On Synchronization Primitive Systems
: By ,
Richard J. Lipton

Research Report #22

‘This work is a slightly different version of the author's doctoral
dissertation, prepared for the Computer Science Department at Carnegie-

Mellon University, 1973. A portion of this work was supported by the
Sloan Foundation. : o '

October 1973

ABSTRACT

We study the question: what "synchronization primitive” should
"be used to handle inter-process gomﬁunication? We present a;formal
: ﬁodel of the process concept, and then we use this model tb compare f&ur
different synchronization primitives. We are able to prove that tﬁere
are diffefences between theseAsynchronization primitives. Although we
compare only four synchronization primitives, our general methods can be
used to compare othgr synchronization primitives. Moreover, in our
Adefinigions of these synchronization primitives, we explicitly allow
éonditional branches. In addition, our model sepafa?es the notion of
scheduler;_this separation allows us to unravel the controversy between '
-Brinch Hansen and Courtois, Heyméns, ?arnas and to define formally the

release mechanism of the PV synchronization primitive.

1. INTRODUCTION

Dijkstra [(1968a] has demonstrated how an operating system zan be
designed and validated by using a "synchronization prlmltlve" to handle
inter-process communication. Since this accomplishment, an important

issue in the design of an operating system has been:

(*¥) What “"synchronization primitives" should be used to

handle inter-process communication?

 Dijkstra used the "synchronization primitive" PV; however, other syn-
chronization prlmltlves have been proposed. Currently,'the selection |
of a synchronization prlmltlye is an ad hoc desxgn decision.,

The eufrene attempts to answer the questlon (*) each show that a given
synehronizatiOn'primitive can "solve" a given "synchronization problem'".
These synchronization problems include the "mutual exclusion problem" (Dijkstra

[1968]), the "first and second reader-writer problems" (Court01s, Heymans,
Parnas [1971], Brinch Hansen [1972, 1972a]), and several buffer problems
(Habermann [1972], Dijkstra [1972]). The basic assumptlon of their research
is that the capabilities of a synchronization primitive can be oetermined by
ttying to solve problems that are found in operating systems. One of

the dangers of this appfoach is that our inability to "solve' a problem
- can stem from two causes: either our inability to find a solution or

the non-existence of a solution. In fact, seve;al people have asserted

that the "first reader-writer problem' was not "solvable" by PV; Coertois,

Heywans, Parnas [1971] have shown that this "synchronization problem" is

“solvable" by PV. Anothe; danger of this approach is that we can never
- be-certain that each researcher is using the same notions of "solve" and
"synchronization problem". The controversy between Courtois, Heymans, Parnas
and Brinch Hansen over the "second reader-writer problem" can be attributed

_to the informal nature of their research. (Courtois, He}mans, Parnas

[1972], Parnas [private cqmmunication], Brinch Hansen [1973]).

~ We study the question (*) from a formal viewpoint. We will
present a ermal model of the process concept, and then use this

model to compare seve;al different synchronization primitives. We are
‘able to prove that there 333 differences betweeﬂ several synchronization
. primigives. Some of these differences have - on a very informal léVei -
'been noticed before, i.e., ﬁodon (1972] and Parnas [private communica-

tion]. 1In addition, our model of the process concept separates the .

notion of process from the notion of scheduler, this separation
allows us to unravel the controversy between Brinch Hansen and Courtois,
Heymans, Parnas and to state formally the theorem in Habermann

e -

[1972]. R

We study four syﬁcﬁronization priﬁitiﬁes: Pv;‘which is due to
ﬁijkstra-[1968, 1968a]; PVchunk, a generalization of PV due to
Vantilborgh and van Lémsweerde'[1972]; PV multiple, a generalization
PV due to Patil [1971] and Dijkstra [unpublished]; and up/down, a
generalization of PV due to Wodon [1972]. Although we compare only
these.synchronization primitives, our general methods can be usgd to
compare other synchronization primitives such as block/wakeﬁp (Saltzer

[1966]). In our definitions of these synchronization primitives we

explicitly allow conditional branches. " Therefore, our results are rnot

~ related to the results of Patil [1971], nor are they related to the

results of Parnas [1972].

We define a relation "+" between synchroniéation primitives.
Informally, x -+ y means that the synchronization primitive y
cannot "solve some synchronization problem” that x can. Our

principal results are displayed in Figure 1, where an arrow from x

toy means that x - Y.

»up/down , ' :Pvmultipie

PVchunk

PV

FIGURE 1.

‘Each of the arrows in Figure 1 can be traced to a particular synchroni-

. zation problem.

1. up/down - PVchunk up/down - PVmultiple, up/down - PV, Thesé rela-
tions are true because up/down can solve the second reader-writer prob-‘
lem while PVchunk, PVmultiple, and PV cannot. These results do not
A confradic; the "solutions" found in Courtois, Heym#ns, Parnas [1971]
and in Brinch Hanéenv[1972,l972a]; the notions of solve used by these
resgarcheis‘are weaker than the notion used here. One of éur contribu~
tions is that we can define several notions of "solve" - all in a

. . j
precise way.

LN

2, PVmultiple - PVchunk, PVmultiple = PV. These relations are true
because PVmultiple can solve the "Five Dining FPhilosophers" (Dijkstra
.[1971]) while PVchpnk and PV cannot. As in (1) these results do not

contradict the "solution'" presented by Dijkstra.

3. Pvmultiple - uP/down, PVchunk *‘ué/down, PVchunk = PV. These rela-
fions are trﬁe because PVmultiple and PVchunk can "solve'" the "first
reader-vwriter prqblem with a2 bound on the number of readers that can‘be
reading at one time" while up/down and PV cannot. This is a new "syn-
chronization pfoblém". Although, we can trace these results to
particular synchronization problems they are indicative of general
ﬁhenoména. .

This paper is organized into eight sections. In seétion 2 oﬁf
model of the process concept is deflned The main result of this section
is-that processes that use synchronization primitives for inter--
process communicatibn satisfy four basic ﬁropexties: these properties
are not dependent on whi;h synchronization primigiVe the proceés uses,"
In section 3 thé concept of scheduler is aefined. We usé the notion
of‘scheduler to state the theorem of Habermann [1972]. 1In sedtion 4
we define several relations between processes. In defining these relg-

tions we formalize the concept of.a "synchronization problem'". 1In

section 5 and 6 a structure theorem is stated and proved - using just

the four basic properties of section 2 - that reduces the question

. 1is x-’y?

to a combinatorial question., In section 7 we use this reduction to

compare the synchronization primitives PV, PVchunk, PVaultiple, and

up/down. In particular, the peéults displayec in Figure 1 are proved
in tbis section. In section 8 a summary and a list of open problems

- - . -

are presented.

b=

2. PROCESSES . ‘ .

- e o -~

We now define a general model of the process concept}

Llater on we add additional structure to this model. The re-

2.1

2.2

sulting model - a C process - is then studied in detail, and several

basic properties of C processes are proved.
A GENERAL MODEL OF PROCESSES

1. Definition. P = <A,),w> is a process if A is a set of functions from

P to P and w is in J. The elements of A are the actions of the process P,

The set §) is the data structure of the process; the element w is the ini-

" tial data structure element of the process. We will use P and 2 to de-

note processes, and we will use f,g,h to denote actions.

Actions - as defined in Definition 1 - are arbitrary functions from

o
a

) to P. The data structure of a process - as defined in Definition 1 -
is an arbitrary set. Later we will place additional restrictions on
both the actions and the data structure. Note, P will usually be a

Uparallel process", i.e., our concept of a process is what is usually

called a set of "sequential processes".

NOTATION

-

We will now-introduce a shorthand for describing actions. The

notion is just a method of describing functions in a convenient and

readable way. The theory is unchanged if we change notation. Let) be

a set, and let '(x],...,xk)' be a typical element of . The notation
when B(x],...,xk) do Xy f](x],...,xk);...;xk - fk(x],...,xk)_

where B is a predicate and ecach fi (i=1,...,k) is a function, denotes

the function g, from § to 9, defined by

(1) if B‘yl,...,yk) is true, then g(yi,...,yk) = (fl(y],...;yk),...,
‘ fk(y],‘..’yk))

(2)'if B(y],...;yg) is false, then g(y],...,yk) = (y],...,yk).

Caution, we consider that the assignments after the ‘do' are‘all done
“gimultaneously” and not “sequentially". For examplé, suppbse that
'@a,B)! is a typical element of £he’set (1,2,3} x {1,2,3}, ;nd that i
£ yhen A<BdoA«l; BeA Then £(2,3) is equal to (1,2). We

‘will delete assignments of the form 'x « x'. For instance, we will

shorten when L'= 0 do L+ 1; B« B; C « C to when L = 0 ég Le 1.

We use small Greek letters to denote finite or infinite

' sequences; the empty or null sequence will be denoted by7A- ' - SR

1f o is a finite sequence and 8 is a finite or infinite sequence, then
the sequence.fofhcd by concatenating o and B is denoted by oB. Define

a £ B if for some §, ad = 8, Note g < B means that « is an initial

part of B. bThe ith element in the sequence a is denoted by o43
the first element in the sequence & is @5 provided « #A. ' The length
of the finite sequence o is denoﬁed by length (a). Note, if length (@) = n

and n > 1, then @ = G 0.

1

2.3

Let '(x],...,xk)' be a typicgl clement of the set J. We will use

- . -

'xi[z]' to denote a yhe:e z = (al"°°’ak .

1 v

-

TIMINGS

_2." Definition. A timing for the process P is a finite or infinite

‘sequence of actions of the process P,

3. Definition. Suppose that P = <A,J,w> is a process. We will define

a function value_. as follows:
fu o o b

(1 valueP(A) = v,

{2) If o is a finite tining for P and £ is an action in %,

L

then valugp(af) = f[faluep(oD]-

When there is no confusion we will delete the subscript.'P'. The func-

tion value, maps timings to elements in). For example, value(fg) =g(f(w)).

We can think of the actions in a given timing as being

-
L .

“executed" in that order. Different. timings correspond to “executing"

_the actions in a different order. Thus, value(a]...ah) i{s the result

- of Yexecuting" the actions in the order Oqaees sl Note, the result

of "executing" A is the initial data structure element w.

Any sequence'of actions is.a'timing; pgnce, in a given process, we
may.ponsider some timing§ as “uninteresting". In the next section we
will study the concept of schedulery thié coucept ;llows us to consider

certain special scts of timings.

6H

-9~

2.4 FEATURES 'OF PROCESSES USED IN THE SYNCHﬁONIZATION AREA

One of our goals is to be able to model.the processes used in

}the.synchronization area, such as PV processes. In order to achieve

this goal we will add additional structure to the model of the process

concept as defined in Section 2.1; this structure must reflect the

features of the processes used in the synchronization area. Therefore,

we will examine the principal features of these processes.

The data structure of the processes in the synchronxzation area has

three basic components.

Q)]

(2)

3

program counters. These variables are usually implicit in
the syntactlc representation of a process. For instance,

the par begin-par end and co bewwn-co evd notation of

‘ pijkstra [1968] and Hoare [1951]-are used to 1mpL1c1t1y

define several distinct program counters. We uniformly
use 'L' with or without subscripts to denote a program

-

counter.

program variables.. These variables are usually explicit in
the syntactic representatlon of a process. For example,
the prqéesses in Courtols, Heymans, Parnas [1971] and Brinch Hansen

[1972] use program variables.

semaphores. = These variables are usually explicit in the
syntactic representation of a process. They are used ex-

clusively in the inter-process cormunication of the procéss.

-10- :) .

* The actions of the processes in the synchronization area have

several important features.,

(4) The actions of a process are divided into disjoint sets.
Each of these sets is the collection of all actions that

use a given program counter.

. (5) The actions of é process éré‘also classified into two
groups. - The first groﬁp consists of the actions'that
handle the inter-process communication of the process,
These actions are usually called synchronizing primitives.
They are the only actions that can test or set the sema-
ﬁhore variables. The second group consists of the remain-
ing actions. They are the only actions that can test or

set the program variables.

(6) The synchronizing'primitives are usually actions of the

form -

(a) when L = address A p(E) do L - new address; E « q(E)

where L is a program counter, E is the part of the data
structure that contains the semaphores, p is a predicate,
and q is a function. The pairs (p,q) we allow in (a)

o

distinguish the different synchronizing primitives. For

example, the pair (x > 0, y « y-1) is not allowed in PV

processes; it is allowed in up/down processes (Wodon [1972]).

(7) The non-synchronizing primitives are usually actions of the

form

-11-

when L = address do L « b(D); D « t(D)

where L. is a program counter, D is the part of the data
structure that contains the program,variables, b is a
function, and t is a function. Since b is a function,

we allow these actions to branch, i.e.,

when L = 1 do L~ ifx=0 then 2 else 3

is an acceptﬁéle action from this group. The actions in

fhis group also satisfy an additionél requirement. Suppose
that £ and g are actions in this group, f and g use differ-
ent program counters, and £ and g "share a variable". (In

éﬁr model; f and g share a variable iff for some x in the

data structure, f(é(x)) # g(f(x)),) Then the usual

definition of processes in the synchronization area forces

3 anﬂ g to be_“enclosed in critical sections". (In our'

‘model £ and;g are enclosed in critical sections iff for all
finite timings o, if £(value(a)) # value(a), then g(value(e)) =

value(a).)

2.5 C PROCESSES

4. Dpefinition. A set of pairs C is a predicate system provided, for
each (p,q) in C, there exists a set E such that p is a prediéate on E
and q is a function from E to E. We will use C to denote a predicate

systemn,

§. Dcfinition. Let C be a predicate system. Also let P = <A,),w
be a process, and let '(L],...,Ln,Q,E)' be a typical element of 9.

The process P is a C process if there is a predicate synchronizer on

A, a function program-counter from A to {150c4,n}, 2nd a function -

. address with domain A such that

(1) If not synchronizer(f), then there exists functions b and

~t such that

(2) fiE wvhen Lk = address(f) gg.Lk,h b(D); D « t(D)

- where k = program-counter(f),

(b) for all x in), b(D[x]) # address (g).

(2) ' If synchronizer(f), then there exists’ a (p,q €C, calléd

the pair of f, and a y such that

(a) £ = when Lk = addr£§s(f)‘A p(E) do Lk - v E « q(E)

where k = program-counter(£f).

(b) y # address(f).

(3) If not synchronizer(f), program-bounteftf) f program-counter(g),'

" and g is a finite timing, then.;
£(g(value(w))) = g(£(value(a))). .

(4) 1f address(f) = address(g) and program-counter (£f) = program-

counter(g), then f = g.

The definition of C processes is motivated by our desire to be able

-13-

to model the processes used in the synchronization area, We will now
relate the definition of C processes to the discussion in Section 2.4,

The data structure of a C process is composed of three parts,
(1) program'counters. These variables are Ll""’Ln°

(2) program variables, The program variable is D. Since we
" make no restrictions on the range of the variable D, there
is no loss in genefality in considering all the program

variables as one composite variable,

(3) semaphores. The semaphores are considered as one composite

variable E. As in (2), there is no loss in generality,

Thus, the data structure of a C process corresponds to the data structure
of the processes used in the synchronization area. We now focus our at-

tention on the actions ¢f a C process,

) The actions that use program counter Lk are {f | program-
counter(f) = k}. Each action is in exactly one of these

sets.

(5) The predicate synchronizer classifies the actions into two
groups. If synchronizer(f), then f can test 6; set E, but
it cannot tes£ or éet D. On the other hand, if not syn-~
chronizer(f), then f can test or set D, but it cannot test

or set E,

(6) 1If synchronizer(f), then £ is equal to

’

)

=14«

when Lk = address(f) A p(E) do Lk ~y; E« q(E5

-

where k = program-counter(f) and (p,q) € C. The pairs

allowed in C determine the kinds of "synchronizers'" that

are allowed. In the next section we will define several

predicate systems C.
If not.synchronizer(f), then £ is equal to
when Lk'= address(f) do Lk « b(D); D « t(D)

where k = program-counter(f)., The additional requirement
stated in part (7)Aof Section 2.4 is reflected in condition

(3) of the definition of a C process., 'In_fact, we can

prove the following : : .

' (a) Suppose that P satisfies the definition of a C
process except that condition (3) is replaced by:
_if f and g share a variable, then they are en-

closed in critical sections. Then condition (3)

is true,

For suppose that condition (3) is false; moreover, suppose
that not synchronizer(f), program-counter(f) # program-

counter(g), and f(g(value(a))) # g(f(value(e))). If syn-

- chronizer(g), then f(g(value(y)))= g(f(value(w))); hence,

not synchronizer(g). By assumption, f and g are enclosed

in critical sections. 1In our model this is equivalent to

2.6

. are non-negative integers i and k such that p is a prédicate on E=2Z

«15-

(b) ifif(value(s)) # v§1ue(8), then g(valué(a)) = value(B).

Informally, if f can "change the data structure element
that results after executing B", then g cannot ''change
the data structure element that results after executing

B". The contrapositive of (b) is

~

') if g(value(d)) # value(g), then f(value(8)) = value(®).

Thus, by symmetry, we can assume that g(value(a)) = value(a).
Then f(g(vaiﬁe(ao)) = f(value(a)). Since £ cannot change

ka where k = program-counter(g),.g(value(af)) = value(afj.
Th?tefore, g(f(value(g))) = £(value(a)); hence, f(g(§alue(a0)) =
g(f(value<a9)), This is a contraaiction,;and hence (a) is

true. O

Thus, the actions of C processes have the basic features as outlined

in Section 2.4. Additional evidence that C processes are a reasonable

a

" model of synchronization processes is contained in Theorem 12.

EXAMPLES OF PREDICATE SYSTEMS

6. Definition., The pair (p,q) is in the PV predicate systems iff there
k

and either (Zz,is the set of integers)

m p(x]...xk) is always true, and q(xlff‘xk) = (x]...xi_]y xi+]...xk)

where y = X + 1, or

2) p(x]...xk) is true iff x, > 0, and q(x]...xk) = (x]...xi_]y xi+1...xk)

vhere y = X, - 1.

10~

In case (1), we say (p,q) is a'v(xi); in case (2), we say (p,q) is a

P(xi).

Suppose that f is an action in a PV process and that synchronizer(f)

is true. If the pair of f is a V(xi), then f is of the form

when L, = address(f) do Lowzsx, ox + 1.

i
On the other hand, if the pair of f is a P(xi), then f is of the form
when Lk = address(f) A Xy > 0 do Lk - z;xi - X, - 1.

The PV predicate system is essentially due to Dijkstra [1968]. Since
he defines PV on an informal level, we cannot prové that our notion of
PV processes corresponds exactly to his. However, we feel that our defini-

tion is a reasonable one.

7. Definition. The pair (p,q) is in the up/down predicate system iff
there are ‘non-negative integers i,k and a subset F of {1,...,k} such

that p is a predicate on E = ZZF and either

-
3

) AN . 5
(N p(x]...xk) is 5é% xj 2 0, and 3(x]...xk) = (x]...xi_]y xi+]...xk)
where y = X + 1, or

(2) p(x]...xk) is ;Z; xj = O,‘and q(x]...xk) = (x]...xi_]y xi+1...xk)'
- 1. '

where y = X

In case (1), we say (p,q) is a {xnln € F}: up(xi); in case (2), we say

(P,A) is a {xnln € F}: down (%),

Suppose that f is an action in an up/down process and that synchroniz-
er(f) is true. If the pair of f is a {x],x3}: up(x,), then f is of the

form

o=

+ 1.

- when L = address(f) A Xy + %q 2 0 do Lk “z3 %, F'xa

-

As another example, if the pair of £ is a {x]]: down(xz); then f is

of the form

when\Lk = address(f) A %1 =20 22>Lk “z; % % - 1.
The predicate system up/down is essentially due to Wodon [1972].
He defines up/down on an informal level; hence, we cannot prove that
our definition corresponds exactly to his definition, Indeed, we do
~ not allow actions of the form
when Lk = address(f) A Z; xj 2 do Lk «b(D); D« t(D)
jer . ;

while he does. An'action of this form violetes what we stated in part 5

.

of Section 2. 4 hese actions can test semaphores and test and set program
variables. Also, these actions do not satisfy the main theorem of this
"section - Theorem 12. TFor these reasons we will not change our deflnl-

“>tion of up/down processes.

8. Definition. The pair (p,q) is in the PVchunk predicate system iff
there are non-negative integers i,k,m such that p is a predicate on

E= ZZk and either

1) p(xl...xk) is always true, and q(x]...xk) =]...xi Y % ...xk)
where y = x, +m, or '

-

(2) p(x],..xk)'is true iff x;, = m, and q(xl...xk) = (x]...xi_]y xi+1...xk)

where y = X, - m.

In case (1), we say that (p,q) is a V(Xi with amount m); in case (2), we

18-

say that (p,q).is a P(xi with amount m).

"Suppose that f is an action in a PVchunk process and that syn-
. chronizer(f) is true. For example, if the pair of f is a V(xy with

amount 5), then f is of the ‘form
vhen L, = address(f) do L, <25 x5 ¢ Xy * 5.

As another example, if the pair of f is a P(x2 with amount 3), then £ -

is of the form
when L, = address(f) Ax, 23 do L, « z; X, « %, = 3.

The predicate system PVchunk is essentially due to Vantilborgh and
van Lamsweerde [1972], Again we can only assert that out PVchunk pro-

cesses are a reasonable model of their processes.

9. Definition. The pair (p,q) ié in.the PVmultiple predicate'system
iff there is a non-negative integer k and a subset F of {1,...,k} such

that p is a predicate on E = ZZk and either

«(l)v p(x]...xk) is always true, and q(x]...xk) =‘(yf...yk)

where y, = if i € F then x, + 1 else x,, or
i = — i — i

(2) p(x]f..xk) is true iff [for i € F, xi‘Z 11, and

q(x].f.xk) = (y]...yk) where y; = if i € F then X, - 1 elsevxi.

In case (1), we say that (p,q) is a V({xnln € F1); in case (2), we say

that (p,q) is a P({xnln € F}).

Suppose that f is an action in a PVmultiple process and that syn-

chronizer(f) is true. For example, if the pair of f is V({x],kz}),

. then f is of the fomm

% + l; X, ~x, +1,

2 2

when Lk = address(f) do Lk I

As another example, if the pair of f is a P({x],x3}), then £ is of the

~

form : S . -

12T Ax 2T dol =25 x «x; - 1

when Lk = address(f) A x
’ 3(3")!3-].

The predicate system PVmultiple is essentially due to Patil [1971]
and Dijkstra [unpublished]. Agéin we can only assert that our Pvmultiple
processes are a reasonable model of the processes informally defined by .

Patil and Dijkstra.

The predicate system PV is a subset of both the preiicate system
PVchunk and the predicate system PVmultiple. Suppose that (é,q) is a
Y(xi). Thén'(p,q) is a V(xi with amount 1), and (p,q) is a V({xi}).
Thus, (p,q) is in PVchunk and Pvmultiple. On the other hand, suppose
<that'(p,q) is 5 Peki). Tﬁen (p,q) is a P(xi with amo&nt 1), and (p,q)
is a P({xi}). Therefore, PV € PVchunk and PV < PVmultiple. As a conse-
quence,

the set of PV procésses S the set of PVchunk processes and

the set of PV processes & the set of PVmultiple processes.

The relationship between the predicate system PV and the predicate
system up/down is complex., Clearly, PV is not a subset of up/down: the
"pair (x> 0, x « x - 1) is not in up/down. However, as Wodon [1972]

correctly states: each PV process is "equivalent or isomdrphic" to an

2.7

up/down.process. We shall state a relation between PV processes and

up/d9wn processes in section 4; in this section we study relations be-

tween processes. ' - : ’ -

Many’of the processes used inqthe synchrohization area can be con-
sidered'és C ﬁrocesses,‘for a suitable predicate system C. These pro-
cesses include: fork-join processes (Dennis and Van Horn [1966]f,’
block-wakeup (Saltzer [1966]), conditional critical sections (Brinch Hansgn

[1972]), and certain Petri Nets (Patil [19711]).
REPRESENTATION OF C PROCESSES

We will use several conventions when we define C processes. These
conventions are best explained by an example, Process EX1 - a PV pro-

cess - is defined in Figure 2,

program counter L],LZ;.(initial value 1)

integer x,y; (initial value 0)
semaphore S; (initial value 1)

.

-SUBPROCESS -1

(1) vwhen L] =1AS=21 do L] «.2: Se«S -1
(2) when L] =2 “do L.l «3; x+1
(3) when L] =3 _do L, « 4; S«S +1

SUBPROCESS-2

(4) whenL =1AS21dol, «2; S«S -1

2 2
(5) when L, = 2 do L2 ~3; 5y« x
(6) when L, =3 © dolL,«4;5eS5+1

FIGURE 2. Process EX1: formal representations

-2]-

Several conventions have been used in Figure 2. First, the data
structure of EX1 has been defined in an implicit way. The data struc-

ture of EX1 is
) . 2
ZXZ*xZ *Z

Let ‘(L D,E)' be a typical element of the data structure of EX1, .

1’ 2’
Then LI’LZ’E range over integers while D ranges over pairs of integers.
D ranges over'pairs of integers because we consider the program variables
X,y as one cohposite variable D. Second, the initial data structure ele-
. ment of EX1 has been defined in an implicit way. The initial data struég
ture element is (1,1,(0,0),1). Third, the actions of EX 1 have been num-

-

beréd for future reference. Thus, action 3 is

- when L, = 3 do I, «4; S-S+ 1,

Fourth, the sets of actions that use each program counter have been -
given names. Thus, SUBPROCESS -2 contains the actions 4,5,6.

These conventions w{}l be used whenever we define a C process.
Although the conveﬁtions gre stated informally, the translation to a
precisely defined C proéess should be clear.

The syntactlc representation of process EX1 in the style of Courtois,
Heymans, Parnas [1971] is displayed ;n Figure 3, Flgure 3 deletes all

references to program counters. Moreover, if-synchronxzer(f), then action

£ is represented by just the pair of £, Thus,

when L, =1AS21doL <2585 ~1

‘lis'reprcsented by P(S). Although process EX1 is a PV process, we ‘can
also consider it as a PVchunk process. In this case, action 1 is repre-

sented by P(S with amount 1).

.y ?
o

2.8 SUBPROCESS, READY-SET, POINTER-SET

integer x,y; (initial value 0)
:semaghore S; (initial value 1)

SUPROCESS-1 N SUBPROCESS -2
M 2 ERCIRICY
(2) x:=1; (5) y :=x;
(3). Vv(s); | (6) V(s);

FIGURE 3. Process EX1: informal repreéentatidn

We will now define three notionms: subprocess, ready-set, pointer-

set. These notions satisfy two requirements,

(1), They are rich enough to allow us to express most of our

" ideas about C processes.,

(2) They suppress a great many of the unnecessary or uninterest-

ing details of C processes,

10, Definition. Suppose that P = <A,9,w> is a C process, and let"

'(Lj,...,Ln;D,E)' be a typical element of f.

(1) For actions f and g, sdbgrocessp(f,g) iff program-counter(f) =
program-céunter(g). Subprocess is an equivalence relation on

the actions of P, Let SUBPROCESS-i denote the ith equivalence

class of the relation subprocess,Ai.e., {flprogram-counter(f) =1},

(2) An action f is in readv—setp(a) where ¢ is a finite timing iff

flvalue (&)] # value(q).

‘e

- (3) -An action f is in Eointcr-setp(ao where o is a finite

timing iff

-~

Lk[value(a)] = address(f)
where k = program-counter(f). ' -

In each of these notions we will drob the subscript 'P' when this will

cause no confusion,

The notions subprocess, ready-set, pointer-set have intuitive mean-
ings. Suppose that P = <A,J,w> is a C process, and let '(L],...,Ln,D,E)'

be a typicﬁl element in 9. Recall that L],Q..,Ln are program counters.

(1) Subprocess divides A into the disjoint sets SUBPROCESS-1,...,
SUBPROCESS-n. SUBPROCESS-i is the set of actions that use

the program counter Li'

(2) Ready-sét(oo is the set of actions that can "change the

‘data structure element that results after executing the

timing o'. For example, if f is

- . vwhen L3 =2AS23 g_g_.L3 «3; 8«5 -3,

then f is in the ready-set(q) iff

L3[va1ue(oO] =2 and

S{value(w)] = 3.

As another example, suppose that f is a "nop or null statement",

i.e., |

£ = when Lk = address(f) do Lk'h Z.

e

-24-

Then f is in ready-sef(a)'ifiva[valuc(a)] is eqdal.to address(i).
This cxample is interesting because f never changes aﬁy program
: variables or semaphores. However, in our model f can change the
.data strtcture; for our.conccpt of data structure includes the

program counters.

(3) Pointer-set(qg) is the set of actions £ such that the program

counter of f "points to f". For example, if f is
when L3 =2 A8 z23do LBP 3; S« S -3,
then £ is in the pointer-sét(aD iff

‘LB[value(aD] =2,

The notions subprocess, ready-sct, pginﬁer—set aré;sufficient.
to cxbreés the basic concepts of the synchronization afca. For
instance, these notiﬁns can expfess the concept of "PV release mechanism“
as defined by.Dijkstra [1968]) and the concept of "fairnesé“; this is
dcﬁdnstréteﬁ‘in Section 3. In addition we will?show, in Section 4;
how &e‘can use these three notions té express the concepts of "safe"
and "deadlock free". One of the coﬁtributions of our model is the
understanding that the notions subprocess, ready—sgi, pointer-set are

sufficient to express thc'central features of the synchronization area.

2.9

BASIC PROPERTIES OF C PROCESSES

We will now state and then prove four basic properties shared by
all C processes. Thesebproperties do not depend on the predicate eystem
C. The proof of these properties should help motivate each decision that

has been made in the definition of C processes.

11, Definition. The timing a is active in a C process provided,
if Bf < a, then £ is in ready-set (B).

The timing al...a is active if and only if for each i, ay is in
ready-set (al...ai_l). Informally, the timing aj...0, is active 1f
and only if each action a; can change the data structure element

that results "after executing ul...ai_l“.

(I) For any'finite timing o, ready-set(a) & pointer-set(a).
This property is an immediate consequence of the defintion of a C

process. Informally, if the action £ can "run", then the program counter

.of f must "point" to f.

A e

(II) For any finite timing «, the pointer-set(oo has at ﬁost one
action from each SUBPROCESS-1i.

Thls property is a direct consequence of condition 4 of Definition 5.
For suppose that f and g are in pointer-set(w) and subprocess (f,g).
Then by definition of eubprocess, program-counter(f) = programgcounter(g).

By the definition of pointer-set,

Lpfogram-counter(f)(value(oo1 = address(f) and

L rogram-counter(g) [value(a)] = address(g).

26~

Thus, address(f) = addreéé(g), and hence by condition (4) of Definition 5,
f=g.

We have excluded actibns of tﬁe kind

1AS>0doLy «2

1AS=0do L «3

£ = when L,

g = when L]

from C processes. We have to express £ and g as
~,!BEE.L] = 1 do L] - iﬁis =0 ;Qgg 2 else 3.
.(III) If afs and of are active finite timings, then
pointer-set(afs) N SUBPROCESS-i = p§inter-sét(oﬁ) n SUBPROCESS-i

provided f is n&t in SUBPROCESS-i. [N is set intersectiqn]

This property is nonétrivialgvit will be proved in detail in Theorem
12. ‘This,property allows us to compare the pointer-sets of distinct ac-
tive timings. It states that the program counters are in some éense
"iocal". Actions from SUBPROCESS-i cannot change the program counters 6f

SUBPROCESS-j, provided i # j.
(IV) .If ofBd and oBfs are active finite timings, then

pointer-set(af88) ='pointer-set(aaf6)._
This pr§perty'is also non-trivial; it will be proved‘in detail in
Theorem 12. This property also allows us to compare the pointer-sets
of distinct active timings. It states that the pointerfset has a certain

kind of "order invariance'.

e

-27-

- 12. Theorem., Every C process satisfies properties I-1V.

iroof. Let P = <A,J,w> be a C process. Let '(L],...,Ln,D,E)' be a

typical element in .
Lemma 1. Suppose that x is in), £ is an action, and 1 <k <n. Then

(1) if program-counter(f) # k, then Lk[x] = Lk[f(x)] |

(2) 1if £(x) % X, thep Lprogram-counter(f)[x] = addres§(f).

Proof of Lemma. This is an immediate consequence of the definition of

a C process. [

Lemta 2, Suppose that x is in {), y is in P, and 1 <k <n. “Also suppose

that D[x] = Dly] and L (x] = L [yl. Then if £(x) £ % and £(y) # y where

f is an action, then D[ftx)] = D[£(y)] and Lk[f(i)] = Lk[f(y)]}

Proof of Lemma, This is.also an immediate consequence of the definition

of a C process. 0O -

£ d
Y -

Lemma 3. Suppose that o and A8 are finite active timings. Also suppose
that D[value(y)] = D[value(d)] and Lk[value(oh] = Lk[value(x)]. Then

D[value(a8)] = D[value(2B)] and Lk[value(oe)] = Lk[value(xB)];

Proof of Lemma. This follows by repeated applications of Lemma 2, (O

Lemma 4. Suppose that ofB and of are finite active timings. Then for

"1 £1i < length(B), program-counter(f) # pfogram-counter(ai).

Proof of Lemma. Let k = program-counter(f). Assume that the lemma is

false, and let i be the least integer such that k = program~counter(Bi).;

-28-

By Lemma 1, part 2, sincelaf and aﬁl...Bi_] Bi are active,

1, [value(a)] = address(f) and

, ;k[va;“ef"‘al“‘si-ﬂ] = address(8,).
By Lemma. 1, part 1 and the definition of i, an inductive‘afgument shows
that

Lk[value(oa] = Lk[value(aB]...B)];

i-1

Hence, address(f) = adﬂress(Bi). Therefore, by the definition of a C

process, f = B;+ By the definitien of a C process (1b and 2b)?
Lk[value(af)] %4aderess(f).
By Lemma ‘1, ?art-l and the definition of i,‘ Ar .
Lk[value(afsl,..ﬁi_lj] = ﬁk[velue(af)] #. eddress (f);
But &fSI.F;Bi_IB; is active, so by Lemma 1, part>2,
;; Lk[veiue(afsl...si_l)] ; aadress(Bi).

This is a contradictioﬁ, for £ = B,. o

By what we have already shown, we need only prove that a C precess
satisfies properties III and IV.

We will now shew that property III is satisfied.ﬁy P. Suppose that
ofp and o8 are finite active timings. In orﬁer to prove property IIi,

it is sufficient to prove
(3) for i # k, L [value(afB)] = L [value(od)]

where k = program—counter(f). For suppose that (3) is true. Let g be

an action such that not subprocess (£f,g8). Now g is in pointer-set(qfB)
iff

L 5 [valu'e (ofB)] = address(g)

_where j = program—counter(g). Also g is in pointer-set(oB) iff
Lj[value(as)] = address(g).

| sn;ce’ic # 5 -and (3) is true,

g is in poipter-set(afs) iff g is in pointer-set(aﬁ);

Therefore, property III is true;‘hénce condition (3) implies property IIIL.
In_proving (3), there are two cases depending wbether or not synchronizer(£)
is true; Firét, suppose that not synchroniéer(f). By repeated applica-
tions of condition (3) in the definition of a C process and the fact that,

by Lemma &,

-

for 1 < j < length(B), k # program-counter(Bj),
~we can conclude that value(ofB) = value(off). By Lemma 1, part 1,

for 1 # k,‘Li[value(aa)]'= Li[value(aef)].

Thus, in this case (3) is true, Second, suppose that synchronizer(f). -

By the definition of a C pfocess and Lemma 1, part 1,

D[value(q)] = D(v#lue(af)] and

for 1 # k, L,[value(a)] = L,[value(af) 1.

By Lemma 3,

"7 =30~

- D[value(gB)] = D[value(wfB)] and

for i f k, Li[valﬁe(aa)]‘= Li[value(afﬁ)]. _ :

Thus, in this case (3) is true. Therefore, P satisfies property III,
We will now prove that P satisfies property IV. Suppose that ofBs
~and offé are finite active timings. In order to prove property IV, it

is sufficient to prove that
(4) for all i, L [value(of88)] = L, [value(aB£8)].

For suppose that (4) is true. Let g be an action. Then g is in pointer-

set(affs) iff
Lj[value(afss)] = address(g)
where j =,program-¢ounter(g).AvAlso g is in pointer-set(cB£5) iff

Lj[value(aﬁfé)] = address(g).

Since (4) is true,

g ié in po;nter-set(afsé)?iff g is in ﬁointer-set(asfs)._
Therefore, property iV is true; hence, condition (4) implies pfopéfty 1v,
In proving-(A), there are two cases depending whether or not synﬁhronizer(f)
is true. First, suppbse that.not synchronizer(f). By repeated applica-
tions of condition (3) in the definition of a C process and Lemma.é, we
can conclude as before that value(gfB) = value(aafj. Thus, value(¢f858) =
value(aBf6), and hence (4) is true, Second, suppose that synchranize;(f).

As in the proof of property III we can show that

D[value(B)] = D(value(f8)] and

. -31-. | °) ‘ -

“for all i # k, 1;[value(ad)] = 1, [value(afB)]

' * where k = progran-counter(f). By the definition of a C process and

Lemma 1, part 1,

D[value(aaf)j = D[value(afﬁ)] and

for 1 # k, L [value(aB£)] = L, [value(af)],
Since synchronizef(f),,there is a constant, say z, such that
if £(x) % X, . then Lk[f(x)] =z,

Thus,,Lk[value(af)] =vz and Lk[value(caf)] = z, By Lémﬁa 4 énd Lemma 1,
part 1, ‘ o

L [value(af8)] = L, [value(of) 1,
Therefore, . _

D{value(q3f)] = D[value(xfB)] and

for all i, Li[value(aaf)] =vLi[va1ue(afB)].

-
B .

Finally, by Lemma 3,

for all i, Li[value(ané)] = Li[value(afBG)].
Thus, in this case, (4) is true. Thus, P satisfies property IV, 0O

2,10 REMARKS ON THE PROPERTIES I-IV

We will now present an example of a PV process that shows that cer-
tain generalizations of properties III and IV do not hold for PV pro-

cesses. The formal representation of prbcess EX2 is in Figure 4.

' program counter L],Lz; (initial value 0)

integer x,y; (initial value 0)
semaphore m; (initial value 1)

SUBPROCESS -1

(1) when L. =0Am.> 0OdoL,«1;mem-1

1 1]
2) whenL]=‘l _<_i_9_L1+-2;x'-1
- (3) whenL]=2 . g_g_I,]~3;mhm+1

SUBPROCESS-2

) whenL2=0Am>0_c}_g_L2+-l;m*-m—1

(5) whenL2=1' _d_ng*-Z;y*-x

(6) whenL2=2 ‘ doL2¢—3;m4—m+1

€)) whenL2=3 Q_qu*-_i:_f_;y=0_§£g_rl4£]._§_e_5-
(8) when L2 =4 gng « 5

(9) when L2 =5 do L2 «~ 6

FIGURE 4. Process EX2: formal representation
The informal representation of P is.-displayed in Figure 5.

integer x,y; (initial value 0)

semaphore m; (initial value 1)

SUBPROCESS-1

(1) P(m);
- (2) x:=1;

(3) Vm);

SUBPROCéSS-Z

%) P(m);

(5) vy :=x;

6) Vv(m); :

(7) if y = 0 then goto A else goto B;
(8) A:; '

(9) B:

FIGURE 5. Process EX2: informal representation

eJ))e

Pirsi, let us consider the follcwiog generalization of property
iII:
(1) 4if o)\B and o3 are finite active timings and each action in
A is in SUBPROCESS-i, then pointer-set(oi8) N SUBPROCESS-j =

pointer-set(c3) N SUBBRCCESS-, provided 1 # 3.

. -
oo e o O

By the definition of the process EXZ, pointer°set(4567) {1,8} and ooiﬁter—
set(1234567) = {9}. Thus, ‘(1) is false, since pointer- -set(4567) N SUB-'
PROCESS-2 = {8} and pointer-set(1234567) N SUBPROCESS-2 = {91. There-
fore, this generalization of property III does not hold for PV processes.

Second, let us consider the following generalization of property IV:

) if o and B are finite active timings and o is a permuta-

tion of B, then p01nter set(a) poxnter—set(ﬁ).

ev ® © -8 e=meo

By the definition of process EX2, pointer—set(1234567) = {9} and poincer—
set(4567123) = {8). Since 1234567 is a permutation of 4567123, this

~ generalization does riot bold for PV processes.

These two examples show how delicate the two properties III and v
are. The chief difficulty we had in proving these properties, in Theorem

12, was due to the fact that we allow conditionals in our C processes.

Any reasonable theory or model of PV processes must allow conditionals,
For example, condltlonals are used in the processes defxned in Courtois,
‘Heymans, Parnas [1971]. 1In addition, conditionals allow us to show that .
our definition of a PV process incorporates the notion of a "PV with
array semaphores". A P on the array semaphore s(n) is equivalent to the

actions

Cee~e o

3 -

when Lk = a gg.Lk « branch(n)

vhen L =a, AS; >0doL «a's s, «5 -1 [1=<1i=max].

The value of branch(n) is equal to a . We have replaced an array P by
a "branch action" and several P's; the same construction can be used for

array V's.

The properties I-IV and the notions ready-set, pointer-set, and sub-

process are of central importance. In fact, all our basic theorems

are proved using only these properties and these notions. The

only exceptions are the specific results in Section 7, t.e., our theor-
ems about PV processes, PVchunk processes, PVmultiple processes, and up/
down’ processes. Our insistence on using only the propertles I-IV and"

the notlons ready-set, pointer-set, and subprocess will now be demonstrat-

ed.

13. Definition. A set of actions in a process is sequential provided
for all finite timings ¢, at most one action from this set is in the

a.

ready-set(qa).
14, Theorem, Each subprocess-i of a C process is sequential.

Proof. Suppose that f and g are in SUBPROCESS-i, and suppose that £ and
g are in ready-set(g¢). By property I, £ and g are in pointer-set(a).

Thus, by property II, f =g. (O

-35-

3., SCHEDULERS - | :

-

We wiil now define the concept of scheduler. -This concept
'is.used to state the theorem of Habermann [1972]. More importantly,

the concept of scheduler displays the generality of our mode}v

1. Definition. Suppose that P is a process. Then S is a scheduler for

P provided, S is a predicate on the timings of P.

We can use a scheduler S to select timings that satisfy a number ofh'
criterion. First, the scheduler S might "enforce a priority" among the
actions of the process, For example, the actions that .control a hardware .
device mafkbe.given pricrit§ over the éctions of a user's program., Sec-
ond, the scheééler S migét enforce "fairness" among the actions of the
process, For instgnce; consider a disk queuer that uses the '"least arm
movement criterion" to select the next request. Often the scheduler is
designed so that requests fér a distance part of the disk do not wait

forever. Third, the scheduler S might "enforce the release mechanism of

PV" (Dijkstra [1968a]).

The separation of the notion of scheduler from the notion of process
gives us a great deal of freedom. We are able to study the same process
with respect to a variety of schedulers. We do not present

one scheduler as the "correct one'"; instead, we present and study several

différent schedulers.

=36~

.3.1 SHEMI-ACTIVE TIMINGS

2. Definition. A timing o in a C process is semi-active provided, if

Bf < o, then f is in pointer-set(B).

3. Theorem. Suppose that P isacC process and "that the relation subprocessP

has m equivalence classes., Also suppose that Nl""’Nk are intégefs from

the set {1,...,m}. Then there is at most one semi-active timing o such that
for 1 <1 <k, o is in SUBPROCESS-N,. |
Proof. Immediate from property II. 0O

Theorem 3 is implicitly used in operating systems. They usually con-
sider timings as sequences of "subprocess names'" instead of as sequences
of actions. The key observation is: as long as we are only interested

in semi-active timings, it is immaterial whether we consider timings as

sequences of 'subprocess names or as sequences of actionse

©
L -

3.2 BLOCKING AND THE PV RELEASE SCHEDULER

It is instructive to consider the timing 13521 of the procesé EX3
(a formal representation of EX3 is in Figure 6). This timing is semi-

active; it is not active. The ‘'execution' of this timing is informally

1 this action changes L1 to 2 and a to 0

-

this action does not change the data structure - it is now blocked

LV I V)

this action does not change the data structure - it is now blocked
2 this action changes L]'to 1 and 2 to 1

1 . this action changes L] to 2 and a to 0

<37~

program counter L],LZ,L3§ (initial value 1)

semaphore a; (initial value 1)

SUBPROCESS-1

(1) whenL =1Aazldol ~2;aca-]
(2) when L1 = 2 do L]
SUBPROCESS -2 S

“l;aca+

(3) when L2 =1Aaz=z1 gg_Lz ~2;a¢~a-1
(4) when L2 = 2 gg.nz ~1l;ae~a+1

. SUBPROCESS-3

1TAa21doL,+~2;a«a- 1

(5) when L 3

3

(6) when L, = 2 do L

3 «1l;a<a+]

3

FIGURE 6, Process EX3: formal representation

The usual literature definition of PV (bijkstra [1968a]) rules out this
timing. fhe informal reason that the timing 13521 is not allowed is:
Wp's that are blocked, i.e., 3 and 5, must be given priority over P's
that a?e not blockéd, i.e., 1", The way our model handles this restric-

" tion is that we can define a scheduler S such that

if a timing.satisfies S, then the timing "gives blocked P's

priority over other P's'",

In particular, 13521 will not satisfy S.

14

4, Definition. Suppose that ¢ is a finite timing in a C process. De-

fine blocked-set(y) inductively as follows.

(1) blocked-set(A) is the empty set,

-38- -) .

(2) 1f o is not in ready-se;(a]...ak_]) then

blocked-set(a]...ak) = bldcked-set(a]...ak_]) U {dk}‘

(3) 1f @ is in ready-set(a]... k-l)’ then

blocked-set(al...ak) = blocked-sét‘a]...ok_]) - {ak}'
Note, U is set union, and - is set difference.

‘Infofmally, ;he action o is "added" to block-set(a]...ak_]) if o
cannot ''run"; the action 9 is "removed" from blocked-set(a]... k_1)>if
o can “run". For example, consider again the timing 13521 of the pro-
cess EX3, Then blocked-set(1352) = {3,5}; this formalizes the intuitive
statement made earlier. |

In order for an action to be in blockgd-sét(a]...ak), it.must have
been “tried". Hore,exaétly, blogked-set(a]...ak) is a subset of {dl"'f’ak}'
For instance, cénsider the timing 13 in process EX3. Clearly, blocked-

set(13) = {3}. Note, action 5 is not in ready-set(13). Howevéf, action

5 is not in blocked-set(13); for it has not been tried.

We will-only ever consider blocked-set(q) for semi-active o For
timings ghat are not semi-active, blocked-set(qa) can behave in strange
ways. For instance, since (in process EX3) action 2 is not in ready-set(A),
blocked-set(2) = {2}. However, it is definitély "éathological" to have
a V(a) inserted into the blocked-set. Tﬁis “"pathology" can be avoided if
we restrict our attention to semi-active timings. In fact we can prove

in a PV process that

if f is in blocked-set(y) and ¢ is semi-active, then f is a

P(b), for some b,

-38- P]

(2) 1If o is not in ready-set(a]...ak_]) then

blocked-set(a;-+-cp) = blocked-set(a;.eecy 1) U {og}.

(3) 1f = is in readx-set(al... k-l)’ then

blocked-set(a]...ak) = blocked-set(a]...ak_]) -‘{ak}.
Note, U is set union, and - is set difference.

.Informally,,the action % is "addedf to block-set(al...ak_]) if o
cannot ''run"; thé action o is "removed" from blocked-set(a]... k_])'if‘
o can "run".. For example, consider again the timing 13521 of the pro-

cess EX3, Then blocked-set(1352) = {3,5}; this formalizes the intuitive
bstatement made earlier. |

In.order for an action to be in bloékgd-sei(a]...ak), it‘must have
been “tried". More exactly, blocked-set(a]...ak) is alsdbset of {dl""’ak}'
For instance, consider the timing 13 in process EX3. Clearly, blocked-.
set(13) = {3}. thé, action 5 is not in réady-set(i3). However, action

5 is not in blocked—set(lS); for it has,hot been tried.

Ve will only evervconsider blocked-set(y) for semi-active o For
timings that are not semi-active, blocked-set(q) can behave in strange
ways. For instance, since (in précess EX3) éction 2 is not in ready-set(A),
blocked-set(2) = {2}. However, it is definitely "pathological" to have
a V(a) inserted into the blocked-set. This "pathology"‘c#n be avoided if
we restrict our attention to semi-active timings. In fact we can prove

in a PV process that

if f is in blocked-set(q) and-a is semi-active, then £ is a

P(b), for some b.

«39-

" 5. Definition. A timing o is a release timing in a C process provided,

for Bf < ¢,

if blocked-set(8) N readyQSet(B) is non-empty, then £ is in

blocked-set(8) N réady-set(B}.

Suppose that ¢ is a timing in a C process and Bf < ¢. Informally,
the set of actions in the set blocked-set(B) N ready-set(B) is the set

of actions that satisfy

(1) they can "runf,
(2) they were at "one time blocked",

 (3) they have never been "unblocked".

The release festriction is that‘if this set is nSn-emﬁty, then f must be
in blocked-set () ﬂ.ready-set(B). A release timing "enforcesza‘kind of
priofity rule'": the actions.inrblocked-set(a) N ready-set(B) have a
"prioriiy" over all other actions. However, there is no priority éggﬁg

" the actions in blocked-set(B) N ready-set(B).

‘Let us retﬁrn once aga¥n to the timing 13521 of process EX3.
- The objection stated earlier is: 13521 is not a release timing.
Both 13523 and 13525 are reléase timings. The release restriction
enforces no priority based on "the order an action is added to

blocked-set".

Most discussions of PV processes implicitly assume that the scheduler
always selects release timings. An example of this assumption is the

theorem found in Habermann [1972]. In our model this theorem is a property

~40-

of PQ processes ggg,tﬁe releasevscheduler. Some people have steted
that‘there are two kinds of PV. 1In our model there is one kind, of PV
process; PV processes behave differentlj for different schedulers.

We will now use our model to state the theorem found in Habermann
_[1972]. Suppose that P is a PV process and thae.S is a semaphore. Also

suppose that ¢ is a seml-actlve release timing. Define three functlons

as follows.

(1) ns(i)

= the ppmber.of k with 1 <k <1 such that o € ready-
set(dl"'dkgi) and o is a V(s).
(2) np(i) = the number of k with 1 £k < i such that % é ready;
'set(al...ak_]? and ¢ is 3 P(S);
(3) hw(ii =vthe number of k with 1-< g < i such theé % E blockee-

”?et(d]...ok’l) and e is a P(S).

Say the integer j performs a release iff o is a V(S) and blocked-

-
a.

set(Oﬁ"‘“ﬁ-l) contains a P(S). Then Habermann's theorem - in our model -

states that

(4) if i does not perform a release, then

np(i) = MIN(aw(i), ns(i) + So)

where S0 is thexinitial value of S.

Habermann's theorem can be rephrased into a more intuitive form. .
First, n(w) - np(i) is the cardinality of the set blocked-set(a].f.a) n
{f|f is a P(S)}. Second, ns(i) + S0 - np(i) is equal to S[value(a]...ai)].

Thus, (4) is equivalent to

“41-

(5) if i does not perform a release, then either

(a)'blocked-set(a]...ai) contains no P(S), or

(b) S[vgluecal...ai)] = 0.

‘Informally, if i does not perform a release, then either there are no
"blocked P(S)'s" or the "semaphore S is 0".

For example, let P = EX3 and let ¢ = 13523. The values of the func-

tions ns, np, nw ére in Table 1. Since 5 does not perform A release,
np(5) = MIN(nw(5), ns(5) + 1).

Note, np(4) % MIN(nw(4), ns(4) + 1): this is true since 4 does perform -
a release. The relation np(i) = MIN(nw(i), ns(i) + 1) does not hold

""when a release is in progress"; it does hold at all other places.

fnteger i - ns(i) np (1) nw (1)
1 o0 1 1
2 0 . 1 2

3 0 1 3
4 SRR 1 3
5 1 2 3

TABLE 1. The functions ns, np, nw for the timing 13523 in EX3

“FAIRNESS"

We will now define a type of timing that is related to the

intuitive concept of "fairness".

6. Definition. Say the timing ¢ in a C process is pointer-bounded

provided, if f is in pointer-set(al...ak) and f is not in

pointer-set(a]....k_]), then for spme»m > k, o = f.
Note, if k = 0, then by convention: pointer-set(aL]) is the empty
set. Thus, if ¢ is pointer-bounded and f is in pointer-set(A), then

for some m > 0, o = £

A timing is pointer—bounded if no action "waits foreve; for a
chance to be tried". TFor example, consider the timing 12.... (12
répeated foréver) in process EX3. This timing is active and a release -
timing; it is not pointer-bounded. In fact, if a is a semi-ac;ive re-

léase pointer-bounded timing in EX3, then

-

at least two of the subprocesses of EX3 must cycle an infinite

number of times".

Caution, the timingil35231413... (231413 repeated forever) is a semi-

‘active release pointer-bounded timing. In this timing

Y"one of the subprocesses of EX3 never cycles"”.

o
a B

Thus, while the notion of pointer-bounded is a notion of "fairness",
it is a weak one. Clearly, we can define schedulers that would enforce

a stronger notion of "fairness",

4. RELATIONS BETWEEN PROCESSES

" 4,1 SYNCHRONIZATION PROBLEMS o N . s

A One of thé issues that we must fagé in our study of "synchronization
 problems" is: how are we to represent "problems"? The usﬁal method in
the synchronization area is_to state a problem.in some informal language.
A "solution" to this kind of problem is some process and some assertions
that the process ;atisfies. This method, however, is hard to formalize;
in addition, this method cannot eaéily compare different solutions to

 the same problem.

-

We consider the study of synchrbnization problems as the study .
of the relationships between processes. More exactly - in our

theory ~ a synchronization problem is:

(1) a process P and .

‘(2) a relation R between processes.

A solution to a synchronization problem is a process 0 such that R(2,P)

is true. The componenté of a.synchronization problem - P,R‘-.are presentv
in the lgterature definitions of synchronization problems. The process:

P i? usually defined informally: often in English. This process defines
the "behavior" that is desired. The relation R is usually defined in-

~ forﬁally. For instance,. the chief sourcé of the controversy between Brinch

Hansen and Courtois, Heymans, Parnas can be attributed to their informal

definitions of R. Brinch Hansen considered the second reader-writer problem to

44—

be P,R while Courtois, Heymans, Parnas con;idéred the second reader-
“writer problem to be ?,R! Qhere R#R'. We will say more about this
controversy vhen we study the second reader-&riter problem, J
There are several advantages in our approach to problem definition.

"First, any reasonable theory of processes must be interestéd in relations
between processes. Second, we avoid introducing a new object ~ 5 “prob-
len" - iqto.our theory. Essentially o&r study of synchronization prob-
lems reduces to a study of relations between procésses. This is a
»standard technique in hany theories. For example, in finite state ma-
chine theory, relations between machines are used to define problems.
‘Third, our aﬁproach makes clear the importance of the relation R, Many

relations R are possible: we make no claim that any one relation is the

only important one. .

. We will next present éefinitioﬁs‘of several of the.relations
that are iﬁplicié in the synchronization literature. We will then
use our model to study the second reader-writer problem. iNext we
rwill define ";imulate"; this relation is one of oﬁr central concepts.
Finally,'several processes will be defined§ these processes define
the behavior of several synchronization problems.

’

4.2 REALIZATIONS

1. Definition. Suppose that 2 and P are processes. A realization r
is a function from the timings of 2 to the timings of P such that: if
aBf is a timing infglﬁthen r(aB) = r(a)r(B)ﬁiand for all actions-

f in a,.,r(f) is either A or an action in G>.

4.3

«45-

2. Definition. Suppose that r is a realization from QCOG’

Then say that the action f in 2 is obse1vab1e under r if r(f) f A3

otherwise, say that the action f is unobservable under r. When there.

can be no confusion we will drop 'under r',

Informally, an action in 2 is unobservéble’provided it does a "book-

keeping operation" that is not present in P; an action is observable provided

it does an "operation" that is present in & Note, if r is a realization
from@ato ®, then

) Ga is an “"abstraction" of :2,.
Since 2 may contain unobservable actions, "detail is lost in going from

n tO ‘3"0
SAFE REALIZATIONS

It is not obvious that the concept of realization can be used to de-

fine the relations used in the literature: '"safe'" and "deadlock free"

(Pijkstra [1968]). We will now show that it can.

3. Definition. Suppose that r is a realization from 2 to ©, Then say

that r is safe provided

r {a]a active‘inCLjsz {8] 8 active in{ }.

- Also say that r is onto safe provided

r {a] a active infy} = {8] B active @ 1.

Since the concept of safe is defined informally in the synchroniza-

tion area, we cannot prove that our definition of safe is valid. However,

b4

. ~46-

we can, presenc soxe cvidence to show that our definition is a reason-
able one. The definition of safe is. equivalent to

(1) for qbscrvable £, iIf £ € ready-sctb;(a), then

r (f). € ready-seté, (r(a)). | -
Informally, (1) states that whenever processa can "make a .change , then
pttocess(P can also "make a corresponding change". Clearly, this capturesv
the concept of safe.

We are almost exclusively intereseed in realizations that are onto
safe and not just safe. For the realization from‘a,to ¢ that maps every
timing to.)\ is safe; it is onto safe only when & is "trival", i.e., when
A is the only aetive timing in @. |
DEADLOCK FREE REALIZATIONS

4. Definition. Suppose that r is a realization fromzz— to § Then say tha}:

¥ is deadlock free provided

a()c:t) is empty, then ready-set (r(a)) is empty.

As in the case of safe, we cannot prove that our concept of deadlock

if ready-set

free is valid. However, we can present some evidence that our definition
48 a reasonable one. The definition of deadlock free is

(1.). if ready-se ‘:L(a) is empty, then ready—set@(r(u)) is empty.
Informally, this means thataf can "halt after executing the timing @' only
3£ P also "halts after e:;:ecuting the timing r{a)". Clearly, this captures
the concept of deadlock free as used in the synchronization area. Note,
if Athe p&:ocevssﬁ7 never "halts", then (1) is equivalent to |

for all finite timings a, rcady—ser.,L(a). is non-empty.

Also note, 1if the processa_never "halts', then any realization from

A, tois deadlock free.

47~

There is an interesting connection between safe and deadlock free.
Supp;se that r is a realizatibn from 2 to P, In prder to avoid unneces-
sary complexities, suppose that for each action g in P, there is an ac-
tion £ in P such that r(f) = g. As we stated eérlier, r is safe

iff |
for f observable, if f € ?eady-éeta(a), then

r(f) € ready-setp(r(ab).
We can also show that r is deadlock free iff

for f .observable, if ready-setn(oa is empty, then

r(f) £ ready-setp(r(a)).
~ Therefore, r is deadlock free iff

(1) for £ observabie, if r(f) € rgady—setp(r(a)),:fhen

ready-éeta(oé is non-empty.

The converse of safe is

<

(2) for observable £, if r(£f) e.ready—sgtp(r(QO),.then

f € ready-setg(ao.

Comparlng (1) and (2), we see that deadlock free is formed by weakening

the converse,of-safe. deadlock free replaces g € ready-set (a)' by

"readyésetﬁ(QO is non-empty'. The converse of safe is too strong to be

of any practical value; on the other hand, deadlock free is very weak.

4.5 SECOND READER-WRITER PROBLEM

We will now study the second reader-writer problem as dcfined

by Courtois, Heymans, Parnas [1971]. In this study we will use three

processes: CHP, W2, H.

.'(1) CHP, This is essentially the PV process used in Cqurtéis,'
Heymans, Parnas [1971] to "solve'' the second reader-writer
problem. A formal representation of CHP is in Figﬁre‘B; an
iﬁformal representation is in Figuré 9. For simplicity we
have assﬁmed that there is one writer and three readers; this
ié done purely to avoid complexities in notati&n. Note, the
definitions of READER-1, READER-2, READER-3 have been replaced
by éhe genéral definition of READER-i (1 € i £ 3), Also ob-
serve that action (k,i) is the k™! action of READER-i; thus,

(4,2) is
vhen L, = 4 do L, « 5; readcount readcount + 1,

Finqlly, note that READER-1, READER-2, READER-3, and WRITER
are "cyclic subprocesses'; for example,.the last action of

WRITER is
wvhen L = 13 do L « 1; mutex2 « mutex2 + l‘
and the first action of WRITER is
when L = 1T'Amutex2 2] do L « 2; mutex2 « mutex2 - T

Thus, action (13) "resets" the program counter L to 1.

program counter L

-49-

12LysLyslL

;2(initia1 value 1)

integer rcadcount, writecount; (initial value 0)

semaphore mutexl, mutex2, mutex3, w,a; (initial value 1)

WRITER

1
(2)
3)
(4)
(5)
(6)
')
(8)
()
(10) -
1)
(12)
(13)

when L

when L

n

1T Amutex2 21 do

2

3

4)\321

5

6 Ab 21

7

g
9 /\mute'xz =1

10 -

1
12

13

READER-i (1 <1 < 3)

(1,1)
(2,1)
(3,1)
4,1)

. (5,1)
(6,1)

(7,1)
(8,1)
(9,1)

(10,1)

an,1)

(12,1)

(13,1)

(14,1)

(15,1)

when Li
when L,
—_— i

when L,
—_— i

L}

n

i

]

il

1
2
3
4
5
6
7
8

9
10

Aa =21

do
do
do
do
do
do
do
do

do

do

do

do

A mutex3 = 1

A mute:;l 21

-

Ab =21

11 A mutexlz]

12
13
14
15

< -

L « 2; mutex2 « mutex2 - 1

L « 3; writecount « writecount + 1

L « if writecount = 1 then 4 g_l_s_e_S '
Le5iaca-~-]

L « 6; mutex2 « xfmtexZ + 1
Le7;beb -1

L8

L9 beb+1

L « 10; nmutex2 - mutex2 - 1

L « 11; writecount « writecount - 1
L « if writecount = 0 then 12 elsé. 13

Le13;a«a+1

L « 1; mutex2 « mutex2 + 1

L, « 2;— mutex3 « mutex3 - 1

do 1y

"c_l_g_I;i*-B;a‘-a-l |

do Li « 4 mutex] « mutex] -

do Li + 5; readcount « readcount + 1
g_qLi'-j._f_readcount= 1 then 6 else 7
_c}_g_'Li‘-Y; beb -1

do Li &« 8; mutexl « mutexl + 1
ggLi~9; a«-a+‘lA

do Li + 10; mutex3 « mutex3 + 1

do Li « 1

do L; « 12; mutex] « mutex] - 1

do L, « 13; readcount « readcount - 1
do Li « if readcount = 0 then 14 else 15
gl_‘g_Li¢-15;b«-b+l h

do L, « 1; mutexl « mutex] + 1

FIGURE 8, Process CHP: formal rcprescntaﬁion

~50-

integer readcount, writecount; (initial value 0)

semaphore mutexl, mutex2, mutex3,a,b; (initial value 1)

READER-i (1 < i < 3)

3
5

representation

WRITER
(1,i) P(mutex3); . : (1) P(mutex2);
(2,i) P(a); (2) writecount := writecount + 1;
3,1) P(mutex1) (3) ;ﬁ;writecount = 1 then
(4,1) readcount := readcount + 1; (4) P(a); |
(5,1) if readcount = 1 then (5) V(mutex2);
(6,1) ~ P(b); ' (6) P(b);
(7,1) V(mutex1); (7) writing is performed
(8,1) v(a); : (8) Vv(b);
(9,i) V(mutex3); . ' (9) P(mutex2);
(10,i) reading is performed © (10) writecount := wr;tecount - 1;
‘(11,{) P(mutex1); N (11) if writecount = 1 then
(12,i) readcount := readcount - 1; (12) - 'v(a);
(13,i) if readcount = 0 then (13) V(mutex?2);
(14,1) JOF o
(15,i) V(mutex1);
FIGURE 9, Process CHP: informal

(2) W2. This is essentially the up/down process used in Wodon

[1872] to “solve" the second reader-writer problem. A formal

representation of W2 is in Figure 10; an informal representation

is in'Figure 11. As in CHP, we have assumed that there is one

writer and three readers. Again observe that action (k,?) is

the k;h action of READER-i, thus

(3,2) is

when L2 = 3 do L2 «l;ae«a+l,

READER-1, READER-2, READER-3, and WRITER are “cyclic subpro-

cesses' as in CHP.

-51- - , R

program counter L1,L2,L3,L; (initial value 1)

semaphore a,b,s; (initial value 0)

WRITER .

(1) whenL=1 doLe2;5ses -1
2) whenL=2/\a+b20§_g_L‘-3_;b*-b-‘l
(3) vhen L =3 ' doL«4 -
" (4) vhen L =4 ‘doLe5;beb+1
(5) vwhen L =35 _t_l_g_L_«-I;sG-s%-‘l

READER-i (1 €1 <3)

(1,1) whenLi='1 A520'§3L1~2;a~a-1

(2,1) ~vhen L, = 2 g_qLi «3
3,1 whenLi=3 g_qLi~1;a«a+1

FIGURE 10. Process W2‘: formal representation

semaglioréa,b,s; (initial value 0)

WRITER - ‘ " READER-i (1 =1 £3)
(1) { }: down (s); : 1,i) {s}: down (a);
) f{a,b}: c}dwn ®); (2,1) reading is performed

(3) writing is performed 3,i) { }: up (@);
&) {3:up (s - ' |
) {3:up (s);

o | [{] is the empty set]

FIGURE 11. Process W2: informal representation

e

prdblem - we must supply two objects.

-52-~

(3) H. This is esscntiaily the PV proceés used in Brinch Hansen
| [1972a] to "solvef the second reader-writer problem. A formal

representation of H is in Figure 12; an informal representatién
is in Figure 13. Originally, H was defined in a “structured
notation“; we have expanded this notation into its PV defini;
tion. In addition, we have fqllowed the footnote correction
in Brinch Hansen [1972a]: we have inserted actions (1,1i) and
(11,i) A £i<3). As in CHP and W2, we have assumed that there

4s one writer and three readers; also, each of these subprocesses

is "eyclic".
In all three processes, we have assumed that in READER-i (1 <£1i=<3)

reading is performed

~and in WRITER , - .

.

writing is performed

.

is one action. This assumption: is made purely for convenience; it does
not affect our discussion. Note, we will refer to process W2 in later

chapters.

As stated in Section 4.1 - in order to define the second reader-writer

) a procéss P that defines the behavior of the readers and
writers,

~ (2) a relation R between processes.

-53-

program_counter L],LZ,L3,L; (initial value 1)

integer readcount, writecount, ¢; (initial value 0)

semaphore a,b,d,e: (initial value 1))

READER-1 (1 < i < 3) o) | .
(1,) whenL, =1 Ab=21dolL «2;beb - 1

(2,1) whenl , =2Aazldol ~35a~a-1
(3,i) vhen L =3 ' do L, « if writecount = 0 then 9 else 4
(4,i) when Li=‘4 Q_Q_Li‘-S; cec+1- '
- (5,1) thn Li =5 v ég»Li «~6; a~a+]l
(6,i) when Li =6 ANez21do Li «7; ee~e -1
(7,i) when L, =7 Aaz= 1dolL, « 8; a«~a -1
" (8,i) when Li =8 ‘ do Li -3
(9,i) when Li =9 gg,Li « 10; readcount « readcount + 1
(10,i) when L, = 10 do L, « 11; a«a+1
(11,1i) when Li =1 do Li «12; beb +1
(12,i) when Li = 12 . do Li « 13 ,
(13,i) when Li =13 A a2zl do Li « 1; a«~a-1
(14,i) when L, = 14 - do L, « 15; readcount « readcount - 1
(15,1) when L, =15 do L, « if ¢ = 0 then 19 else 16 ' .
(16,i) when L, = 16 . do i 17; c = ¢ = 1
(17,i) when L, = 17 - do L, < 18;:e = e + 1
(18,i) when L, = 18 'gg L, « 15
(19,i) when Li'= 19 gg,Li «1; a -a + 1
WRITER _ .
(1) vhenL=1Aa21 doLe«2;aca-]1 |
(2) when L =2 do L « 3; wrifecount « writecount + 1
(3) when i =3 : do L « if readcount = 0 Eégg 9 else 4
(4) wvhen L =4 | doL&5; cectt 1
(5) when L =5 doL«6; a-a-+]1
. (6) wvhenL=6Ae =1 doLe«7; e« e - 1
(7) whenL=7Aa=21 doLe8 acan~]
(8): when L = 8 do L+« 3 -
(9) when L =9 - _ do L+« 10; a«~a + 1

FIGURE 12. Process H: formal representation

(continued on next page)

10)
(1)
(12)
(13)
14)
(15)
(16)
Q7)
(18)
(19)

integer readcount, writecount

semaphore a,b,w,e; (initial value 1)

-54-

L
L
L
whenL=13Aa21doL« 14 aca- 1
L
L

WAdz1doLe11;ded -1

when L =
when L = 11 do L « 12
when L = 12 doL«13;ded+1

when L= 14 do L « 15; writecount ¢ writccount -1
when L = 15 do L« if c = 0 then 19 else 16

vhen L = 16 “doLe17; c+c -1

when L = 17 doL«18; e«-e+1

when L = 18 ' do L« 15

when L = 19 doLe1; a«att 1

FIGURE 12. Process H: formal representation

READER-i (1 < i < 3)

(1,1)
(2,1i)
(3,1)
(4,1)
(5,1)

6,i) -

(7,1)
(8,1)
- (9,1)
(10,1)
(11,1)
(12,1i)
(13,1)
(14,1)
(15,1)
(16,1)
(17,1)
(18,1)
(19,1)

P(b);
P(a); "
Ai: iﬁ_writecouﬁt # 0 then
begin ¢ = c + 13
V(a);
P(e);
P(a);
zgsefAi”s&i;‘
readcount := readcount + 1;
v(a)s
v(b); .
reading .is performed
P(a);
readcount := readcount - 13
B,: if c # 0 then

K

begin ¢ = ¢ - 13}
V(e);
'goto B, end;
v(a); ‘

FIGURE 13. Process l: informal

, ¢; (initial value 0)

WRITER
(1) P@);
(2) writecount := writecount + 1;
(3) A: if readcount # 0 then
() begin ¢ := ¢ + 1;
&) v(a);
(6) P(e);
) P(a);
- ® - goto A end;
9) Vv();
(10) P(d);
(11) writing is performed
(12) Vv(d);
- 13) P(a);
Q14) writecount := writecount - 13
(15) B: if ¢ # O then
(16) begin ¢ := ¢ - 13
Qan V(e);
(18) goto B end;
19) V(a);

rcpresentation

-55- S

We assert that we can take P to be the process W2. Since the origin51

problem Qas defined informaily, we cannot prove that W2 expresses the
behavior of the readers and writers. However, Parnas [private communica-
tion] has stated that W2 is a valid choice for P. A more difficult deci-
sion is: what shouid the-relation R be? As we stated inm Sectionvé.l, the
- controversy between Brinch Hansgn and Courtois, Heymans, Parnas stems

from their different choices of R. Therefore, we will consider two

relations R. RH(D,P) if and only if

- (1) there is an onto safe and deadlock free realization r
from 2 to P.

On the other hand,chuP(Q,p)_if and only if . .

(2) there is an onto safe and deadlock free realization r

from 2 to P such that if S(a), then s(x(a)).

.

S(a) {s true if and only if : . 7 .

(3) o is a semi-active release pointer-bounded timing such that

for some k and all m > k, %, is not in WRITER.

Informally, S(q) states that ¢ is a "fair timing that satisfies the PV

release mechanism and from some place on, no writer executes".

=56-

Our analysis of the second reader-writer problem consists of a

" discussion of the assertions:

) RCHP(H Ww2) is false.
(2) R (CHP W2) is true, RH(CHP w2) is true, and RH(H WZ)

is true.

We will now sketch a proof that (1) is true, 1.e., (H,W2) is

CHP
false. Informally, in H it is possible for a ''stream of readers to

execute forever". In order to sxmpllfy the presentation of this fact,
we will consider another PV process: H'. An informal representatlon

of this process is in Figure 14, Process H' is obtained from process H

by deleting actions that are extraneous to this discussion.

semaphore a,b; (initial value 1)

READER-1 READER-2 READER-3 WRITER
M Fe); @ BB (3 RO (9 R@;
@) P@); (8 Ba); (&) P@;

@) v@; (©) v@; (5 v@;

@ Ve (0 Ve); (16 VO);

) P@; (D B@; (N R@;

6) Vv(); (12) V(@) (18) v(a); -
FIGURE 14, Process H': informal representation

Define o to be the timing

1234 13 165 167 5@ (®0) s s s 17 10
1 @@ 15 2314 B3O® 12 w155 16 7.

repeat the bracketed paft forever.

-57-

Note,-we have circled actions @, such that a; £.rcady-sct(a]...)
The timing o is a scmi-active release pointer-bounded timing; moreover,
for k 2 10, o is not in WRITER. Since H' is "similar" to H, we can

“find a timing 8 in H such that S(8) is true., Now assume that RCHP(H,WZ)

fs true. . Then by the definition of RCﬂP’ for some realization T,
if S(B), thenvS(r(é));
hence, S(r(8)) is true. However, it is not hard to see that
(3) ‘for each giming § in W2, S(8§) is false.

Informally, in W2 it is not possible for readers to stream by
.foreﬁer. A detailed proof of (3) would be a major'digréésion; thgre—
fore, we.will nof prove (3)." Thus, we haveua cbutradiction; and
hence (1) is true.

We will now consider assertion (2)% The realization T oup? from CHP
to W2, is displayed in Figure 15. The realization s from H to W2, is

‘displayed in Figure 16, We assert that : -

@) r

CHP i{s an onto safe deadlock free realization such that

.if S(a), then S(rCHP(a)).

(5) rﬁ 1s an onto safe deadlock frec realization.

A detailed proof of the assertibns %) and (5) would be a major digression;

thexfore, we will not prove them.

In summary, when we use the relation Ty both CHP and H are solutions
to the second rcader-writer problem. On the other hand, when we use the

relation r CHP is a solution to the second reader-writer problem while

Citp?

H is not a solution.

-58-

f action in CHP ArCHP(f)‘
"5 1
6 2
7 3
8 4
13
(9,1) | (1,1)
(10,1) ,1)
(as,1) - - (3,1)
all ot_her actions A
FIGURE 15, Toup
£ action in H rH(f)
9 1 i
10 2 -
n 3
12 4
19 5)
. (10,1) C(1,4)
(9,1) (2,1)
a9,1) 3,1)
all other actions ' A

FIGURE 16. "

Essentially our discussion of the second reader-writer problem has

proved nothing: the key assertions (1) and (2) are unproved. However,

one of our major contributions is that informal statements such as

(6) "H does not solve the second reader-writer problea"

4.6

Ay

-59-

can be stated as formal statements. Thus, in our model (6) is

’(7) RCHP(H,WZ)Ais false,

The fact that we do not prove (7) may be less important than the fact
that we can formalize (6) and similar statecments. Howevér, we are

cutrently prepar ing a paper that presents a general method of ShOWlng

'that a realization is onto safe and deadlock free. This paper includes

proofs that 'y and Toyp 2T onto saFe and deadlock free.

IRREGULARITIES IN THE SOLUTIONS: CHP,H

As we stated in Section 4.5, rCHP'and ry are both onto safe and dead-

lock free realizations, However, both theqe rcallzat1cns have "lrregularl-
ties": thcse 1rregular1t1es have been noclccd by Parnas [prlvate com Aunz-j
cation] and Wodon [1972] For cxanple, in CHP action (1,1) is not in

the fcady—sct((1v°))' since mutex3[value((1,2))] = 0. Informally,
READER-1 is "stopped" and yet "WRITER" is not "writing". |

e

These irregularltles can be attributed to the fact that deadlock free
is very.weak. We will now define a stronger condition than deadlock free;
this new condition will allow us to explain the irregularities of Toup and

T

5, Definition. Suppose that r is a realization from D to P. Then say

that r is deadlock frece on subprocesses provided, for each SUBPROCESS-1i,

@

if rcady-setéic)n SUBPROCTSS - 1 is empty, then ready-set,(r(a))n

r (SUBPRCCESS - i} is cmpty.

Suppose that r is a realization from 2 to @, Informally, if r is

dcadlock free on subprocesses, then

-—|v=

"4f no actlon in SUBPROCESS—i can run after exccuting a, then

no action in r(SUBPROCESS i) ‘can run after cx;cuting r(a)".
Of course, no action in SUBPROCESS-i may be able to run after executing
a while some action in SUBPROCESS-i may be able to run after executing
-aB. Essentially deadlock free on éubprocesses is motivated by the
requirement stated in Dijkstra [1968]: 'stopping a procésé in its
tremainder of cycle' has no effect upon the others".

We will now compare the two cohcepts of deadlock free. Suppose that
r‘is a realization fromLto. In order to avoid unnecessary complexities,
~ suppose that for each action f in@, there is an action gAin.éLsuch that

r(g)=f. Now r is aeadlock free if and only if

(1) for observable £, if r(f)éready—set@(r(a)), -then
ready;se%hga) is non-empty. '

We can show that r is deadlock free dn subproceéses if and only if

(2) for each SUBPROCESS-i and f an observable action in SUBPROCESS-1i,

if,r(f)é,ready—seﬁ?(r(u)), then readyéseilfa)f)SUBPROCESS-i

is non-empty.

Therefore, deadlock free on subprocesses has substituted ready—seﬁgfa)(]
SUBPROCESS-1 is non-empty for 'ready-set (atlfs non-empty . Note, dead-
lock free on subprocesses is still weaker than the converse of safe.

_ The iriegularities of oup and ry, can be explained in terms of the
concépt of deadlock free on subprocesses: neither Toup nor r, is deaélock
free on subprocesées. For example, in rCHP;
ready—setcup((l,Z))(\ READER-1 is empty

and

ready-set ((1,2)) Nr

w2(rCHP (READER-1) is non-empty.

ctip

Note, (1,1) is in ready-seth(Qa,2)n n rCHP(READER-l), for

TCHP

rCHP((l,Z)) = A and (1,1) is in r_ _(READER-1).

CHP

An immediate question is: can we "repair" CHP and r to avoid
q p

CHP
these irregularities? In fact, Wodon [1972] on page 10 states that this

is possible.
4.7 THE RELATION SIMULATE

6, Definition. Suppose that r is a realization from 2 to P. Say that

r is faithful provided, for observable action £ and g,
.. .. : if r(f) = r(g), then'subprocessn(f,g).

All the realizations used implicitly in the literature are faithful,

In fact, most of them satisfy,

if r(f) = r(g) and f,g are observable, then f = g.

®
¥

7. Definition. The process D simulates process P with respect to the

realization r provided,

(1) r is faithful,
(2) r is onto safe,

(3) r is deadlock free on subprocesses.

Moreover, say D simulates P provided, for some realization r, D simulates

P with respect to r.

The assertion of Wodon [1972] that the irregularities of CHP and Tonp

4.8

could be repéired is not correct, provided his assertion is interpreted
as:

(1) there is a PV process that simulates W2,
In Section 7 we prove that (1) is false.

The stronger concept of *'solve'" that was mentioned in the introduc-

tion is exactly the relation simulate, ZIhe rest of this paper is a

detailed analysis of this relatidn, A reasonable question is: what is

the practical importance of the relation simulate? Informally, CHP does
not simulate W2, because in>CHP subprocesses are sometimes "stopped"
when they "really should not be stopped". 1f CHP were used in an operat-
ing system, then it is possible'that théée irregularities eéuld lead to
a poor utilization of system resourceg. We do not claim that this is

true; however, in our current state of knowledge it does seem possible.

We can also use simulate to state a relationship between PV processes

and up/down. Although the set of PV processes is not 2 subset of the set

- of up/down processes, every PV précess can be simulated by an up/down

process.

OTHER SYNCHRONIZATION PROBLEMS

We will now define three processes, Wl, WS, and BRW. Each of
these processes is the process that defines the behavior of some synchron-~

ization problem. We will reference these processes in Section 7.

We will now define the process Wl. This process is an up/down

process; it is essentially the process used by Vodon [1972] to "solve" the

"fifét‘reader-writer problem' of Courtois, Heymans, Parnas [1971]. A

formal representation of W1 is in Figure 17; an informal representatioﬁ

of W1 is in Figure 18; Parnas [private communication] has stated that
: Wi‘is’a valid choice for the prbcess that defines the behavior of ghe

" readers and writers,

program counter L, 5Ly5La,L; (initial value 1)

semaphore a,b; (initial value 0)
WRITER

whenL=1Aa+b20doL«2;beb -1

vhen L = 2 do L+ 3

. _when L=3 doL<1;beb+1 °
READER-i (1 <1 s3) ¥
whenLi=1/\$'zo g_g_Li't2;a‘7a'-1 T
when L, = 2 ; doL, «3 '
-—"'—‘i A ——.1 .
wvhen L, =3 dolL,«1;a«~a+1
— i —"i

FIGURE 17. Process Wl: formal representation

semaphore a,b; (initiallvalue) _ ‘ -

| WRITER | .~ READER-i (1 54 5;3),
{a,b}: down (b); : {v)}: down (a); |
writing is performed reading is performed
{3 u.P (b); : {3} up (a); .

FIGURE 18. Process Wl: informal representation

—64- E N S

VW& will now define frocess Wé. This process i; an up/down
ﬁrécess; it is cssentially the brocess:used by Wodon [1972a] to ''solve"
the;"Five Dining Philosophers Probicm“ of Dijkstra [1971]. A formal
representation of WS is in Figure 19; an informal representation §f WS
is in Figure 20. We-will take WS és’the process that‘defines the be- |
havior pf the philosophers. Since the original problem is ?efined-in-
formally, we cannot prove that this is true. However, we claim that QS

{s a reasonable choice.

.program counter LO’LI’LZ’L3’L4; (initial value 1)

semaphore 80,51;82,53,84; (initial value 0)
PHILOSOPHER-i (0 < i <4)

(1,i) when L, = 1A s, * S.,, 20 do L, « 2; s

1 1 F S5 1 <8 -1
(2,i) when L, =2 | doL «3
(3,8) whenL =3 | do Ly =1 s, -8 +1

[By coaventjon, S_; = 5, énd s5 =.80]

'FIGURE 19. Proéess WS: formal representation

semaEhore.80?81,82,53,84; Sinitial value 0)
PHILOSOPHER-i (0 < i £ 4)

(1,1) {Si-l’si+l}: down (Si);

(2,1i) eat '

G4 up (5,);

-[By convention, $~] = S4 and S5 = SO]

FIGURE 20. Process WS: informal representation

Finally we will define the process BRW. This process is a .
PVmultiple process. A formal representation of BRW 1s in Figure 21;.

- an informal representation is in Figure 22,

_ program counter L],LZ,L3,L§ (initial value 12

semaphore a],az,a3; (initial value 1)
semaphore d; (initial value 2)

READER-i (1 < i < 3)

(1,i) yhen L.. _1 Aag 2 1Ad=21 Qg;Li - 2;.ai “a; - 1? ded -1

,-QJ)WMn%=2 | do L, «3 | | |
‘(3,;) vhen L, = 3 | do L « lia ca +1;d« d -1
" WRITER '
sl) vhen L = IVA alrz‘l A.az_z.I Aay = j do L.h 2; a, ~a, - 1; ﬁz «--\a2 -1
" ay < a, -1
(2) whenL=2 . - . doL«3
(3) when'lL =3 . , doLe1;a «a +1;a « az +1;°

'FIGURE 21. Process BRW: formal representation

semaghoie a],az,aB; (initial value 1)

semaphore d; (initial value 2)

READER-i (1 =i < 3) ' WRITER

(1,5 P(fa;,dD; m P({a;,2,,2,]);

(2,i) reading is performed . (2) writing is performed ~
(3,1) V({ai,d}); o (3) V({a],az,a3});

FIGURE 22, Process'BmJ: informal representation

-66-

Informally, this process defines the "behavior'" of the first reader-

writer problem with the additional requirement that
“"at most 2 of the 3 readers can be reading at once",

We have presented this "bounded first reader-write?vproﬁlem" fofb
three reasons. First, it appears to hgvevsbme practical interest. In
an operating system we may wish to restrict the number of readers that
canrbe reaﬂing at once. For instance, this restriction might be due to
buffer limitations. Second, this process is used in Section 7 to show
that there are differences between the predicate systems:' PVchunk,
Pvmultiple, and up/down. Third, this procesé shows that small changes‘in
the way an 1nforma1 problen is translated into a formal process can make

- a great deal of difference. Consider the process BRW' deflned in Flgure

23.

-éemaghore a],az,aj; (initial value 1)

semaphore 4d; (init@al valﬁe 2)

“READER-i (1 < i <3) ~ WRITER

P({d})} . N P({a] 332’33});
'P({a],az]); _ writing perfbrmed
reading is performed V({ai,az,as});
v({a]’az});

v(iads

FIGURE 23. BRW': informal represe@tation

-67-

In process BRW', “entering the reading section" is divided into two
“steps", while in BRW entering the reading section is one step. We

can show that

1) .no:up/down process simulates BRW and

(2) an up/down process simulates BRW',

(1) is proved in Section 7; (2) follows since the up/down process

. represented in Figure 24 simulates BRW'., In an operating system whether

we use BRW or BRW' may be immaterial - we just do not know.

semaphore d; (initial value 1)

- gemaphore al,az,a3,b; (initial vaiuevO)

READER-1 (1 S i <3) . WRITER
, {&}: down (d); s .:i, v{a],a;,ﬁj}: down -(b);
b: down (ai)i ‘ B S wfiting is performed
reading is performed) up (b); |
. up (ai‘); ' . =
up (d); o |

. FIGURE 24, An up/down process: informal representation

-68- _ S

5. INVARIANCE OF LOCAL BEHAVIOR OF A PROCESS :

We are interested in the relation ‘'simulate'. We will now state
a necessary condition for to simulate . In order to state this
condition, we will first formalize the concept of the "local behavior"

of a process. We will then state the invariance theorem:

if 3 simulates P and 2 is a C process, then any local behavior

of P is the local behavior of some C process.

The invariance theorem (proved in section 6) will be used later, among

othef:things, to prove the results stated in the introduction, i.e.,
Figurerl.‘ ‘ o B) : .
5.1 LOCAL BEHAVIOR OF A PROCE?S

1. Definition. Suppose that ¥ is a finite set. The set Mis a ¥-slice’

e
2

provided

(1) each element of Tl is a finite sequence of distinct elements from T;
(2) each element of ¥ is in N .
. . 9

(3) if oB is in 1T, then ¢ is in T.

2. Definition. The process P = <A,9,w> defines the T-slice I provided

-

i ‘there is a one to one correspondence d from A to T such that

d{e|e is an active timing in P} = 1.

-69-

Note, we extend d to finite timings of © by defining d(dl"'dk)'to be

d(d«‘)- ° cd(dk) .

. Consider the up/down process M that is informally represented by

semaphore a,s; (initial value 0)

SUBPROCESS -1 SUBPROCESS -2

(1) {s}: down (2); (@) { }: down (s);
The set of active timings of M is {A,1,2,12]: 21 is not an active timing

because s[value(2)] = -1. Thus, M defines the {x,y}-slice {A,x,y,xy}.

Informally, the slice {A,x,y,xy]} represents the "behavior" where

y "stops" x and x does not stop y. .)

Thus, action 2 stops action 1 and action 1 does not stop action 2.)

3. Definition. The brocess <A,9,w> implicitly defines the $-slice 11

provided there is a subset A' of A and a finite active timing o« in.

<A,f),w> such that <A",9),value(e)> defines T

This relation,'implicitly defines, allows us to do two things. First,

we can focus our attention on a part of the process, i.e., we can use Al

instead of A, Second, we can focus our attention on the process after

some timing o has "executed", i.e., we can use value(q) instead of w.

) Consider the up/down process W2 - introduced earlier - that is in-

formally represented by ' =

5.2

-70-

scmaghqfe a,b,s; (initial value 0)
READER-i (1 €1 % 3) WRITER

(1) {): down (s);

(1,1) {s}: down (a);) (2) {a,b}: down (b);
(2,i) reading is performed (3) wr{ting is performed

G,1) { Y: up (a); | @) {3 up ()
| ©s) {3 up ()

Let W2 = <A;@,w>. Since <{(1,1),1},%,w> defines {Ayx,¥,xy}, W2 implicitly
defines {A,x,y,xy}. We can therefore say that the "local behavior'" of

w2 contains the '"behavior" where

y stops x and x does not stop Y.

Note, in contrast to process.M'introduced earlier, process W2 does not

define {A,x,y,xy}.

~ ‘Different slices represent different kinds of local behavior. For

example, the sllce {A, ,y, ,xy,yx} represents the behav1or where

x and y stop z, 2z stops X and y, but x and y do

not stop each other,
INVARIANCE THEOREM -

4, Dpefinition. Say that the predicate system C defines the T-slice 1l

provided there is a C process 9 such that 2 defines Tl

5. Definition. Suppose that C and C' are predicate systems. Say'that

C ~ C' providcd there is a C process. “that cannot be 51nu1ated by ac'

-

process.

-n- -

6. Theorem [Invariance Theorem]. If 2 simulates P, 2is a C process,

and P implicitly defines the T-slice I, then C defines Il

-

?roof. ‘This‘theorem is proved in Section 6. O

7. Corollary. If @ implicitly defines Tl.and C does not define 1, then

no C process can simulate P.
Proof. Immediate from the invariance theorem. 0O

Informally,»Coroflary 7 states that if no C process can ""handle the

local behavior of ', then no C procecss can simulate P.

8. Corollary, If C defines Il and C' does not define II, then C = C'.

Zgggg. ‘Suppose that C defines 11 and C' d;és not define M. Let P be‘a

C process that defines 1. ‘Assume that C = c' is false{.I;t 9 be a C'
process that simﬁlates P. Since P implicitly defines 1, by tbe invariance
tﬁeorem, ct def;nes.n. This is a ﬁontradiction; hence, C *'C'.‘ O

Corollary 8 is the principle tool we use when we compare different

predicate systoems,

We will now ﬁresent an informal application of the invariancé'theo:em.
Considér the up/down process W2 introducéd earlier. We will now inform-
ally show-that ;o PV process can.defineAthe slice {A,x,y,xy}} Since W2
implicitly defines {A,x,y,xy}, by Corollary 7, no PV p?ocess can sileate
W2, This is a non-trivial result, for we allow unobservable actions and
conditionals, ‘

Suppose that 2 is a PV process, and suppose that 2 defihgs {A,x,y,xy}-

Let f and g be the two actions of 2. Then we can éuppose that

(1) ready-set(A) = {f;g],
(2) ready-set(f) = { },
{£}.

(3) ready-set(g)

By (1) and (2), g must Se a P on some semaphore S. By (2), f must also be
a P on the semaphore S; otherwise; the result of "executing" £ coﬁld not
move g out of.the ready-set, Since both f and g are P's on the se@aphore
S, f is not in ready-set(g). However, this contradicts (3). Thus, no
PV;process can define tﬁe slice {A,x,y,xy}. A formal proof of this re-

sult will be supplied in Section 7.

e

.

An 1nterest1ng facet of this argument is that we have reduced the
a8 priori hard questlon, of whether or not a process exists that simulates
another process, to a simple "combinatorial question”". In effect, all

the work has been done in proving the invariance theorem.

-73- ' o ’

6. A PROOF OF THE INVARIANCE THEOREM

~ We now present a proof of the {nvariance theorem. The proof uses

6n1y the properties I-IV. of a C process.

1. Deflnltlon. Suppose that r is a reallzation from the process 2 to

the process P. Then the finite tlmlng o in 2 is in canon1ca1 form urder T

provided, either o = A or

o =81 g oo .ﬁkfk
where
(1) for each i, fi is observable,
(2) for each i, each action in 5 is unobservable,

(3) for each i, if 8 is an action in Bi, then subp£ocess (fi,g).

When there can be no confusion we will delete ‘under r'.

2. Theoren. Suppose that r is a realization from the process 2 to the

process £. Then

(1) 1f aB is in canon1ca1 form, then B is in canonical form

(2) if af is in canonical form, then f is an observable actlon.

Proof. Immgdiate from the definition of canonicai form, O

Suppose that 2 simulates P with respect to the realization r. By
the definition of simulates, if o is a finite active timing in @, then
the set

{Bis is a finite active timing in 2 and r(8) = a}.

-74-

is non-empty. Many of the timings in this set are complex. Our first
goal is to prove that this set contains a unique timing in canonical

form.
For the rest of this section we assume that

(1) 9 is a C process and

(2) n simulates P with respect to the rcallzatlon T.

3. Theorem., Suppose that r(ef is active, P is in canonical form, and

B] is in pqinter-seta(a). Then B‘ is in ready—setg(a).

Proof.. Assume that B] is not in ready-setg(aé. Suppose that B] is in
SUBPROCESS-i. By properties I and II, '

%)) ready-séta(a) N SUBPROCESS-i is empty. :
Define Bk to the First observable action in B. By the definition of

canonical form, Bk is in éUBPRObESS-i. Now r("el"‘ak) = r(oDr(Bk).

Since r(aﬁ)vis active, r(Bk)Ais in ready-set(r(a)). Thus,

(2), readyrsetp(r(ab) N r(SUBPROCESS-i) is non-empty.

y the definition of simulate, r is deadlock free on subprocesses. This

is a contradiction with (1) and (2). Therefore, Bl is in ready-set (QD

4, Theorem. Suppose that off is an active timing in 9; £ is unobserv-

-

able; B is in canonical form; and for each action g in B, not subprocess

(f,g). Then o3 is active.

i e e Sl M e N s s

~vF

-75-

Proof. Assume that ¢8 is not active. Suppose that B = A\p where o) is

_active and axu] is not actxve. By property I, u] is in poxntcr-set (f2).

By property 11, u, 'is in pointer- -set (al). By the definition of simulate,

r(afp) is active, Since r(qf8) = r(cd), r(cB) is active. Also y is in

canonicollform. Thus, by Theorem 3, By is in ready-seta(&X). This is a-

contradiction, and hence 3 is active. O
' (

5, Theorem. Suppose that afBS is an active timing in 2; f is unobserv-

able; B is in canon1ca1 form; subprocess (f, 6); and for each action g

in B, not subprocess (f,g8). Then off§ is active.

Proof. Clearly, B and £§ aro in canonicai form. By Tﬁéorem 4 o8 is
active. First, we will show that oBf is active. By property I, £ is in
pointer-seta(a). Bj property III, f is in poinror-setn(as). By the def-
inition of simulate, r(afsﬁ) is aoéive. Since r(afsa) % r(aﬁfs), r(oRES)
is active. Also f6 is‘in canonical form. Thus, by Theorem 3 £ is in

ready-set (eB); and hence oBf is active. Second, we will show tﬂgt BES

- 4s active. Assune that o8f6 is not active. Suppose that § = Au where

oBfA is act1ve and aﬂfxpl is not active. By property I,. -1y is in
pointer-set (aka) By property 1v, By is in p01nter-set (BEN) . Also
p is in canoncial form. - Thus, by Theorem 3 py is in ready- set(oﬂfx)

This is a contrad;ction, and hence an6 is active, [j

6. Theorem. If A is a finite active timing in P, then there is a finite

active timing p in 2 such that r(p) = A\ and p is in canonical form,

Proof. Suppose that X\ is a finite active timing in . Since r is onto

safe, there is a finite active timing p in 2 such that r(p) = A If u

. {s not in.canonical form, then either

(l)‘.p = fB whére the hypothesis. of Thearem 4 is'true,Hor_

2) p= afS& ~where the hypothesis of Theorem 5 is true. |
In case (1), apply Theorem.4 to p; in case (2) apply Theorem 5 to We As
long as thé résultihg timing is not in caﬁoniéal*form, continue to appl;
either Theorem &4 or Theorem 5 We cannot ;pply these theprems forever,
for

(3) Theorem 4 removes an action and

(4) Theorem 5 moves an action and never moves it agaln.

Ccall the timing obtained this way p's Now p' is active and in canonical

form. Since Theorem 4 and Theorem 2 only delete or move unobservable

.actions, r(p') = r(p) = 2 D . - . N

7. Theorem. Suppose that o)\ -and o are active in 9, each actlon in A

is in SUBPROCESS-i, and each action in p is in SUBPROCESS-i. Then 1 ETH \

.
3.

or ‘,l <)\o
Proof. This follows immediately from Theorem 14 of Section 2.10. O
8. Theorem. Suppose that r(a) = r(8) where ¢ and B are active and in

canonical form. Then ¢ = B.

 Proof. We will use induction on the length of ¢ If @ = A, then B = A;

,‘honce, in this case ¢ = B. Now suppose that o #‘A. As in Definition 1,

1.1
letg= o f ...a'kfk and B = B g ...Bkgk where k 2 1, Since r is faithful,

for all i, subprocess (f ,gi).‘ By induction hypothesis,

k- -
%)) oﬂf‘.-.a .1 k-1 81 1-.-Bk -1 k-1 .

By Theorem 7 and symhetfy, we can assume that qkfk < Bkgk. Since fk

"4s observable and each action in'sk is unobservable, akfk ='Bkgk. Thus,

a=B8. O
9. Theorem, Suppose that ¢ is a finite active timing in . Then there
is a \inigue finite active timing 8 in canonical “form, 'in-ﬁ, such that’

| r(B) = oo

Proof. The existence of B is Theorem 6; the uniqueness of B is Theorem

8. D

We have, so far, achieved our first goal: we have shown that if ¢
is a finite active timing in ©, then the set

{BIB is a finite active timing in 2 and r(B) = a}

coptains exactly one timing in canonical form. We will now prove a
theorem that allows us to ''piece together" different active timings to

~ form one active timing.

.

.

10, Theorem. Suppose ihat QBif1 (1 <i <n) is a finite active timing

‘ in 9 vhich is in canohical form, Also subpose that

(1) for each i, each action in Bi is unobservabie,

@) for if j, £f# £,

Then Qa_]o-anfi is active (1 <4i< n)o

A}
-

Proof. Ve assert that for i % j, not subprocess (fl,fj). For suppose
that subprocess (fi,fJ). Then by the definition of canonical form and

Theorem 7, Wwe can assume without any loss of generality that Blf1 = BJfJ.

-78-

. By (1); B;fi = ijj; and hence, i = j.

~ We will now prove the following lemma.,

Lemma, If 61 < B1 (1 €£i sn), then'a81...6n is active.

Proof of Lemma. Proof by induction on the length of a51...6n. Clearly,
o is active. ‘Now there are two cases. First, 06]...6n = ou where each
action in p is in SUBPROCESS-i, for some i. Then p < Bj for some j.

Thus, oy is active. Second,

a&‘...&n = aAhug

wherg each action in pg is in SUBPROCESS-i, for some i, anﬁvh is not in
SUBPROCESSfi.l By induction hypothesis, aAhp gnd amug,ére ac;ive. By
propefties I and III, g is in pointér-setn(akhp;. Let pg < Bk: Since
‘r 1s safe, f(aakfk) is activé. 'Since.f(akak) = r(athgfk);fr(amhugfk)
is active, Also, gfk‘is in'canonical form. Thus, by Theorem 3, g is in
ready-setg(akhp). Therefore, a&’...&“ is active. 0O |

‘ By the lemma, dsT...Q“ is active. By property’l,l'fi is in pointer-

setnﬁoBi). By the lemma, there is a list of active timings .

éﬁch that eachAtiming is obtained from the one above by the insertion of
one action. By repeated applications of property III, f1 is in pointer-
s;tn(asl...sn). Since r(aﬁ1...8nfi) = r(asifi),'r(aﬁl...ﬁnfi) is active.
Thus, by Theorem 3, fi is in regdy-setg(a81...5n). Therefore,'qB]...ani

is active. O

L’

~79- .

11. Theorem, Suppose that A is a subset of ready-set(§) with § active.
Then there is a B and a p such that B is a subset of ready-seta(u), n
is active, r(p) = §, and r is a one to one correspondence from B ﬁo A,

Note, each action in B is observable,

Proof. - Let A = {g‘,...,gn}. By Theorem 9, there exists'a,kl,...;xn

such that for 1 <i <n,

: i, _ 1
(1) r(a) = 88,
(2)‘ ami is active and in canonigai form, and

@ rabh =

The existence of these timings depends esséntiaily on the uniqueness part
of fheogem 9. Deflne B f = 1 s for 1 < i < n. 'If fi = fj, then r(xi) =
r(xj);-ﬁence, i= j. Thus, 1f i # J, then f # fj Define y = aB‘...Sn,
and define B = {f’,...,f,}. Clearly, r(u) = &, and x ié-a one to one

correspondence from-B to A. By Theorem 10,for 1 =i < n, aﬁ]...ani

active. Therefore, B is a subset of ready-seta(u)., O

e

Theorem 11 has an intuitive interpretation. Suppose that g1 and g2

- are actions in ready-setp(b). Informally, we can say that g1 and g2 are

“parallel at' §". Then Theorem 11 shows that there exist actions f1 and

f2 and a timiﬁg p such that

1) f‘ and fz are both in ready-setn(u),

(2) f(u) = . .
(3) r(f) g and r(f) =

Informally,.f1 and f2 are parallel at y. Since r(u) = &, r(f‘) =g, and

-80- | R o

_ r(fz) =-g2,_we can say that the "parallel structure of process P is.

reflected in the parailel structure of process 2",

We are.now in a position to prove the invariance theorem, Recall

that 2 is a C process, The invariance theorem states that
if P implicitly defines the E-slice II, then C defines Tl.

Informally, since 2 simulates P, the predicate system C must be able to

define all the local behavior of the process P.

12. Theorem [Invariance Theorem] If P implicitly defines Tl a g-slice,

then C defines Tl.

Proof. Let P = <A,),w> implicitly define Tl a E-slice; let 2 = <B,J',x>.
‘Since P implicitly defines H,.th;re exists a Ao a subset of‘é and an
active finite timing ¢ such that,<A0,m,va1uF(a)} defines Tl. Also let d
be the one to one corresponden;e between A6 and T.

Suppose that g is in.Ao. .Then by the definition.of a slice, d(g)

. is in TI. Thus, g is active in <Ao,m,value(a)>; and, hence g is in feady;
setp(d); By Theorem 11, there exists abf;niteAactive tiﬁihg.ﬁ in 2 and
a subset B0 of ready-setn(s) suéh that r(B) = ¢ and r is one to one
correspondence frqm B0 to Ao; Wevnow assert that €Bo,m'?va1ue(5)> de-
fineﬁ N. The one to one correspoqdence from B0 to t is the composition

- of d and r.- .

Suppose that § is active in <Bo,m',value(§)>, Then Bs is active in

9. By the definition of simulates, r(B§) is active; and hence r(§) is

active in <Ag,9,value(a)>. Thus, d(x(8)) is in Tl

-81-~

‘On the other -hand, suppose that § is a finite timing in <Bo,m',va1uc(a)}
and d(r(§)) is in Il Since <Ao,m,va1uc(00> defines T, r(§) is ac;ivc in’

o,m,value(a)> and hence or(8) is active in ©. We now assert that
(1) ifi # j, then not subprocess (Gi,aj).

For suppose that subprocess (85 6). Since &, and 5. are in ready-set, 3,
61 = 63 by property II. Since d(r(&)) is in 1, L = j by the definition of
slice; hence, (1) is true. We now assert that B85 is active. Suppose that
& = M\ and BA is aptive and Bxu] is not active. Now r(B&) is active, and
§ is in canonicél form. By property I, u, is in poianr-sétQ(B). By
property 111 and (1), py is in pointer-sety B\ . Thus, by Theorem 3, By,
isvactige. Thls is a contradiction, and hence Bd is active. Therefore,
6.is active in <Bo,m ,value(3)>. |

}We have, therefore, shown tha£‘<Bo,m',va1ue(B)> defines 17l. Clearly,

this is a.C process; and thus, C defines T D

82—

73 . ANALYSIS OF SLICES

We now study questions of the form, does the predicate syétem c
define the slice II? In general, these questions are very complex.

Therefore, in order to get interesting results we actuallyrstﬁdy not

" all slices but restricted classes of slices. However, these classes

of slices help us to show that there are differences between the predi-
cates systems: PV, PVchunk, PVmultipie, and up/down. In particular, we -

are able to prove the results stated in the introduction.

7.1 A PROPERTY OF PV, PVCHUNK, PVMULTIPLE

LIS

1. Theorem. Suppose thdt P is a PV (respectively PVchunk or PYmultiple)

process. Also suppose that f is an action in P that is not a P, Then

" for any finite timing o, -

£ is in feaAy;set(QD ~if£ f is in pointef—sét(ob,

Proof. Immediate from the definition of a C ?rocess and the definitions

~ of the predicate systems: PV, PVchunk, PVmultiple. O

2. Theorem. Suppose that P is a PV (respectiﬁely PVchunk or PVmultiple)

process. Also suppose that not subérocess (f,g). Then

(1) 1f fg is active and g is a V, then gf is active,

(2) 1f fg is ac;ive and £ is a,P; then gf is active.

Proof. We will prove the thcorem for the case where P is a PV process;

the other cases follow in a similar manner. Suppose that P = <A ,N,w>.

-83-

Let-'(Li,...,Ln,D,(Si,..},Sm))' be a typical clement of .

Suppose tha£ fg is active, g.is ; V, and not subprocess (f,g). By
~propefty I and the fact-that g is in ready-éet(f),.g is in poiﬁter-set(f).
ﬁ& property III, g is in pointer-set(A). By Theorem 1, g is active, NoQ
assume that gf is not active. Then £ is not in ready-set(é). Again by
ﬁroperties I and III, f is in éointer-set(g). Therefore, by Theorem 1,

f is a P. We can therefore assume that
(3) £=vwhenL, =aAS, >0dolL «a';S <5 -1
PTEEN 37720 377

Since £ is in ready-set(A), S;[w] > 0, Since g is a V, Sj[g(w)] P Sj[w].

‘This is a contradiction, and hence (1) is true.

. Now suppose that fg is actlve, f is a P, and not subprocess (f,8).
By (1), we can assume that 'g is a P, We can therefore assume without

loss of generality that
aAS. >0dol - a'; S, <8, -1
i — 1 i i

4 =) = " -
(5) g“~whenL2 bAsj>0d_<>_L2«b,sj«sj 1.

(4) £ = when L,

By properties III and I, g is in pointer-set(A). Since g is in ready-

vset(f), ?j

actzve. By propertles I1I and I again, f is in poznter set(g) Since

[f(w)] > 0. Since f isaP, S [w] > S,[f(w)]. Hence, g.is

£ is in ready-set(A), Si[w] > 0, Assume that gf is not active; ‘then
lsi[g(w)] < 0, Hence, i = j; and Si[w] =.1, Therefore, Sj[f(w)] =

But this is a contradiction, for g is in ready-set(f).. Thus, (2) is

true. 0O

- -84

We can extend the proof of Theorem 2 to prove the following. Sup-’

pose P is a Pv (respectively Pvchunk or ?Vmultiple) process, Also

_suppose that not subprocess (f,g). Then

(1) if ofgB is active and g is a Vv, then ang is active

(2) if ofgB is active and f is a P, then ngB is actlve.

This is a fundamental property of what we could call "PV 11ke" predicate

systems.

EXCLUSION SLICES

- - ot ¥ & e

3. Definition., Suppose that R is a reflexive relation on a finite set

'$. Define ¢ in exclusion (R) iff

.
.

(1) o is a finite sequence of element.u from 2'and

@2) for 1 i< j < length(oD, not o, RaJ.

Informally, we think of akb as meaning: "a stops b" or "a excludes.b".

4, Theorem. Suppose that R is a reflexive relation on a finite set Z.

Then exclusion (R) is a g-slice. A slice that can be defined in this

way will be called an exclusion slice.

Proof. Immediate from the definition of T-slice. n

Not all slices are ekclusiéﬂ slices. Consider ;he {a,b,c}-slice ‘
.{A,a,b,c,ac,acb}}4 This is not an excluéion slice. For supbose ;hat
iﬁ is an exclusion sl?be. Since acb is in the slice, by the definition
of exclusion slice, éb must also be in the slice. vThié is a contral |
diction, and hence not all slices afc exclusion slices.

.

T -~ c .. . « * g e OES . 30 © 0. e ome

-85-

-

let T = {r],rz,w}, and let R = {(rl,w),(w,;]),(rz,w),(w,rz), (w,w),
(:l,r]),(rz,rz)}. Then exclusion (R) = {A,w,r],rz,r]rz,rzr]}. In-
formally, we can consider w as a "writer", and we can consider T, and

X, 88 "readers". Then writer excludes readers, and readers exclude
writer, However, re#ders do not exclude each other. Note,:the relation
R is non;transitive. |

We can représent exclusion (R) as a directed graph; The‘nOAes are
the elements of £. An arrow goes fr§§ node a to node b iff aRb. Since
R is always reflexive, we will drop all the arrows from a node'to itself.

o

Thus, the exclusion slice defined above is
rl(-"")w ‘ . A ."

)

'We will now consider some of the.exclusién slices implicitly defined

by the processes W1, W2, and WS.

e

(1) wi. This process implicitly defines the exclusion slice

represented by the directed graph '

rl<-—-—-‘: w 4—""3’1'3

N

2
" Note, this corresponds to a non-transitive symmetric relation. Informally,

w is a "writer"; and ry» Ty» Ty 3T “readers"., The relation is non-transi-

tive because readers do not exclude each other.

(2) W2. This process implicitly defines the exclusion slice

represented by the directed graph

7.3

"Note, this corresponds to 2 non-symmetric relation., In-
formally, w is a "writer" and r is a "rcader". The relation
is non-symmetric because a writer can exclude a reader,

while a reader cannot exclude a writer. .

(3) WS. This process implicitly defines the exclusion slice

Arepresented by the directed graph

VAR
L

*

Note, this corresponds to a non-transitive symmetric relation.
Informally, each node is a “shilosopher. The relation is
. pon-transitive because each philosopher only excludes his ad-

jacent neighbdrs.

.

-

RESTRICTIVE RESULTS

S. Theorem., Suppose that a PV (respectively a PVchunk or Pvmultiple)

process defines gxclﬁsion (R). Then R is symmetric.

Proof. Suppose that R is a reflexive, non-symmetric relation on . Also .

let d be the one to one correspondence from the actions of the process to

. Suppose that aRb and not bRa, Let f'= d-1(a) and g = d'](b) where

-d-] is the inverse of d. By the definition of defines, gf is active and

-87-

fg is not active.

fact that £ and g are active timings, not subprocess (£,8).

propcrties‘III and I, g is in pbinter-set(f).

fg is active.

6. Theorem.

R is an equivalence relation.

Proof

(L],...,L D (S],...,S))! be a typ1ca1 element of .

to one correspondence from A to Z.
By Theorem 5, R is symmetric.

a.Ra

- {.e,, suppose that a]Raz, oRags

g - d*‘(az), and h =

R,

By Theorem 2, g is a V.

This is a contradiction.
Suppose that a PV process P defines exclusion (R).
Let R be a reflexive relation on T, and let P = <A,T),w>.
-1
Also let d

and not a3Ra].

By propcrty 11 and the
Thus, by
Therefore, by Theorem 1,

O

Then

Let -
Let d be the one
be the inverse of d

Now asSume';hat R is not transitive,

Let £ = d”(a]),

d-I(a3). By the definition of defines and exclusion

.(1) £,g,h,fh,hf are active; fg,hg,gf,gh are not active.

By property 1I, not subprocess (£,8).

pointer-set(f).

T tive, g_is a P.

By properties III and I, g is in

Therefore by Theorem 1 and the fact that fg is not ac-

In a similar manner, -we can show that f and h are P's.

Thercfore, we can assume without loss of generality that

f=yhenL =a, AS >0dolL

v 1
- g = vhen LZ = a,

h,= when L3 = a3 A Sk

Since gf is not activé, S.[g(w)] <0,

Thus, i = j. By the same reasoning,

fh is active, Si[w] = 2,

AS,>0do
J

>0doL

Thus, S;[g(W)] =1,

. .

R
' .

L2 - a2 Sj - Sj

i : ¥

1

«~a 8 8§ =

3 ¢ 833 S < S - 1

Since £ is active, Si[w] > 0.

-

j =k, and hénce 1 = j = k. “Since

and hence gf is active.

-8s-

This is a contradiction; therefore, R is transitive. Finally, a re-’

flexive, symmetric, transitive relation is an equivalence relation. [0 -

7. Definition. Suppose that f is an action in 2 PVchunk process.
-Also suppose that synchronizer(f) and that the pair of £ is P(S with
amount m). Then define amount(f) to be m.

< : .

8. Theorem. Suppose that a PVchunk process P defines exclusion (R).
. Also suppose that d is the one to one correspondence between the actions
" of P and T, where R is a realtion on T. Suppose further that a]Raz,

v aZRas, and not aBRa]. 'I‘hen'(d'1 is the inverse of d)
S =1
amount (d (az)) > amount(d (a])).

Proof. Let P = <A, 0w, Let "(Lyyeeesl uD,(Sqse00,8))! be @ typical
element of §). Let f = df‘(a]),ug = d”(az), and h = d-1(a3). By the

same reasoning in Theorem 6, we can assume that

ﬁ: ' = L ' ...4
f = when 1, = 3, A,Si zb, do L, « a3 Sy '- 8i b,

= = ‘ !, -
g whgn L, =3, A Sj 2 b, do L, < ay; Sj - Sj b,
- = . ! - -
h = when Ly = 3, A,sk 2 b,y do Ly « 243 Sy Sk b,
where b; > 0, b, > 0, and by >0,

Since gf is not active, Si[g(w)] < b]. Now since f is active,
Si[w] 2 bi' Hence, i = j. By the same reasoning, j = k; and hence,

f = j=k. Since fh is active, S;[w] 2b; +bs. Since gh is not active,

-

Si[WJ < b2 + b3. Therefore, b, > b,. . Since amount(d-](az)) = b2 and

: 2 1
amount(d-1(a‘)) =‘b], the theorem is proved. [0

-8§9-

9. Theorem. There cxists a non-transitive symmetric reflexive relation

R on a finite set such that no PVchunk process defines exclusion (R).

Proof. Define R to be the non-transitive symmetric reflexive relation

on {1,2,3,4,5].:epresented by the»direc;ed graph
y—

o - 3 o N\Z
NS

Suppose that P 1s a PVchunk process that defines exc1u31on (R) Let d .

-

be the one to one correspondence from the actions of P to T. By Theorem
.8 applxed to 1,2,4; amount(d (2)) > amount(d (1)) Now by Theorem 8
applied to 2 »1,3; amount(d (1)) > amount(d (2)) This is a contradic-

tion, and hence no PVchunk process can define exclusion (R). O

Let us summarize what we have, thus far, proved about exclusion

slices.

(1) If a PV process defines exclusion (R), then R is an equivalence

relation. S

(2) 1If a PVmultiple process defines exclusion (R), then R is a

symmetric relation,

(3) 1If a PVchunk process defines exclusion (R), then R is a oym-
metric relation. Also there is a symmetric reflexive relation

' R"such'that no PVchunk process can define exclusion (R").

.

These results are restrictive in nature.. We will next prove the follow-

ing existence results.

-90-

(4) If R is an equivalence relation, then some PV process de-

fines exclusion (R).

(5) If R is a symmetric reflexive relation, then some PVmultiple

process defines exclusion (R).

(6) There are non-transitive symmetric reflexive relations R

such ;hat some PVchunk process defines exclusion (R) .

<

(7) If R is a reflexive relation, then some up/down process de-

" 'fines exclusion (R).

7.'3:4 EXISTENCE RESULTS

®
-

10. Theorem. -Suppose that R is an equivalence relation on a finite set

{xl,...,xn}. Then some PViprocess defines exclusion (R).

. Proof, Let Ai""?Am be tpe'equivalence class of R. Define the integers
Ni (1 <1 <n) by: Ni is the index of the equivalence class of X{s i.ed,

x; € AN . Consider the PV process P.represented by -

i
semaphore S],...,Sm; (initial value 1)
‘SUBPROCESSei.(1 < i <n)

P(S,.);
Ny

By”the definition of the process, ¢ is an active timing.in P iff

’
v

= SN .

. B (1) for 1 i< j < length(a), not SN'

Therefore, ¢ is an active timing in P iff

(2) for 1 <i < j < length(a), not xinj.

Thus, P defines exclusion (R). [

~ "The construction used in Theorem 10 is eésentially due to Dijkstra
[1968]. For an example of this construction, let T = {x],xz;x3,x4};

and represent R by the directed graph
Xy Xy Xy <Xy
Then-P is represented by

' “semaphore S]’SZ; (initial value 1) | |
SUBPROCESS-1 - SUBPROCESS—Z SUBPROCESS-3) SUBPROCESS-4

M B @ R O R G R

Qow exclusion (R) = [A,x],xz,gB,xé,x]xz,x]xq,xzx],*Axi,fgxz,x3x4,x2x3,x4x3}.

Also the set of active timings of P is

(A 1,2,3,4,12,14,21,641,32,34,23,43).
Thus, P defines éxclusion (R). -

11, Theorem. There exists a non-transitive symmetric reflexive relation

R such that some PVchunk process defines exclusion {(R).

Proof. Represent R by the directed graph.

a e b c.
Then exclusion (R) = {A,a,b,c,ac,ca}. Represent the PVchunk process P by

semaphore S; (initial value 2)
SUBPROCESS -1 SUBPROCESS-2 . SUBPROCESS-3

(1) P(S with amount 1); (2) P(S with amount 2); (3) P(S with amount 1.

-92- ' - S

" Clearly, {w|a active in ©} = {[A,1,2,3,13,31}. Thercfore, P defines

the exclusion slice, exclusion (R). ™ . o : -

The construction used in Theorem 11 is essentially due to Vantilborgh

" and van Lamsweerde [1972]. They actually show that some Pvchunk process‘canA

define exclusion (R) provided:

(1) R is a relationon T f Zb,U Er where :w and.zr are disj01nt3
(2) for aii x and y in ib, xRy ;
(3) for all x in Ty and y in £_, xRy and yRx ,
r)
(4) for all x in-zr, xRx |
]

(5) fér all x and y in Z. with x # y, not xRy,

Informally, we can interpret %, as a set of "writers" and T as a set of

"“readers". For example, some PVchunk process can define R where R is

represented by o .A o :
k3
1
N
N
. rz

12. Theorem. Suppose that R is a reflexive relation on the finite set

- ¥. Then some up/dOWn process defines exclusion (R).

Proof, Let T = {x],..J,xm}. Consider the up/down process P represented by

7
~

semaphore SI""’Sn (initial value 0) ' ' <
SUBPROCESS-1 (1 £'i < n)

{Sklkaxi}: down (Si);

-93-

-~

By the definition of P, @ is an active timing in P iff
(1) for 1 <i< j < length(a), Si is not in {Sklkaxj].
Therefore, ¢ is an éctive timing in @ iff

' (2) for 1 i< j < length(a), not x, Rx

N

3

Thus, P defines exclusion (R). O

The construction used in Theorem 12 is essentially due to Wodon

[1972]. As an example, let us consider the relation R represented by

TR TH
Then represent the up/down process P by

sémaghore S]’SZ’SB’ (initial value 0)
‘SUBPROCESS 1 SUBPROCESS-2 - SUBPROCESS -3

(1) { }: down (S), ‘(2) {81,83}: down (8,05 (3) {Sz}: dowg (33);

. Now exclusion (R) = {A,x‘,xz,x3,x]x3,x2x],x3x]}. Also the set of act1v§

timings of @ is {A,1,2,3,13,21,31}. Thus, P defines exclusion (R).

We now turn our attention to the predicate system PVmultiple."We
will show - as stated in Section 7.3 - that Pvmultiple can define any
exclusion (R), provided R is symmetric. This result does not appear to

have been previously stated in the literature, .

13. Definition. ;Suppose that 1l is a T-slice. Then JI is a permutation

~ slice provided,

if ¢ is in]l and B is a permutation of ¢, then B is in Tl

-94-

14. Theorem. Suppose that Tl is a T-slice that is a permutation slice,

Then sbme.PVmultiple procesé défincs 7.

Proof. Define & = {A|for some aj...a, in T, A= {é],...,ak}}. Since

n‘;s permutatioﬂ'clésed, for all Bpaceesdy diétinct
(l) Lg],...,akjvis.ié § iff ajeeed is in 1.
Also'by (1) and the definiiié# of slice,~
(2) if B is in‘é and A € B, then A is in 3.
For each B € ¥, define kB by

[B] if B is in %

[B]-1 if B.is not in§ .
where lB[is the cardinality of the set B. Then

() A s in 3 if_f:"fo'r all B <%, [ANB| <k,
Suppose that A is in &. Assumé that]A n B] > kB' Since lB] 2 lA n Bl,
kB = lBl-f; and B is not in‘Q. Therefore, lB[= ’A n B'; aﬁd so B ¢ A,
By (2), B is in &, This is a contradiction. Conversely, suppose'that-
for each B3, |AN BIYS kﬁ. Assume that A is not in §, Then ky, = |a]-1.
However, not IA n AlAS IAI-1; and this is a contradictién. Thﬁs, (3) is
b.frue. | .

In summary, we have shown that we can test Vhether or not A is in
@; by checking the conjunction of certain inequalities, We now will use-

this fact to construct a PVmultiple process that defines the slice T

Let ¥ = {x],,..,xn}, and let B,,...,Bﬁ be the subsets of §. Let P be the

-95-

PVmultiple represented by

§emaghore S],...,Sm.(;nitial value of Si‘is kBi,vfor 1 <1 <m)
SUBPROCESS-i (1 <1i <n)

(£ r({sklxi is in B, });

NOte’-P(isk1xi is in Bk}) decreases Sk_by one, prov1de4 x; 1; in Bk'.

‘Also define the one to one correspondence from the actions of P to T by'
- for 1 £1 < n,Ad(fi) = X

Lét '(Ll,...,Ln,D,(S],...,Sm))' be a typical element of . -

Suppose that Oyee o0y is an gctive timing in P; ‘Then oy decreases
the 'semaphore Sj by 1 iff d(di) ié in Bj’ Since the segaphore Sj.is
fnitially kBj, S

- -k
»_Sj[valuecql"'°k)] = kB - EE !{d(“b)} n le.
Jj vl

Note, |{d(g)} N le.is equal to
if d(dv) is in §j, t@en }; otherwise 0. | o)

By the definition of the process P, if g e 0y is active, then.al...ak

are all distinct. Therefdre, if»dl"‘ak is active, then
- (4) ijvalue(d].,.ak)] = kBj -,l{d(oﬁ),...,d(ak)} n le.

. - . We are now ready to show that @ defines the slice [l. Suppose that
-, LR is active, By (1), we need only show that {d(d])”"’4(°k)} is

in & Select an integer j with 1 < j =m., Clearly, Sj[value(oi...ak)] =z 0;

-thus, by (4), "
(5) '{d(d]),-f.,d(ak)} n BJI.S kBj.

Since j was arbitrary, (5) is true for all j. Therefore, by (3),
' {d(al)""’d(ak)} is in &. Conversely, suppose that d(a])...d(ak) is
in Tl. Assume that oj...qp is not active. We can assume without loss

of generality that
opeee0y g is active. . .
'Sincé o is not in readf—set(al...ak_l), there is an integer j such that

o

[va?ué(a]...ak_l)] = q and d(ak) is in Bj’
By 4), E A
. kBj = |{d(dl),...,d$ak_])} n.Bj"- '-

Since d(dl)"'d(ak) is in 1, the d(d]),---,d(dk) are all distinct.

.

Therefore,
kB < '{d(d]),...,d(dk)} ﬂBj'.

| Then by 3, {d(dl)""’d(ok)} is not in 3. Thus, d(al)"'d(ak) is not

1n Nl. This is a contradlctlon, and hence P defines . O

15. Corollary. Suppose that R is a symmetric reflexive relation on the

finite set ¥. Then some PVmultiple process defines exclusion (R).

Proof. The slice, exclusion (R), is a permutation slice. [

o~

-97-

-As an example, consider the slice T = {A,a,b,c,d,ab,ba,ac,ca,
be,cb}. This slice is a permutation slice; hence, some PVmultiple

process defines 1. The PVmultiple process constructed by the method

- of Theorem 14 uscs 16 semaphores. Since there are siwpler such proces-

ses, we will now present one. The PVmultiple process P is represented
by
semaphore 81,82,83,84; (S1 = S2 = S3 = 1 and S4 = 2. initially)
SUBPROCESS -1 SUBPROCESS -2 SUB?ROCESS-B SUB?ROCESS—4

(1) P({84:5,1; @) B({5,,8, 1) (3) P([53,5,1; (4) P({51,5,,83);

The active timings of P are {A,1,2,3,4,12,21,13,31,23,32}, Clearly, P

. defines 1I. The importance of Theorem 14 is that it is an existence

theorem,:

Vo

We will now summarize our results on exclusion slices:

(i)' Up/dowﬁ defines all exclusion slices.
(2) Pwinultiple defines exclusion (R) iff R is symmetric.
(3) PVchunk defines exclusion (R) implies ﬁhat R is symmetfic.
" There is a symmetric relation such that PVchunk does not de-
. fine R, In éddition, there is a non-transitive symmetric

relation R such that PVchunk can define exclusion (R).

(4) PV defines exclusion (R) iff R is an eqﬁiQalence_relation.'

The predicate system up/down is “"universal" - in the sense that up/down

can define any exclusion slice. An immediate question is

Can up/down define every slice that PVmultiéie or PVchunk

can define?

7.5

-98-

.We will next show-that the answer to this question is no. When we con-
sider all slices - not just exclusion slices - we find that up/down
and PVmultiple (respectively PVchunk) are "incomparable", i.e., neithér
one can Aefine eyerything the other one can. This indicates the

complex nature. of slices.
ANOTHER TYPE OF SLICE

16. Definition. A yv-slice is meager if for a and b in T there exists

an ¢ in Tl such that :

oa s in 1, od is in T, and ¢ab is not in IL . oA
17. Theorem. In a C process, if not " synchronizer(f), then for any

.

finite timing o,

£ is in pointerésgt(ao iff f is in ready-set(qa).

. Proof. Immediate from the definition of C process. O

18. Theofem. Suppose that some up/down process defines a'meager $-slice,

., with [g] >1. Then if ¢a is in T, B is in T, length(a) = length(B),

and a is not in‘B,~thenVBa is in 1.

ggégg. Suppoée that P = <A,m,w>}is an up/dqwn process :hat‘defines 1.
Leﬁ '(L],...,Ln,D,(S],...;Sm))' be a typical element in .

Suppose thatif {s an action in P. Select an action g in P with
£ f g. By the definition of meager and defines, there is an active

timing ¢ such that

of is active, op is active, and ogf is not active,

-99-

By propcrty 1I, not subprocess (f,g). By pfopcfties I11I and I, £ is
in pointer-set(oz). Since £ is not in ready-set(ag), synchronlzer(f)
is true by Theorem 17. Since £ is arbitrary, for all actions h in P,

'Asfnchronizer(h).

We now assert that

(1) for all actions g in @, the pair of.g is a F: down (Si),

" for some F and Si.

Assume that the pair of £ is a F: up (Sj)' Select an action g such
that £ f g. By the definition of meager and defines, there is an active

timing o such that

- . : -

of §s active, og is active, and ofg is not active.

Suppose that the pair of g is either H: down (Si) or H: up (Si)' As
before g is in pointer set(af). Since g is not in ready-set(af),

) s, [value(af)] < o.

Since the pair of f is a F: up,(sj), for all Sk’

Sk[value(af)]vz Sk[value(ob].
- Thus,
z Sk[value(a)] <0
SkGH

wvhich is a contradiction: §g is in ready-set(q). Therefore, (1) is true.

Let the pa{r of the ith action of P, £,, be"

i’

Fi: down (SBi).

-100- S

We now assert that .

(2) for i # .j,.si is in Fie

Suppose that for i 74 3, Bi is not in Fj. Again by the definition of
meager and defines, there is an active timing o such that
’ >

dfi is active, of, is active, and afifj is not active.

3

As before, fj is in pointe:-set(afi).~ Since £, is not in ready-set(ozfi),‘

J

Rl

2. S, [value(of.)] < 0.
k i
'Sk.GFj v

3

Also since f, is in ready-set(d), L ' \i

z S, [value(a)] = 0.
s cF, *© |
k™ j
This is a contradiction: for ‘each SkGFj,» Sk[value(q)] = Sk[value(dfi)].
Therefore, (2) is true.

Finally, suppose that of, is active, B is active, fi is not in B,

i
and length(g) = length(B). We will now show that Bfi’ is active, By

the definition of defines, this is sufficient to prove the theorem.

Since afi is active, fi is not in @. By our two assertions, (1) and
@, : ,
Z S, [value(e)] = z s [w]' - length(qa)
s, e, * s e, *
k~1 k™1 .
and

Y\ .
L Sk[value(a)] = Z Sk[w] - length(B).
Sk Sy
Thus,

-101-

. (3) ji Sk[value(QO] L. Sk[value(B)]

S €F : kcFi . | N ;
. By property 111, fi is in pointer-set(B). Since £ is in ready;set(a),’
. | | FY‘ | R . g :
' - @) la S [value(ob] 20, . - oL o

By (3) and %), fi is in ready-set(B); hence, Bfi is active. n
19.° Theorcﬁ. Let T = {A,a,b,c,d,ab,ba,ac,ca,bc,cb}. Then

(1) Tisa meager z-slice vhere ¥ = {a,b,c,d}
(2) no up/down process defines II
(3) ~ some PVchunk process defines Tl

'(4) some PVmultiple process defines T

2£2§£; (f) Clearly, T is a T-slice. We will now show tﬂat N is meager.
- By symmetry, there aré.essentialiy three cases tﬁaﬁ we must check. Firsti

consider d aﬁd a. Then‘d is in 1, a is in 1, and da is not in Tl. - Second,

conS;der a and d, Then a;is in 1, d is iﬁ , éqd‘ad is not in Tl. Third,
- consider a and b, Tﬁen ca is in 1I, cb is'in'n, and caB is not in 1.

Thereforé, 1 is a meager T-slice.

(2) Now ab is in u, d is in n, lengt.h(a) length(d), and b # d.
Thus, if an up/down'process defines 1I, then by Theorem 18, db is in Tl

Since db is not in II, no up/down process defines TIl.

:.."‘

~

-

A ' (3) The following PV procéss P defines II. ® is represented by

~<¢

7.6

‘.nf‘

-102- . e

semaphore S; (initial value 2) ‘
SUBPROCESS-1 (1 < i < 3) ' * SUBPROCESS -4 . :

(fi) P(S with amount 1); (ﬁa) P(s with amount 2);

Clearly, the active tﬁmings of P are {A,f],fz,f3,f4,f]f2,f2f]?f]f3,

f3f],f2f3,f3f2}. Thus, P defines U..

(4) This follows from theorem 1l4. O

PROOF OF RESULTS STATED IN INTRODUCTION

We are nov in a position to prove the results stated in the intro-

duction. These results are displayed in Figure 25; an,arrad'f;om X toy

- means that x - y.

—
PVchunk — up/déwn ﬁ———————vamultip1e~

PV

-

FIGURE 25. Results of the Thesis

(1) up/down = Pvchunk, up/down = PVmultiple, up/down = PV, This
‘is a consequence of Theorem 5, Theorem 12, and the invari-

ance theorem,

(2) PVmultiple - PVchunk, PVmultipie - PV, This is a consequence

of Theorem 6, Theorem 9, Corollary 15 and ihe invariance -~

theorem,

(3) PVimultiple - up/down, PVchunk = up/down. This is a consequence

of Theorem 19 and the invariance thcorem.

>~ F

! ..f'

-103- ' T
(4) Pvchunk - PV, This is a consequence of Theorem 6, Theorem

11, and the invariance thecorem,

fy Section 2.6, not PV PVchunk and not PV =+ PVmultiple. However,

whether or not PVchunk + PVmultiple is an open question.

7.7 OTHER APPLICATIONS- OF SLICES o

We can also use the ;esults'of this section - in comjunction with

the invariance theorem - to analyze synchronization problems.

First Reader-Writer Problem. Recall that Wl is the process that repre-

 ‘sents this problem, Sinée W1l is an up/down‘process, there clearly is
an ﬁp/d;wn proéess that simulages Wi, In addition, there is a PVchunk
(réspectively Pvmultiple) process that simulates W1 (Vantilborgh and
van Laﬁsweerde [3972] and Dijkstra [unpublisﬁed]); We can show that no
PV procéss-simulates.Wl. As wé stated in Section 7.2,VW1.iﬁplicitly
defines a non-transiti¥eiexclusioﬁ slicq; i.e., WL implicitly defines

the slice represented by

wa‘-—.r

!

)

1 3

By Theorem 6 and the invariance theorem, no PV process can simulate Wi,

- Second Reader-Writer Problem. Recall that W2 is the process that repre-
sents this problem, Since wZ is an up/dowﬁ process, there clearly is 2an
up/&owu process that simulates W2. We can show thzt no PV (respestively
PVchunk or PVmultiple process) cah simulate W2, As we stated in Section 7.2,
W2 implicitly defines a non-syzmetric exclusion slice, i.e., wzbimplicitly-

defines the exclusion slice rcpfesented by

! .J‘

~104- R S

w-r

By Theorem 5 and the invariance theorem, mno PV (respectively PVchunk

‘or PVmultiple) process can simulate W2.

i

Five Dining Philosophers Problem. Recall that WS is the process that

. represents this problem. Since WS is'an‘up/down process, there trivi-

ally is an ﬁp/down process that simulates WS. In addition, there is a
PVmultiple process that simulates Ws. (Dijkstra [1971]) We can show

that no PV (respectivély'PVchunk) process can simulate WwS. As we stated

4n Secéion 7;2, WS implicitly defines a non-transitive exclusion slice,

j.e., WS implicitly defines

oS

By Theorem 6, Theorem 9, and the invariance theorem, no PV or PVchunk

‘process can simulate WS,

Bounded First Reader-Writer. Recall that BRY is the process that cor-

fesponds to this problem. There are PVchunk and PVmultiple processes

that simulate BRY, On the other hand, no PV (respectively up/dowh) pro-

_ cess can simulate BRW. BRW implicitly defines the slice,

{A,a,b,c,d,ab,ba,ac,ca,bc,cb}.

Therefore, by Theorem 19 and the invariance theorem, no up/down process

can simulate BRW. DRU also implicitly defines the exclusion slice

-105-

represented by
a(——bd(—rh
Hence, as in the first reader-writer problem,-no PV process can simulate BRY.

¢

Clearly, we can use the invariance theorem to analyze other

synchronization problems. S L

=100~

Ll

8. CONCLUSIONS
: ,
We have achieved our basic goal: we have shown that there are diff
.ferences between the pfédicate systems PV, PVchunk, PVmultiple and up/' -
down. These results are proved in two.steps. First, we show that.there
are "localldifferences" between the four ffedicate systems. Second, we

use the invariance theorem to conclude that there are "global differences"

between the four predicate systems.

. One of the consequences of creating a formal model in an area that
is informal -“but rich in ideas - is thatqwe may have created more ques-
tions than we have answered. Some of these questions are refinements of

this work while others are essentially extensions. We will now present

a partial list of some of these questions. .
.4 1. One of the questions we have left unanswered is:

does PVchunk + PV multiple? o 7 B

. . 7
2. An open area of research is the study of slices. Presently we have

no characterizatipn for the set of sliceé definable by any of the predi-
cate systems: PV, PVchunk, PVmultiple, up/down. Predicate systems other

than these are totally unexplored.

. 3. We have not considered whether any of the basic questions of this

"paper are decidable.

4. The concepts of release and pointer-bounded are important, yet they

are presently without any theoretical results.

’

-t

uf'

-107-

5. The concepts of "busy wait" and "restricted busy wait" (Dijkstra
[1968] and Hansen [1972]) are expressible in our theory. An interesting
question is: can we give a sound tﬁeoyetical foundation to the folklore

that states that busy wait or even restricted busy wait is "inefficient?

6. One of the key questions untouched is: what does it mean to "implement"

a process?

Ve have attempted to formalize the basic concepts of the synchron-

ization area. Whether or not we have been successful, we feel that the

_ synchronization area must, in the future, become more formal and precise.

.

'Acknowledgements

Thanks are due to Dr. A. J. Perlis for his valuable suggestions and

reading of this manuscript.

-108-

References

Brinch Hansen [1972] i .
P. B. Hansen. A Comparison of Two Synchronizing Concepts. Acta
Informatica 1:190-199.

, Brinch Hansen [19723]

P. B. Hansen. Structured Multi—programm‘ng. Communications of the
ACM 15(7): 574—578 :

Courtois, Heymans, Parnas [1971] . . :
P. J. Courtois, F. Heymans, D. L. Parnas. Concurrent Control with
"Readers" and "Writers." Communications of the ACM 14(10):667-668.

Courtois, Heymans, Parnas [1972]

P. J. Courtois, F. Heymans, D. L. Parnas. Comments on "A Comparison
of Two Synchronizing Concepts by P. B. Hansen.'" Acta Informatica
1:375-376.

 Dennis and Van Horn [1966]

J. B. Dennis and E. C. Van Horn. Programming Semantics for Multi-
- programmed Computations. Communications of the ACM:9(3):143-155.

© Dijkstra [1968]

"E. W. Dijkstra. Cooperating Sequentlal Processes, Plogrammlng .
Langua’cs, edited by F. Genuys. 43-112. -

Dijkstra [1968a]

E. W. Dijkstra. The Structure of the "TIE" Multiprogramming System.
Conmunications of the ACM 11(5):341-347. :

Dijkstra [1971] : . .
‘ E. W. Dijkstra. MHierarchical Orderings of ‘Sequential Processes.
Acta Informatica 1(2):115-138.

Dijkstra [1972]
E. W. Dijkstra. Information Streams Sharlng a Finite Buffer.
Information Processine Letters 1:179-180.

‘Habermann [1972]

A. N. labermann. Synchronization of Communicating Processes.
.Communications of the ACM 15(3):171-176. '

Hoare [1971] :)
C. A. R. Noare. Towards a Theory of Parallel Programming. International

Seminar on Operating Svstem Techniques, Belfast, Northern Ireland.

Lipton [1973] ,
R. J. Lipton. On Synchironization Primitive Svstems, PhD thesis,
Carnegic-Mellon University.

-109-

Patil [1971] . _ :
‘ . S. Patil. Limitations and Capabilities of Dijkstra's Semaphore
Primitives for Coordination Among Processes. Project MAC Computa-
tional Structures Croup Memo 57. ' :

Parnas [1972] .)
© .D. L. Parnas. On a Solution to the Cigarette Smokers' Problem

(Without Conditional Statements). Carnegie-Mellon University
Report.

Saltzer [1966] -) :
J. H. Saltzer. Traffic Control in a Multiplexed Computer Systems,
PhD thesis, MIT (Project HAC). . R

Vantilborgh and van Lamsweerde [1972]
) H. Vantilborgh and A. van Lamsweerde. On an Extension of Dijkstra's
Semaphore Primitives. Information Processing Letters 1:181-186.

‘Wodon [1972] ' : :
‘ P. Wodon. Still Another Tool for Controlling Cooperating Algorithms.
Carnegie-Mellon University Report. .

Wodon [1972a) ' . |
P. Wodon. The Belpaire-Wilmotte Method for Transforming Up/Down

Operations into P/V Operations. Unpublished manuscript.

	tr22.pdf
	22b.pdf

