and 3.8 from chapter 3.
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(b) If task lifting (see section 3.5) is not performed then

1.

il

ii.

v.

V.

Let ef = order_con'&tructs(e’l, s1, w1, dy, ly). Thus e} con-
sists of the expression e} preceded by the spawns contained

in s, the waits contained in w, and so on.

Define a new combinator F as follows:
"
F1 a...4, = €

where a; ...a, are the free variables in e|. Let C be the

singleton set containing this new combinator definition.
Let ' = (+ V ¢})

Let p be the variable-expression pair (V (F} a;...a,)).
Return (', (s2 U {p}), (w2 U {V}), ds, I, C; UC,UC)

(c¢) If task lifting is performed then

1.

il

1il.,

v,

Let w be the set of variables in w; that occur free in e} but
not in any expression in l;. Let w’ = w; — w. The value of
each element of w’ is needed in either s; or I;. Therefore w'’

must also be lifted out of ;.

Define a new combinator F} as follows:
Fy by by = (wait w e))

where b; ... b,, are the free variables in e} including the vari-
ables bound in s; and /;. Let C be the singleton set con-

taining this new combinator definition.

Lete' = (+ V ¢€})

Let p be the variable-expression pair (V (Fy b;...b,.)).
Return (€', (s; Usz U {p}),(w' Uw, U{V}), (d1Ud,), (L U
lh), (C1uCuC))

3. Otherwise, (+ e; e3) should not be decomposed. Return

((+ €] €3), (s1Us2), (wiUws), (diUdy), (WUL), (C1UCy))

o If ¢ is an application (ep €;...e,) then




101

. For each ¢, 0 < i < m, let (e}, s;, wy, di, l;, C;) = serialize(e;)

. Define the following sets:

S={i | eo is strict in its ¢th argument}
P={ili€ S and T(e;) < Cic}
Q=1{j 1] €S and T(e;) > Ci)
R={k|k¢gS, k<n}

. Let V; be a new identifier for each 7 € S and let V also be a new

identifier.

. If lifting is not performed then:

(a) For each j € (Q U R), let ef = order constructs(e}, s;,wj;, d;, 1;)

and define a new combinator Fj}:
.
Fj Qi1 0. Qjn; = 6j

where aj; ...ajn; are the free variables in e;. Let C' be the set

of all the new combinator definitions.
(b) Let I={(v; €}) | j € P}
(c) For each j € Q, let p; be the variable-expression pair
(v; (Fj aj1...a4,;)). Also, let p be the variable-expression pair
(V (vo z1...2,)) where, for 1 <17 < n,
) v ifies
x"_{ (F: ay...am) ii€R
(d) Let s ={p;|j € Q}U{p}
(e) Let w= |J wj, and let d = | ] d;.
JEP JEP

(f) Return (V, s, w, d, I, (|JCi)u C)

=1

. Otherwise, if lifting s performed then:

(a) For each j € Q let w} be the set of variables in w; that occur
free in e but not in any expression in [;. Also, for each j € Q

define a new combinator F:

Fj b_,'l .. -bjmj = (wait w;- 6_,7)
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where bjy ... b;, ; are the free variables in e;-. Let Cg be the set

of these new combinatpr, definitions.

(b) For each j € R, let €/ = order _constructs(e}, s;, w;, dj, 1;)

and define a new combinator F;:

"

Fj ajl...ajnj =eJ

where ajy ... aj,; are the free variables in e;. Let Cr be the set

of these new combinator definitions.

(¢) Let 1= {(v; ¢) | j € PYu(U1L)
JES
(d) For each j € Q, let p; be the variable-expression pair

(UJ' (FJ bjl e bjm_,-))
Also, let p be the variable-expression pair
(V (vo 21...2,))

where, for 1 <1 < n,

vi ifies
T =
‘ (F; ai1...0in,) ifi€R

() Let s={p; |7 € Q}U(Us:) Up

1€S
(f) Let w=({J w;) U (|J(wi—w!}) U {V} and let d = U d;.
JEP i€Q JES
(g) Return (V, s, w, d, I, (|J C;)UCyU Cr)
i=1

4.3.2 Order_constructs and Top_sort

Order_constructs is defined as follows:

order _constructs(e, s, w, d, I) = (demand d

top_sort(e,s,w,1))

It creates a demand construct containing the variables in d. The body of the

demand construct is an SCIF expression generated by top_sort.
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Top_sort takes a iist of spawns, waits, and lets and creates an SCIF ex-
pression with the appropriate constructs. Since expressions in a let construct
may reference variables boufid_ in a spawn construct and vice versa, the let,
spawn, and wait constructs have to be (topologically) sorted so that variables
are bound before they are used.

Top_sort(e, s, w,l) behaves as follows:

o If s ={} and | = {} then let ¢’ = (wait w e) and return e'.

¢ Otherwise, define the following sets

s’ = {(vi ezp;) | (vi exp;) € s and exp; contains no
occurrence of a variable bound in s}

I'={(vj exp;)| (vj exp;) € l and v; occurs free in an
expression in s’}

w' = {vr | vk € w and v} occurs free in an

expression in !’}

¢ Let e’ = topsort(e, (s-s)’, (w-w’), (1-I')) and return

(wait w’
(let U
(spawn order_spawns(s’,e’)

e))))

The procedure order _spawns(s’,e’) arranges the variable-expression pairs

in s’ in the order in which the variables are referenced in €’ (see section 4.1.2).

Consider the following example of the use of order_constructs. If

s={(v1 (£ x y)) (v2 (g v4 2)) (v3 (£ 2 3))}
l={(v4 (+ x y))}
w = {vl, v2, v3, x}

d={x}

then order_constructs(s,w,d,,v5) will return
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(demand (x)
(spawn ((vi (f x y)) (v3 (f 2 3)))
(wait (x) o
(let ((v4 (+ x )
(spawn ((v2 (g v4 2)))
(vait (v1 v2 v3)
(+ vi (% v3 v2)))))))

4.3.3 The Clean-up Phase

A serial combinator expression generated by serialize may contain redundant

spawn or wait constructs. For example, the LIF expression

Gf (= x 1)
GAf (=y 1) (+ xy) 1)
2)

would be translated into

(demand (x)

(wait (x)
(if (= x 1)
(demand (y)
(wait (y)
(if (=y 1)
(demand (x)
(wait (x)
(+ x y)))

D)

2)))

The last phase, called the clean-up phase, of the translation of refined super-

combinators into serial combinators is a tree walk over the serial combinator

bodies (generated by serialize) to remove redundant demands and waits. Itis a

simple pre-order tree walk and the details are left to the reader. The cleaned-up

version of the above serial combinator expression would be
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(demand (x)

(wait (x)
(if (= x 1)
(demand (y)
(wait (y)°
(1if (= y 1)

+ x )
1))

2)))

The clean-up phase also attaches the label local to a variable-expression
pair in a spawn construct if appropriate. Any spawn construct satisfying the
following conditions will have its first variable-expression pair modified with

the local.

e The spawn construct is immediately followed by a wait construct.

e The first variable bound in the spawn construct occurs in the wait con-

struct.

Since evaluation will have to suspend until the first expression in the spawn

construct becomes evaluated, that expression should be executed locally.

For example, the LIF expression (+ (f x y) (g x y)) would be translated

by serialize into

(spawn ((v1 (f x y)) (v2 (g x y)))
(wait (vi v2)
(+ v1 v2)))

This expression would be translated by the clean-up phase into

(spawn ((local vi (f x y)) (v2 (g x y)))
(wait (v1 v2)
(+ vi v2)))

If the first variable bound in the spawn construct does not occur in the wait
list, no variable bound in the spawn construct can occur in the wait list. This
is because the first variable bound in the spawn construct is the first variable

whose value is required in the body (see order_spawns).
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4.4 Examples-

Here are two examples of the translation from ALFL programs into Serial Com-

binators. The serial combinator code is the actual output of the compiler (before
code-generation). »

The first example is a divide and conquer factorial program:
{ pfac 1 h == 1=h->1, { pfacl mid == pfac 1 mid +
pfac (mid + 1) h;

result pfaci} ((1+h)/2);
result pfac 1 10;

}

The only place where significant amount of parallelism occurs is in the body of
pfacl in which pfac is invoked twice in parallel.
The refined supercombinator version is:

{pfac1h==1=h—>1,pfacllh((1+h)/2);
pfacli 1 h mid == pfac 1 mid + pfac (mid + 1) h;
result pfac 1 10

}

and the serial combinator version is:

{ pfac 1 h == (demand (1 1)
(vait (1 n)
(it (= 1 n)
1
(et ((vi (/ (+1hn) 2)))
(spawn ((local v2 (pfaci 1 h vi) ) )
(wait (v2)
v2))))))

pfaci 1 h mid == (demand (mid 1 h)
(wait (miq)
(let ((v4 (+ mid 1)))
(spawn ((v15 (pfac v4 h))
(local v3 (pfac 1 mid)))
(wait (v3 vB)
(+ v3 vE))))))

result pfac 1 10

}

Even though pfac contains a spawn construct, the spawned expression is

evaluated locally and thus no attempt is made at exploiting (non-existent)
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parallelism. Only in the body of pfacl is parallelism exploited by spawning

two expressions simultaneously,  One of the spawned expressions is evaluated

locally.
The second example is Quicksort. The ALFL version is:
{gsL ==
L=01 -> [,
{ split X acc ==
X=[]->acc,

(hd X) < (hd L) ->
split (t1 X) [(hd X)~(hd acc),
hd (tl acc))],
split (t1 X) [(hd acc),
(hd X)~(hd (t1 acc))];
result { qsl res ==
qs (hd res) °°
((hd L) - gs:(hd (tl res)));
result gqsl; } (split (t1 L) [[1,0[11);
}

result qs [5, 1, 3, 0, 17, 34, 12];
}

in which it is assumed that the operators hd, t1, and ~(the cons operator) are
strict in all their arguments and can be accomplished without invoking graph
reduction. In addition, ~~(the append operator) is assumed to use the strict
version of .4
The refined supercombinator version of this program is:
{qs L ==1=[1 -> [1, gs1 L (split L (t1 L) [[1,011);
qs1l L res == gs (hd res) -~ ((hd L) ~ gs (hd (t1 res)))
split L X acc ==
=11 -> acc,
hd X < hd L ->
split L (t1 X) [(hd X)"(hd acc), hd (t1 acc)]
split L (t1 X) [(hd acc), (hd X)~(hd (t1l acc))];
result qs [5, 1, 3, 0, 17, 34, 12];

}

and the serial combinator version is

4The strict versions of cons and append are nonstandard in lazy functional languages. In
order to exploit the parallelism in the above manner, either a strictness analysis for lists [39,76]

or user-supplied information is required.
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{asL-==
(demand (L)
(wait (L)
(it (=L [D
(1 :
(let ((vb (t1 L)) (vé (- [1 (- 001 IINN
(spawn ((v8 (split L v5 v6))
(local v9 (gs1 L v8)) )
(wait (v9)
v9))))))

gqsl L res ==
(demand (res L)
(wait (res)
(let ((v10 (hd res)))
(spawn ((vi1 (gs v10)))
(let ((vi3 (hd (t1 res))))
(spawn ((vi4 (gs v13)))
(wait (L)
(let ((v12 (hd L)))
(wait (vi4)
(let ((vib (~ vi2 vi4)))

(spawn ((local vi8 (append vii viE)))

(wait (vie)
v16))))NNIN)
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{asL-==
(demand (L)
(wait (L)
(it (=L [D
(1 :
(let ((vb (t1 L)) (vé (- [1 (- 001 IINN
(spawn ((v8 (split L v5 v6))
(local v9 (gs1 L v8)) )
(wait (v9)
v9))))))

gqsl L res ==
(demand (res L)
(wait (res)
(let ((v10 (hd res)))
(spawn ((vi1 (gs v10)))
(let ((vi3 (hd (t1 res))))
(spawn ((vi4 (gs v13)))
(wait (L)
(let ((v12 (hd L)))
(wait (vi4)
(let ((vib (~ vi2 vi4)))

(spawn ((local vi8 (append vii viE)))

(wait (vie)
v16))))NNIN)




109

split L X acc ==
(demand (X acc)
(wait (X)
(it (= x D
(wait (acc )
acc)
(demand (L)
(wait (L)
(let ((vi18 (hd X)) (v19 (hd L)))
(if (< v18 v19)
(wait (acc)
(let ((v20 (t1 X))
(v21 (- (- (hd X) (hd acc))
(~ (hd (%1 acc)) [1))))
(spawn ((local v22 (split L v20 v21)))
(wait (v22 )
v22))))
(wait (acc)
(let ((v23 (t1 X))
(v24 (© (hd acc)
(¢ (¢ (ha X)
(hd (t1 acc))) [D)))
(spawn ((local v25 (split L v23 v24)))
(wait (v25)
v2B))INNIN

result (let ((v26 (5 ("1 (-3 (-0 (" 17
(3 CC12IDNOYNYN
(spawn ((local v27 (gs v26)))
(wait (v26)
v26)))

}

Since the function split is practically sequential, all spawns in its body are

local. Most of the useful parallelism is exploited in the body of gs1.




Chapter 5

A Heterogeneous Graph
Reduction Model

In the previous chapter, we stated that every function call in the program had
to be an invocation of a serial combinator and had to create a node in the
program graph. This is because a node is the only kind of activation record
available in graph reduction. For many serial combinator invocations, however,
the full power of graph reduction—supporting lazy evaluation, sharing, and
parallelism—is not needed.

In this chapter we describe a heterogeneous evaluation model that incorpo-
rates both graph reduction and conventional stack-based evaluation. A modi-
fication to the compiler, and an extension to the SCIF representation of serial
combinators, is presented in order to target the compiler to this evaluation

strategy.

5.1 Motivation

The graph reduction model, while extremely powerful and general, fails to
exploit a particular strength of current multiprocessor architectures: The hard-
ware and instruction set of each processor have been optimized for the execu-
tion of sequential programs written in first-order, call-by-value programming
languages. The organization of these machines is centered around the use of

registers for performing primitive operations on data and the use of a stack to
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provide a mechanism for executing procedure calls. Although it may be argued
that we would be better off designing processors specifically targeted for graph-
oriented evaluation (as in [11,17,51]) our desire is to build system that can

exploit the strengths of the current :machines.

We have already seen that many parts of a functional program may be prac-
tically sequential. It is also the case that in some of the practically sequential
expressions, applicative order evaluation preserves the termination properties
of normal order evaluation. Any expression that exhibits both these properties
can therefore be efficiently executed in a conventional manner, utilizing only
the stack and registers of the host processor (although higher-order functions

may require the creation of closures in a heap).

The serial combinator execution strategy described in chapter 4 was not
a completely pure graph reduction model. Expressions, such as arithmetic
operations, involving only primitive (strict) operators are evaluated without
graph reduction (and were thus placed in let constructs). Instead, they are
evaluated using a sequence of hardware-supported instructions to move data

into registers and perform primitive operations.

Each serial combinator call causes the creation of a new node in the program
graph to serve as an activation record for that call. Even if the serial combinator
call is to be evaluated sequentially, graph reduction is required to evaluate
the call. Using graph reduction to evaluate a sequential function call incurs
overhead costs not usually incurred by conventional stack-based evaluation.

The overhead results from:

1. Storage Management: The use of expensive techniques for allocating and

reclaiming activation records in a graph.

2. Graph Manipulation: The transformation of the graph by manipulating

arcs and updating nodes.

If graph reduction is not required to evaluate a particular serial combinator
invocation, the total execution time can be reduced by allocating the activation
record on a stack. The serial combinator would be evaluated by executing a

sequence of conventional stack-oriented instructions.
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5.2 Heterogéneous Evaluation Model

We would like to minimize oﬁe'fhead by using mechanisms for parallelism and
lazy evaluation only when necessary. In doing so, our evaluation strategy be-
comes becomes a hybrid of three evaluation models, which have varying degrees
of power and accompanying overhead. Listed in decreasing order of power and

overhead cost, these models are:

1. Parallel Graph Reduction
2. Sequential Graph Reduction

3. Sequential Stack-based evaluation

In chapter 4 we described the use of the first two models in serial combinator
execution but not the least powerful (and least expensive) model.

Graph reduction provides two services that conventional stack-based execu-
tion does not, namely heap (graph space) allocation of closures and a return
mechanism for parallel function applications. Heap allocation of closures is
necessary to support lazy evaluation via the construction of delayed expres-
sions. Closures are also constructed to represent partial function applications
(i.e. higher-order functions).

A serial combinator invocation may require a value that is being computed
on a remote processor. Therefore, the system must provide a mechanism for
suspending evaluation of the serial combinator until the needed value is avail-
able. Activation records must be created in a heap, not on the stack, in order to
preserve the suspended state of the invocation. The processor must be free to
use the stack for other purposes while the serial combinator call is suspended.

A serial combinator may call several other serial combinators in parallel.
Because of the nondeterminism in the order in which parallel function invoca-
tions complete, there must be a mechanism to provide synchronization between
functions that are returning values and the functions that called them. This is
usually accomplished by maintaining a number of status bits that are modified
when values return. The suspension and resumption of a function invocation
depend on the state of these bits. The overhead involved in setting and testing

the status bits is significant.
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In many functional programs there are sequences of function calls that con-
tain no parallelism; in these cases, heap allocation of activation records and the
use of status bits for synchronization is unnecessary. The activation records
for these function calls should be allocated on a stack. The stack provides a
sequential, deterministic return mechanism at very low cost. A heap is still
needed, however, to support lazy evaluation and higher order functions used in
other parts of the program.

We say a function is stack ezecutable if:

o It calls at most one function at a time; that is, it never makes several

function calls in parallel.

o It never “forks” a function call. That is, it never proceeds without waiting

for a value of a function call to return.

e It only calls functions that are themselves stack executable.

Determining if a function, f, is stack executable in a first order language in-
volves solving a simple recursive set equation. In the higher order case, f may
make calls to “unknown” functions and a collecting interpretation (or some
other sophisticated flow analysis) would be needed to determine if the unknown
function is itself stack executable.
| A complete application of a stack executable function can be executed on the
stack only if all of the arguments have already been evaluated. If an application
of a stack executable function contains an unevaluated argument, the activation
record must be allocated in the heap since evaluation of the function call may
have to be suspended.
Our compiler currently solves the set equation for stack executable functions
in the first order case, giving up when it encounters an unknown function call.
In the next section, we discuss how stack executable serial combinators are

found and transformed.

5.2.1 Modifying Serial Combinators

After the compiler has generated a set of serial combinator definitions based
solely on the graph reduction model, the SCIF representation of the serial

combinators is modified for the use of the heterogeneous evaluation model. This
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new representation for serial combinators is called eztended SCIF. An extended
SCIF parse tree, in addition to having the constructs described in section 4.2.2,
may contain a stack-spawn coﬁétruct. This construct is of the form,
(stack-spawn ((v; expy) ... (v, exp,))
body) '

and indicates that each expression exp;, which is a serial combinator call, can be
evaluated immediately on the local processor by creating an activation record
for it on the stack. The value returned by this conventional evaluation of exp;
is bound to the variable v;. The stack-spawn construct is similar to the let
construct, with the exception that an activation record is required for each
expression. Generally, there will be only a single variable-expression pair in a
stack-spawn construct, since multiple pairs would indicate that several serial
combinator calls are being evaluated sequentially.

Each ezxp; in the stack-spawn construct represents a serial combinator call
and must satisfy the conditions under which it can be evaluated using the stack.

These conditions are

e that the serial combinator is stack executable, and

e that all arguments in the call have already been evaluated.

The first step in creating a new set of serial combinator definitions that
can be executed on the stack is to determine which serial combinators are
stack executable. In terms of a serial combinator f expressed in SCIF, the
requirements stated in the previous section can be expressed as follows:

1. Every spawn construct within f contains exactly one variable-expression

pair.

2. A wait construct immediately follows every spawn construct and contains

the variable bound in the spawn construct.

3. The expression in each spawn construct must be a call to a stack exe-
cutable serial combinator and all the arguments in the call must already
be evaluated.

Any variable-expression pair in a spawn construct that satisfies the first two
conditions will already have been modified with the word local by the clean-up

tree walk described in section 4.3.3. Any occurrence of a spawn construct that
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satisfies the first, second, and third conditions above is a stack ezecutable spawn,
whether or not it occurs within a serial combinator that is stack executable.
For any program represented By.'serial combinators, we would like to find
the set S of stack executable serial-combinators. Obviously, the third condition
stated above requires the solution of a recursive set equation. In order for a
function f to be an element of S, all functions called by f must be elements of
S. Suppose stack(f, S) indicates, given S, whether the function f satisfies the

conditions stated above. If so, then

S ={f| stack(f,S) = true}

A fixpoint iteration method is used to solve for S. The initial set S° consists

of all serial combinators in the program.
SHY = {f | stack(f,S?) = true}

When a fixpoint is reached, i.e. $i*! = S’ for some value of j, then we have
solved the set equation and S = S/,
The definition of stack is

stack(f,S) = stack_walk(body(f), S)

where body( f) returns the body of the definition of f.

Stack_walk traverses the SCIF version of the body of f to determine if it is
stack executable. The arguments to stack_walk are a node n in the SCIF tree
and the set of stack executable functions. It assumes that the formal parameters

to f have already been evaluated. Stack_walk(n,S) behaves as follows:

1. If n represents a constant, a variable, or a binary operation then
stack_walk(n,S) = true

According to the definition of serial combinators in chapter 4, none of

these expressions can contain any synchronization constructs.

2. If n represents a conditional, (if p ¢ a), then
stack walk(n, S) = stack_walk(c, S) A stack_walk(a, S)

According to the definition of serial combinators, the predicate p cannot

contain any synchronization constructs.
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3. If nisalet consfruct, (let ((v; expy) ... (v, exp,)) body), orif n is

a demand construct, (demand ((v;...v,) body), then
stack_walk(n, §) = stack_walk(body, S)

Neither a let construct nor a demand construct affects whether a func-
tion is stack executable. This is because neither construct creates any

unevaluated expressions or executes any expressions in parallel.

4. If n is a spawn construct of the form:

(spawn ((v (g e1...€))
(wait (v1...v,)

body))

then
stack.walk(n,S) = (v € {v1,...,v:}) A
(g€S5)A
(each e; is an identifier) A

stack walk(body, S)

In this case, if some e; were not an identifier then it would represent a

delayed serial combinator application.

5. If n is a spawn construct that is not of the above form then

stack walk(n,S) = false

6. If n is a wait construct of the form, (wait (v;...v,) body), then
stack_walk(n, S) = stack_walk(body, S)

since each v; in the wait construct is assumed to have been evaluated.
For each stack executable function f, fwo definitions are generated. The first
definition specifies the behavior of the combinator when a call is to be evaluated
using graph reduction. This is necessary in case some of the arguments in a call
represent either a delayed expression or an expression currently being evaluated.
In either case, synchronization constructs such as demand and wait have to

occur within the body of f in order to use the values of these arguments.
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The second definition of f specifies its behavior when executed on the stack.
Since all arguments to f are assumed to be evaluated no demand construct is
needed in f. Additionally, since all expressions in spawn constructs must be
calls to other stack executable serial combinators, all spawns are converted to
stack-spawn constructs, and thus no wait construct is needed in f.

Every serial combinator in the program, whether stack executable or not, is
transformed into extended SCIF so that calls to stack executable combinators
may be, if appropriate, executed on the stack. Regardless of whether a combi-
nator f is stack executable, any stack executable spawn within the body of f
can be converted to a stack-spawn.

As a simple example, consider the factorial function (written in ALFL):

fac x == x=0 -> 1, x * fac (x-1);
The SCIF version of fac would be:
fac x == (demand (x)
(wait (x)
(if (= x 0)
1

(let ((v1 (- x 1))
(spawn ((local v2 (fac v1)))
(wait (v2)
(* x v2)))))))
Since the spawn in the body of fac is a stack executable spawn and fac is
stack executable, the two definitions for fac in extended SCIF are:

g-fac x == (demand (x)

(wait (%)
(if (= x 0)
1

(let ((vi (- x 1)))
(stack-spawn ((v2 (s_fac vi1)))
(* x v2))))))

s_fac x == if (= x 0)

1
(let ((v1 (- x 1))
(stack-spawn ((v2 (s_fac v1)))
(* x v2)))

g-fac is the version that utilizes graph reduction and s_fac is the stack exe-
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cutable version. Any call to fac with arguments that are either unevaluated
or currently evaluating must be a call to g_fac. Within g_fac the argument to

the recursive call is already e\;é,‘luated, thus g_fac calls s_fac.

5.3 Higher Order Functions and Closures

We have already discussed the difficulty in deciding whether a higher order
serial combinator is stack executable. Our compiler assumes that a call to
an unknown function in the body of a higher order serial combinator is not
stack executable. However, if a combinator returns a function as its value, the
combinator may still be stack executable.

When a function is returned as a value, a closure must be created to contain
the environment in which the body function will eventually be executed. In
graph reduction, this closure is represented by a node in the program graph,
in the same way that activation records are. If a stack executable combinator
call returns a function as its value, the activation record for the combinator
will be created on the stack. The node representing the result of the call will

be created in the graph.

5.4 Tail Recursion

Even if a serial combinator invocation is not stack-executable, the compiler may
be able to avoid allocating a new node to represent its activation record. If the
value that a function f returns is simply the result of a call to a function g,
then the activation record for a call to f can be overwritten with the activation
record for the call to g. This is the familiar tail recursion optimization, which
saves heap space as well as the time required to allocate and reclaim an extra
node.

Tail recursion is expressed in extended SCIF by a tail-spawn construct, which

is of the form,
(tail-spawn exp)
where ezp is a serial combinator application. This means that the current

activation record can be overwritten with the activation record for exp. The
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evaluation of exp proceeds immediately.
A spawn construct can be converted-to a tail-spawn construct if it is of the

form

(spawn ((v ezp))
(wait (v)
v))

Such a spawn construct can be converted to a stack-spawn construct con-
taining exp.
Consider the definition of £ in the following program:
{fxy== gx=hy->1, f (x+t1) (y+1);
g x == ...
h = ...
result £ 1 2;
}
The SCIF version of £ would be:
f x y == (spawn ((local vi (g x)) (v2 (h y)))
(wait (v1 v2)
(if (= v1 v2)

1
(spawn ((local v3 (f (+ x 1) (+ y 1))))
(wait (v3)
v3))))

Since £ is not stack executable, the best that the compiler can do is to convert
the last spawn into a tail-spawn.

f x y == (spawn ((local vi (g x)) (v2 (h y)))
(wait (vl v2)
(if (= v1 v2)
1
(tail-spawn (f (+ x 1) (+ y 1))))))

5.5 An example

For an example of how a program, represented as a set of serial combinators in
SCIF, is transformed into a new set of serial combinators in extended SCIF we

refer to the quicksort example in section 4.4.
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The SCIF version of the program is given on page 107. The extended
SCIF version of quicksort, in which stack-spawns and tail-spawns occur, is
given below. Notice that split is the only stack executable combinator in
the program. The names of the combinators that are evaluated using graph

reduction are prefixed by “g_”. The names of the combinators that are executed

on the stack are prefixed by “s_”.

{
—--- Graph Reduction Functions ---
g-gs L ==
(demand (L)
(wait (L)
(if (=L [D
0
(let ((v6 (t1 L)) (ve (= [1 (- [1 [1N))
(spawn ((v8 (g.split L v5 v6)))
(tail-spawn (gqsi L v8)))))))
g-g9sl L res ==

(demand (res L)
(wait (res)
(let ((v10 (hd res)))
(spawn ((vi1 (gqs vi0)))
(let ((v13 (hd (tl res))))
(spawn ((vi4 (gqs vi3)))
(wait (L)

(let ((vi2 (hd L)))

(wait (vi14)
(let ((viB (= vi2 vi4)))
(tail-spawn
(g-append vii v16))))))))))))
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g-split L X acc ==
(demand (X acc)
(wait (X)
(it (= x [
(wait (acc)
acc)
(demand (L)
(wait (L)
(let ((v18 (hd X)) (v19 (hd L)))
(if (< vis vi9)
(wait (acc)
(Let ((v20 (t1 X))
(v21 (= (" (hd X) (hd acc))
(~ (hd (t1 acc))
H»
(stack-spawn
((v22 (s_split L v20 v21)))
v22)))
(wait (acc)
(let ((v23 (t1 X))
(v24 (~ (hd acc)
(" (hd X)
(hd (t1 acc)))
oann
(stack-spawn
((v25 (s_split L v23 v24)))
v25))0)00)

——- Stack Functions --—-
s.split L X acc ==
(if (= X [
acc
(let ((v26 (hd X)) (v27 (hd L)))
(if (< v26 v27)
(let ((v28 (t1 X))
(v29 (= (~ (hd X) (hd acc))
(© (hd (1 acc)) [1))))

(stack-spawn ((v30 (ssplit L v28 v29)))
v30))

(let ((v31 (t1 X))
(v32 (* (hd acc)
(¢ (hd X) (hd (t1 acc))) oann

(stack-spawn ((v33 (ssplit L v31 v32)))
v33)))))



result (let ((v34 ("5 ("1 (-3 (-0 (" 17

(32 CC 12 IHNHYNON
(tail-spawn (gqs v34)))
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Chapter 6

Alfalfa: Distributed Graph

Reduction on a Hypercube

Multiprocessor

In the preceding chapters we described the translation of an ALFL program
into a set of serial combinators that specify the behavior of parallel tasks.
Up to this point, the compilation has been relatively architecture-independent.
Only the communication costs Cj,, and Cj,; were considered when generating
serial combinators. The final phase of compilation, code generation for serial

combinators, must be targeted toward a particular architecture.

In this chapter we describe an implementation, called Alfalfa, of a hetero-
geneous graph reducer on the Intel iPSC hypercube multiprocessor and discuss

the generation of code for this system. The code that is generated is a mix of

e conventional instructions using the registers and stack of each processor

in the machine, and

¢ instructions for specifying manipulation of the graph. These instructions

are routines provided by Alfalfa.

Before describing how code is generated from serial combinators, we describe
how Alfalfa is implemented on the Intel iPSC.
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6.1 The Intel iPSC

The Intel iPSC (for “intel Personé,I'Super Computer”) is a loosely-coupled
MIMD multiprocessor that can be coﬁﬁgured with up to 128 Intel 80286 micro-
processors. Each processor has its own private memory, and there is no shared
memory. The processors are linked via a hypercube network—each processor
sits at a vertex of an n dimensional hypercube. In the iPSC, the value of n can
vary between 0 and 7 depending on the number of available processors.

There are 2" processors in an n dimensional hypercube. Each processor
has n neighboring processors with which it can communicate directly. All com-
munication between non-neighboring processors is routed through intermediate
processors. The only means of communication in the iPSC is the passing of
messages. The operating system provides the user with a few communication
primitives such as send, blocking receive, and non-blocking receive [41].

Onmn each processor board, there are n Ethernet chips, each of which is respon-
sible for point to point communication with one of the processor’s neighbors.
The longest distance a message must travel within the iPSC is through n links
(or “hops”). Message routing is performed by the operating system and is
transparent to the programmer.

Unfortunately, the current version of the iPSC suffers from a large commu-
nication overhead, both in terms of message latency and of cost to a processor
for sending a message.

Although the iPSC consists of a set of processors with disjoint memories,
graph reduction requires the use of a single, global program graph. The Alfalfa
system described below supports a global graph space via message passing. In
chapter 8, the implementation of a heterogeneous graph reduction system on
a shared-memory multiprocessor is described, in which message passing is not

needed to implement the global graph.

6.2 The Alfalfa System

The Alfalfa system is responsible for distributing the program graph over the

processors in the iPSC and performing the execution of serial combinator code.
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It is replicated on each processor and is solely responsible for reducing the
portion of the graph residing in the local store of that processor. The major
components of the Alfalfa system, pictured in figure 6.1, are the graph reducer,

message handler, dynamic scheduler, and storage manager.

- PROCESSOR = I

Network

Serial

Combinator . :
Code

Diffusion

storage Scheduler
manager

Figure 6.1: The Alfalfa system

Each component of the system provides routines that will be called by serial
combinators to support the distributed execution of a program. Since we will
be discussing code generation for Alfalfa in section 6.4, we describe the routines,

written in C, that are called by the serial combinators.

6.2.1 Data Structures

The synchronization constructs (spawns, waits, etc.) that serial combinators

contain are simply calls to routines in the graph reducer component that per-
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form the necessary transformations on the graph. Before discussing how these
operations are performed we describe the data structures involved.

Since ALFL is an untyped language (and no type inference is performed by
the compiler) the Alfalfa system must provide run-time type checking. In order
to do so, we provide each value with a bit indicating its type. In this system,
the type bit is the rightmost (least significant) bit. A value can be one of two
base types:

1. Integer: A value can be a four byte integer, in which case the rightmost
bit of that value is 0. The actual value represented in such a way is the
value of the four byte integer shifted to the right one bit. The advantage
of using the rightmost bit as the type bit (as is the case in at least one Lisp
system [53]) is that addition and subtraction can be performed directly

on integers without modifying the type bits of the operands or result.!

2. Eztend: An extend data type can itself be one of several (non-integer)
types. The value of the extend is actually the address of a block of bytes

(on the same processor) containing one of the following:

o A floating point number
e A “cons” cell
e An array or vector

o A closure representing a partial application

For type checking, the rightmost bit of an extend is always set to 1. In
order to use this value as the address of a block of data, the rightmost
bit is zeroed before the address is used.

In either case, a value occupies four bytes and is defined to be of type CINT as

follows:

typedef long int CINT;

A node in the graph is defined as follows:

typedef struct nodetype { char state;

valuecont value;

1Currently true and false are represented as integers. This is a loophole in the dynamic

type checking system that will be corrected in future implementations.
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child args[MAXCHILDREN];
pointer requests[MAXREQUESTS];
unsigned requestcount : 8;
Rbitfield waitmask;
bitfield evalfield;
char refcount;

X

node;
and is a block of bytes that contains the following fields:

¢ State: Either “unevaluated”, “pending” (which means that the serial com-
binator invocation represented by the node is in the process of being

evaluated), or “evaluated”.

o Value: If the node has been evaluated then its value field contains the
result. Otherwise the value field is a pointer to code that specifies the
computation to be performed when the value of the node is requested.

This data type is defined in C as follows:

typedef union valueconttype { CINT value;
int (*cont) ();
X

valuecont;

e Args: A vector containing the arguments to the serial combinator invo-
cation represenfed by the node. Each argument is either a base value or
a pointer to another node in the graph. The value of any bound variable
created in the body of the serial combinator (via a spawn or let construct)
will also be contained in the args vector. Each element of the args vector

is of type child, defined as follows:

typedef union childtype { pointer point;
CINT value;
} child;

o Requests: A list of other nodes that have requested the value of the node.

Because of sharing, there may be several outstanding requests.
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e Fualfield: A Dbitfield indicating the status of each element in the args
vector. If the ith bit of this bitfield is 1, then the ith argument has already
been evaluated, and the ith element of the args vector contains a value.
Otherwise the ith argument is;a.pointer to another node representing a

delayed or currently evaluating expression.

o Waitmask: A bitfield indicating which arguments must be evaluated be-
fore the evaluation of the node can proceed. The evaluation of a node
must be suspended until for every 1 bit in the waitmask there is a corre-

sponding 1 bit in the evalfield.

e Refcount: The reference count of the node, for storage reclamation pur-

poses.
A pointer to a node in the graph, defined by

typedef struct pointertype { char pe;
char argnum;
struct'nodetype *node;
} pointer;

has three fields:

e Processing element (pe): The address of the processor upon which the
node resides. Since there are at most 128 processors in the iPSC, 8 bits

are more than sufficient to represent a processor address.

e Node: The address of the node on its host processor. This is a full 32 bit

address.

o Argnum: An index into the node’s args vector. This is only relevant when
the pointer is contained in a return-task (see below). Even if this field is
unused in a pointer, there is no waste of space since there are 8 bits left
over in the processor address field of the pointer (the 80286 requires that

all structures be aligned at 16-bit word boundaries).
The C procedure call,
write_point(p, pe, n, argnum);
instructs that fields of the pointer p are to be updated with the processor

address pe, the node address n, and the index argnum.
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In figure 6.2 a node is illustrated with its various fields identified. This node

Graph Space Code Space
4
requests ¢ I é value
state & refcount | 1 | 4 ®==[~~~~"™ code for F

evalfield| 1 00 0 1 0 | waitmask

args vector 1

[
-3

Figure 6.2: A node in the program graph

is created by a spawn construct,

(spavn ((v1 (£ 1 (g 2))))
.2)
where
fxy==(if (= x 1)
(demand (y)
(spawn ((v2 (h 3 4)))
(wait (y)
. )
.e)

The state of the node reflects the execution of £ after the wait construct in the

body of £ has been executed.
A task is an instruction to the graph reducer to perform an operation on

the program graph.? There are two kinds of tasks:

o An eval-task contains pointers to a target node and a source node. It

?In Alfalfa a task is a piece of data specifying some work to be done. This use of the word

task is different from the use in previous chapters.
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indicates that the value of the target node is being requested by the

source node.

typedef struct evaltasktype'{ pointer targetnode;
pointer sourcemnode;

} evaltask;

The sourcenode pointer serves as a return pointer to use when the value

of the target node has been evaluated.

e A return-task contains a value and pointer to a node. It indicates that
the value is being returned as the value of one of the arguments to the
node. The pointer’s argnum field indicates which element of the node’s

args vector is to be updated.

typedef struct returntasktype { pointer returnnode;
CINT value;

} returntask;
A task, being either a return-task or eval-task is defined as follows:

typedef struct tasktype { char type;
union { evaltask eval;
returntask return;
} field;
} task;

A task queue resides on each processor in the system and contains a list of
tasks to be performed. Program execution proceeds by repeatedly removing
- tasks from the task queue and performing the action specified. Each task in a

processor’s task queue will affect only nodes residing in the local store.

6.2.2 The Graph Reducer

The mechanisms in the graph reducer module that support the transformation

of the program graph are described below.
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Distribution of serial combinator and Alfalfa code

The C routines generated by tht'i compiler from serial combinators are compiled
by the iPSC’s C compiler and linked with the compiled C routines of the Alfalfa
system. The resulting executable image is then replicated onto every processor
in the iPSC. This has two desirable results:

1. The code for each serial combinator is available on every processor. Thus,
Alfalfa does not have to worry about migration of code during execution.

On the iPSC, the executable image is broadcast to each processor before

execution.

2. The image is loaded onto each processor at the same address. Therefore,
an address of a serial combinator routine is consistent across all processors.
This means that a closure can be passed from processor to processor

without modifying its code pointer.

Graph Initialization

Before execution begins, a collection of nodes representing the initial graph is
created. This initial graph corresponds to the result expression in the serial

combinator version of the program and is allocated on a single “root” processor.

To start execution, an eval-task is created for the root node in the graph
and placed in the task queue of the root processor. The graph reducer on
each processor removes tasks, if present, from the local task queue. The code

executed by each processor is (very roughly):

task._evaluation()
{ task *c;
- for(;;) {
process_messages();
c = pop(taskqueue);
while (c == NIL) {
process_messages();
c = pop(taskqueue);

}
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switch(c->type) {
case EVALTASK:
{ node *n;
n = c->field.evaltask.targetnode.node;
eval node(n, c->returnode);

}

break;

case RETURNTASK:

{ node *n;
int argnum;
n = c->field.returntask.returnnode.node;
argnum = (int) c->targetnode->argnum;
n->args[argnum] .value = c->value;
n->evalfield = n->evalfield | (1 << argnum) ;
possibly resume(n);

}

break;

}
}
}

In C, | is the bitwise OR operator. Each of the routines used above will be
defined shortly.

Evaluating a node

The evaluation of a node n commences when an eval-task whose target is n is
encountered on the task queue. The evaluation proceeds as follows:
o If n’s state is “unevaluated”, then the code pointed to by n’s value field is

executed (this code is serial combinator code generated by the compiler).
Before executing the serial combinator code, the node must be updated
in the following way:

— The state of the node is set to “pending”.

_ The address of the node that requested the value of n is put in n’s
requests list. The address of the requesting node is contained in the

sourcenode field of the eval-task.
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o If n’sstateis “pénding”, then the address of the requesting node is placed
in n’s requests queue. Since n is already in the process of being evaluated,

no further action is taken.

o If n’s state is “evaluated” , then the value in n’s value field is immediately

returned to the requesting node via a return-task (see below).

The routine eval_node is defined as follows:

task_evalnode(n, retpoint)
node *n;
pointer *retpoint;
{
switch (n->state) {
case UNEVALUATED:
add_request (n,retpoint) ;
/* add the return pointer
to n’s request list */
n->state = PENDING; /* modify the state */
(*(n->value.cont))(n); /* Jump to the code for n */
break;

case EVALUATED:
returnvalue(retpoint, n->value.value);
/* return n’s value to the
requesting node */
break;

case PENDING:
add _request(n,retpoint);
/* just add the return pointer to
n’s request list %/ |
break;

Returning a value

When the serial combinator code for a node n has been executed, a return-task
is created to return the resulting value v to each requesting node. In addition,

n’s state is changed to “evaluated” and its value field is overwritten with v.
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return_value(point, val)
pointer *point;
CINT val;
{ n->value.value = val;
n->state = EVALUATED;
if (point->pe == localpe) then'{
/* the value is returned to a local node */
task *c;
c = allocate_task();
c->type = RETURNTASK;
c->field.returntask.returnnode = point->node;
c->value = val;
push(c, taskqueue);

}

else {
/* invoke the message handler to send a message containing
a return task to the appropriate processor */
send return(point, val);

}

Requesting a value

The C routine getvalue is used to demand the value of an argument to a node.
The procedure call

getvalue(n, 1i);
instructs the graph reducer to demand the value of the ith argument of node
n. If the ith bit of n’s evalfield is 1, no action is taken. Otherwise, an eval-task
is created to demand the value of the node pointed to by the ith element of n’s
args vector. Naturally, the eval-task is placed in the task queue of the processor
on which the demanded node lies.
getvalue(n, argnum)
node *n;
int argnum;
{ if ((n->evalfield & (1 << argnum)) == 0) then

create_eval_task(n->args[argnum], n, argnum);
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(In C, & is the bitwise AND operator.)

Suspending evaluation of a node

During the evaluation of n th:é value of one of its arguments may be needed
(i.e. may have occurred in a wait construct) but not yet be available. That the
argument is not available is indicated by the corresponding bit in n’s evalfield
being 0.

The value of the argument must have previously been demanded via a call to
getvalue and the evaluation of » must suspend until the needed value returns.
Before evaluation of n is suspended, its waitmask field is updated so that the
bit corresponding to each needed argument is set to 1. Furthermore, the value
field of n is updated to point to a continuation that will be executed when
evaluation of n resumes. Once these two simple (single instruction) operations
have been performed the graph reducer is free to execute the next task on the

local task queue.

Updating and resuming a node

When the graph reducer encounters a return-task for n, it updates the ap-
propriate element of n’s args vector with the specified value. It then sets the
corresponding bit in n’s evalfield to 1. In order for the evaluation of n to re-
sume, every 1 in n’s waitmask must have a corresponding 1 in n’s evalfield. If
this condition is satisfied, then the evaluation of n is resumed by executing the
code (continuation) pointed to by n’s value field. The routine possibly_resume
checks to see if the evaluation of a node can resume.
possibly_resume(n)
node *n;
{

if (n->waitmask == (n->waitmask & n->evalfield)) then

(*(n->value.cont)) (n);

One of the key features of the Alfalfa system is that suspending and resuming

of serial combinator invocations is very inexpensive.
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Creating Subgraphs

The execution of a spawn construct in a serial combinator causes the creation
of a new subgraph. The subgraph is allocated in the store of a processor chosen
by the dynamic scheduler. An eval-te;sk_ is created for the root node of the new
subgraph and placed in the task queue of the processor on which the subgraph
resides.

Because of lazy creation of delayed expressions (described in section 4.2.5,
each subgraph representing a spawned expression has a height of at most two,
consisting of a root node and possibly some nodes representing delayed argu-
ments. None of the arguments themselves can have any descendants.

The serial combinator code may specify that a subgraph should be created
locally. The code will contain a call to the storage allocator to allocate space
in the local store for the new subgraph. How the various fields of the new
nodes are initialized is also determined by the serial combinator code. The C
statement,

n = local_new_node(f);
instructs the graph reducer to create a node on the local processor whose value
is a pointer to the code for the C routine f. The variable n is assigned the
address of the new node.

If the dynamic scheduler chooses to create a new subgraph on a remote
processor, space for a template of the subgraph is allocated in the outgoing
message buffer of the local processor. Once the fields of the nodes in the
template subgraph have been initialized, the template serves as a complete
descriptor of the actual subgraph that will be created on the remote processor.
The C call,

n = new_node_in_buf (f)

instructs the graph reducer to create a node in the message buffer. The variable
n is assigned the address, within the message buffer, of the new node. This
address is used to update the fields of the new node.

Once the descriptor has been written into the buffer the procedure call
build_eval(newpe, localpe, n, argnum) '
causes a message containing the descriptor to be sent to the processor newpe.

When the message is received, the descriptor is copied into newpe’s graph space
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and an eval-task for the root node of the new subgraph is placed in newpe’s
task queue. The eval-task includes a return pointer that contains the processor

localpe, the node n, and the index argnum into n’s args vector.,

A small example

Given the serial combinator definitions,

f x y == (spawn ((v1 (g x)) (local v2 (h y)))
(wait (vi v2)
(+ vi v2)))

g x == (if (= x 1)

2
C.ooo )
hy==((f (=y 2)
1
C...n

figure 6.3 illustrates the evaluation of a node, labeled n1, corresponding to the

combinator expression (f 1 2).

6.2.3 The Dynamic Scheduler

The dynamic scheduler is responsible for distributing the execution of a program
throughout the processors of the iPSC in order to exploit the parallelism within
the program. The algorithms used by the dynamic scheduler come under a
class of algorithms known as diffusion scheduling algorithms and are described
in detail in chapter 7. When a new subgraph is to be created the dynamic
scheduler uses diffusion scheduling to decide where to allocate the subgraph.
The most important aspect of diffusion scheduling is that a processor can only
create a new subgraph on neighbors—processors that it can communicate with

directly.
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Figure 6.3: Example of serial combinator reduction in Alfalfa

6.2.4 Message Handler

The message handler provides the interface between each processor and the
network. It creates messages that are required to support the actions of the

graph reducer and dynamic scheduler.

Message passing support for graph operations

When a task is sent to a remote processor, it is encapsulated into a “reducer”

message. This is necessary when:

1. A node needs the value of another node on a remote processor,or

2. A node becomes evaluated and returns its value to a node on a remote

processor, or
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3. A new subgraph is to be created on a remote processor. In this case
the message contains a descriptor as described above. The descriptor
is a block of bytes that corresponds precisely to the way the subgraph
will be represented in the graph. When the message is received, each
node in the descriptor is éopied into the graph space of the receiving
processor (at address supplied by the local storage allocator). In the
descriptor, any pointer to a node in the new subgraph must contain a
relative address since the absolute address of each new node was unknown
when the descriptor was created. Therefore, after the descriptor has been
copied into the graph space of the receiving processor all such pointers

have to be relocated.

In each case, the graph reducer invokes routines in the message handler module

to create the appropriate messages.

Message passing support for dynamic scheduling

The message handler provides the dynamic scheduler with the capability to
make decisions based on the state of surrounding processors. Each processor
must be able to report its local state to the surrounding processors. The mes-

sage handler provides routines to create these processor-state messages (see
chapter 7 for the details).

Incoming messages

Naturally, the message handler is also responsible for handling incoming mes-
sages. When a message is received, the message handler removes the message
from the message buffer. It determines the type of the message (either a reducer
message or a processor-state message) and makes the contents of the message
available to the appropriate module (either the graph reducer or the dynamic
scheduler).

Distributed reference counting also requires message passing to perform ref-
erence counting operations (such as increment and decrement) across processor
boundaries. A third type of message (called a “storage” message) is used to

perform these operations.
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6.2.5 Storage Manager

The storage manager on each processor is responsible for allocating and re-
claiming nodes in the local portion of the graph space. The storage reclamation
scheme must maintain the integrity of the distributed graph while minimizing

the amount of storage wasted.

In the Alfalfa system, free nodes are allocated from free-lists on each pro-
cessor. Although no compaction of memory is performed, fragmentation of the
address space does not significantly hinder the computation, because all nodes
are the same size. When space for a node is required by the graph reducer, the

first element of the free-list is used.

A separate free-list is kept for extends. When an extend is required, the
free-list is traversed until the first free extend of sufficient size is found (this

corresponds to the first-fit method for memory allocation).

Nodes that are no longer needed are reclaimed using a distributed reference
counting scheme. Unfortunately, this scheme requires a significant amount of
communication to maintain the integrity of the graph [29]. The advantage
of distributed reference counting lies in its simplicity and that it requires no
synchronization between processors. Most mark-and-sweep algorithms require

all processors to halt while garbage collection is being performed.

Using constant size nodes creates the potential for a significant waste of
space; serial combinator invocations represented by these nodes may have a
widely varying number of arguments. The most straightforward implemen-
tation would use nodes with args vectors that are large enough to hold any
possible serial combinator invocation. Alfalfa’s approach is to allocate nodes
with args vectors that are large enough to accommodate most, but not all, serial
combinator calls. Generally an args vector with a handful of elements is suffi-
cient. For those serial combinator invocations that require a larger args vector,
we use an extend to hold additional arguments (and an additional evalfield and

waitmask). This situation is pictured in figure 6.4.
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Figure 6.4: Using an extend to increase the size of the args vector

6.3 Address sharing for vertical parallelism

Suppose the following serial combinator expression is being evaluated on pro-

cessor po.

(spawn ((vi (£ 1 2)) (v2 (g vi 2)))
(wait (v2)
(+ v2 1)))
Notice that the argument v1 in the application of g in the spawn construct is
bound to (£ 1 2) in the same spawn construct. In this case vertical paral-
lelism is being exploited, since the expression (f 1 2) is being evaluated at the
same time as (g vi 2). While it may be desirable to be able to exploit such
vertical parallelism, it creates an implementation problem on a loosely-coupled

multiprocessor.

A node n representing the call (f 1 2) is created. In order for g to be
able to refer to its first argument, it must be passed the address of n. The
problem lies in making the address of n available to g. If n is created on
a remote processor p;, then n’s address is not immediately available to pg.
Figure 6.5 illustrates this situation. An obvious, brute force solution to this
problem is for p; to send a message specifying n’s address back to pg. Only
after this message is received by po can (g vi 2) be spawned. The drawback
to this approach is that an extra message must be sent by the p, and that the
evaluation of (g v1 2) is delayed. This is clearly an obstacle to exploiting the
vertical parallelism between (f 1 2) and (g vi 2).
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Figure 6.5: Problem in determining the address of a node created remotely

A more sophisticated and probably more efficient solution would be for Do
to create a symbolic address for n and to pass that address to g. This symbolic
address would have to be mapped to the real address for n by p1 (using a
hash table or some other method). The drawback to this approach is the need
to perform the mapping each time a symbolic address is used by a remote
processor. If much sharing of symbolic addresses occurs, the mapping costs
may become significant. If future distributed architectures include associative
memories for performing such mapping (analogous to a translation look-aside

buffer), this method may be a reasonable solution.

The solution used by Alfalfa is called address sharing.® In this method,
a processor p reserves a block of free nodes for exclusive use by each of its
neighbors. It also provides each neighbor with a list of the addresses of these
free nodes. Thus, a neighbor is guaranteed to be able to create a node on p at

each of those addresses.

In the above example, po can specify the address of n on p;. The message
that po sends to p; includes the address in p;’s memory where n should be
allocated. Thus, g can be passed the real address for n without any delay.
This particular technique of providing the address of a remote argument in a

combinator application is called forward address sharing.

3A simplified version of this idea was initially suggested by Simon Peyton Jones during an

informal conversation.



145

In order to supporf, address sharing, each processor p must make sure that
its neighbors have a supply of addresses of free nodes in p’s local memory. It
does so by keeping a count of héw many nodes in its memory are reserved by
each neighboring processor p;.. Each time p; instructs p to create a node at a
specified address, p decrements the count for p;, When that count gets below
a certain threshold, p invokes its local storage allocator to reserve a new set of
nodes for use by p; and sends p; a list of the addresses of these nodes. Often, the
message containing a new list of addresses can be appended to another message
being sent to p;. The threshold at which p sends p; a new supply of addresses
must be large enough to ensure that p; does not run out before it receives the
new supply.

Another problem arises in implementing vertical parallelism. In the previous
example, suppose that the invocation of g is evaluated on processor p,. When
the node n representing (f 1 2) becomes evaluated, the resulting value needs
to find its way to p; to be used by g.

The most obvious way to accomplish this would be for g to generate an
eval-task for n. A message containing the eval-task would be sent by p, to p;.
Even though po had already sent a message to p; specifying the creation and
evaluation of n, another message must be sent in order for the value of n to be

used. This situation is pictured in figure 6.6.

@ eval,/’ I
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Figure 6.6: Three messages are required for g to get £’s value

A more efficient solution uses address sharing in the following way: When
Do sends the message to p; specifying the creation of n and the generation of

an eval-task for n, the return pointer in that eval-task should not point to the
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parent node on po, but rather to the node m representing (g vi 2) on pa.
Address sharing is needed to determine the address of m to use as the return
pointer. In the above example, the ﬁé:rent node on pg does not need the value
of (£ 1 2). Using address sharing, at least one message is saved. Figure 6.7
shows how only two messages are required for g to get the value of the call to

£. The technique of using address sharing to provide a return address in an

'd
@ eval,/' l
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Figure 6.7: Vertical parallelism using address sharing

eval-task is called backward address sharing.

There is a synchronization problem that arises, although rarely, when back-
ward address sharing is used. This synchronization problem is similar to the
problems that arise in distributed reference counting [29]. In our example, it is
possible for the evaluation of (f 1 2) to complete and for the result to be sent,
ostensibly, to the node m representing (g vi 2) before m is actually created.
In other words, the message containing the return-task destined for m arrives
before the message specifying the creation of m. This situation is illustrated in
figure 6.8. In this case, the first element of the args vector of an empty node
will be updated. When m is finally created, that element may be incorrectly
overwritten.

The solution to this synchronization problem is rather simple. We previously
defined three states that a node could be in: “unevaluated”, “pending”, and
“evaluated”. Since two bits are required to represent the state field in a node,
a fourth state can be included without additional cost. This fourth state is
“empty” and indicates that the node is unused. Therefore, when a return-task

is encountered that points to an empty node, the return-task is put back onto
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Figure 6.8: Synchronization problem in address sharing

the end of the task queue. In order to implement this solution, when any node
is reclaimed, the state field of the node must be reinitialized to “empty”.

A similar problem arises in forward address sharing when a message con-
taining an eval-task for a node reaches a processor before the message specifying
the creation of that node. When an eval-task is encountered for an empty node,
the eval-task is also put back into the task queue.

Although forward address sharing is implemented in the current implemen-
tation of Alfalfa, backward sharing is not. In future versions, backward sharing
will certainly be implemented.

In a serial combinator expression in which only horizontal parallelism is
exploited no address sharing is required. For example, if a serial combinator

whose invocation is represented by a node n contains the expression,
(spawn ((vi (£ 1 2)) (v2 (g 3 4)))
(wait (v1 v2)
(+ vi v2)))
the local processor does not need to know the address of either of the nodes
created for the invocations of £ and g. If these nodes are created on remote
processors, the message sent to each remote processor instructs it to create a

node at any address it chooses and to return the value of the node to n.

6.3.1 Forward address sharing in serial combinators

Before code is generated for each serial combinator, the forward address sharing

required for each expression in a spawn construct is made explicit. In order to
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indicate that a subgraph representing an expression in a spawn construct should
be created using address sharing, each spawn construct in a serial combinator
is modified so that each variable-expfession pair requiring address sharing is

modified by the word address. For éxample, the expression,

(spavn ((v1 (£ 1 2)) (v2 (g vi 2)))
)

1s transformed into

(spawn ((address vi (f 1 2)) (v2 (g vi 2)))
o)

To determine which expressions should be spawned using address sharing,
a tree walk is performed on the SCIF tree for each serial combinator. For each
variable-expression pair in a spawn construct that is not modified by local,
the following action is taken: If the variable in the variable-expression pair is
referred to either in the same spawn construct or in the body of the spawn
construct before the variable occurs in a wait construct, the variable-expression

pair is modified by address.

Address sharing routines in Alfalfa

The C procedure get_address(newpe) returns the address of a free node on

the remote processor newpe. The C call,
build_eval_address(newpe, address, localpe, n, argnum);
causes the message handler to send a message to processor newpe that includes:

o the descriptor of a new subgraph (already written into the outgoing mes-

sage buffer),
¢ the address to be used for the root node of the new subgraph, and

e a return pointer to the processor localpe, the node n, and the index

argnum into n’s args vector.

It is analogous to the routine build_eval described in section 6.2.2 except that

the message contains the address of the root node.
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6.4 Code Generation for Alfalfa

Now that we have described the Alfalfa. system, we discuss how serial combina-
tors are translated into code that can be executed on Alfalfa. Two important
points about the code generation bhase are:
e The code generated by the compiler is C, not native machine code. The C
code is then compiled by the iPSC’s C compiler. This approach facilitated
the timely development of a research prototype like Alfalfa.

o All graph reduction and multiprocessing routines provided by the Al-
falfa system are invoked by the serial combinator code only when needed.
They can be thought of as library routines. Therefore, any segment of
serial combinator code that requires no graph reduction or multiprocess-
ing support will be identical to the code that would be generated for an
applicative order, sequential program.

In order to discuss the important aspects of code generation for serial com-
binators in a reasonable amount of space, we are forced to omit an immense
amount of detail about the code generation phase (and the Alfalfa system in
general). Some of the detail that is omitted concerns generating code to sup-
port:

o dynamic type checking

o extends for vectors and floating point numbers,

e closures representing partial function applications

o distributed reference counting

e error detection and recovery

o statistics gathering

Instead, we concentrate on how code is generated for the various synchroniza-

tion constructs that occur in serial combinators.

6.4.1 Code generation for graph reducible combinators

Since the activation record for each invocation of a graph reducible combinator

(i.e. a combinator that is not stack ezecutable) is a node in graph, the C
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routine corresponding to each serial combinator takes a single argument. This
argument is the address of the node representing the activation record. The
location of each bound variable in the serial combinator expression is specified
by an offset into the args vector of the corresponding node.

In section 6.2.2 we described how resuming a suspended node required that
the address of a continuation be stored in the node’s value field. This contin-
uation specifies the behavior of the node when it resumes. Each continuation,
like the top-level C routine representing a serial combinator, takes the address
of the node as an argument.

The first stage of code generation for a serial combinator is to break the
combinator definition down into the set of continuations it represents. Each
wait construct in the serial combinator indicates that a continuation must be
generated to represent the behavior of the rest of the combinator. Therefore,
each wait construct in the serial combinator is modified so that the body of
the wait construct specifies the name of the continuation to be called when the
needed values return. The continuation itself will be compiled into a C routine.
For example, in the serial combinator definition

f x y == (spawn ((local vi (g x y)) (v2 (g 3 4)))
v (wait (v1)
(et ((v3 (+ v1 5)))
(wait (v2)
(+ v2 v3)))

the expression after each wait construct must be converted into a continuation.
The definition now is represented as a list that contains the top-level expression

and the definitions of the continuations.

f xy == [ (spawn ((local v1l (g x y)) (v2 (g 3 4)))
(wait (v1)
fcontl)),
fcontl: (let ((v3 (+ vi 5)))
(wait (v2)
fcont2)),
fcont2: (+ v2 v3) ]

The serial combinator definition is now a list that includes the top expression
and some continuation definitions. As mentioned above, the C routines corre-

sponding to f, fcontl, and fcont2 will all take the same argument, namely
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the address of the node representing the activation of f.

The compiler uses the procedure C_combinator to generate code for a com-

binator definition in which the continuations have been made explicit. The pro-

cedure emit(ey,...,e,) writes its arguments, in left-to-right order, into some
output file. '
C_combinator(f zo...z, == [body,c; : expy,...,c; : expy]) =

emit(f, “(n)”)
emit(“node *n; {”)
let sym_table = [(0,uneval)/zq,.. ., (n,uneval)/z,]
cont_table = [expi/cy,. .., expr/ck]
{{c1, sym_tables), ... (cl,, sym_table,)} =
C_body(exp, sym_table)
emit(“}”)

C_contin(cont_table, (c|, sym_table,), ..., {c,,, sym_tabley))

The symbol table sym_table is used to keep track of the index into the args
vector for each bound variable and the state of the each variable (unevaluated
or evaluated). Initially, the state of each bound variable (formal parameter) in
the symbol table is unknown, and the compiler assumes that it is unevaluated.
In addition to creating this symbol table, C_combinator emits the header for a
definition of a C routine that takes a single argument n of type (node *). A

table cont_table associates each continuation name with its definition.

The routine C_body (which we will define shortly) generates code for the
expression representing the body of a combinator or continuation. Initially,
C _body is called on the top level expression in a combinator definition. Since
the top level expression may end with a wait construct, C_body returns the
names of the continuations that could possibly be called next. There may be
several possibilities depending on how the conditionals in the top level expres-
sion are resolved during execution. A symbol table is associated with each
continuation returned by C_body and provides the necessary information about

bound variables when generating code for the continuation. The procedure that
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directs the code generation for each continuation is C _contin.

C _contin(cont_table, (c;, sym_tabfél), v vy {Cmy symtabley)) =
for 1=1...m '
emit(c;, “(n)”)
emit(“node *n; {”)
let body; = cont_table[c;]
{{ci1, sym_tabdleyr), ... {Cin, sym_table;y,)} =
C _body(body;, sym_table;)
emit(“}”)
/

C _contin(cont table, (ci1, sym_tables),. .., (Cim, sym._tablein))

Since the compilation of the body of each continuation by C_body may return
the names of other continuations, C_contin calls itself recursively to generate
the code for those continuations.

We now define the procedure C_body, which generates code for the body of
each combinator and continuation. It takes two arguments, an expression and
a symbol table describing the bound variables in the expression. We describe

C -body’s behavior for each type of expression.

Constants

If the expression is a constant, C _body generates code to return the value of the

constant.

C_body(c, sym_table) = emit(“return.value(n,”, ¢, ) ;7)

return({})

The routine return_value has already been defined on page 135.

Bound variables

If the body of a combinator is a reference to a bound variable, then the compiler

generates code to return the value of the corresponding element of the args
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vector of the current ﬁode.

C _body(z, sym_table) =
let < indez, state >= sym_table[z]

emit(“return_value(n, n->args[”, indez, “].value);”)

return({})

Binary operations

In section 4.2.4 we stated that no binary operation could contain any synchro-
nization construct. Therefore, when C_body encounters a binary operation,
such as (+ e; e;), it uses the procedure C_ezp to convert the expression directly
into C syntax and instructs the graph reducer to return the value of the ex-
pression. C_exp converts an expression in SCIF (without any synchronization
constructs) to C by generating the code for the expression in infix notation.
Any variable reference in an expression passed to C_ezp is generated as an
index into the args vector in the same manner as C_body. C_ezp will not be

defined in more detail.

C_body((+ e e3),sym_table) = emit(“return_value(n,”)
C_exp((+ e e3), sym_table)
emit(“) ;”)

return({})

Conditionals

When C_body encounters a conditional, it calls C_exp to generate the code for
the predicate. Code for each branch of the conditional is emitted by calling
C _body recursively. The continuation names, along with the corresponding

symbol tables, of both branches are returned since any one of the continuations
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from the consequent or alternate may be executed.

C_body((if ey ey e3), sym_table) =
emit(“if (")
C_exp(el,'sym_table)
emit(“) then {”)
let S = C_body(ez, sym_table)
emit(“} else {”)
let S’ = C_body(es, sym_table)
emit(“}”)
return(S U S")

The sets S and S’ returned by C_body contain continuation-symbol table pairs

as previously described.

Demand constructs

When C_body encounters a demand construct, it performs the following actions:
1. It looks up in the symbol table each variable that occurs in the demand

construct. This is done to determine the index into the args vector for

that variable and the state of the variable.

2. If the state of the variable is “unevaluated”, then code is generated to get

the value of the corresponding element of the args vector.

3. Cl.body is then called recursively to generate code for the body of the

demand construct.

C_body((demand (v ...vy) body), sym_table) =
for e =1...k%
let (index;, state;) = sym_tablefv;]
if (state; = uneval) then
emit(“getvalue(n,”, indez;, “);”)
let S = C_body(body, sym_table)
return(S)

The C routine getvalue was defined on page 136.
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‘Walit constructs

When C_body encounters a wait construct it performs the following actions:

1. It looks up, in the sym_bbl table, the variables that occur in the wait

construct to determine their offsets in the args vector.

2. It emits code to modify the current node’s waitmask such that the bits

corresponding to the above variables are on.

3. It emits code that modifies the value field of the current node to point to

the continuation named in the body of the wait construct.

4. Finally, it emits a call to possibly_resume in case the needed arguments

have already been evaluated.

Cbody((wait (v;...v;) cont_name), sym_table) =
let (indewz;, state;) = sym_tablefv;], for 1 <i <k
sym_table’ = sym_table[(indexy, eval) /v, ..., (indexk, eval) [vy]
emit(“n->waitmask =7, Yk  indemi « )

emit(“n->value = ”

, cont_name, “;”)
emit(“possibly_resume(n) ;”)

return({{cont_name, sym_table’)})

As an example of the code generated for a wait construct, consider the
following serial combinator definition:
fxyz== (if (=y 6)
(demand (x z)
(wait (x z)
(+ x 2)))
1)
Figure 6.9 shows the code generated for £ and a node resulting from the serial
combinator invocation (f (g 1) 6 (g 2)), where g is some other serial com-
binator. Figure 6.10 shows the code generated for fconti1, the continuation
that is called after the values of the bound variables x and z are available. The
node pictured is about to resume executing by jumping to the code for fconti.
In chapter 4, we noted that it seemed strange that variable being evaluated
locally should have to occur in a wait construct. For example, in the SCIF

expression
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Graph Space Code Space )
<
Code for f
i ™l it (n->args(1] .value) = 6 then )
010l000 getvalue(n,0);
getvalue(n,2);
/ 6 \ n->waitmask = 5;
n->value.cont = fconti;
possibly.resume(n); )
else

return.value(n, 1);

Code for fcontl

Figure 6.9: A node about to execute the serial combinator code

(spawn ((local vi (f x y)) (v2 (g a b)))
(wait (v1 v2)

(+ vi v2))) |
it seems unnecessary for v1 to occur in the wait construct. However, it is nec-
essary for the following reason: The wait construct is the only way to specify
which bits in a node’s waitmask are to be set. Even though v1 is being com-
puted locally, it is possible for the value of v2 to return while v1 is still being
computed (if, for example, the call to £ suspends). If this happens, and the
bit corresponding to v1 in the waitmask is not set, then the node will resume
prematurely. Even though v1 is being evaluated locally, the corresponding bit

in the waitmask must be set. Thus, vi must occur in a wait construct.

Let constructs

When encountering a let construct, C_body performs the following actions:

1. It counts the number of variables in the symbol table in order to find the

index of the next available slot in the args vector.

2. For each variable-expression pair in the let construct, an index is assigned l

in the args vector and the state of the variable is set to “evaluated”. This
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Graph Space

Code Space
- | Code for f
@ = - - - .
)
111101 :
5 6 7 :
:_ Code for fcontl

return.value(n, n->args[0] .value +
n->args[2].value);

Figure 6.10: A suspended node about to resume executing

index-state pair is added to the symbol table.
3. Code for each expression in the let construct is generated by calling C_exp.

4. Code is emitted that updates the evalfield of the node to reflect that the

new slots in the args vector contain values.

5. C_body is called recursively to generate code for the body of the let con-

struct.

C_body((let ((vi ezp1)...(vk expy)) body), sym_table) =
let p = num_wars(sym_table)
sym_table’ = sym.table[(p + 1,eval)/vy,...,{(p+ k, eval) /vi]
for i=1...k%
emit(“n->args[”, p+1, “dl.value =")
C _exp(exp;, sym_table')

emit(“;”)

emit(“n->evalfield = n->evalfield |7, Z’;:fﬂ,l 27, “;7)
let S = C_body(body, sym_table’)
return(S)

(In C, the operator | denotes the bitwise logical or operator.)
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Spawn construct

When encountering a spawn construct, C_body performs the following actions:

1. It determines the index of the next available slot in the args vector.

2. For each variable-expression pair in the spawn construct, C body assigns
an index to the variable and initializes the state of the variable to “un-

evaluated”. This index-state pair is added to the symbol table.

3. C_body emits code to create the nodes representing the expressions in the

spawn construct.

4. C_body is then called recursively to generate code for the body of the

spawn construct.

Cbody((spawn (p1 ... px) body),sym_table) =
let ¢ = numwars(sym_table)
sym_table’ = sym_table] (¢ + 1,uneval)/v,,.
(g + k,uneval)/vy]

ey

for 1=1...%k
if p; = (local v; exp;) then
local _node(exp;, sym _table’)
else if p; = (address v; exp;) then
emit(“newpe = choose_pe();”)
emit(“address = get_address(newpe);”)
node_in_bu f(exp;, sym_table’)
emtt(“build_eval_address(newpe, address,”,
“localpe, n,”, i, “);”)
else
node_in_bu f(exp;, sym_table’)
emit(“build_eval(newpe, localpe, n,”, 7, “);”)
let S = C_body(body, sym_table’)
return(S)

Both local node and node_in.buf, given an expression and a symbol table,

generate code that causes a new subgraph to be created.
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If a variable-expression pair in a spawn construct is modified by the word
local then local node is used to generate the appropriate code. Local_node is

(roughly) defined as follows:

local_node(exp, sym_table) =
let (feo...ex) =exp
newnode = a new identifier
emit(“{ node *”, newnode, “;”)
emit(newnode, “= local new.node(”, f, “);”)
for 1=0...k
if e; = ¢ where z is a constant or bound variable then
emit(newnode, “->args[”, i, “] =")
C_exp(z, sym_table)
emit(“;”)
elseif e; = (f; €;1...¢€;,) then
local_node((f; eir ... ein), sym_table)

assign_eval field(newnode, ey, . . ., ex, sym_table)
emit( “}”)

The new subgraph representing the expression will be allocated locally.

Otherwise, node_in_buf will generate code to create descriptor for the new

subgraph in the outgoing message buffer. Node_in_buf is (roughly) defined as
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follows:

node_in_buf(exp, sym table) =
let (feo...ex)=exp
newnode = a new identifier
emit(“{ node *”, newnode, “;”)
emit(newnode, “= newnode_in buf(”, f, ™)
for 1=0...k
if e; = ¢, where z is a constant or bound variable, then
emit(newnode, “->args[”, i, “] =)
C _ezp(z, sym_table)
emit(“;”)
else if e; = (fi €i1 ... €in) then
noden_buf(newnode,i,(fi €1 .- - €in)s sym_table)
assign_evalfield(newnode, o, . . ., €k, sym_table)
emit(“}”)
The procedure assign_eval field(newnode, e, . .., ex, sym_table) generates
code that initializes the evalfield of newnode to the appropriate value based on
whether each argument, e;, is evaluated or not. Each e; is one of the following:

e A constant: In this case the ith bit of newnode’s evalfield is set to 1.

e A bound variable: In this case the ith bit is set to the value of the
corresponding bit of the evalfield of the n, the node representing the

current serial combinator.

o A serial combinator application representing delayed expression: The ith
bit of the evalfield is set to 0.

Stack-spawn constructs

When encountering a stack-spawn construct, C _body performs the following

actions:

1. It determines the index of the next available slot in the args vector.

9. For each variable-expression pair in the stack-spawn construct, C_body

assigns an index to the variable and initializes the state of the variable is
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“evaluated”. This index-state pair is added to the symbol table.

3. Each expression in a stack-spawn construct is a call to a stack-executable

combinator. Thus C_body simply generates code for a C function call.

4. C_body emits code thaé updates the evalfield of the node. The bit corre-

sponding to each new variable is set to 1.

5. C.body is called recursively to generate code for the body of the stack-

spawn construct.

C body((stack_spawn ((v1 exp1)...(vk expr)) body), sym table) =
let p =numwars(sym_table)
sym_table’ = sym_table[(p + 1, eval) /vy,...,{(p+ k, eval) Jv;]
for 1=1...k%
let (fi ei...eim) = exp;
emit(“n->args[”, p+1i, “d].value =")
emit(f;, “(”)
C_ezxp(ei;, sym_table’)
emit(“,”)
C_exp(eiz, sym_table’)

emit(“ , n)

C _exp(e;y, sym_table)

emit(“)”)
emit(“n->evalfield = n->evalfield |[”, §:£+1 279, «;7)
let S = C_body(body, sym _table')
return(S)

Tail-spawn constructs

We will not describe code generation for a tail-spawn construct in detail, but
rather discuss the most important aspects of it.

Each field of the node representing the “old” invocation is overwritten by
the information about the “new” invocation. Some of the arguments in the
new invocation, however, may depend on the values of the old arguments. For

example, in the following serial combinator definition,
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generated that saves the old argument residing in the jth slot of the args
vector into a temporary location and writes the jth new argument into
the args vector. This heulristic was chosen in the hope that by removing
the argument with the ‘most incoming arcs from the graph, the largest

number of cycles in the gréph are broken.

5. Steps 2—4 are repeated until no new arguments remain to be written into

the args vector.

Figure 6.11 demonstrates how the dependency graph is used to generate the

tail-spawn code the following serial combinator:

f xy == (tail-spawn (g y x 6)) (6.2)

®
® — || — | —

®

args(3] = 6; temp = &gs (1]; args[1] = args[2); args(2] = temp;

Figure 6.11: A dependency graph for the arguments in a tail-spawn

As a trivial optimization, if the ith new argument is identical to the :th old

argument then no code is generated to update the ith slot in the args vector.

6.4.2 Code generation for stack executable combinators

Each stack executable combinator definition is simply translated into a C rou-
tine. Since the iPSC’s C compiler will generate code that utilizes a stack to
hold the activation records for each call, the translation from extended SCIF

into C for is straightforward.

Cstack(f ©o...on == body) = emit(f, “(", xo, ..., zn, *)")
emit(“CINT”, o, ..., Tn, ; {”)
C_stack _body(body)
emit(“}”)
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C_stack_body generates code for the body of a stack executable combinator.
Each bound variable in the combinator definition corresponds to a variable
with the identical name in the C routine. Thus no symbol table is required.

The procedure C_stack_ezp converts an expression in SCIF to C.

If the expression is a constant or \}aria,ble, then C_stack_body generates C

code to return the value of the expression as the result of the combinator call.

C_stack_body(c) = emit(“return(”, ¢, “)”)

C_stack_body(z) = emit(“return(”, z, “)”)

If the expression is a binary operation, C_stack_exp is called to generate the

corresponding C code. /

C_stack_body(+ e, e;) = emit(“return(”)
C_stack_exp(+ ey e3)
emit(“) ;”)

C _stack_body generates C code for a conditional by using C_stack_exp to gen-
erate code for the predicate and recursively calling C_stack_body for the conse-

quent and alternate.

C_stack body(if e; ey e3) = emit(“if () |

C_stack_exp(e;) |
emit(“) then {”)
C_stack_body(e,;)
emit(“} else {”)
C_stack_body(es)
emit(“}”)

C _stack_ezp is used to generate code for each expression in a let construct, and
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C _stack_body is called recursively on the body.

C_,stack_body((lét',((vl ezpi)...(vx expy)) body)) =
emut(“{'CINT”, vy, ..., v, “”)
for i=1...%
emit(v;, “=")
C _stack_exp(ezp;)
emeit(“;”)
C _stack _body(body)
emit(“}”)
A stack-spawn construct is handled in a similar manner. Each expression in
the stack-spawn construct is translated into a C function call. The code for the

arguments in each call is generated by C_stack_ex p. C_stack body is recursively

called on the body of the stack-spawn.

Cstack_body((stack_spawn ((v, ezp,)... (vk ezpy)) body)) =
emit(“{ CINT”, vy, ..., v, “M)
for 1=1...k%
let (fieir...em) = exp;
emit(v;, “=", f;, “(")C_stack_ezp(e;)
emit(“,”)
C stack_exp(e;;)
emit(“,”)

C _stack_exp(ein)
emut(“);”)
C _stack _body(body)
emit(“}”)

6.5 An example

As an example of how code is generated for a program, consider the following

(strange) factorial program.

{ sfac 1 h == 1=h->1, h * sfac 1 (h-1);
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pfac 1 h == 1=h->1, -

{ pfacl mid == sfac 1 mid * pfac (mid + 1) h;

result pfaci} ((1+h)/2);
result pfac 1 10; ‘

3

Notice that this program consists of a serial factorial function, sfac, and an
unusual divide and conquer factorial, pfac. Pfac contains a call to sfac as well

as a recursive call to pfac. The serial combinator version of the above program
is:

{

—--- graph reduction functions -—-
g-sfac 1 h == (demand (1 h)

(wait (1 n)
(if (=1 h)
1

(et ((v3 (- h 1)))

(stack-spawn ((v4 (s_sfac 1 v3)))
(* h va)))))

g-pfac 1 h == (demand (1 h )

(wait (1 h)
(if (=1 1)
1

(et ((vi (/ (+ 1 h) 2)))
(tail-spawn (g_pfaci 1 h v1))))))

g-pfacl 1 h mid ==
(demand (1 mid h)
(wait (1 mid)
(spawn ((vB (g_sfac 1 mid)))
(let ((v6 (+ mid 1)))
(wait (h )
spawn ((<local> v7 (g-pfac v6 h)))
(wait (vB v7)
(* v6 v7)))N))
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-—— stack functions ---
s.sfac 1 h == if (= 1 h)
1
(let ((v3 (- h 1)))
(stack-spawn ((v4 (s_sfac 1 v3)))
(* h va)))

result g.pfac 1 10

}

The C routines that the compiler generates for the above serial combinators
are listed below. Much of the actual C code has been edited out, especially the
code that accomplishes reference counting, type checking, and so on.

G_SFAC(n)

node *n;

{

getvalue(n, 0);

getvalue(n, 1);

n->waitmask = 3;
n->value.cont = G_SFAC_CONTI1;
possibly_resume(n);

}

G_SFAC_CONT1(n)
node *n;
{
if ((n->args[0].value == n->args[1].value)) then
return_value(n, n->args[0].value);
else {
n->evalfield = n—>evalfield | 4;
n->args[2].value = n->args[1].value - 1;
n->evalfield = n->evalfield | 8;
n->args[3].value = S_SFAC(n->args[0].value,
n->args[2].value);
return.value(n, n->args[1].value *
n->args[3].value);
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G.PFAC(n)

node *n;

{

getvalue(n, 0);
getvalue(n, 1);

n->waitmask = 3;
n->value.cont = G_PFAC_CONTi1;
possibly_resume(n);

}

G_PFAC_CONT1(n)
node *n;

if (n->args[0].value == n->args[i].value) then
return_value(n, n->args[0].value);
else {
n->evalfield = n->evalfield | 4;
n->args[2].value = (n->args[0].value + n->args[1]
n->value.cont = G_PFAC1;
n->numargs = 3;
n->evalfield = 7;
(*n->value.cont)(n);

}

G_PFAC1(n)

node *n;

{

getvalue(n, 0);
getvalue(n, 2);
getvalue(n, 1);

n->waitmask = 5;
n->value.cont = G_.PFAC1_CONT1;
possibly_resume(n);

}

.value) / 2;




G_PFAC1_CONT1(n)
node *n;
{
{ node* NEWNODE1;
unsigned newpe;
newpe = choose_pe();
NEWNODE!1 = new.node._in_buf (G_SFAC);
NEWNODE1->args[0].value = n->args[0].value;
NEWNODE1->args[1].value = n->args[2].value;
NEWNODE1->evalfield = 3;
build_eval(newpe, NEWNODE1, localpe, n, 3);
}
n->evalfield = n->evalfield | 16;
n->args[4].value = n->args[2].value + 1;
n->waitmask = 2;
n->value.cont = G_PFAC1_CONT2;
possibly resume(n);

}

G_PFAC1_CONT2(n)

node *n;

{

{ node* NEWNODE2;

NEWNODE2 = local_new.node(G.PFAC)
NEWNODE2->args[0].value = n->args[4].value;
NEWNODE2->args[1].value = n->args[1].value;
NEWNODE2->evalfield = 3;

write_point(&(n->args[5].point), localpe, NEWNODE2, NIL);

getvalue(n, B);

}

n->waitmask = 40;
n->value.cont = G_PFAC_CONT3;
possibly_resume(n);

}

G_PFAC_CONT3(n)
node *n;

{

return.value(n, n->args[3].value * n->args[5].value);

}

169
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CINT S_SFAC_(L, H)
CINT L, H;
{
if (L == H) then
return(L);
else {
CINT V3, V4;
V3 =H - 1;
V4 = S SFAC(L, V3);
. return(H * V4);
}
}

In the next chapter, we present a number of dynamic scheduling heuristics
used by Alfalfa, along with a set of benchmarks that demonstrate the effective-

ness of these algorithms.



Chapter 7
Dynamic Scheduling in Alfalfa

Having described the Alfalfa system, we present empirical results on its perfor-
mance using a variety of dynamic scheduling algorithms. All of these algorithms

fall into the category of algorithms that we call diffusion scheduling.

7.1 Diffusion Scheduling

Diffusion scheduling is a class of algorithms for dynamically scheduling tasks on
loosely-coupled (distributed-memory) multiprocessors. The only assumption
that need be made about the multiprocessor network is that it is connected,
which means that each processor can communicate (directly or indirectly) with
any other processor. Most distributed memory multiprocessor networks are
sparse; each processor can communicate directly with only a few of the proces-
sors in the system. A processor’s nearest neighbors are those processors it can
communicate with directly.

Diffusion scheduling is completely decentralized. Each processor is respon-
sible for deciding whether to execute a task locally or to send it to another
processor. Both the decision of whether to allocate work on another processor
and which processor to allocate the work on are made locally. These two com-
ponents of diffusion scheduling are called the transfer policy and the location
policy, respectively [18].

In the diffusion scheduling algorithms we have tested on Alfalfa, the in-

formation available to a processor is restricted to local load information and

17
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possibly load information about its nearest neighbors.! Thus each processor
in Alfalfa has a limited view of the state of the system. A processor can only
allocate work onto a nearest neighbor;. and cannot directly affect the state of a
non-neighboring processor. A processor only sends a task to a neighbor when
it believes that the neighbor has a lower work load. At the start of the com-
putation, work is generally allocated to a small number of processors. As the
parallelism of the computation increases, the work diffuses over the other pro-
cessors. Instead of leaping across the network, the computation diffuses from
heavily loaded areas of the network to less loaded areas.

In a multiprocessor such as the Intel iPSC, in which communication is ex-
tremely expensive, the diffusion scheduling algorithms we use have two attrac-
tive features:

1. Since each processor need only be aware of the load of its nearest neigh-
bors, the amount of communication required to keep the information up
to date is relatively small. A less restrictive scheduling algorithm that
required a processor to keep information about a greater number of pro-

cessors would probably require more communication.

2. Since each processor can allocate work only on neighboring processors,
most communication (for sending and returning values, for example) oc-
curs between neighbors.

However, our diffusion scheduling algorithms are less sensitive to changes in the
computational demands of a program than less restrictive scheduling methods.
If a few of processors are suddenly saturated by an explosive growth in paral-
lelism, they are less able to send some of the work to remote processors that
may be underutilized. This may lead to a poorer distribution of work through
the system.

The diffusion scheduling used by Alfalfa is similar in spirit to the scheduling

used in the in the Rediflow multiprocessor [48] (which has only been simulated
to date). The results of simulation experiments involving fized combinator

reduction using diffusion scheduling were reported previously by Hudak and
Goldberg [32].

In general, diffusion scheduling algorithms may allow each processor to possess information

about an arbitrary number of processors.
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7.1.1 Processor- Load

In diffusion scheduling, the transfer and location policies often depend on the

load of neighboring processors, which can be measured in several ways:

o CPU utilization: A processor may keep track of how busy it has been over
a certain period of time. This may or may not be a reasonable measure

of how busy it will be in the future.

e Space utilization: The amount of occupied storage in a processor can be
used as indicator of a processor’s load. However, there are two disadvan-

tages to doing so:

1. There may be no relationship between the amount of storage a task

uses and its demands on the cpu.

2. Space utilization is dependent on the storage reclamation method
used. If a mark/sweep reclamation algorithm is used then space
utilization would provide a very poor indicator of processor load
because the reclamation process doesn’t start until memory is nearly
full. Much of memory may be occupied by dead objects. A reference-
counting method would enable space utilization to provide a better
measure of load since unneeded structures are collected immediately.
However, cyclic structures will remain uncollected and may distort

the measure of storage usage.

Even so, statistics collected during storage reclamation, either through
garbage collection or reference counting, may provide a basis for a rea-

sonable space utilization metric.

o Number of waiting tasks: The number of tasks that a processor has yet to
execute may provide a reasonable load measure. Generally waiting tasks
are queued and the length of the queue provides this measure. However,
if the computational demands of the tasks vary greatly, the accuracy of
such a measure will suffer. In programs in which there is a reasonable
distribution of task execution times, the queue length of waiting tasks

should provide a reasonable measure.
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In Alfalfa, a processor’s load is measured by the number of waiting tasks in

its queue.

7.1.2 Transfer Policies

A processor decides whether to allocate work on another neighbor based on
load information about itself and possibly its neighbors. If the processor’s load
is lower than the reported load of its neighbors, it will choose to perform the
work locally.

If one of its neighbors appears to have a lower load, the processor may
choose to perform the work locally anyway. This can happen if the differ-
ence between the neighbor’s load and the local load is not enough to warrant
incurring communication overhead.

In several of the diffusion algorithms we tested in Alfalfa, the transfer policy
relied on only local load information. Each processor decided whether or not
to allocate work remotely based solely on the length of its task queue. In other
algorithms we tested, load information about its neighbors is made available to

each processor.

7.1.3 Location Policies

Once a processor has decided not to execute a task locally, it must choose
a neighbor to send the task to. If no load information is available about a
processor’s neighbors then the processor will choose a neighbor based on some
local policy. Two examples of such a policy would be to choose neighboring
processors randomly or in a round-robin fashion. If load information about
each neighbor is available, the processor generally chooses the neighbor with
the lowest load. Of course, one could invent a diffusion policy that did not
choose the least loaded neighbor, but rather included other information in the
decision [32].

Several of the diffusion algorithms we tested on Alfalfa did not require load
information about neighbors for their transfer policies. No communication,
other than that needed for the computation, was required to perform dynamic

scheduling. The location policy in each case was to allocate work to neighbors
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in a round-robin fashion.
The diffusion algorithms that used neighbor load information for their trans-
fer policies also used the same information for their location policies. In each

case, the location policy was to allocate work on the least loaded neighbor.

7.1.4 Information Policies

A diffusion strategy that requires communication between neighboring proces-
sors has to specify an information policy [54]. The information policy deter-
mines how load information about a processor is made available to its neighbors.
Examples of information policies are:

1. Polling: When a processor has a task that could be performed remotely,
it polls some or all of its neighbors to see what their current load is.
Then, based on the transfer and location policy, it chooses a processor to
execute the task. Unfortunately, a processor could continually be polled
even though its load has not changed significantly. This would result in

wasted communication.

2. Update: Each processor automatically notifies its neighbors about its cur-
rent load. An update policy must specify when load information should

be sent. Two choices are:

o Tume-Dependent Updates: A processor sends load messages at regu-
lar time intervals during the computation. If the time interval is too
short, an update message may be sent when the load of the processor
has not changed significantly since the last update. If the interval
is too long, neighboring processors may remain unaware of drastic

changes in a processor’s load.

o State-Dependent Updates: Update messages are sent only when a
processor’s load changes significantly. Of course, the update policy
must define what constitutes a significant change in the load. If the
policy is too sensitive to changes then too many update messages will
be sent, causing unnecessary communication overhead. If the policy
is too insensitive to variations in a processor’s load, the neighbors

will possess incorrect information much of the time.
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In the diffusion algorithms that require communication, Alfalfa uses a state-de-
pendent update policy. We varied the update policy in our empirical studies to

find an appropriate sensitivity to load fluctuations.

7 2 Communication in the Intel iPSC

In chapter 6 we mentioned that communication overhead in the Intel iPSC is

extremely high. The following statistics describe the message passing perfor-
mance of the iPSC.

Message latency

The message latency (the time between when the send is initiated and when
the message is received at the destination) between neighbors is dependent on

the size of the message as follows: Message Size (bytes) Latency (milliseconds)

2 1.281
500 1.992
1000 2.711
1500 4.398
2000 5.111
3000 7.514

For messages that are not sent between neighbors, each additional hop adds
significantly to the message delay. For a two byte message, the message latency

as a function of path length is shown in the following table:

No. of Hops Latency (milliseconds)

1 1.275
2 1.830
3 2.335
4 2.935
5 3.482

As indicated in the table, each hop adds 0.552 milliseconds to the message delay

for a two byte message.
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Processor overhead

In chapter 4 we showed that processor overhead generally has a greater effect
on the overall performance of .,aL parallel computation than message latency.
Unfortunately, the iPSC suffers from significant processor overhead for sending

messages.

Message Size (bytes) Overhead (milliseconds)

2 1.6770
500 2.3530
1000 3.0650
1500 4.7330
2000 5.4450
3000 7.7980

Surprisingly, the processor overhead is greater than the message delay. A
message arrives at its destination while the sending processor is still executing
the message passing routines!

Another unfortunate aspect of the iPSC is that a processor incurs substan-
tial overhead when forwarding a message. Each processor along the path of a
two byte message incurs an overhead of 0.780 milliseconds. Again, the proces-
sor overhead involved in forwarding a message is greater than the additional

message delay.

7.3 Application Programs

We tested Alfalfa on five programs. They were:

1. Parallel Factorial (pfac): This is a simple divide and conquer algorithm
for computing factorial. The granularity of the corresponding serial com-
binator program is very fine. If one considers the tree structure of a
divide and conquer algorithm, the only operation performed at the leaves
of parallel factorial is to return the value of one of the arguments. At
each vertex in the tree, a few arithmetic operations are performed, along
with two recursive calls:

{ pfac 1 h == 1=h -> 1, { pfacl mid == pfac 1 mid + pfac (mid + 1) h;
result pfaci;

} ((1+h)/2);
result pfac 1 1000;

}
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(For experimental purposes, we are taking the sum of all the numbers
rather than the product.) E

This is the serial combinator version of pfac:

{ --- Graph Reduction Functions —--
pfac 1 h == (demand (1 h)
(wait (1 n)
(if (=1 1n)
1

(let ((vi (/ (+ 1 1) 2)))
(tail-spawn (pfaci 1 h v1))))))

pfacl 1 h mid == (demand (1 mid h)

(wait (1 mid) :

(spawn ((v3 (pfac 1 mid)))

(let ((v4 (+ mid 1)))
(wait (h)
(spawn ((local v5 (pfac v4 h)))
(wait (v3 v5)
(+ v3 v5)))N)N

result pfac 1 1000

}

2. Eight Queens (queens): This program finds all solutions to the eight
queens problem by performing a parallel search through possible board
configurations. Because of memory limitations in the iPSC, the program
was executed using a seven-by-seven chess board. The program uses the
functions mkv, upd, and sel to create a, vector, update a vector (function-

ally), and select an element of a vector, respectively.

{ nqueens dim ==
{ boardsafe board row col oldcol ==
oldcol < 0->true,
safe (sel board oldcol) oldcol row col ->

boardsafe board row col (oldcol-1),
false;

safe oldrow oldcol newrow newcol ==
oldrow=newrow->
false,
abs (newrow - oldrow) = (newcol-oldcol) -> false,
true;
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queens board row col ==
boardsafe board row col (col-1) ->
“(col+1)=dim ->1,
all_queens (upd board col row) O (col+i),
‘o

all_queens board row col ==
row = dim ->
0,
queens board row col + all_queens board (row+l) col;

result all._queens (mkv dim) 0 O;

IF

result nqueens 7;

}

The queens program decomposes nicely for multiprocessor execution.
Large numbers of serial combinator calls may be evaluated in parallel,
and each serial combinator has a substantial sequential component. This
can be seen in the sequential stack-based definition of boardsafe in the
serial combinator version of the program. The figures in sections 7.4
and 7.5 indicate that the granularity of the serial combinators is suffi-
ciently coarse to provide good performance on multiprocessors with very
high communication overhead. Here is the serial combinator version of
queens:

{ ~--- graph reduction functions ---
nqueens dim == (demand (dim)
(wait (dim)
(let (v1 (mkv dim))
(tail-recurse (all_queens dim vi 0 0)))))

all.queens dim board row col ==
(demand (row dim)
(wait (row dim)
(it (= row dim)
0
(demand (board col)
(spawn ((v3 (queens dim board row col)))
(let ((v4 (+ row 1)))
(wait (board col)
(spawn
((local vb6 (all_queens dim board v4 col)))
(wait (v3 vb)
(+ v3 vB)))NINN
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queens dim board row col ==
(demand (board row col)
(wait (col) o
(let ((v6 (- col 1)))
(spawn ((local v7 (boardsafe board row col v6)))
(wait (v7)
(if v7
(demand (dim)
(wait (dim)
(it (= (+ col 1) dim)
1
(wait (board row)
(let ((v8 (upd board col row))
(v (+ col 1)))
(tail-recurse
(all_queens dim v8 0 v9)))))))
0)))))

boardsafe board row col oldcol ==
(demand (oldcol)
(wait (oldcol)
(if (< oldcol 0)
true
(demand (board row col)
(wait (board)
(let ((v13 (sel board oldcol)))
(wait (row col)
(stack-spawn ((vi4 (s_safe v13 oldcol row col)))
(if vi4
(let ((v15 (- oldcol 1)))
(stack-spawn
((vi6 (s_boardsafe board row col vi5)))
vi6))

false)))))))))

--- stack functions —--
s_.safe oldrow oldcol newrow newcol ==
(if (= oldrow newrow)
false
(let ({vil (- newrow oldrow))
(vi2 (abs vi1)))
(if (= v12 (- newcol oldcol))
false
true)))



181

s_boardsafe board row col oldcol ==
(if (< oldcol 0)- '
true :
(let ((vi3 (sel board oldcol)))
(stack-spawn.(vi4 (s_safe v13 oldcol row col)))
(if via
(let ((v15 (- oldcol 1)))
(stack-spawn
((v16 (s_boardsafe board row col vib)))
vie))

false)))

result nqueens 7

}

3. Adaptive Quadrature (quad): This is a numerical algorithm for approxi-
mating the area under a curve. The interval of interest is partitioned into
subintervals whose areas are approximated by trapezoids. In order to in-
crease accuracy, the subintervals have varying widths based on the shape
of the curve. In sections where the curve is relatively straight (i.e. has a
small second derivative), the subintervals may be large. The subintervals

are smaller in sections where the curve is less well-behaved.

An adaptive algorithm (so called because the method adapts to the data)
is appropriate in this case since a constant subinterval method would
either waste computation in straight sections of the curve or sacrifice

accuracy in other sections.

Adaptive quadrature is highly parallel. However, the computation of the
area of each trapezoid is a very simple operation, and thus the granularity
of the computation is relatively fine. Nevertheless, the performance of
Alfalfa when executing this program was quite good.?

{ Area F left right == ((F left + F right)/2) * (right - left);

2Because of problems in Alfalfa’s implementation of floating point operations, we actually

used integer arithmetic to implement fixed point operations.
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Found F left mid right oldval ==
{ Found1i newleft newright. ==
abs ((newleft+neﬁright) - oldval) < 0.5 ->

newleft+newright,
Found F left ((left+mid)/2) mid newleft +
Found F mid ((mid+right)/2) right newright;

result Foundi;

} (Area F left mid) (Area F mid right);

Quad F left right == Found F left ((left+right)/2)
right (Area F left right);

Foo x == ((((x - 6) * x) + 3) * x) - 2;

result Quad Foo 0.0 10.0;

}

Here is the serial combinator version of the quad program:

--- Graph Reduction Functions ---
foo x == (demand (x)
(wait (x)
(= (+ (x (- x6) x)3) x) 2))

quad f left right ==
(demand (f left right)
(wait (f left right)
(spawn ((address vi9 (area f left right)))
(let ((vi8 (/ (+ left right) 2)))
(tail-recurse (found f left vi8 right v19))))))

found f left mid right oldval ==
(demand (f left mid right oldval)
(wait (f left mid right)
(spawn ((local v21 (area f left mid))
(v22 (area f mid right)))
(wait (oldval v21i v22)
(tail-recurse
(foundl f left mid right oldval v21 v22))))))
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area f left right == (demand (f left right)
-(wait (f)
- (spawn ((local v24 (f left))
(v25 (f right)))
(wait (v24 v25 right left)
(* (/ (+ v24 v2B) 2)
(- right left))))))

foundl f left mid right oldval newleft newright ==
(demand (newleft newright oldval)
(wait (newleft newright oldval)
(if (< (abs (- (+ newleft newright) oldval)) 0.5)
(+ newleft newright)
(demand (left mid right)
(wvait (left mid right)
(let ((v28 (/ (+ left mid) 2))
(v28 (/ (+ mid right) 2)))
(spawn
((local v27 (found f left v26 mid newleft))
(v29 (found f mid v28 right newright)))
(wait (v27 v29)
(+ v27 v29)))))))))

—--- stack functions --—-
sfoo x == (= (* (+ (* (- x 8) x) 3) x) 2)))

result quad foo 0 10

}

4. Matriz Multiplication (matmult): This program performs standard matrix

multiplication. Each matrix is represented as a vector of vectors.

{

dotprod row col elt size ==
elt=size -> 0,
((sel row elt) *
(sel col elt)) +
dotprod row col (elt+l) size;

rowmult row colvec elt size ==
elt=size -> 0,
dotprod row (sel colvec elt) 0 size +
rowmult row colvec (elt+1) size;
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rowcolmult rowvec colvec elt size ==
elt=size->0, T
rowmult (rowvec-elt) colvec. 0 size +
rowcolmult rowvec colvec (§1t+1) size;

result rowcolmult (creatematrix 30) (create_matrix 30) 0 30;

}

We used create matrix to create and initialize a matrix (to avoid having

to do it explicitly).

Here is the serial combinator version of matrix multiplication:

{

——- graph reduction functions ---
rowcolmult rowvec colvec elt size ==
(demand (elt size)
(wait (elt size)
(if (= elt size)
0
(demand (rowvec colvec)
(wait (rowvec)
(let ((v30 (sel rowvec elt))
(v32 (+ elt 1)))
(wait (colvec)
(spawn ((local v31 (rowmult v30 colvec 0 size))
(v33 (rowcolmult rowvec colvec v32 size)))
(wait (v31 v33)
(+ v31 v33)))))N))

rowmult row colvec elt size ==
(demand (elt size)
(vait (elt size)
(if (= elt size)
0
(demand (row colvec)
(wait (colvec)
(let ((v34 (sel colvec elt))
(v36 (+ elt 1)))
(wait (row)
(spawn ((local v35 (dotprod row v34 0 size))
(v37 (rowmult row colvec v36 size)))
(wait (v36 v37)
(+ v36 v37)))))N)N
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dotprod row col elt size ==
(demand (elt size). .-
(wait (elt size) .
(if (= elt size)
0 | .
(demand (row col)
(let ((v38 (+ elt 1)))
(wait (row col)
(stack-spawn ((v39 (s_dotprod row col v38 size)))
(+ (* (sel row elt)
(sel col elt))
v38))))))))

cl == (let ((v40 (create_matrix 30))
(v41 (create_matrix 30)))
(tail-recurse (rowcolmult v40 v4i 0 2)))

--- stack functions ——-
s_dotprod row col elt size ==
(if (= elt size)
0
(let ((v38 (+ elt 1)))
(stack-spawn ((v39 (s_dotprod row col v38 size)))
(+ (* (sel row elt)
(sel col elt))
v39))))

result ci

}

Although matrix multiplication has a high degree of parallelism, the ex-
ecution of matmult requires the distribution of copies of the rows and
columns of the matrices. The statistics presented in sections 7.4 and 7.5
demonstrate that this has a significant negative effect on Alfalfa’s per-
formance because of its high communication costs. When this program
is run on a single processor, no copying of the rows and columns of the

initial matrices is required.

. Quicksort: This programs sorts a list of numbers using the well-known
quicksort algorithm [26]. The parallelism exhibited by quicksort is only on
the order of log n, where n is the number of elements in the list (quicksort’s
expected sequential time is O(nlogn) and its expected parallel execution
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time is 0(n)). Unfortunately, due to memory limitations on Alfalfa, we
were unable to run quicksort with a sufficiently large list to exploit a large
amount of parallelism.

{gs L ==
L=01 -> [1,
{ split X acc ==
X=[1->acc,
(hd X) < (hd L) ->
split (t1 X) [(hd X)~(hd acc),
hd (t1 acc))],
split (t1 X) [(hd acc),
(hd X)~(hd (t1 acc))];
result { gsi res ==
gs (hd res) -
((hd L) - gs:(hd (t1 res)));
result gsi; } (split (t1 L) [[1,[11);
}i
result gs (create_list 200);
}

The serial combinator version of quicksort has already been presented

in section 5.5

As we shall see, Alfalfa performed quite well on the first three programs. Using
a variety of diffusion methods, significant (although not linear) speedup over the
single-processor case was achieved. For the reasons mentioned above, Alfalfa’s

performance on matmult was unimpressive.

There are, of course, an infinite number of programs that Alfalfa could be
tested on. These five programs had the desirable properties of being easy to
write, easy to implement and were sufficiently different to provide a reasonable
study into Alfalfa’s performance. As Alfalfa becomes used by a greater number

of people, a greater variety of programs will be executed on it.

We were also only able to test a few different diffusion algorithms. A large
number of reasonable candidates had to be ignored. As it were, with only five
diffusion algorithms being tested, we still had to run Alfalfa almost 500 times
to gather the data presented here. We may not have found the best diffusion
strategy. However, a substantially more complete study of diffusion techniques

would have been impossible given the time and manpower limitations of this




187

study. 3

7.4 Non-Communicating Diffusion Scheduling

This section describes Alfalfa’s performance on the five application programs
using three non-communicating diffusion scheduling algorithms: simple round-
robin, dependent round-robin, and ratio round-robin. These algorithms have

identical location policies; their transfer policies differ, however.

7.4.1 Simple Round-Robin Diffusion

The simple round-robin transfer policy dictates that a new task (serial com-
binator invocation) is sent to a neighboring processor whenever the local task
queue length L surpasses a fixed threshold T. The value of T is independent
of the number of processors in the system. Figure 7.1 plots Alfalfa’s execu-
tion time (in milliseconds) as a function of the number of processors used. All
five programs were tested using simple round-robin diffusion and a number of
different T' values. The results demonstrate the following points:

e A large T value reduces the amount of parallelism exploited in a system
with a large number of processors. However, in most cases a high value
for T performed better in systems with only a few processors than a low
T value. This is because a high T' value reduces the number of tasks sent

between busy processors on a small system.

e For programs such as pfac and quad with many fine grain tasks, even a
high value for T does not prevent degradation on a two processor system.
Queens, matmult and quicksort perform reasonably on two processors

when T is large.

e On a system with many (e.g. 32) processors, a low T value performs
surprisingly well. This behavior seems to be program-independent and
implies that even simplistic diffusion strategies will work as long as there

are sufficient processors.

3In chapter 8, we also present a large amount of data about executing serial combinators

on a shared memory multiprocessor.
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e Only matmult performed poorly with 7 = 1 (in fact, it performed so
poorly it could not be plotted on the same scale as the others in fig-
ure 7.1). This is because the high cost of sending large messages in order

to distribute copies of the rows and columns of the matrices.

Although queens and pfac have substantially different granularity, they
both performed best on 32 processors when T' = 1. Simple round-robin
diffusion seemed to be more sensitive to message size (and thus message

cost) than to the granularity of the program.

e No single value for T' was appropriate for all sizes of hypercubes. If simple
round-robin diffusion is used in a system, the T' value should be adjusted

to the size of the system.

In addition to execution times, we are interested in how well the work was
distributed among the processors in the system. Table 7.1 lists the distribu-
tion performance for selected values of T for each program on 16 processors.
The average number of tasks executed, nodes created, reducer messages sent
(“Red”), and storage messages sent (“Strg”) by the processors are listed as a
function of their distance from the root processor (the processor which began

the computation). From these distribution figures, we observe that:

e As expected, the work distribution was better when a small T' was used
than a large T'. Naturally, a small T caused a greater number of messages

to be sent.

¢ In systems with at least 16 processors the better distribution performance
associated with a low T' value outweighed the additional message cost.
Only in queens did a high threshold (T = 20) give as good speedup as
a low threshold (T = 1). When T' = 20 the work was well distributed

through the system while the number of messages was relatively small.

¢ Although matmult with T = 1 was distributed better than any other
program, the performance was extremely poor. Again, this is because of

the large amount of data that had to be sent between processors.

¢ Of all the programs, queens had the lowest message/task ratio. Not sur-

prisingly, it performed the best of all the programs. Many of the tasks
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PFAC: T =1 ' ADAPTIVE QUAD: T = 100
Dist Tasks Nodes Red Strg | Dist Tasks Nodes Red Strg

0 393.0 186.0 1830 102.0. 0 2735.0 1111.0 512.0 512.0

1 3133 151.8 149.8 79.8 1 708.0 418.0 1280 0.0

2 250.3 124.7 1183 59.7 2 0.0 0.0 0.0 0.0

3 183.0 97.0 87.5 38.3 3 0.0 0.0 0.0 0.0

4 118.0 70.0 56.0 17.0 4 0.0 0.0 0.0 0.0
PFAC: T = 20 MATRIXMULT: T =1

Dist Tasks Nodes Red Strg Dist Tasks Nodes Red Strg

0 650.0 281.0 240.0 164.0 0 234.0 117.0 116.0 58.0

1 420.0 196.5 1245 75.8 1 230.5 115.5 115.5 57.5

2 267.0 147.3 48.0 10.2 2 233.0 116.3 1163 58.3

3 16.5 12.0 7.8 0.0 3 234.5 117.0 117.0 58.8

4 0.0 0.0 0.0 0.0 4 230.0 116.0 116.0 §7.0
QUEENS: T=1 MATRIX MULT: T = 10

Dist Tasks Nodes Red Strg Dist Tasks Nodes Red Strg

0 2296.0 1120.0 6400 348.0 0 500.0 247.0 12.0 9.0
1 2063.0 10240 567.5 291.3 1 414.3 207.3 6.3 3.0
2 1840.7 916.3 496.7 252.3 2 190.7 95.3 3.0 1.5
3 1659.0 8495 436.0 198.0 3 105.3 53.3 1.3 0.0
4 4

1454.0 729.0 394.0 195.0 0.0 0.0 0.0 0.0
QUEENS: T = 20 MATRIX MULT: T = 50
Dist Tasks Nodes Red Strg Dist Tasks Nodes Red Strg

0 2307.0 1075.0 611.0 384.0 0 1942.0 969.0 4.0 4.0
1 26635 1309.8 4105 227.3 1 445.0 223.0 1.0 0.0
2 1945.2 9742 235.5 116.2 2 0.0 0.0 0.0 0.0
3 1233.0 654.3 98.5 11.5 3 0.0 0.0 0.0 0.0
4 118.0 65.0 12.0 0.0 4 0.0 0.0 0.0 0.0

QUEENS: T = 100 QUICKSORT: T=1
Dist Tasks Nodes Red  Strg Dist Tasks Nodes Red  Strg
0 5202.0 2406.0 650.0 520.0 V] 328.0 128.0 147.0 72.0
1 4889.8 24445 260.8 130.8 1 172.5 71.8 88.0 37.5
2 820.2 442.8 65.5 0.0 2 119.2 53.3 49.5 17.0
3 3
4 4

0.0 0.0 0.0 0.0 75.5 34.0- 29.8 10.0

0.0 0.0 0.0 0.0 76.0 33.0 20.0 7.0
ADAPTIVE QUAD: T =1 QUICKSORT: T = 10

Dist Tasks Nodes Red  Strg Dist Tasks Nodes Red Strg

o 685.0 313.0 310.0 184.0 0 452.0 175.0 146.0 79.0
1 487.8 234.8 2348 1265 1 274.5 115.5 62.5 27.5
2 335.8 169.8 169.8 83.0 2 90.7 43.2 16.0 1.5
3 206.3 112.8 112.8 46.8 3 38 . 20 1.3 0.0
4 4

91.0 61.0 61.0 15.0 0.0 0.0 0.0 0.0
ADAPTIVE QUAD: T = 20 QUICKSORT: T = 20

Dist Tasks Nodes Red Strg Dist Tasks Nodes Red Strg
0 1089.0 441.0 324.0 265.0 V] 668.0 249.0 163.0 107.0

1 933.3 470.3 125.3 59.0 1 328.5 149.3 32.0 3.5

2 124.2 76.8 29.5 0.0 2 21.2 9.7 1.7 0.0

3 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0

Table 7.1: Work distribution using simple round-robin diffusion
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(serial combinator invocations) in queensi are automatically executed lo-
cally without invoking the diffusion scheduler (because of the use of local

spawn constructs in the';;rogram).

7.4.2 Dependent Round-Robin Diffusion

Dependent round-robin diffusion is identical to simple round-robin, except that
the threshold task queue length is dependent on the dimension d of the hyper-
cube multiprocessor. When a new task needs to be executed, it is sent to a

neighboring processor iff
L > 2(E-(Cxd))

where E and C are constants and L is the task queue length. The values chosen
for E and C determine the diffusion properties of the computation. A large E
will cause more tasks to be executed locally than a small E. If E is large, the
potential speedup is reduced. In a system with a small number of processors,
though, less wasted communication occurs from sending tasks between busy
processors. A large value of C' will cause the queue length threshold to decrease
quickly as processors are added.

The definition of the threshold was chosen rather arbitrarily. Another way

of expressing the above formula for the threshold is
2E/PC

where P is the number of processors (equal to 2¢). Figure 7.2 presents the
performance measurements for dependent round-robin diffusion and highlights
the following points:

¢ For each program, fixed values of E and C performed well over a range

of hypercube sizes.

e In the programs that generated many tasks, a high value of E (either 12
or 15) and a relatively high value of C (generally 3) worked best. When
the number of processors is low the threshold is very high and most tasks
are executed locally. The large value of C means that as processors are
added, the threshold decreases quickly and the computation gets well
distributed.
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e In matmult a small C value (C = 1) performed best. The message sizes
are apparently too large to permit a low threshold even for large numbers

of processors.

Table 7.2 lists the distributioﬂ performance for selected values of of E and C

for each program on 16 processors.

7.4.3 Ratio Round-Robin Diffusion

One of the problems with both the simple and the dependent round-robin meth-
ods is that no parallelism is exploited until the queue length on the root proces-
sor has surpassed the threshold. If the threshold (either T or 2E-(C*®) is large
there may be a substantial period at the start of the computation in which only
the root processor is computing. Reducing the threshold to avoid this problem
may be unacceptable if the machine has relatively few processors.

Ratio round-robin diffusion causes a task to be sent to a neighboring pro-
cessor when the ratto of ¢;, the number of tasks that the scheduler decided
to execute locally, to t,, the number of tasks sent to remote processors, is
greater than some threshold value. As in dependent round-robin, the value of
the threshold depends on the number of processors. A new task is sent to a
neighbor iff

U oE-(Crd)

r

The first task is always to a neighboring processor.

This has the advantage of spreading the computation out from the root
processor sooner than the other diffusion methods described so far. However,
the ratio ¢;/t, may not be nearly as accurate an indication of a processor’s load,
since it does not account for tasks received from other processors. Figure 7.3
presents the results of using ratio round-robin diffusion. Ratio round-robin dif-
fusion performed better on a small number of processors than dependent round-
robin diffusion. Overall, the performance was similar to dependent round-robin.
Table 7.3 lists the distribution performance for various values of E and C. The

distribution figures indicate that:

e For pfac, queens, and quad, the work distribution using ratio round-

robin diffusion was very similar to the work distribution using dependent
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" PFAC:E=12C=1

Dist Tasks Nodes Red
-0 '2490.0 1001.0 488.0
1 377.0 249.5 122.0

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

PFAC:E=12C =2

Dist Tasks Nodes Red
0 618.0 271.0 238.0

1 391.3 182.8 136.8

2 265.5 142.2 62.5

3 55.5 36.0 16.5

4 0.0 0.0 0.0

PFAC:E=12C =3

Dist Tasks Nodes Red
0 431.0 202.0 199.0

1 334.5 160.5 158.5

2 242.3 122.0 119.0

3 170.0 92.0 83.5

4 95.0 55.0 55.0
QUEENS:E=12C =1

Dist Tasks Nodes Red
0 11034.0 5226.0 582.0

1 4662.0 24038 145.5

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0
QUEENS: E=12C =2

Dist Tasks Nodes Red
0 2293.0 1070.0 619.0

1 2372.8 1169.8 430.8

2 1976.3 986.7 269.3

3 1398.0 732.8 136.5

4 448.0 241.0 34.0
QUEENS:E=12C =3

Dist Tasks Nodes Red
0 2396.0 1152.0 670.0

1 2085.3 1037.8 566.3

2 1815.5 905.8 485.2

3 1634.3 8373 427.3

4 1515.0 754.0 393.0

Strg
488.0
0.0
0.0
0.0
0.0

Strg
157.0
81.3
21.8
0.0
0.0

Strg
113.0
86.0
58.7
34.8
20.0

Strg
582.0
0.0
0.0
0.0
0.0

Strg
386.0
232.0
136.2

34.5

0.0

Strg
381.0
288.0
244,5
193.5
200.0

ADAPTIVE QUAD:E = 12C = 1

Dist Tasks Nodes Red  Strg
0 48550 2157.0 540.0 540.0
1 178.0 156.5 135.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 00 00 o0
4 0.0 0.0 0.0 0.0
ADAPTIVE QUAD:E=12C = 2
Dist Tasks Nodes Red Strg
0 972.0 394.0 301.0 2420
1 8205 411.5 120.5 59.0
2 217.7 123.0 30.7 1.2
3 1.8 1.3 0.8 0.0
4 0.0 0.0 0.0 0.0
ADAPTIVEQUAD:E=12C =23
Dist Tasks Nodes Red  Strg
1) 690.0 310.0 307.0 1s8.0
1 461.0 223.5 2235 1188
2 318.0 163.7 163.7 77.2
3 233.0 124.0 1240 54.5
4 193.0 101.0 101.0 46.0
MATRIX MULT:E=6C =1
Dist Tasks Nodes Red Strg
276.0 135.0 10.0 8.0
1 400.8 200.8 6.3 28
2 205.3 102.7 3.7 1.8
3 1245 62.5 2.0 0.8
4 113.0 57.0 1.0 0.0
MATRIX MULT:E=8C =1
Dist Tasks Nodes Red  Strg -
0 588.0 291.0 10.0 8.0
1 468.5 234.5 5.0 2.3
2 159.5 79.8 2.2 1.0
3 75.8 38.3 0.8 0.0
4 0.0 0.0 0.0 0.0
MATRIXMULT:E=10C =1
Dist Tasks Nodes Red Strg
0 2401.0 1198.0 5.0 5.0
1 330.3 165.8 1.3 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0

Table 7.2: Work distribution using dependent round-robin diffusion
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PFAC:E=3C=0

Dist Tasks Nodes Red
0 2879.0 1402.0 89.0
1 265.8 139.8 27.3
2 9.3 6.3 3.3
3 0.0 0.0 0.0
4 0.0 0.0 0.0

PFAC:E=3C=1
Dist Tasks Nodes Red
0 336.0 161.0 160.0
1 287.3 140.8 1408
2 246.0 123.7 123.7
3 212.0 109.0 109.0
4 189.0 97.0 97.0

PFAC:E=5C=1
Dist Tasks Nodes Red
0 1311.0 616.0 151.0
1 442.3 220.8 723
2 128.7 69.3 29.0
3 36.0 205 9.5
4 2.0 2.0 2.0

QUEENS: E=3C=0

Dist Tasks Nodes Red
0 18626.0 9176.0 334.0

1 2193.8 1122.0 109.3

2 370.7 190.3 19.3

3 14.3 8.8 3.3

4 0.0 0.0 0.0

QUEENS: E=3C=1

Dist Tasks Nodes Red
0 2169.0 1069.0 607.0

1 2053.3 1023.5 569.8

2 1853.0 915.3 §516.3

3 1686.5 864.3 454.0

4 1436.0 729.0 390.0

QUEENS:E=5C =1

Dist Tasks Nodes Red
0 7677.0 3709.0 555.0

1 3197.3 1594.0 287.3

2 1229.3 630.7 130.7

3 420.8 222.3 52.3

4 157.0 83.0 19.0

Strg
82,0

6.8
0.0

0.0 -

0.0

Strg
87.0
73.3
61.2
51.5
46.0

Strg
115.0
36.5
9.5

0.0

Strg
304.0
29.5
4.7

0.0

319.0
288.0
269.3
206.0
184.0

Strg
407.0
148.3

49.3

14.3

5.0

F
ADAPTIVEQUAD:E=3C=0
Dist Tasks Nodes ° Red Strg

0 3701.0 1803.0 1160 105.0
1 423.5 219.5 37.5 11.0
2 27.8 16.5 5.8 0.3
3 1.3 0.8 03 - 00
4 0.0 0.0 0.0 0.0

ADAPTIVEQUAD:E=3C=1
Dist Tasks Nodes Red  Strg
0 657.0 300.0 300.0 178.0
1 469.3 2270 227.0 121.0
2 332.8 168.8 168.8 82.0
3 225.8 120.8 120.8 52.5
4 133.0 79.0 79.0 27.0

ADAPTIVEQUAD:E=5C =1
Dist Tasks Nodes Red Strg
0 13380 6400 175.0 116.0
1 701.5 341.5 101.0 59.8
2 210.3 112.7 47.0 16.0
3 39.5 245 14.0 2.3
4 3.0 3.0 3.0 0.0

MATRXMULT:E=3C =1
Dist Tasks Nodes Red  Strg
237.0 118.0 117.0 59.0
232.3 116.3 116.3 58.0
232.7 116.3 1163 58.2
232.8 116.3 1163 58.3
229.0 115.0 115.0 57.0

o W =0

MATRXMULT:E=5C =1
Dist Tasks Nodes Red Strg
(1] 251.0 124.0 39.0 21.0
1 226.3 113.8 38.3 18.5
2 225.7 113.0 37.7 18.7
3 232.3 116.3 38.8 19.3
4 283.0 139.0 43.0 24.0

MATRIXMULT:E=7C =1
Dist Tasks Nodes Red Strg
0 12410 608.0 45.0 35.0
1 342.0 172.0 20.0 9.0
2 131.8 66.8 8.5 3.3
3 71.3 36.3 4.8 1.8
4 37.0 19.0 ‘3.0 1.0

Table 7.3: Work distribution using ratio round-robin diffusion
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round-robin diffusion.

e For pfac, while the distribution with ratio round-robin diffusion was bet-
ter than dependent round-robin, the message load was significantly higher.

This accounts for ratio round-robin’s poorer execution time performance.

7.5 Communicating Diffusion Scheduling

Alfalfa was tested on the five application programs using two communicating
diffusion algorithms— simple communicating diffusion and dependent commu-
nicating diffusion. Both of these diffusion strategies have identical location
policies. Once the transfer policy has determined that a task should be sent to
a neighboring processor, the neighbor with the smallest reported queue length

will be chosen.

7.5.1 Simple Communicating Diffusion

In simple communicating diffusion, the update policy is as follows: The load of
a processor is reported to its neighbors whenever its task queue length L differs
by at least a factor of two from the previously reported value? and either the old
value or new value is greater than some threshold M. Since a processor’s task
queue length will often fluctuate between 0 and 1 or 1 and 2, M should be large
enough to prevent messages from being sent due to minor changes in load. A
large value of M means that fewer update messages will be sent by lightly loaded
processors. The factor-of-two requirement was chosen somewhat arbitrarily,
and arose from the observation that small changes in queue length are more
significant on a lightly loaded processor than on a heavily loaded processor.
The factor-of-two requirement reduces the number of update messages sent by
heavily loaded processors.

When a new task needs to be executed, a neighboring processor p is chosen
iff

L, <L-R

where:

4We refer to this restriction as the factor-of-two requirement.
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o L is the local task queue length,

e R is a constant, and

o L,, the reported load of p, is,the lowest reported load of all neighboring

processors.
A large R value will cause fewer tasks to be sent to neighboring processors than
a small R value.
The execution times using simple communicating diffusion are plotted in
figure 7.4. These results indicate that:
o Low values for R performed best on all programs. However, except for
queens, small values of R for small numbers of processors did poorly.

Note the similarity with simple round-robin diffusion.

e On 32 processors, the best simple communicating diffusion policy per-
formed no better than the best non-communicating policy. This reinforces
the observation that a large number of processors will allow a simple dif-

fusion policy to perform well.

¢ Performance was relatively insensitive to the value of M. Once the num-
ber of tasks on the local task queue surpassed M , the factor-of-two re-
quirement provides a much greater constraint on the number of update

messages sent. Not surprisingly, performance was much more sensitive to

R.

e When R = 20, an M value of 50 tended to do better than an M value of
20. Apparently, the extra information provided by a lower M value was
not worth the extra communication required.

Table 7.4 lists the distribution performance for various values of R and M on
16 processors. The number of system messages (“sys”) used to perform the
load updates is listed, as well as the other types of messages.

The distribution statistics indicate that:

o The distribution of work was determined primarily by the value of R.

¢ Even for small values of M, the number of system messages per processor
was low. This would indicate that the task queue length of each processor

rarely changes significantly (as defined by the factor-of-two requirement).
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Dist

W =0

Dist

W =o

Dist

o WN=Oo

Dist

W =0

PFAC:R=5,M=3§
Tasks Nodes Red Strg
376.0 175.0 110.0 68.0
308.8 1448 1093 64.3
257.3 123.7 87.0 48.5
185.0 108.0 58.5 13.8
103.0 71.0 39.0 0.0

PFAC:R=50,M = 50

Tasks Nodes Red  Strg
1150.0 453.0 250.0 247.0
506.8 249.3 131.8 70.0
136.8 91.5 46.2 0.0
0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

PFAC:R=50,M =20

Tasks Nodes Red Strg
1180.0 455.0 270.0 270.0
571.3 294.3 1178 50.3
88.8 61.2 33.5 0.0
0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

PFAC:R=20,M = 50
Tasks Nodes Red Strg
624.0 255.0 214.0 164.0
402.0 181.0 147.0 93.5
277.8 157.5 70.8 16.8

24.8 18.8 12.8 0.0

0.0 0.0 0.0 0.0

QUEENS: R=20, M= 20
Tasks Nodes Red Strg
2507.0 1148.0 229.0 220.0
2183.5 10425 208.5 153.5
1895.2 958.8 182.8 80.2
1504.0 796.3 152.0 31.8
1054.0 585.0 116.0 0.0

QUEENS: R=20,M = 50
Tasks Nodes  Red Strg
2144.0 1003.0 238.0 188.0
2080.5 1004.5 256.5 164.0
2029.3 1016.8 238.3 117.0
1532.0 805.0 189.0 55.5

912.0 499.0 114.0 14.0

QUEENS: R=50, M= 20
Tasks Nodes Red Strg
4184.0 1891.0 402.0 402.0
3509.5 1734.8 241.0 140.5
1910.0 1001.8 93.7 0.0

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

ADAPTIVEQUAD:R=5 ,M=5

Tasks Nodes Red  Strg
641.0 275.0 194.0 142.0
506.5 227.5 134.0 92.8
3343 175.0 953 39.8
192.8 114.3 74.8 19.5
123.0 91.0 69.0 5.0
ADAPTIVE QUAD:R=20 , M= 20
Tasks Nodes Red Strg
1185.0 451.0 282.0 282.0
706.8 343.3 161.3 90.8
256.2 157.8 61.5 1.0
4.5 3.0 1.5 0.0
0.0 0.0 0.0 0.0
ADAPTIVE QUAD: R =20, M = 50
Tasks Nodes Red Strg
952.0 362.0 233.0 2300
678.5 327.5 138.5 81.0
316.8 185.2 53.5 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
MATRIXMULT:R=5,M=5
Tasks Nodes Red Strg
253.0 124.0 9.0 7.0
271.8 135.3 8.8 5.0
243.0 121.7 6.0 2.8
231.0 116.5 2.5 0.3
0.0 0.0 0.0 0.0
MATRIX MULT:R=20, M = 20
Tasks Nodes Red Strg
809.0 402.0 7.0 6.0
487.0 243.5 3.0 1.5
160.8 80.8 0.8 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
QUICKSORT:R=2 ,M =2
Tasks Nodes Red Strg
327.0 124.0 99.0 58.0
165.8 69.0 57.8 24.5
139.3 61.0 39.8 14.5
67.3 32.3 21.3 3.5
14.0 9.0 9.0 0.0
QUICKSORT: R=20, M =20
Tasks Nodes Red Strg
502.0 186.0 123.0 82.0
375.0 165.0 38.5 10.8
17.8 9.7 7.2 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

Sys
22.0
16.3
12.7

7.3

2.0

Sys
10.0
6.0
0.3
0.0
0.0

Table 7.4: Work distribution using simple communicating diffusion
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e Modifying the values of M makes relatively little difference in the distri-
bution performance or in the number of messages sent. Again, this is

because of the factor-of-two requirement.

7.5.2 Dependent Co.mmunicating Diffusion

Both the transfer and the update policies in dependent communication diffusion
depend on the number of processors in the system. The update policy dictates
that an update message is sent to neighboring processors when the local task
queue length L changes by a factor of two and either the new value or the old

value of L is greater than
2(Eu—(Cutd))

where E, and C, are constants and d is the dimension of the hypercube. In
this case, a large E, will cause fewer update messages to be sent than a small

E.,.

A task is sent to a neighboring processor p iff, for constants E and C,
lp S L— 2(E—(C*d)

and [, is the lowest reported load of all neighboring processors. Figure 7.5
illustrates the performance of the programs for various values of E, C, E,
(labeled UE in the graph), and C, (labeled UC). The following aspects of the
performance of dependent communicating diffusion are worth mentioning;:

e High values of E (10 or 12) and C (around 3) performed the best. In a
system with many processors, a small difference between the task queue
length of a processor and of its neighbor should cause a task to be sent
to that neighbor.When there are fewer processors, however, the difference
between the load of a processor and the load of a neighbor should be large

before a task is be sent.

o A high E, value and a low C, value performed best. This indicates that
even in the presence of a large number of processors, the number of update

messages should be kept relatively small.

The distribution results for dependent communicating diffusion are shown in

table 7.5. They show that the distribution of work is also relatively insensitive
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Figure 7.5: Alfalfa’s performance using dependent communicating diffusion



PFAC:E=5C=1E,=5C, =1

Dist Tasks Nodes Red Strg Sys
1] 313.0 142.0 1190 74.0 18.0
1 262.0 125.0 106.0 59.0 12.0
2 247.8 123.2 1045 53.0 15.3
3 232.8 1223 111.8 50.0 15.3
4 219.0 129.0 125.0 43.0 6.0
PFAC:E:IOC=2E..=50..=1
Dist Tasks Nodes Red Strg Sys
0 395.0 178.0 139.0 89.0 23.0
1 303.0 146.0 125.0 68.0 133
2 257.2 127.2 90.2 46.5 16.5
3 178.3 96.8 62.8 23.8 15.0
4 135.0 87.0 71.0 16.0 10.0
PFAC:E:IOC:?E“ =10C, =1
Dist Tasks Nodes Red Strg Sys
0 493.0 212.0 203.0 136.0 2.0
1 353.5 168.0 160.5 89.0 1.5
2 234.0 119.3 108.0 51.7 0.0
3 161.0 92.5 56.0 16.0 0.0
4 43.0 29.0 15.0 0.0 0.0
QUEENS: E=5C=1E,=5C, =1
Dist Tasks Nodes Red Strg Sys
0 1711.0 821.0 351.0 210.0 40.0
1 1779.3 8915 401.8 199.0 43.8
2 1850.0 925.7 419.3 209.0 38.2
3 1973.0 985.0 426.5 2148 47.8
4 1862.0 960.0 446.0 1940 36.0
QUEENS:E=100=2E.,=SC.,=1
Dist Tasks Nodes Red Strg Sys
0 1814.0 887.0 302.0 171.0 24.0
1 17138 852.5 3148 161.8 27.8
2 1861.2 918.2 360.5 192.7 40.7
3 1895.0 960.8 392.5 1830 35.3
4 22660 1192.0 3640 123.0 75.0
QUEENS: E=10C =2 E, =10C, =1
Dist Tasks Nodes Red Strg Sys
0 23640 1149.0 384.0 225.0 4.0
1 19493 9435 404.8 2335 2.0
2 1e48.7 816.5 400.7 208.2 3.0
3 21095 1103.3 362.0 132.5 1.0
4 1191.0 606.0 279.0 129.0 2.0
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ADAP.QUAD: E=5C=1E, =5C, =1

Dist Tasks Nodes Red Strg Sys
0 529.0 235.0 206.0 132.0 30.0
1 3863 186.8 151.3 82.0 22.5
2 3403 173.0 132.0 63.2 29.5
3 3005 155.5 1275 58.5 24.3
4 2490 141.0 117.0 42.0 23.0
ADAPQUAD: E=10C=2E,=5C, =1
Dist Tasks Nodes Red Strg Sys
0 8730 229.0 1480 131.0 39.0
1 492.8 227.8 141.3 89.3 33.5
2 3520 182.3 1073 47.3 28.7
3 2098 123.3 66.8 15.0 16.5
4 72.0 56.0 40.0 0.0 11.0
MATRXMULT: E=5C=1 E.=5C,=1
Dist Tasks Nodes Red Strg Sys
0 191.0 94.0 5§9.0 31.0 8.0
1 218.5 109.0 46.0 23.3 5.8
2 2545 127.5 38.8 19.2 4.7
3 2058 102.8 34.3 17.3 4.8
4 3070 155.0 29.0 13.0 6.0
MATRIXMULT: E=6C =1 E,=9Cy=1
Dist Tasks Nodes Red  Strg Sys
0 720 351.0 20.0 15.0 0.0
1 465.0 232.5 7.5 3.8 0.0
2 1917 96.7 1.7 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0
MATRXMULT:E=7C=1E,=9C. =1
Dist Tasks Nodes Red  Strg Sys
0 3000 147.0 10.0 8.0 0.0
1 467.5 234.5 6.5 2.5 0.0
2 195.5 97.8 3.5 1.7 0.0
3 94.8 47.3 1.3 0.8 0.0
4 0.0 0.0 0.0 0.0 0.0
MATRIXMULT: E=8C =1E,=9C, =1
Dist Tasks Nodes Red  Strg Sys
0 580.0 287.0 8.0 7.0 0.0
1 415.0 207.5 4.0 2.0 0.0
2 193.2 96.8 1.8 0.7 0.0
3 80.8 40.8 0.8 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0

Table 7.5: Work distribution using dependent communicating diffusion
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to the number of system messages. The transfer policy dictated by E and C
has a much greater affect on load distribution than the update policy, E, and
C.. N

7.6 Comparing the Diffusion Methods ’

In figure 7.6 the best performance of each diffusion method for each program
is plotted. The most striking aspect of these results is that, at least in Alfalfa,
there is surprisingly little difference between the best performances of the vari- )
ous diffusion algorithms on 32 processors. However, certain patterns do develop

when the programs are considered on s, case-by-case basis.

® Pfac: For pfac the round-robin diffusion strategies worked as well as the
communicating strategies. A large number of fine-grained tasks are gen-
erated during execution. Each processor sends enough tasks to its neigh-
bors to spread the computation through the system sufficiently. Com-
paring the distribution figures, the task distribution for pfac using non-
communicating methods was as good as the communicating methods. In
either case, the fine-grained nature of pfac could be seen in the high ratio

of messages to tasks when the queue length thresholds were low.

® Queens: For queens the communicating methods performed significantly
better than the non-communicating methods in systems with sixteen pro-
cessors or less. The distribution figures show that a far greater num-
ber of messages were sent using the non-communicating diffusion meth-
ods. Apparently, the queue length thresholds were surpassed in the non-
communicating strategies when all the processors in the system were heav-
ily loaded. The few update messages in the communicating strategies
served to increase the number of tasks executed locally when the overall

system load was high.

® Adaptive Quad: For this program, the communicating diffusion algo-
rithms performed better than the non-communicating in systems of less
than 32 processors. Although the distribution performance was worse

using the communicating methods, fewer messages were sent.
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® Matmult: On small numbers of processors, the communicating diffu-
sion policies clearly outperfo;med the non-communicating policies, al-
though neither did particuléﬂy well. On 16 processors, the performance
of the communicating and the non-communicating methods were about
the same. While the task distribution for the non-communicating meth-

ods was better, the communicating methods caused fewer messages to be

sent.

® Quicksort:Both non-communicating and communicating diffusion per-
formed equal poorly on quicksort. Only on four processors did the
communicating method perform better. As with the other programs, the
non-communicating method provided better work distribution while the
communicating method caused fewer messages to be sent.
In every case, the number of update messages required to implement the com-
municating diffusion strategies was small, compared to the number of system
messages sent and the number of tasks executed. This may be because the
factor-of-two requirement overly restricted the flow of load information between

neighbors. Processors may have been forced to rely on out-of-date information

about their neighbors.

7.7 Conclusions

Our experiments were designed for two purposes:

1. To find effective dynamic scheduling techniques for executing serial com-

binators on distributed memory multiprocessors, and

2. To gauge the effectiveness of our approach to automatic partitioning of

functional programs for this class of architectures,

7.7.1 Choosing a Diffusion Policy

We saw that the communicating diffusion policies performed better than the
non-communicating policies in systems with small numbers of processors. In
other words, the communicating diffusion methods performed better on systems

where all the processors became saturated with work. If a program is very large
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or if many programs are running simultaneously, communicating diffusion will
probably perform better on large multiprocessor systems as well.

The communicating strategies performed better because fewer messages
were sent by each processor even though the non-communicating policies had
better task distribution. In a loosely-coupled system where communication is
cheap, the non-communicating methods may actually perform better due to
better task distribution.

When the number of processors was large, the non-communicating methods
performed as well as the communicating methods. In a large system in which
most of the processors are not heavily loaded it is less likely for a task to be

sent by one busy processor to another busy processor.

Related Analytical Results

A fair amount of analytical work has been performed to determine appropriate
dynamic load balancing strategies for loosely coupled multiprocessors [14,54].
A recent analytical study of dynamic load balancing performed at the Univer-
sity of Washington [18] concluded that, on average, a simple and inexpensive
diffusion strategy will perform just a well as a sophisticated diffusion strategy.
The scheduling methods that were analyzed, however, were somewhat differ-
ent from those used by Alfalfa. Even so, Alfalfa has provided strong empirical

evidence to support the conclusion.

7.7.2 Alfalfa’s Performance

Even though the compiler goes to great lengths to make serial combinators as
coarse-grained as possible, the performance of Alfalfa was still largely program
dependent. As it turned out, the granularity of the source program affected
Alfalfa’s performance less than the existence of large shared data structures
that needed to be replicated throughout the system or data structures whose
access is inherently sequential.

Considering the extremely high communication costs of the Intel iPSC, Al-
falfa performed quite well on three of the five programs: pfac, queens, and

quad. Each of these programs had little, if any, shared data and each exhibited
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a large amount of inherent parallelism. On queens, Alfalfa performed espe-
cially well; the compiler was able to make good use of the practically sequential
portions of the program. The beneﬁt:sl of the serial combinator approach were
illustrated in the low message to task ratio in the statistics for queens.

On matmult Alfalfa’s performance was disappointing. Although the execu-
tion time was reduced significantly on a small number of processors, the amount
of additional parallelism exploited as processors were added was minimal. Un-
like the three program that performed well, this program required a significant
amount of data to be sent between processors. The figures at the beginning of
the chapter indicate that the communication costs in the Intel iPSC are roughly
proportional to the size of the messages. This is probably responsible for the
inability of Alfalfa to exploit the parallelism in matmult on a large scale.

A solution to this problem would be to explicitly partition the matrix and
fully distribute it when the program is loaded. One way to accomplish this
would be to provide the programmer with the ability to specify how the data in
a program should be partitioned (as in para-functional programming (30,35,31]).
Alternatively, it may be possible to devise compiler algorithms to perform data
partitioning automatically. This is beyond the capability of our serial combina-
tor compiler.

Alfalfa performed the worst on quicksort, apparently because the available
parallelism was limited due to the small list of numbers was sorted. Other
researchers have reported that they achieved reasonable speedups for quicksort

using larger lists[38].




Chapter 8

Buckwheat: Graph Reduction
on a shared memory

multiprocessor

Buckwheat is an implementation of a heterogeneous graph reducer on the En-
core Multimax, a shared memory (tightly coupled) multiprocessor [19]. In many
ways, Buckwheat is similar to Alfalfa. We therefore present a brief description

of Buckwheat that covers only those aspects that differ from Alfalfa.

8.1 The Encore Multimax

The Encore Multimax is a bus-based shared memory multiprocessor. Buck-
wheat was implemented on a system that contained twelve processors. Each
processor is a 10 MHz National Semiconductor NS32032 microprocessor. Two
processors fit onto a card called the Dual Processor Card and share a cache.
"The memory resides on cards called Shared Memory Cards, each of which can
hold four megabytes of storage. Any location in memory can be accessed by
any processor over a very fast bus called the Nanobus, which has a data transfer
rate of 100 Megabytes per second. Each shared memory card has a cycle time
of 320 nanoseconds and can send or receive up to eight bytes of data with each
bus transaction.

An important feature of the shared memory in the Multimax is that any

209
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byte can be used as a lock (for enforcing mutual exclusion, etc.). Atomic test-
and-set instructions set and reset these locks.

The operating system, UMAX 4.’2',,is a multiprocessor extension of Unix that
supports multiprogramming as well as multiprocessing. Processes are scheduled
according to processor availability: If a single process creates new processes by
invoking the fork() routine, the new processes are able to run in parallel with
parent process. In order for the parent and child processes to share data, the
parent must explicitly declare an area of memory to be shared before it creates
the child processes.

A call to fork() creates a heavyweight process (a full Unix process contain-
ing all the state needed to execute independently). Encore has also provided
a multi-tasking library containing routines for creating lightweight processes
(unfortunately, this library was not available when Buckwheat was being im-
plemented).

Currently, there is no way to explicitly map Unix processes onto processors
to ensure that the processes will run in parallel. However, it has been our
experience that if the number of active processes in the system is less than
the number of processors, each active process will be executed on a different
processor. When executing Buckwheat, we were careful to ensure that the
number of active processes did not surpass the number of available processors.

Given this, the distinction between a process and the processor executing
it is unimportant. In the following sections we describe the organization of
Buckwheat on the each of the Multimax processors, even though we really
mean processes. On a shared-memory multiprocessor that allowed the user to
map processes to processors, the following description of Buckwheat would be

completely accurate.

8.2 Shared Memory Graph Reduction

In graph reduction, the program graph logically resides in a single graph space.
Thus, a shared-memory (tightly-coupled) multiprocessor is the most natural
architecture on which to implement graph reduction.

In Alfalfa, the graph reduction system on a loosely-coupled multiprocessor,
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a great deal of overhead was required to implement a single graph space that
encompassed the individual memories in the system. This overhead (in both
space and time) included: '

1. An extra field in each node pointer to specify a processor address as well

as a node address in the rhemory of that processor (see section 6.2.1).

2. Message passing between processors in order to perform transformations

on the distributed program graph (see section 6.2.4).

3. Using diffusion scheduling algorithms to choose remote processors to al-
locate work on. These algorithms may involve a significant amount of

communication or computation or both (chapter 7).

4. Message passing to support distributed reference-counting storage recla-
mation (see section 6.2.5).
On the Multimax, however, this overhead is unnecessary for the following
reasons:

1. Since the graph lies in a single address space supported by the hardware,

a 32-bit address is sufficient to access any node in the graph.

2. Any processor can access any component of the program graph. There-
fore, no communication between processors needs to occur when a trans-
formation is performed on the graph. Naturally, access to any part of the
graph being mutated must be restricted to the processor performing the

mutation.

Similarly, no interprocessor communication is required to perform ref-
erence counting. Only mutual exclusion to a node’s reference count is

required when the reference count is being modified.

3. In Buckwheat, the processors are self-scheduled. That is, when a processor
becomes free, it takes a task from a shared task queue and performs the
action dictated by the task. No processor needs to be aware of the state
of any other processor in the system. Scheduling based on shared queues
is discussed in detail in section 8.3.

Buckwheat executes serial combinators generated by the serial combinator

compiler described in chapters 4 and 5. Although code generation for Buck-
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wheat differs from code generation for Alfalfa, the differences are relatively
minor and do not significantly affect the manner in which the program graph

is transformed during execution. No further discussion of code generation for
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Buckwheat is presented here.

8.2.1

The Buckwheat implementation is essentially a simplified version of Alfalfa.
The components of the Alfalfa system that support message passing and dif-

fusion scheduling are unnecessary in Buckwheat. Thus, Buckwheat contains

System Organization

Figure 8.1: The Buckwheat system

neither a message handler nor a dynamic scheduler.

The organization of buckwheat is pictured in figure 8.1. Each processor




213

has a private copy of the graph reducer module, serial combinator code, and
storage manager. Even though the Multimax has a single physical memory,
multiple copies of these module allow the processors to execute the routines
without memory contention. :'O_f course, there may still be contention for the
bus. However, because the Nanobus is so fast and the processors have caches,
the effect of bus contention is minimal.

The graph space and task queue structure reside in a shared area of memory.
In its simplest form, the queue structure consists of a single queue from which
all processors access tasks to be executed. A more sophisticated task queue
structure is described in section 8.3.

Although each processor has a copy of the storage management routines, the
graph structures (nodes, tasks, and extends) are allocated in shared memory.
Like Alfalfa, Buckwheat keeps free nodes, tasks, and extends on a free-list. If
all free structures were kept on a single shared free-list, significant contention
for the head of the free-list would arise. Buckwheat uses the simple distributed

free-list scheme described in section 8.4.

8.2.2 Node Representation

The graph structures in Buckwheat are identical to those in Alfalfa with two

exceptions:

1. A node pointer is a standard (32 bit) pointer.

2. BEach node contains an additional byte that serves as a lock for mutual

exclusion.

8.3 Queue-based Scheduling

Processor scheduling is accomplished by maintaining a central queue structure
which every processor accesses. The simplest approach would be for every
processor to take tasks from and add tasks to the same shared queue. When
a processor accesses the queue, a lock is set to prevent any other processor
accessing the queue simultaneously.

A shared queue is a source of contention, which increases as the number of
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Processors

Primary Queue Primary Queue Primary Queue

Secondary Queue

Figure 8.2: Buckwheat’s two-level queue structure

processors in the system grows. Unless the hardware supports efficient access
to a central queue (as in the Ultracomputer at NYU [23]), it is often necessary

to modify the queue structure to prevent contention.

The solution we have implemented for Buckwheat is a two-level queue struc-
ture illustrated in figure 8.2. A processor can directly access a task queue, called
a primary queue, that it shares with a small number of other processors. There
may be many primary queues in the system. Each primary queue has a rather
small fixed size. We define the set of processors accessing a single primary

queue to be a primary cluster.

If a processor is ready to execute a task and its primary task queue is empty,
it can access another queue, called the secondary queue, which is shared among
all the processors in the system. Similarly, if a processor attempts to put a
task onto its primary queue and its primary queue is full, the task is put onto
the secondary queue. Since all processors can access the secondary queue, the

secondary cluster consists of the whole system.
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Notice that the two-level queue structure is a special case of a general hier-
archical queue structure in which there may be many levels of queues. A queue
structure with many levels m'ay' be appropriate in a system with huge numbers
of processors. One would then have tertiary clusters, quaternary clusters, and
so on. On the 12-processor Multimax, the two-level queue is quite adequate.

There are several advantages to a two-level queue structure over a single
shared queue:

1. Since a primary queue is shared by a relatively small number of processors,

the contention for the queue is reduced.

2. The secondary queue is a simple method for spreading tasks from a busy
primary cluster to other primary clusters. The cost of the extra indi-
rection needed to access the secondary queue is only incurred by idle
processors in idle primary clusters or when a primary cluster becomes
very busy. If the size of the primary queue is chosen appropriately, the
vast majority of queue accesses will be to primary queues.

Each primary cluster has the same number of processors, if possible. If the
total number of processors is not a multiple of the number of clusters, then the
clusters are arranged so that they have nearly equal numbers of processors.

A different solution to the problem of contention for a single task queue
would be a single level queue structure with many primary queues and no
secondary queue. If a processor finds that its primary queue is empty, then it
has to find a non-empty primary queue to retrieve a task from. If a processor
tries to add a task to a full queue, it then has to find a non-full queue to add
the task to. This method has the disadvantage that a processor may have to
access many queues before it finds one with an available task (or room for a
new task).

Another way to reduce contention for a single task queue is for each proces-
sor to remove several tasks at once, thus reducing the frequency of queue access.
This is a special case of the two-level queue structure, in which a primary cluster
consists of a single processor.

Another strategy (which may prove to be better than ours) would consist of
a number of primary queues, but no secondary queue, in which each processor

places tasks in a queue other than the one from which it removes tasks. Tasks
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would become well distributed without having contention for a single shared

queue.!

In section 8.5 we compare the performance of a single shared task queue
to the performance of a two-level qﬁéue structure. Various numbers of proces-
sors per primary cluster and various sizes of primary queues were used in the

experiments.

8.4 Storage Management for Shared Memory

The storage management module allocates new nodes, tasks, and extends from
free-lists. Unfortunately, a single shared free-list would cause contention if
many processors tried to allocate new structures simultaneously. The solution
used by Buckwheat is for each processor to maintain its own free-list. At the
start of the computation, the free graph space is divided among the processors.
Each processor can access only its own free-list when it needs a new structure

or reclaims an unused structure.

Buckwheat does not use a hierarchical free-list scheme analogous to its hi-

erarchical task queue structure for two reasons:

1. We can expect the creation of nodes, pointers, and extends to be roughly
proportional to the number of tasks executed by a processor. If the hi-
erarchical task queue structure does a good job distributing tasks among
the processors, the sizes of the free-lists of the processors should remain

roughly equal.

2. The amount of parallelism exploited by Buckwheat is determined by the
task distribution among the processors and not by the relative sizes of
the free-lists. Unless a processor exhausts its free-list, Buckwheat’s per-

formance should not be affected by imbalances in the sizes of the free-list.

1This idea was recently suggested by Paul Hudak, long after our experiments with Buck-

wheat were completed.
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. Figure 8.3: The execution times for pfac on Buckwheat

8.5 Execution Results

The five applications programs (pfac, queens, quad, matmult and quicksort)

2.

The performance of Buckwheat using a single shared task queue, and

The effect of using a two-level queue structure. The number of processors

in a primary cluster as well as the sizes of the primary queues were varied

in order to find the best task queue configuration.

Figures 8.3 through 8.7 plot the execution times (in microseconds) for the five

programs as a function of the number of processors used.

8.5.1 Finding the Appropriate Cluster Size

In each figure, the graph on the left plots the execution times using a single

shared task queue. It also plots the execution times using a two-level queue

structure for various values of P, the number of processors in a primary cluster.

The size Q of each primary queue was fixed at 10 tasks.

In every program, the two-level queue structure performed better than a
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single queue. For small numbers of processors the difference was small, but as
the number of processors grew, contention for the single queue actually caused
the execution time to increase. TH&; two level queue structure significantly
reduced the effect of contention for task queues.

With @ = 10 the two-level queue structure performed very well over the
range of values for P. In pfac, matmult and quicksort, the performance when
P =1 was poorer than for other values for P. With only one processor per
primary queue, parallelism can only be exploited by having tasks spill over
onto the secondary queue. One would expect the task distribution to suffer. In
almost every program, however, the performance with P = 1 was still superior
to the single queue case.

A P value of 4 provided the best performance over all the programs. Sur-
prisingly, this proved to be program-independent (although P = 2 performed
just about as well). Having found an appropriate number of processors per

cluster, it remained to find the best primary queue size for Buckwheat.

8.5.2 Determining Primary Queue Size

In each of figures 8.3 through 8.7, the graph on the right plots the execution
times for various values of Q, the size of the primary queues. The number of
processors P per cluster was fixed at four. In every case, a large value of Q
performed poorly. When Q is large, fewer tasks spill over to the secondary
queue and task distribution is poor. The smaller Q values performed much
better; the execution times for values of @ under twenty were very similar,
although a @ value of 4 (the smallest value of Q we tested) performed the best.

Again, the best Q value seemed to be program-independent.

8.5.3 Task Distribution

Table 8.1 lists the task distribution for each program for various value of P.
The value of @ is fixed at 10. Notice that the task distributions were nearly
insensitive to the number of processors per cluster. In every program except
quicksort, the work load was well distributed for every value of P. Appar-

ently, the only affect of changing the value of P was to change the amount of
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PFAC (Q=10) - .’ . MATMULT (Q=10)

. PID Single P=1 P=2 =4 =6 PID Single =1 =2 =4 =6
0 330 349 320 374 367 0 825 845 865 878 816
1 299 306 283 382 362 1 860 782 792 923 943
2 279 300 319 316 349 2 9802 823 808 805 854
3 358 310 363 324 348 3 888 820 831 813 849
4 341 348 288 299 335 4 841 1061 882 867 806
5 361 350 338 355 377 5 831 1016 874 793 836
8 338 348 402 316 324 6 820 883 859 760 846
7 297 369 377 325 296 7 807 621 824 784 806
8 338 383 378 330 342 8 839 819 914 820 807
9 340 311 305 348 303 ] 790 595 948 863 797

10 369 320 324 320 286 10 844° 809 839 835 8945
11 361 317 314 322 322 11 868 941 779 974 810
QUEENS (Q=10) QUICKSORT (Q=10)

PID Single P=1 P=2 P=4 P=6 PID Single P=1 P=2 P=4 Pc=6
0 2485 2188 2353 2394 2440 0 85 136 232 139 101
1 2634 2130 2553 2846 2448 1 119 154 64 33 1
2 2231 2440 2398 2323 2408 2 115 73 123 48 1
3 2322 2194 2647 2723 2493 3 145 180 128 35 1

4 2803 2875 2466 2609 2727 4 28 2 71 88 1
5 2637 2803 2743 2192 2472 5 88 140 74 70 2
6 2275 2688 2754 2514 2737 6 137 173 157 103 295
7 2244 2417 2496 2228 2390 7 129 170 77 73 170
8 2706 2754 2321 2318 2329 8 102 128 119 186 274
9 2648 2237 2570 2378 2239 9 138 52 137 239 306
10 2315 ' 2811 2137 2521 2273 10 143 104 130 222 199
11 2395 2158 2257 2649 2739 11 113 110 110 186 71
QUAD (Q=10)

PID Single P=1 pP=2 =4 =6
0 470 426 404 424 401
1 436 441 460 458 498
2 504 417 424 491 434
3 467 485 527 436 495
4 450 522 511 431 500
5 458 526 436 497 434
6 504 489 504 470 430
7 507 444 431 487 433
8 465 508 521 487 532
9 504 402 559 549 417

10 404 434 428 437 517
11 411 514 403 441 517

Table 8.1: Task distribution: Varying number of processors per cluster




222

contention for the primary .queues.
Only quicksort’s performance showed some dependence on P. Large P val-
ues had poorer task distributions than small P values. Surprisingly, the larger

P values resulted in shorter execution times. The reasons for this behavior are

not clear.

Table 8.2 lists the task distribution for the five programs for various values
of Q. The value of P is fixed at four,

Buckwheat’s performance was much more dependent on the value of Q than
the value of P. If Q is too large, tasks stay on the large primary queues without
spilling over onto the secondary queue. In this case, tasks cannot migrate from
busy clusters to idle clusters and the work distribution suffers.

If there are many tasks in the system, a large @ would be acceptable. How-
ever, if the inherent parallelism in a program is low, a large Q value hurts
performance. This is why pfac, queens, and quad could tolerate a, higher value
for @ then the other programs. For all the programs, however, Q = 4 performed

quite well in terms of task distribution and execution time.

8.6 Conclusions

8.6.1 Buckwheat’s Performance

With the exception of quicksort, all the programs performed well. Matmult
had the greatest reduction in execution time over the sequential case. This is
a marked contrast to its performance on Alfalfa, and emphasizes that its poor
performance on Alfalfa was caused by the high cost of sending large amounts of
data in messages. This is an indication that some programs may be inherently
more efficient on one type of multiprocessor architecture than another.

Quicksort performed poorly on Buckwheat. Unlike matmult, quicksort’s
performance on Buckwheat was almost as poor as it was on Alfalfa. This is
another indication of the limited parallelism available in our experiments with
quicksort.

The other programs, pfac, queens, and quad, showed almost linear speedup.

This reinforces the conclusion reached in the previous chapter: Programs ex-
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. PFAC (P=4) o MATMULT (P=4)

Single Q=4 Q=20 Q=100 Q=400 PID Single Q=4 Q=20 Q=100 Q=200
330 369 360 346 802 0 825 807 995 1465 2201
299 304 334 394 26 1 860 828 809 91 1
279 340 322 325 23 2 802 885 816 109 1
358 330 310 352 32 3 888 800 799 89 .1
341 300 311 361 31 4 841 846 828 749 1
361 302 323 319 40 5 831 855 801 675 1
338 348 348 366 36 6 820 894 825 653 1
297 366 340 331 34 7 807 985 860 751 1
338 356 364 312 762 8 839 828 867 1495 2022
340 338 334 292 688 9 790 814 780 1364 2005
369 321 345 286 740 10 844 831 817 1314 1931
361 337 320 327 797 11 868 842 918 1460 2049

QUEENS (P=4) ' QUICKSORT (P=4)

Single Q=4 Q=100 Q=400 Q= PID Single Q=4 Q=20 Q=40
2485 2325 2255 3358 5840 0 85 128 219 180
2634 2487 2790 1950 64 1 119 127 33 1
2231 2926 2394 1846 46 2 115 135, 30 1
2322 2659 2715 1992 47 3 145 142 26 1
2803 2331 2177 1901 57 4 98 133 26 1
2637 2314 2213 1649 67 5 898 115 23 1
2275 2253 2145 1713 66 6 137 138 25 1
2244 2582 2556 1671 56 7 129 121 15 1
2706 2555 2729 3304 6125 8 102 125 267 340
2648 2529 2708 3446 6531 9 138 96 244 319
2315 2352 2762 3608 5380 10 143 92 245 329
2395 2382 2251 3257 5416 11 113 70 269 247

QUAD (P=4)

Single Q=4 Q=80 Q=200 Q=400
470 465 472 753 1001
436 383 384 217 76
504 426 459 254 78
467 495 479 232 84
450 460 373 221 79
458 537 449 170 104
504 482 414 240 69
507 482 492 199 88
465 520 511 859 1023
504 428 569 796 953
404 500 526 785 998
411 430 480 882 1055

Table 8.2: Task distribution: Varying the size of primary queues
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hibiting a large amount of inherent parallelism without using large centralized
data structures can be aut'omatically partitioned into serial combinators so that

they perform well over g variety of multiprocessors.

8.6.2 Comparing Buckwheat and Alfalfa

Buckwheat’s performance was clearly better than Alfalfa’s, In addition to
achieving greater speedup, the shared memory allowed a straightforward im-
plementation of a logically shared graph space. Even if the iPSC had a sig-
nificantly lower communication overhead than it does, the cost of supporting
a single graph space would stil] have had a negative affect on its performance.
Buckwheat was much simpler to implement and debug and proved to be far
more reliable than Alfalfa,

This discussion does not dea] with the aspect of eztensibility of multipro-
cessor architectures. It may be the case that in a large shared-memory multi-
processor, the memory contention involved in accessing the shared graph space
may cause a severe degradation in the performance of graph reduction, This
has been a widely researched topic and there are severa] current implemen-
tations and prototypes of large shared-memory (or partially shared-memory)
multiprocessors (such as the NYU Ultracomputer [22), the IBM RP3 [63], the
BBN Butterfly [71], and the BBN Monarch [64] under development).




Chapter 9

Related Work, Future Work,

and Conclusions

9.1 Related Work

Our work has benefited greatly from a large amount of research on sequential
evaluation of functional programs as well as parallel evaluation. The following
research projects (related to our work) have played a significant role in the use

and implementation of functional programs.

9.1.1 AMPS

The Applicative Multi- Processing System [50,49] developed at the University of
Utah was one of the first implementation designs for parallel graph reduction.
Although no real multiprocessor implementation of AMPS was built, many of
the ideas were tested via simulation. The most significant difference between
the AMPS design and our implementation is that AMPS used the functions
defined in the source program to determine the granularity of the computation.
No sophisticated compiler was used to automatically decompose a functional
program into tasks of the appropriate granularity. Even so, AMPS can be con-
sidered a direct precursor to the implementation described in this dissertation.

A multiprocessing system designed later at Utah was called Rediflow. As its

name suggests, it attempted to incorporate the graph reduction and data flow
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evaluation models. Much of Rediflow centered on a hardware design of an ap-
propriate multiprocessor, rather than the development of compiler techniques.
It used a dynamic task scheduling tééhnique similar to the diffusion scheduling
method described in chapter 7. No implementation of Rediflow has been built
to date.

9.1.2 The ALICE project

ALICE, for Applicative Language Idealized Computing Engine, is a multipro-
cessing system built at Imperial College, London [17]. It is designed specifically
to support parallel graph reduction and execute supercombinators (although
the compiler described in this dissertation could be adapted to generate code
for ALICE). Each processor in ALICE consists of an Inmos Transputer and

accesses a shared graph space.

9.1.3 The GRIP project

GRIP [62], for Graph Reduction in Parallel, is a bus-based, shared memory
multiprocessor for performing graph reduction. A prototype has recently been
completed at University College London. Like ALICE, it is intended to execute
supercombinators. Its distinguishing feature is its use of intelligent memory
units (IMUs). IMUs are microprogrammable and are capable of performing
graph operations as well as supporting garbage collection. This allows a greater
number of processors to be connected to the bus without causing excessive bus
contention. GRIP, like ALICE, may serve as a good target machine for the

compiler described here.

9.1.4 Cobweb

Cobweb [24] is a parallel machine designed to perform combinator reduction.
The architecture of the machine is tailored for the use of wafer-scale integra-
tion. It consists of a large number of processing elements on a wafer. The
arrangement of the processors gives the machine its name. For combinator re-

duction, an abstract machine called Norman was designed to be supported by
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Cobweb. Initially, Norman was not a parallel graph reduction model. Paral-
lelism could only be achieved by executing many programs at once. Recently,
the abstract machine has beéﬁ, extended to be able to reduce a single fixed

combinator program in parallel [46].

9.1.5 The G-machine

The G-machine [44,43,2] is an abstract machine for sequential graph reduction
developed at Chalmers University, Sweden. It provides an intermediate repre-
sentation for the compilation of lazy functional languages [42,3] for conventional
machines. A hardware implementation of the G-machine is currently being con-
structed at the Oregon Graduate center [51]. In either case, the G-machine is
designed to execute a variant of supercombinators. Lambda lifting [45] was
developed for use in the Chalmers compiler.

The G-machine is a stack-based graph reducer. Its main similarity to the
work described in this dissertation is in the use of programmed graph reduction
in which, as in serial combinators, the body of a function is a set of instructions
specifying transformations on the graph. In other graph reduction systems, a
function application is automatically expanded into a graphical representation
of the body of the function.

9.1.6 The SKIM machines

SKIM I and SKIM II are microcoded processors specifically designed for efficient
combinator reduction [11,70]. Unlike the G-machine, the SKIM machines are
designed to reduce graphs involving only fixed combinators. Both machines
were built at Cambridge University. Perhaps the most interesting aspect of the
SKIM II machine is its use of one-bit reference counts in pointers to reduce the

overhead associated with reference counting.

9.1.7 NORMA

NORMA (for Normal Order Reduction MAchine) [66] is a hardware implemen-

tation for a sequential fixed combinator reduction. It was built at the Burroughs
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Austin Research Center. Like the SKIM machines, it was microprogrammable

and could conceivably be reprogrammed to execute supercombinators.

9.1.8 Other partitioning methods for functional programs

A program partitioning algorithm [65] has been developed by Sarkar and Hen-
nessy at Stanford for programs written in single-assignment languages (such as
SISAL [55] and VAL [56,1]). The execution model is called macro-dataflow, and
resembles a dataflow model with coarser units of computation. The specifica-
tion of a single task, called a macro-actor, is analogous to a serial combinator
in that its granularity is made as large as possible without sacrificing useful
parallelism. Macro-actors, however, result from partitioning programs written
in an applicative order, first order functional language, and it is a fundamental
property of macro-actors that their evaluation never suspends once it starts.
While this may reduce the synchronization overhead, it is not clear how to
apply the partitioning algorithm to programs written in lazy or higher order
functional languages.

Another partitioning method [27] was developed at Carnegie-Mellon for a
lazy functional language called Stardust. The primary difference between this
work and ours is that the partitioning is performed at run-time based on exe-

cution time estimates provided by the programmer.

9.2 Conclusions

The question that this dissertation attempted to answer was:
Is it feasible to execute conventional functional programs on cur-
rently available multiprocessors so that a significant reduction in
the execution time is achieved?
The results of the experiments described in chapters 7 and 8 have demonstrated
that the answer is “Yes...and no” for the following reasons:
o For many programs, automatic partitioning and scheduling can be very
effective on current implementations on both loosely-coupled and tightly-

couple multiprocessors. These programs have the following properties:
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1. They exhibit a significant amount of parallelism. Even if the par-
allelism seems to be fine-grained, the compilation and evaluation
methods described here were still able to cause a significant reduc-

tion in their execution times when executed on a multiprocessor.

The granularity of serial combinators still appeared to be somewhat
program dependent. The eight-queens program performed better
than the parallel factorial program for this reason. In either case
though, the serial combinators had a sufficiently coarse granularity

to perform well on both types of multiprocessors.

2. They do not contain large shared data structures. Our compilation
process performed automatic decomposition of the expressions in
a program, not the data. Thus, on loosely-coupled multiprocessors,
programs such as matrix multiplication incurred significant overhead

because of the large amounts of data transmitted between processors.

The parallel factorial, 8-queens, and adaptive quadrature programs all
exhibited both of these properties and performed well on both types of

multiprocessors.

o For programs exhibiting a large amount of parallelism and containing
large shared data structures, automatic partitioning and scheduling per-
forms well for shared-memory multiprocessors, but apparently not for
loosely-coupled processors with high communication costs. Either auto-
matic or programmer directed data partitioning is required to make use of
programs with large shared data structures. Matrix multiplication is an
example of a program that worked very well on a shared-memory machine
but poorly on a loosely-coupled multiprocessor.

We conclude that the serial combinator approach has proved to be success-
ful for exploiting implicit parallelism in programs without large shared data
structures. More work remains to be done on data partitioning.

Our experiments also provided insight into issues of dynamic scheduling. For
loosely-coupled multiprocessors, simple dynamic scheduling algorithms proved
to be just as effective as more sophisticated ones requiring more communica-

tion. On shared-memory multiprocessors, the reduction in memory-contention
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provided by a multiple task queue structure resulted in significantly improved
performance over the use of a single shared task queue.

Although our goal was to evaluate functional programs efficiently on a vari-
ety of conventional multiprocessors, Bu; experiments have led us to believe that
a multiprocessor that provides hardware support for a shared graph space is
most appropriate. This support could be be in the form of a physically shared
memory or a collection of memory modules that are accessible to every processor
via a sophisticated network. On loosely-coupled multiprocessors, the difficulty
of building (and debugging) a functional language implementation, as well the

overhead incurred during execution, makes these machines less desirable.

9.3 Future Work

There are a number of areas worth researching to improve the performance
of serial combinator reduction. One area is improving date partitioning and

distribution. We will be taking two approaches:

1. Increasing the sophistication of the serial combinator compiler: We in-
tend to investigate the use of semantic-based analysis such as abstract

interpretation for data partitioning,.

2. Including constructs in our functional language that allows the user to
specify the decomposition of the data (as well as expressions): This style
of programming has been called pare-functional programming [30,35,31].
We expect to modify the compiler and Alfalfa to accommodate programs
that include programmer supplied annotations for program decomposition

and distribution.

In addition to working on methods for effective data partitioning, we also
will be using semantics-based analyses to improve the low level behavior of

distributed graph reduction. Some areas of application are:

1. Program analysis for reducing the number of synchronization operations
in serial combinators: In many cases, a serial combinator has to check
to see if an argument is already evaluated when a sophisticated compile-

time analysis (such as path analysis [6]) could indicate that the check is
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unnecessary.

. Modifying the definition of serial combinators to allow a single task to
evaluate several disjoint éxpressions to increase the grain size. This in-
volves implementing multiple value returns either directly in Alfalfa or
using tupling of values. Currently, several disjoint expressions cannot be

compiled into a single serial combinator.

. Using semantics based analyses to improve the algorithm for determining
whether an activation record should be allocated on the stack or in the
heap. This would constitute a higher-order extension to escape analysis

for closures.
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