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ABSTRACT

FINITE ELEMENT METHODS
FOR SINGULAR TWO-POINT BOUNDARY VALUE PROBLEMS

Robert Samuel Schreiber
Yale University, 1977

Until quite recently, few effective numerical solution techniques
were known for solving two-point boundary value problems for the

equation
d du
- P®F) +t oau = £, 0<x<1, p(0)=0.

In this dissertation we analyze several new finite element methods for

approximating the solution of this problem, and present new analyses for

some known methods.

Two classes of singular problem may be distinguished, depending on
whether or not p(x)-1 Ll(O,l). In the first of these, p(x) behaves
like xc, 0<0<l, near 0. The solution u(x)‘has a singularity (like xl-c)
at 0, so that its derivatives there are infinite. This frustrates all
the usual theory. The finite element techniques proposed so far require
that the basis include functions which mimic the behavior of the

solution.

We investigate the idea of approximating the solution with
piecewise polynomials on a nonuniform mesh adapted to the singularity.

Given knowledge of the singularity (i.e., 0), it is possible to



construct a sequence of graded meshes such that the rate of

convergence in the Lz—norm is the best possible. We prove upper and

lower bounds on the extent to which the mesh must be graded.

The solution can also be approximated by a function of the form
x_cs(x), with s(x) a piecewise polynomial. We obtain error bounds and
numerical results for these "weighted splines" which indicate that they
are the best for practical computation. For a third subspace (due to

Crouzeix and Thomas), we improve known error bounds by using a mildly

graded mesh.,

Problems of the second kind, where p(x) behaves like xk near 0,
with k a positive integer, arise from spherically symmetric elliptic
boundary value problems in n = k+l dimensions. The solutions are
smooth, indicating that piecewise polynomials on uniform or nearly

uniform mesh will be effective approximators.

We improve previous results by removing any restriction on n, by
adding the requirement that the approximating spline functions be smooth
at the center of the n~-dimensional domain, and by obtaining error bounds

(of the best possible order) in the natural norms for the problem.
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PART T

CHAPTER 1

INTRODUCTION

1.1 An Example

Consider the two—point boundary value problem

(1.1) I

%, 0 <x<1l1,
with boundary conditions

(1.2) u(0)

u(l) = 0.

The unique solution, u(x) = xl/z - x3/2, is (uniformly) continuous on

[0,1] and continuously differentiable (indeed analytic) in (0,1).
However, its derivative grows arbitrarily largé as X approaches 0;
consequently, while u € L2(0,1), none of its derivatives is in L2(0,l).
Therefore, analyses of numerical solution techniques for two-point
boundary value problems which require that certain derivatives of u be

bounded don”t apply to this problem.

Equation (l.1) falls outside the realm of problems treated in most

discussions of numerical methods for boundary value problems (both for



-2 -

ordinary and elliptic partial differential equations) because the
coefficient vx vanishes at a point of the boundary of the domain. This
"singular point" is precisely where the derivatives of the solution blow
up, making it impossible to apply well-known numerical techniques to the
problem. The goal of this research is to extend numerical methods,
specifically the finite element method, to apply to singular two-point
boundary value problems. We hope to develop new methods for
approximating the solution and to justify those methods with rigorous

error bounds.

1.2 Summary of Results Obtained

We shall treat equations of the form
(1.3) --g—(p(x)du) + q(x)u = £(x) 0 <x<1l
* dx dx ? ’

where p(x) > 0 for x € (0,1], and p(0) = 0. (In the nonsingular case,
it is assumed that p(x) > 0 for all x € [0,1].) Two classes of singular
problem may be distinguished, depending on whether or not the integral

dt 4 . -
is convergent, i.e., finite.
p(E) BEREs o8

0
Part II of the dissertation is concerned with the first of these

two types of singular two-point boundary value problem. Such problems

arise in potential theory. A function u which satisfies the equation

2 2

a°u
L z —— +
glul )

@
[=

+

4
<l a
e

3y
is said to be a generalized axially symmetric potential in n = o+2

dimensions; 0 need not be integral (see [Wl]). Parter, in his early
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treatment of numerical methods for generalized axially symmetric

potentials in a rectangle, arrived at the equation

by separation of variables [Pl]. Jamet [J1l] later considered the more

general problem
(1.4) =D(x%(xDu) + q(x)u = f(x), O0<x<1l, 0<oc<]l,

with the boundary conditions (1.2), where p is a smooth function
strictly positive in the interval [0,1]. For a more complete account of

earlier work on numerical methods for this problem, see Section 4.1.

The difficulty with these problems is that their solutions are not
smooth in the usual sense of having two more derivatives than f; in
fact, their derivatives are unbounded at the origin. Nevertheless we
are able to define and analyze two new numerical approximation schemes

of high-order accuracy.

As approximators of the solutions of (l.3), we shall use functions
which are splines (piecewise polynomials) or are in some way related to
such functions. A function is a spline on, say [0,1], if it is a
polynomial of some fixed degree on each interval of a given partition of
(0,1]. In addition, various continuity requirements may be imposed;
thus we may speak of Cl-cubics —-— functions which are cubic polynomials
in each interval and, together with their first derivatives, are

continuous at the "knots" of the partition.
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The essential point about the solution u of (l.4) - (1.2) is that
u(x) behaves like x1° near 0. (Thus, for example, v(x) = x u(x) is
smooth and vanishes at 0 (Theorem 5.1)). This leads immediately to the
following idea. It has been shown that piecewise polynomials can
approximate nonsmooth functions of the form xa, a not an integer,
essentially as well as smooth‘functions, simply by using a nonuniform
mesh. Thus, it should be possible to approximate the solution of
(1.4) - (1.2) with piecewise polynomials on a nonuniform mesh adapted to
the singularity. We show how, given knowledge of the singularity (i.e.,
0), to construct a sequence of meshes such that the rate of convergence

is the best possible.

As an aside, we give a problem and a subspace (one involving a
partition which is not sufficiently skewed towards 0) for which the RRG
approximation does not converge at the best possible rate in the
Lz-nofm; it is worse by an order of magnitude than the Lz-projection of
the solution. This appears to be the first such example reported. It
has been shown (Eisenstat, Schreiber, and Schultz {El]) that this cannot

happen for a wide class of nonsingular problems.

We next consider subspaces of "weighted splines," functions of the
form xfos(x) with s(x) a spline. Since we know that u(x) = x_ov(x)
where v is smooth, it seems likely that weighted splines will be good
approximators of u. We obtain error bounds which show that this is
indeed the case. These spaces appear to be the best for practical

computation.
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Work on this problem using the finite element method was begun by
Ciarlet, Natterer, and Varga [Cl], who used subspaces of functions which
are piecewise elements of the null space of the differential operator.
These "L-splines" were generalized by Crouzeix and Thomas [C4], who
investigated functions which are mapped into polynomials (not just the
zero polynomial) by the operator. Applying these spaces to the problem
(l.4), Crouzeix and Thomas obtained energy-norm and Lz—norm error bounds
which are high-order, but not quite optimal. We present their theory
(with some simplifications) in Chapter 8. We then improve their results
by showing that if a mildly graded partition is used, then the error in

their procedure is of optimal order.

Part IIT of the dissertation is concerned with singular problems
(L.3) in which p(x) = xk where k is a positive integer. The boundary

conditions are not those of (l1.2), but rather,
(1.5) u(l) = 0, Du(0) = 0 (alternatively, u(0) finite).

These probleﬁs arise from multidimensional elliptic boundary value
problems (for example, the Dirichlet problem for Poisson’s equation

=AU = F) which possess spherical symmetry. The solution is a function
only of distance r from the origin in R™ and can be obtained by solving
a singular two-point boundary value problem of this type. Unlike
problems of the first type, the solution is smooth. Nevertheless, the
usual theory for two-point boundary value problems breaks down when
applied here. A discussion of earlier work on numerical methods for

this problem is given in Section 9.1.
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We propose to approximate the solution of such an equation by
spherically symmetric functions which are splines in the variable r
(distance from the center of the domain). This procedure has been
analyzed previously ([D6]}, [J3]) for the special cases n = 2 and 3, with
error bounds obtained in the usual Sobolev norms on the interval [0,1l].
We improve these results in three directions: by removing any
restriction on n, by adding the requirement that the approximating
spline functions be»smooth at the center of the n-dimensional domain,
and by obtaining error bounds (of the best possible order) in the
"natural" norms for the problem —- the Sobolev norms on the original
domain in R"™ instead of the interval to which the problem has been

reduced.

1.3 Outline of the Dissertation

There are three main parts to the dissertation, the first of which
is devoted to mathematical preliminaries. The numerical methods we
employ are all cases of a general class of approximation techniques for
solving boundary value problems: the Rayleigh-Ritz-Galerkin (RRG)
method. Chapter 2 is a discussion of the Rayleigh-Ritz-Galerkin
procedure as applied to singular two—-point boundary value problems.
Chapter 3 introduces the spaces of spline functions to be used as

approximate solutions.

In Part II, we consider the problem (l.4) - (1.2). In Chapter 4,
we introduce the variational form of the problem in an appropriate class

of function spaces. One of the underlying ideas of Part II is the use
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of splines on a class of graded nonuniform partitions of [0,1]. These
"g-graded" meshes have previously been shown to be useful in
approximating functions with a singularity. We define the R-graded
meshes and summarize several of their properties in Section 4.3.
Chapter 5 is a compendium of results on the properties of the solution
which will be used throughout Part II. 1In Chapter 6, we consider the
approximation of singular functions (elements of the spaces introduced
in Chapter 4) by piecewise polynomials on a B-graded mesh, and in
Chapter 7, we consider approximation by weighted splines. Numerical
results are included in both chapters. In Chapter 8, we deal with the

generalized L-splines of Crouzeix and Thomas.

- Part III of the dissertation is concerned with singular problems
(1.3) - (1.5) in which p(x) behaves like xk near 0, where k is a
positive integer.A In Chapter 9, we obtain the variational form of the
problem, and in Chapter 10, we define and analyze several spline

approximation schemes. Numerical results are included.



CHAPTER 2
THE RAYLEIGH-RITZ-GALERKIN PROCEDURE

FOR SINGULAR TWO-POINT BOUNDARY VALUE PROBLEMS

2.1 Notation

In this section we introduce notation, definitions, and results

which will be used throughout this dissertation.
t

Let I = [0,1]. For each integer t > 0, let th(x) E-Q—é(x). For S
a finite set, let |S| denote the number of elements of S. o

All the functions we deal with will be real-valued. The support of
a function £, supp(f), is the closure of the set of points x such that
f(x) # 0. If f is a bounded function on (a,b), we write

sup |£(x)].

HEN w z
L"(a,b) a<x<b

For m a non-negative integer, let Hm(a,b) (respectively, Hg(a,b))
be the closure of the C® functions (respectively, the C® functions with

compact support in (a,b)) with respect to the norm



-9 -

1/2

b .
£l 5 If(x))? dax .
a

m
z

H%a,b) =0

These are known as Sobolev spaces. Note that Hm(a,b) may be identified
with the space of Cm'-l functions with absolutely continuous
(nrl)th-derivative and mth—derivative in Lz(a,b), while Hg(a,b) may be
identified with the subspace of H®(a,b) consisting of functions which
vanish, along with their first m~l derivatives, at a and b. Thus,

Ho(a,b) = Lz(a,b). Hm(a,b) is a Hilbert space with inner product

b o, .
(f,8) = J plf plg dx.
Hm(a,b) j a

Il o B

0

For a complete discussion of Sobolev spaces, see Adams [Al].

We also define Wm’w(a,b) (respectively, Wg’w

) as the closure of
C”(a,b) (respectively, {f € C®(a,b) | f has compact support in (a,b)})

with respect to the norm

e

-]

W' (a,b) i

It
Il B8

J
) ) f]le(a,b),

We denote by H™ (respectively, Hg, L”

(respectively, H%(O,l), Lw(O,l), W (0,1)). Moreover, we denote the

, Wm’w) the space Hm(O,l)

norm and inner product of H' by II.IIm and (.,.)m, and let

”f”L°° = llfI|L°(0’1)°

Theorem 2.1 (Rayleigh-Ritz inequality) [Bl]: 1If f € Hé(a,b), then

b , b
20 f24x < (b-a)?l (@) dx.
a a
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Theorem 2.2 (Markov’s inequality) [M1]: For all polynomials pn of

degree n and all real a, b with a < b,

< o’o -2 el

Dp_ 1l L”(a,b) L%(a,b) "

In Part III, we will be concerned with functions defined on a
bounded, open subset B of R™., We define the space H(B) by taking the

closure of the C”-functions with respect to the norm

el - 1 0%)?% ax |2,

1 (B) |a|<m B
where

a.o
1

{3 =]

D" = s a = (al, Gy eees &), la] =

3xg . o o 3X i=1

Sobolev’s lemma [F3, p. 283] is concerned with bounds on the value
of a function at an arbitrary point in terms of L2—norms of its
derivatives. While the following theorem can be proved for a more
general class of domains, we do not require anything more than a ball in
R" (an interval in R). Let L x~J denote the largest integer not

exceeding x.

Theorem 2.3: Let B be a ball in R". If u ¢ Hm(B), where
m = {;% I + 1, then u can be identified with a uniformly continuous

function u(x) in B such that

lul

ey £ G el g

where Cn is a constant which depends only on n.
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In the one-dimensional case, Sobolev’s lemma shows that

Hl(a,b) <€ L%(a,b) and

1
€
“f ” Lm(a,b) _<_ Cl “f ”Hl(a,b) for all £ H (aab)‘

If, in addition, f£(a) = 0, we have a stronger bound.

Lemma 2.1: If f € Hl(a,b) and f(a) = 0, then

1/2
(2.1) HEl o py < = a2 IDEN 2, .
Proof: Since f is absolutely continuous,
X
[E(x)| = S DE(t) dt |,
a
Using the Cauchy-Schwarz inequality,
X
£ ] < (- a2 | © ©ee))? a |12
a
1/2 '
< - Df
< @-a T nEl L,

We will sometimes use the letter C to denote a generic constant,
not the same at each occurrence. Within each chapter we define "local"

constants Cgs €1» ee+» to be used and referred to only within that

chapter.
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2.2 The Rayleigh-Ritz-Galerkin Procedure

We consider the equation
(2.2) Lu = £,

where L is a densely defined linear operator on a (real) Hilbert space H
and. f € H. The development follows Mikhlin [M2], to which the reader is
referred for further details and proofs. In the sequel, we shall be
concerned with Hilbert spaces of functions defined on a real interval
(a,b). 1In Part II, Lz(a,b) plays the role of H, while in Part III,
where we study elliptic problems in a ball in ]Rn, H is the space of
functions square integrable on (a,b) with respect to the weight function
xnrl. L is a symmetric differential operator with principal part

-D (p(x)Du) and p(0) = 0.

We assume that L is defined on a dense subspace M of H and that L

is symmetric and positive definite: for every u,v € M,

(2.3) a(u,v) = (Lu,v) = (u,Lv)
and
(2.4) Ivil2 = a@w,w) > iinvuz,

where § is a constant independent of v. It is well-known that the

closure S of M with respect to the norm lI.lIE is a Hilbert space (and a
subspace of H) with inner product a(u,v) and corresponding norm Il"'E‘
Theorem 2.4 [S4]: For every f € H, there exists a unique element u € S,

called the generalized solution of (2.2), satisfying
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(2.5) a(u,v) = (f,V)H for all v € S,

Moreover, u ¢ S satisfies (2.5) if and only if it minimizes the

quadratic functional

Flul = a(u,u) - 2(f,u)H, u € S.

The solution u is bounded in terms of the data f. TFor, by (2.5)

and the Cauchy-Schwarz inequality,

llullé = a(u,u) = (f,u)y
< “f”H Hullg
< el slully,
whence
(2.6) lull, < SlElly,
and by (2.4),
(2.7) lully < &2NEl

Let Sn be a finite-dimensional subspace of S. The Galerkin

approximation to u in S, is the unique element U of S, satisfying

(2.8) a(ﬁ,vn) = (f,v)y for all v e s..

The Rayleigh-Ritz approximation is the unique element of Sn which
minimizes the functional F[u]l over Sn' Just as in the case of the
generalized solution, these definitions are equivalent; we call this

element the Rayleigh-Ritz-Galerkin (RRG) approximation to u in Sn.
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Theorem 2.5: The Rayleigh-Ritz-Galerkin approximation U is the best

possible approximation to u in the subspace Sn with respect to the norm

”' ”E’ ioEo,

(2.9) Hu - ﬁllE = inf JJu - v
v_€S
n °n

nllE'

Proof: Subtracting (2.8) from (2.5) shows that the error u - { is

orthogonal to Sn’ i.e.,
a(u - ﬁ,vn) =0 forallv_ €S

n.

The bound (2.9) then follows by a standard argument (see [S3]).

Suppose we want to determine the coefficients of the RRG
approximation with respect to a basis {Bl’ B,, cees B } for S . By

(2.8),
a(u,B, = f’B, | < j < 1ne.

Thus, if

then § is the solution of the linear system of equations

(2.10) AL = £, A=[a(B;,B)], £= [(£,B)yl.
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The equations (2.10) have a unique solution, since the matrix A is

symmetric and positive definite. In fact, its symmetry is apparent, and

if n = (nl, Moy wees nn)T € RL, then
T n n n 2
nAn = al 2 omgpy, I omgg) o= I 2 ongByilig 2 0
i=1 i=1 i=1

with equality if and only if 5 = 0. We will later introduce subspaces
with computationally attractive local bases (the functions Bi are zero
over most of (a,b)). The resulting linear systems will be sparse and,

for moderate sized systems, well-conditioned.

When H is a function space on (a,b) and L is a differential
operator of the form (l.3), the coefficients p and q of L enter into the
energy norm, which makes it cumbersome to use in approximation-

theoretic arguments. Therefore, we will work with an equivalent norm

II’I{S; we assume that
(2.11) l||V]|S < IIvllE < Aivilg for allv e s,
where A and A positive constants independent of v, (In particular,

b 2
Hvll g = 7 wx 0OV dx,
a

where in Part II, w(x) = XU, and in Part III, w(x) = xn—l). The a
priori bound

8
.12 -
(2.12) IIUIlS < 5 el

then follows from (2.6); by (2.9) we obtain the error bound
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-3 1 s
e =8llg < 5 llu-3lg
1 .
(2.13) < x5 inf Jju - vollg
v_€g
n °n
A
— A
v €S n S
n n

2.3 Error Bounds for the RRG Approximation

In this section, we think of the subspaces Sn as being piecewise
polynomial spaces with respect to a mesh of N subintervals. For such

spaces, the dimension n is a linear polynomial in N.

The RRG approximation G is the best possible energy-norm
approximation to u in the subspace Sn (equation (2.9)). Therefore, the
first step in bounding u - G is to find upper bounds for

inf {lu - vnllE. This is generally done by defining an approximation
vnesn
mapping from S into Sn (interpolation is a typical example) for which

error bounds can be obtained a priori. Any such error bound implies a

corresponding bound for ||u - ﬁIIE.

By (2.4), any bound on |lu - EIIE automatically induces a bound on
lu - EIIH. However, the resulting bound is gemerally not sharp, in the
sense that the dependence on N (the order of the approximation) is not
the best possible. When optimal-order error bounds in the H-norm are
desired, more machinery must be developed. The following argument

(Nitsche’s trick) was first used by Nitsche {N2].
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We make the following "approximation hypothesis" concerning the

ability of elements of S, to approximate solutions of the problem (2.2).

(Al) There exists an integer k > 2, subspaces

Xk < X 1 ... € X, € 8, and a constant A, such that, if v € Xyg»

then
. -(2-1)
inf llv-v_ llg < a N vy -
v €§ L
n n
In Part II, we take flull, = D (x°Du) || 4_p» while in Part III,
- ) )
l|uIIX = ||X(n l)/zD U||O, which is just the usual Lz-norm of D u over
%

the unit ball in TRD.

We also need a "regularity hypothesis", giving bounds on the
Xz-norm of a generalized solution of (2.2) in terms of the H-norm of the

right-hand side.
(A2) There exists a positive constant I such that, if f € H, then
the generalized solution u € X2 and

T
lully < TUEH

In Part II, regularity is provided by Theorem 5.2; in Part III, by

Lemma 9.2.
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Theorem 2.6 (Nitsche): If S5 satisfies the approximation hypothesis

(Al), the problem satisfies the regularity hypothesis (A2), and u € Xl,

then
- A -(2-1)
(2.14) luo =3llg < 54N I IIXQ
and
(2.15) lu -5l < Ma)?r % Jul
H — 1 X,

Proof: (2.14) follows immediately from the approximation hypothesis and

the S-norm quasi-optimality (2.13) of the RRG approximation.

Let ¥ = u - 1 and let ¢ be the generalized solution of (2.2) with

right-hand side ¥. By the definition (2.5) of the generalized solution,
lu -8l% = (Fu-%)y = a(®u -t
- ,u )y = a(%,u - 4).

Let Qn € S be a best E-norm approximation to ¢, Since u - U is

orthogonal (in the a(.,.) inner product) to Sn’

a(® ,u - 1) = 0.
n’.

Adding the two previous equations and using the Cauchy-Schwarz

inequality,

-2 N
. - = - @ - % o - 0 - .
(2.16) | u ullH a( pu - <l g e =@l

By the approximation and regularity hypotheses,

$ -9 Al|® -~ @
He-e I, < Alo-e |

MmN ey

1 2

A

-1
AT ¥
Al N || IIH.

in



-19 -

By the approximation hypothesis and the optimality of the RRG

approximation in the E=-norm (2.9),

fu =3l = 4inf Jlu-v |
. E v €S n E
n n
£ A dinf flu - v_ ||
v €S n"3
n n
-(g-1
< A, D g

1 X
L

Using these two inequalities to bound the right-hand side of (2.16), we

obtain (2.15).



CHAPTER 3

ON PIECEWISE POLYNOMIALS

3.1 Introduction

In this chapter, we introduce a broad class of piecewise polynomial

(spline) subspaces, including those used in practical computation.

After defining the well-known "B-spline" basis functions and stating
several of their properties, we discuss approximation by splines,
specifically, the quasiinterpolant. The main result is a local error
bound for the quasiinterpolant, due to de Boor and Fix [D3]. We also
show that the quasiinterpolant can be made to interpolate at the end
points, a fact we will later find useful in showing the existence of

spline approximations satisfying various boundary conditions.

3.2 Piecewise Polynomial Approximation

Let A:a = Xy < X < ... < xy=Db be apartition of (a,b), and

define

- 20 -
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hi = xi" Xi_l, ]._<_i_<_N,
h = max h.’
1<i<N
and the local mesh ratio
h.
M(A) = max 1.
[i-=jl1=1 73

Let k be a positive integer and let z = (zl, Zy, eee, Zy1)s the

incidence vector associated with A, have positive integer components,

each less than or equal to k-1; i.e., 1 <z < k-1, 1 <1i<N-1.

i =

Definition 3.1: The real-valued function s(x) is a spline of order k

for A and z if s(x) coincides with a polynomial of degree < k (i.e.,
degree < k) on each open subinterval Ii of A and has k-l1-z, continuous

derivatives at each X, i.e.,

DJs(xi._) = pls(x+), 0<j<k-l-z;, 1<ic<N-L.

The class of all splines of order k for A and z is denoted by Sk(AlE).
Kk N-1
The dimension of 87 (A,z) isd =k + I z,,
i=1 *

Let e = (1,1, ..., l)T be the (N-l)-dimensional "one-vector". We
denote by Sk(A) the space Sk(ALg) and call this the space of smooth
splines of order k for A. If z is any incidence vector, then
s¥(a) < sk(a k - k

»Z). We denote by Sp(8,2z) (respectively, Sy(4)) the

subspace of functions s ¢ Sk(Azg) (respectively, SK(A)) such that

s(a) = s(b) = 0.
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The utility of splines for practical computation stems largely from
the existence of a well-conditioned local basis, the B-splines. 1In

order to define the B-splines, we need one additional concept. A vector

t= {tj}§:¥ is a k—extended partition of (a,b) provided
a) t]. = t2 = eee = tk = a,
b) t =

(3.1)

© oty <ty 1< < dkA,

d) t. < t.
Given A and z, let t(A,z) be the k-extended partition such that

i) tj € {x | 0 < i< N},

ii) the multiplicity of X, in {tj} is zg.

Let f(XO’ X], +ss, X) denote the kth divided difference of the

function f on the points {XO’ Xy, s+, X }e The set of normalized

B-splines on t is defined by

N = -— 2 3
j’k(x) (tj+k tj)gk(tj, ceey tj+k, X), 1 _<_ ] _S d,

where

1

k-
—_ >
(55 ) - (s—x)E_l ] (s~x) s > x

0 s < X

We note the following properties of Nj k(x) [D2]:
b
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a) supp(Nj ,k) = [tj, tj+k]’ 1<j<d;
b) V.| = {5 | supp(Ny 1) N I; # ¢} = k;
(3.2) c) OfNj k(x)_<_1, a<x<b;

Dle,k(a) =0 for all j > 2+i,

d)
DN, 1 (b) = 0 for all j < d-l-i;
e) {Nj K | 1 < j< d} is a basis for Sk(A,E)-
We shall require a bound on the derivatives of Nj K
b4
Lemma 3.1: For all r > 0 and all 1 < j < d,
r -r
(3.3) ) Nj,k(x)l < Bhi s all x ¢ Ii’
o 2
where B_ = I (k - )%,
oo

Proof: By (3.2)(c), (3.3) holds for r = 0. (We adopt the convention
0
that I & =1.) To prove the general result (by induction on r), we use
=1
Markov’s inequality (Theorem 2.3). Since DrN, K is a polynomial of
J»

degree k-r-l1 in each of the intervals Ii’

r+l -1 r
DTN —_—- ~* || DEN, "
l j,k(x)l (k-r-1)h] If .l (1)

IA

IA

(k-r-1)B_p7 (rF1)
r i

-(r+l)
r+184 > Xely
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Birkhoff [B2] devised a projection mapping P from spaces of smooth
functions into Sk(AXE) with the property that, in the interval Ii’ Pf
depends on f only in some small neighborhood of Ii and the rate of
convergence of Pf to f is optimal. His work was generalized to n
dimensions (and simplified in one dimension) by de Boor and Fix [D3],

who named Pf the quasiinterpolant of f.

Definition 3.2 (de Boor and Fix [D3]): For each integer j, 1 < j < d,

let Tj be a point in the support of Nj K? i.e., t. < 1. < t Let £
b

I= 3= 73K
have g~1 continuous derivatives, 1 < g < k. Then the quasiinterpolant
Ff=F . f is given by

d

where the linear functionals Aj are given by

(3.5) AE o= A, f = 3 w. D E(g),
j st r<g dot j
k-1l-r
D L (r2)
) k-1-r YitTy
(3.6) oy . = (-1) D) ,
and
(3.7) wj(x) = (tj+l - X) . . . (tj+k—l - X)

(i.e., ¢3 is the polynomial of degree k-1 vanishing at the knots within

the support of N,

J,k)'
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Lemma 3.2 (de Boor and Fix [D3]): If p is a polynomial of degree < &,

then

(3.8) F P = D.

Let ei be the smallest interval 'containing both Ii and

{Tj | j € Vi}' Clearly, Oi < [xi—k’ xi+k—1] (see Figure 3.1).

k ; J

.
-

X, X X
ik i-1 i i+k-1

Figure 3.1: 6, and I..
i i

In Ii’ FAf depends only on the values of £ in ei; thus we have local

error bounds.

Theorem 3.1 (de Boor and Fix [D3]): Let f € Hl(ei). There exists a

positive constant K = K(k,%,j,M(A)), such that

8—j %

(3.9) iDdcs - 7 ,8) |
where |0,| = length of ©..
i i*

An important fact about the quasiinterpolant is that it can be made

to interpolate £, and its derivatives of orders 1 through -1, at a
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and b. This will be useful in proving the existence of spline approxi-

mations satisfying various boundary conditions.

Lemma 3.3: Let the first (respectively, last) m < g quasiinterpolation
points {Tj} be placed at a (respectively, b). Then the quasiinterpolant

M Z f interpolates f and its first m~l derivatives at that point.
2L

Proof: We prove the result for interpolation at a; the result for b

follows by symmetry. According to (3.2)(d), DiNj k(a) =0 for j > itl,
bd

so that

. i+1
(3.13) DlFAf(a) =

xjf DlN,
j >

i k(a).

1

Let Taf(x) be the first m terms of the Taylor series for f about a,

i.e.,

m—-1 Dm—lf(a)
% 2. tia)
m-1!

Taf(x) = f(a) + xDf(a) + ... +

We claim that xjf = ij f for 1 < j < m. If so, then (by (3.13))

i _ i
FAf(a) D FATaf(a)’

o P
iA
R
IA
7
-

Moreover (Lemma 3.2), since Taf is

a polynomial of degree m-1 < g, FATaf = Taf. Therefore

DiFAf(a)

] il
o o
=
— i
o =4
+h —
~ '8}
o th
S ~~
si)
S

1

w]

H
+h
~~
[
=g
-
o
1A
H
IA
—
[ ]
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It remains only to verify that Ajf = AT f for 1 < j < m.
Ja - -

According to (3.7) and (3.1)(a),

k=13
L = (a- Ip. (%
j(X) (a-x) pJ_l()
with pj—l a polynomial of degree j—l.. Since we assume that Tl = il =
T = a’
m
wfk'l‘r)(Tj) - w;k"l‘r) (@ = 0 forall j<r<k,
J

Therefore, by (3.6),
w, = 0 for all j < r < k,
J,T -
and Xjf depends only on the first j derivatives of f at a. But, for
1 < j<m, the value of these derivatives is the same whether Taf or f

is used.

Corollary: 1If f(a) = f(b) =0, T =a, and T

k
1 = b, then F,f € SO(AzE)'

d

Later, we will need the bound on the weights wj . of (3.6) given by

b

the following lemma.

Lemma 3.4: For each interval Ii’ 1 <i<N, for all j € Vi’

loy 1< clm®) nf, 0<r<k,

where C(k,M(A)) depends only on k and M(4).

Proof: For j € Vi’ the interval (tj’tj+k) contains Ij. Thus, its



- 28 -

length can be bounded in terms of the local mesh ratio and hi’ (see

Figure 3.2). 1In fact,

2 k-1
t - . + ... + M
4" F S by (1 + M(a) + M(a) ()™ )
k
- M) -1
iM(p) -1
I,
i
2 k-1
hi M(A)hi M(A) hi . . . M(A) hi
t.
j btk
Figure 3.2: Ii and (tj’tj+k) ~-- the worst case.
From the definition (3.7) of ¢j,
k-1
My, Il < (to,, = ti) e
j"'L (tj’tj+k) j+k i
Thus, by the definition (3.6) of 0y, p the assumption that
b4
Ty € (tj’tj+k)’ and Markov’s inequality (Theorem 2.2),
1 (k-1-r)
lw. < ——— ||D \ -
(L)J ,rl = (k-l)! “ ¢J ”L (tj’tj+k)
[(k-1) (k-2) (r+1)]2 r+l-k
< Ll Ge2) . (t,, - t) v, Il o
(k=1)! j+k 3j j L (tj’tj+k)
(k1) (k=2) ... (e#D)]° r
< (D) ! g~ )
[(k=1) (k=2) ... (r¢1)]” r
= (k-1) ! (e by



PART II

CHAPTER 4

PROBLEMS WITH 0 < o <1

4.1 1Introduction

In Chapters 4 - 8, we consider the singular two-point boundary

value problem

(4.1) - D(p(x)Du) + q(x)u f(x), 0<x«<l,

(4.2) u(0) = u(l)

0,
where the coefficients p and q satisfy
a) p(x) = xop(x) and q(x) = xoy(x), where 0 < g < 1,

b)  o(x) > Py > 0 for all x € I,

(4.3)
c) P € Wl’w(l),

Ay e W),

- 29 =
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"Parter [Pl] and Greenspan [G2] considered finite-difference methods
for the problem

(4. 4) -2y + Zu + qu

0,

w(0) = 1, wu(l) =0,

which arises by separation of variables in the equation for generalized
axially symmetric potentials in a rectangle. Problems of this type can
be replaced by equivalent problems of the form (4.1) - (4.2). Jamet
[J1] also developed finite~difference methods for (4.4) and obtained
L®-norm error estimates of O(hl-c) using a uniform mesh of size h, the
exponent 1-¢ being sharp. Gusman and Oganesyan [G3] considered
‘finite—difference methods derived from variational principles for the

more general elliptic problem

= - ] au _ 3 o} au -
Lu = = — p(x,y) == 5w | Y q(x,y) Iy f(x,y)

in a rectangular domain S = {(x,y) | 0 < x < a, 0 <y < b} and also
obtained low-order error estimates using a uniform mesh. Dershem. [D5]
devised second-order accurate three-point finite-difference

approximations for another singular ordinary differential operator,

2
Lu = D(xDu) —%—u .

Using the Rayleigh-Ritz-Galerkin method with a singular (L-spline)
subspace on a uniform mesh, Ciarlet, Natterer, and Varga [Cl] obtained
L®-error estimates of order hz-0 (see also Chapter 8). Natterer [N1]
later developed a very general theory for approximations of this type by

converting the problem to an appropriate singular first—order system.
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He treated problems with singularities at either endpoint and, using an
appropriate analogue of a R-graded mesh (with grading at both ends),
obtained improved error bounds of order N_zln(N)C with ¢ a positive
constant independent of N. Other subspaces of singular functions have
been considered by Crouzeix and Thomas [C4] (see also Chapter 8), Jerome
and Pierce [J2], and Dailey and Pierce [Dl]. The use of piecewise
polynomial spaces on a graded mesh was also suggested by Fried and Yang

(F2].

4.2 Variational Form of the Problem

In this section we instantiate the definitions and results of
Section 2.2 in the, context of the problem (4.1) - (4.2). As the
underlying Hilbert space H, we use HO = LZ(I). The space S, in which
the solution of (4.1) = (4.2) lies, is given in the following

definition.

Definition 4.1: Let S be the linear space of absolutely continuous

real-valued functions u on I such that u(0) = u(l) = 0 and

"%% Du ¢ L2(I).

For u, v ¢ S, we define the inner product

1
a(u,v) = J [p(x)DuDv + q(x)uv] dx
0
and the norm

- 1/2
||ul|E z a(u,u) .
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The space S is an example of a weighted Sobolev space and may be
identified with the closure of the C” functions with compact support in

I with respect to the norm || . || If the problem (4.1) - (4.2) has a

E.

classical solution u, then u is in § [Cl], but is not necessarily in

Hl(I). For example, let p(x) = xo, q(x) = 0, and f(x) = 2-¢0. Then
l1-0 2~0 1

u(x) = x - X € H® if and only if o < 3.

We will find it convenient to work with a different norm on S,
Do 2 |1
(4.5) ”u”S = S x (Du)© dx s u € S.
0

We assume that the S-norm and energy norm are equivalent, i.e., that
(4.6) lllvlls < Mivllg < Alivilg  for allv €5,

where X and A positive constants independent of v. This assumption will
be satisfied provided q(x) is not too small, in particular, if -q(x) is
less than the smallest (positive) eigenvalue of -D(pDu). For (a,b) < I,

we define the seminorm

b
S XU(Df)2 dx 1/2.

a

el S(a,b)

The main result of this section is that the form a(.,.) is positive

definite.

Theorem 4.1: For every v € S,

v, < liviige
<
< wlivilg
=<

GIIVHE,
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~-1/2

where u = (1-0) and § =-%.

Proof: Let v € S. By (4.6),

X
[v(x)| < J |pv(t)] dt
0
X a/2p
= f l 5—3751 I dt
0 t

< e anl/2 (Fe0ov)2 dae)l/2
0 0

= ullVIIS

A

SVl

In order to obtain higher—order error bounds for the solution of
(4.1) - (4.2), we will need to assume that the right-hand side is smooth
(e.g., f € Hm, m > 0). We will later show (Theorem 5.2) that D(chu) is

as smooth as f and therefore, that u is in one of the following spaces.

Definition 4.2: For m > 0, let

s™ = {ues | D&Du) e HY},
-1 _ o] ®
S = {ueS | xDueL”},
ag -
Do) I, = Ix"Dull e for u e s

O

B
_ The role of the space X, in Section 2.2 will be played by § Z,
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Let u ¢ So. By Rolle’s theorem, there exists X € I such that
DU(XO) = 0. Thus, by the Cauchy-Schwarz inequality,

X

£ Du(x) = £ D(%Du) () dt
*0
< IipGow) Il
m
Therefore, for u ¢ S,
4.7)  1ID&"Dw) || °Du) || < |Ip(x"Du) |
d _l i “D(X 0 _<_ eoe “ (x m*

4.3 On B-graded Meshes

One particular kind of mesh dominates our discussion of singular
two-point boundary value problems in Part II. These are the "B-graded"

meshes.

Definition 4.3: Let B > 1 and N a positive integer. The B-graded mesh

AB,NE{Xi}§=0 is the partition of I given by

(4.8) x,:(_i_JB, 0<i<N
i N - =

B-graded meshes were introduced by Rice [R2], who considered spline

interpolation of the function xa, ¢ not an integer. He proved that, for
B appropriately chosen as a function of a, the L%®-error in interpolation
on a B-graded mesh was no larger than that obtained when interpolating a

a
smooth function, despite the singularity of x at 0. Eisenstat and
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Schultz [E2] have applied B-graded meshes to a two-dimensional partial
differential equation in which the solution has a singularity due to a
corner in the domain. They showed that convergence at the best possible
rate in L2 occurs, despite the singularity, when using a tensor product
mesh which is graded in both independent variables. Natterer [Nl]
employed a B-graded mesh for a singular two-point boundary value problem
for a first order system of equations, while Fried and Yang [F2]
advocated the use of what amounts to a B-graded mesh for problems like

those we consider, but proved no error bounds.

-1

For B = 1, the mesh A is a uniform mesh with h=N "« As B

B,N
increases, the mesh very rapidly becomes skewed towards 0; to

illustrate, we depict A2 ¢ in Figure 4.1.
?

L J i i |

0 X X, X3 Xy Xs

Figure 4.1: A2,6

The following lemma summarizes several important properties of

B-graded meshes.



- 36 -

Lemma 4.1: There exists a constant C(B) = C(B,k), independent of N,

such that for every B > 1 and all N > 0, AB N satisfies
b

a) hi < BiB_lN_B;

b) h < BNTL;
(4.9) c) M@, ) < C(B);
d) ]eil < C(B)hy;
e) the weights wj c of (3.6) satisfy

’

r
ij’r| < C(B)hi,

for all j € V_,
i

Proof: By the mean value theorem, there exists c € (i-1,i) such that

if 2 =P = el
Thus,
B B
h, —_»1__.___%]:.:.1._)__ < BCB_l N_B < BiB_l N_B,
1 N

which proves (a). By the same argument,

(4.10) ho> 8-t N ® o> on
i - - i-1

Thus, the sequence {hi} increases monotonically and



=2
N
N
™} |
—
™

while for 2 < i < N, (4.10) implies that

h1 i's_l B-1
n < B-1 3
i-1 (i-2)
Therefore
h,
M(AB N) = max = max(ZB-l, 36_1)
’ 2<i<N -1

(which of these is larger depends on B), which proves (c).
Next, we consider |0 |. For all l < i < k,
i = 1=
ei < [0,x,

i+k-11>

so that

o,

in
A

i+k-1)8 N
Xi+k-1 ‘( N ) (i+k-1)"h,

2x-1)"n .
1

in

For i > k, Oi is bounded away from O, i.e.,

0
1 S e X)) 0 OIx, 1,

so by the mean value theoren,

19,1 < ®yppey - %y
B B
_ (itk-1) - (i-k)
N
< (2k-1)B(i+k-1)P"In"B,
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Using (4.10),

In

c]
o, | .

in

@k-1) 2871 1,
1

< 2 for i > k. This proves (d). Finally, (e) follows from

since

it+k-1
i-1

(d) and Lemma 3.4.



CHAPTER 5

PROPERTIES OF THE SOLUTION

5.1 Introduction

In this chapter, we derive several properties of the generalized

solution u of (4.1) - (4.2). Our goals are to show that

1) there exists a positive constant Fl such that, if u € s™, then

xcu € Hm+2 and

3 -
IID (xcu)ll0 < Ty l(xUDu)IIO, 1 < &< mb2;

2) there exists a positive constant T such that, if f ¢ H® and the

coefficients p and y are sufficiently smooth, then u ¢ s™ and

DD Il < THEN;
3) if u € Sm, then there exist positive constants KE such that,
Il o < pa™Oll,, -1 <i<m,
and constants K2 = K(%,¢) such that, for any € > O,

28-3420+€ 2
0 [} -2 B gt

- 39 -
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5.2 A Generalization of Hardy’s Inequality

Let
cy = (g € C™I) | 8(0) = 0}
and
HI; = {g e H(I) | g(0) = 0}.

We need to establish several properties of the function g/x when g ¢ Cg

or g € H;, m > 1., In Lemmas 5.1 and 5.3 we show that, near the origin,

g/x behaves essentially like Dg.

Lemma 5.1: If g ¢ C§+l, m > 0, then g/x ¢ c™ and
2+l 0
(5.1) lin D¥(g/x) = P_ﬁ%—(.—l
x*0+

for all 0 < & < m,

Proof: Clearly g/x € c™(0,1]; we need only show that, for 0 < £ < m,

lim Dl(g/x) exists and has the value given by (5.1). For x > 0,
x+0+
(l

p*(g/x) b p*iarh plg

1]
I ™Mx

j=0

RSP IO « (=3-1 pig

il
I

j=0

2 (-l)l_j x3 ng.

x—(2+1)
o 3¢

3

I M=

As x + 0, the last sum approaches 0. Thus, using L°HGpital’s rule,



- 41 -

lim D*(g/x)
x+0+
2’ ‘ 3 - - 2’ l 2' s . 1 .
'zo %’-:r (-1)%=3 xJ pitlg + '—Zl }_:r (-1)%=3 jxi-1 pig
= lim J_ J-.Rl
Q’ | - 3 - Q’ ' . 3 1 .
Apitlg 4+ 1 JJ_L. (-1)%3+1 x3-1 pig+ 2 Tj_-n-li')—" (-1)*3 x3-1 pig
. j=1 7D j=1 )
= 1im [
x+0+ (R: + l)x
% %
- 1im D +lg _ D +lg(0) .
x+0+ Rl+l JL+1
g

In order to extend Lemma 5.1 to the case g ¢ Hg, we need the

following result.

Bo

Lemma 5.2: For allm > 1, Cg is dense in H-

Proof: Let h ¢ H: c Hm. Given € > 0, we can (since C® is dense in Hm)

€

l+Cl

find a g e C" such that ||h - gllm < . Furthermore, by the

Sobolev lemma (Theorem 2.3),

C1€
”h—g”Loo < Cl ”h_g“m < 1+C]_ ’
since m > 1. Therefore |g(0)| < ¢ Let g =g- g(0). Then g ¢ Cg
1

and

g -hll < Jg-sll,+ lig-nll, < =
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Hardy s inequality [Hl] states that, if g ¢ gl

B? then

le/xll, < 2lipgliy.

The following lemma generalizes this result to g ¢ H§+l, m > 0.

Lemma 5.3: If g ¢ H§+l, m > 0, then g/x ¢ H® and

(5.2) Io%a/o Iy < o2 10" gl

for all 0 < & < m.

Cm+l

B ° The result then follows from

Proof: We demonstrate (5.2) for g e

mtl . mt1
the denseness of CB in HB .
We first show, by induction on %, that
L L -1
(5.3) xD"(g/x) = D'g - D (g/x) for 1 < & < m.
The case & = 1 is trivial. Assuming % > 1,
- [} -
G.4)  pe* lg/x) = x*e/x +d g/,
so that
L fm b
¥ (g/x) = D /) - 7 le/w.

Using the induction hypothesis,

x0*(g/x)

D(D’L‘lg— (m—l)D’L'2<g/x)) - p*lg/x

5 -
D'g - *L(g/x).

This completes the induction.
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Next, note that for & = 0, the result is identical to Hardy’'s
inequality. For % > 1, we prove (5.2) by computing IIDl(g/x)||0_
Integrating by parts,

1
5 ox2 x0%(g/x)12 dx
0

10" g/ 11 2

-x L x*(g/%)12
0

1 1 2 2
+2 S x T[xD(g/x)]D[xD"(g/x)] dx.
0

The integrated term is non-positive, for

- (Dp'(g/x)lx=l)2 < 0,
while

lim x(Dp'(g/x))z = 0,
x+0

since, by Lemma 5.1, Dl(g/x) is bounded on [0,1]. Thus

1
It/ 12 < 2 ¢ DMe/v) DE*(e/0) dx.
0

Using the identity (5.3), we have

1
ID*(e/0 112 < 24 DMa/m ©Mlg - whe/x)
0

1
2 1 *g/0p* g ax - 22t e/x) |12 .
0

Hence, by the Cauchy-Schwarz inequality,

@) D% /0 11 < 210"/ Il 10" el



- 44 -

5.3 Regularity of the Generalized Solution

We turn now to one of the principal results of this chapter, which
will later be used to show that solutions of (4.1) - (4.2) are of the
form x-ov(x), with v a smooth function. This result is crucial to the
theory of Chapter 7, in which we consider approximations to u of the

-0 . P . . . .
form x ¥, with ¥ an approximation to v. Moreover, it provides the

means for proving a regularity result, Theorem 5.2.

Theorem 5.1: If u ¢ Sm, m > 0, then x%u € Hm+2 and there exists a

positive constant I, independent of u such that

) -
(5.5) D" (x%u) gy < T, HD9" 1 (x%u) | o 1< %< m2,

Proof: Define

vo(t) = thu(t), 0<t<l,

(5.6) Vi (B) = (vi(t) = vy(0N/t, 0<t<l, 0<i<m

By hypothesis, Vg € Hm+l; furthermore, it follows from Lemma 5.3 by an

obvious inductive argument that vi € Hm+l—i and

f=i-1

(5.7) I D v Il

=<
provided i < & < m + 2.
We now show by induction on £ that

L, o j - =2 0
(5.8) p*(x%) =D lvO T e A O S

o-% X _f-1-0
+ Clx é t vl—l(t) dt,
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k-1

where ¢ = ¢ (0) = I (6 -~ 1i). Since u ¢ S (and in particular, u is
i=0

absolutely continuous),

X

xou(x) = xc S Du(t) dt
0
(5.9)
_ 0o X 6,0
= x [ t (tDu(t)) dt.
0
Differentiating (5.9),
o o-1 X -0
D(x u) = V0 + 0x J t VO(t) dt,
0

which is (5.8) for & = 1. For the induction step, first note that the

last term on the right-hand side of (5.8) satisfies

X

xo—l tl-l_c

J Vo—1(t) dt
0

o= X =] =
= x J tl 1-¢0

g vy 1(0) + tv ()] dt

1 o-% X g0
—l_—c_ Vﬂ,—l (0) + X .(l; t Vl(t) dt.

Now assume (5.8) holds for %. Differentiating, we obtain

W+, o . % g-1
D (xu) = D Vg + ¢D Vit eee +cp 1DV

o-f-1 X _f-0
tcv, + (0-%)cy x ST v (b) dt,

which is (5.8) for &+l1.-

Inequality (5.5) now follows from (5.7) and (5.8) provided we can

show that
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X
(5.10) TS e Sl

/ v (0 dtllg < Clivegy llg

for all 1 < & < m2. Let

X

1 = £ % .

0

Integrating by parts,
g-% 2 1 20-2% 2
il x I(x)||0 = f x [T(x)]° dx
0
0-2 %
_ «2°-2 +1 [I(x)]2 1
Zo-23+1 0
+ 2 l 202241 I(x) XL_l_c
25251 3 ™ x Vi1 () dx.

Suppose we could show that the integrated term is not positive. Then,

by the Cauchy-Schwarz inequality,

e 13 < | e | 15" T g live g

which is just what we need.

As for the integrated term, at x = 1 it is negative, except

(possibly) when & = l. But when % = 1,

X

I(x) = £ t‘°v0(t) dt

0
X

= [ Du(t) dt,
0

whence
1
I(l) = S Du(t) dt = u(l) - u(@) = 03
0

so the integrated term vanishes.
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At x = 0 it vanishes, too. For by the Cauchy-Schwarz inequality,

[ x

5 oghel-o

\O

(I(x))?2

Vo1 (£)dt

X X

< |57 e2(=1-9) g¢ ;v e
\0 0
28201  x
X 2

S wer L Ve (® 9

whence, since vl—l € LZ(I),
o .20-284] 2 1 X2
x+0+ x+0+ 0
U

We now show that Theorem 5.1 applies to the generalized solution of
(4.1) = (4.2) provided the functions f, p, and y are sufficiently

smooth.

Theorem 5.2: Let u ¢ S be the generalized solution of (4.1)-(4.2) with

f e i, m > 0., Let the coefficients p and q satisfy (4.3) and, for

m > 0, the additional hypotheses
(5.11) p e WL e W,

Then u ¢ S™ and there exists a positive constant T', independent of £,

such that
(5.12) DDy, < 1 HlEll,, 0<&<m

Proof: We start by showing that u e ST and
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o -
I D) ll, < ¢ WE=-qull,, 0<2<m,
where C > 0 is independent of f.

Following Reddien [R1l], we explicitly construct the generalized

solution. First, let

x
(5.13) g(x) = J (qu-f)(t) dt.

0
Clearly g ¢ L® and
(5.14) Ilg||Lm < JIf - qulloo
Next, let

= 8(x) _ _~0 g(x)

(5.15) h(x) (% X 63
and

x
(5.16) ¥(x) = S hn(t) dt.

0

Finally, let

(5.17) w(x) W(x) - G (L)Y (x),

where Y is the solution of the problem

(5.18) - D(pDY) = 0
(5.19) Y(0) =0, Y(1) =1,
Soo_at
o P(D
i.e., Y (x) =-—I————— .

! dt
o PO
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We claim that w ¢ S and, moreover, w = u, the generalized solution.
First, w(0) = w(l) = 0, as is clear from (5.16), (5.17), and (5.19).

Second, by (5.16) and (5.17),

Dw = D& - @(l)DY = % - @(1l)DY,
so that
2y = x‘(°/2)% - a)x/ %y,
Thus
a/2 1 -0 /2 ~ a/2
1ol < s —le e lx 0y + 1wy nx"2x i,

which is finite; hence w ¢ S.

We now show that [lu - W]IE = 0, and hence that u = w. Let v € S.

Integrating by parts, using (5.13) and (5.15) - (5.18),

1 1
S pDw(x)Dv(x) dx = S -D(pDw)v dx
0 0
1
= J [f-qu] X)v(x) dx
0
1
= f pDu(x)Dv(x) dx,
0

whence taking v =u - w,
2 1 2
lu = wli = S pMD(u-w))cdx = 0.
E 0

This shows that u = w.
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By (5.17),
a o}
IDGDu) I, = |p(x D I,
[+ PN o}
< IDED@ g + @) lID(x DD Il .
By (5.15) and (5.16),
2
Mo = pMlan) - 2, o<esm,
whence
[0 PP
IDGEDH I, < o llgllgs

< ¢ lE=-quily,, 0<4%&<m,
where ¢, depends only on 2 and IIDIIW ,®. Also, by (5.14) - (5.16),

1
W)l < 7 |n()| dt
0

1
1 -a
gl e s x° dt

min 0

In

1
< g ll:w
(1 or)omin L

1

T
( _c)pmin

e = qulle

- Thus

IDGpw IF, < DD I, + |9 | DG DD I,

< CIE-aqully,
o
_ DD ;
where C = max(c ). (Note that |[D(xDY)|l, is a constant,
1> (l=0)e, 0 [}

independent of u.)
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Now we show that there exist constants M2 such that

(5.21) HE=qull, < M JI£],.

We proceed by induction on &. For & = 0, the a priori estimate of (2.7)

yields

2
5
Tull, < Hell,

whence
2
Ie-aqully < a+8 llall= Nell,

= My NEll,
Since D(chu) € HO, we can apply Theorem 5.1 which yields

-0
u=x v, v € H2

and

o -
Ivll, < T, IDG™Dw iy < 1@y NEll
Thus qu = (xcy)(xfcv) = yv and

e - qull,

A

NN, + i,

in

HEl, + ¢, Nivi,
<M, gy,
where ¢, depends on IIYIIWZ,°° and My = 1 + CzrlaMO)'

We reiterate this argument for & = 2,4, ..., m (if m is even) or
2 =2,4, o0os, m~1 (if m is odd). To obtain (5.21) for odd values of 2,
possibly including m, we apply Theorem 5.l1l. Since D(chu) € Hl’l,

-0 2+1
u =X v, where v € H , and
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vl < T D& DW I,
< T8 NE=qull,
< TyeMp g £l goge
Thus
NE-qull, < NEllg+ vl
< UEl, + ¢ Nvily
< HEN g + ey Nviigy
<M, NEll,

where c, depends on ||yl 2, and M, =1 + CLPIEML—I)‘

5.4 Bounds on Weighted Norms of the Generalized Solution

The last two results of this chapter establish bounds on two

"weighted norms" of the derivatives of the solution.

Lemma 5.4: There exist constants K, which depend only on & and ¢ such

that, if u ¢ Sm, m > -1, then x°+£Dz+lu e L®(I) and
+4. 2
(5.22) 1 u il o <y oD

for all -1 < 2 < m.
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Proof: Tirst take & = -1. By the definition of S,

X
lu(x)| < J‘x [Du(t) | dt = J £%|Du(t) |

5 dt
0 0 t
- o
X
< 1 xDullpe
Therefore
o-1
[xTux) | < -1_1_—0 IxDullje = = DD I,

For & > 0, we use induction on £. Since

L+1 . .
DL+l(x0u) = Ml + 1 c, xo-d DL+1-Ju,
=1
L j-1
where Cj = ( fl) I (o-i), it follows from the induction hypothesis
i=0
that
2+1 . .
|x0+LD2+lu| < |XLDL+l(xcu)| + 3 Je. x°+z_3 DL+1_Ju|
=1
(5.23)
2+l ., o g+l o
< |Ip X u) o+ Z c, ] x, . Du -
< G llpm+ 2 eyl gy g D60 Iy

By Sobolev’s lemma (Theorem 2.3),

L+l J'A o
I W e = 1D OGW) I«
g
A Cl”D(X u) ”JH'].’
and by Theorem 5.1,
g a
ID(x"w) |l gep < Ty lID(x DW) .

Thus

S o
D™ (x wllie < ¢ liD(x Du)I]Lf
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Together with (4.7) and (5.23), this yields (5.22) with
E+l

c. K s "
j=1 | J] 2=

Lemma 5.5: For each positive integer % and every ¢ > 0, there exists a
constant KE = K(ose54), independent of u, such that, if u € Sm, m > -1,

then

(5.24) llx(22—3+20+€)/2

L o
Dlully, < K lID(xDwll,_,
for all 1 < 2 < mt2.

Proof: Again we use induction on %&. For % =1,

1 1
J x20-1+€(Du)2 dx < ||x0Du||iw iy xe-l dx

0 0
= e_l||D(x0Du)|l31.

For £ > 1, we differentiate to obtain

-1
- Rl g -
p* 1wy = 0% + ¢ (*lypi®ptiy,
i=1 T
whence
o2 2-2 o 2=l 2]l i, O =i
XDu = D [D(x Du)] - L i D (x )D U
i=1
Let
i—-1
-1 1
= 1 -
s ;) (o-3).
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By the triangle inequality,

”X(zz-3+2cr+e)/2 D'Q'u I .

< ]IX(22—3+€)/2 DE—Z(D(XUDu))liO

+ b Icll H X(Z (2"1)"‘3'{‘20"{‘6)/2 Dl"iu ” 0.

Since & > 2, 2% -3 + ¢ > 0, so that

1x 2232 P20 6Dy 1L, < 1D @ Dw) N,

Thus, by the inductive hypothesis,

|Ix(22-3+20+€)/2 Dlullo

-1
o
< 1+ iil ICiIKl-i) I D(x"Du) i 4-2°

whence the result follows with
-1

= z
Kl 1 + . I CiIKl-i.
i=1



CHAPTER 6

SPLINES ON A B-GRADED MESH

6.1 Introduction

In this chapter we explore the use of splines on B-graded meshes to
approximate the solution of (4.1) - (4.2). Subspaces of piecewise
polynomials have been studied extensively, and their properties as
approximators of smooth functions are well-known (see, e.g., [S3],
[D2]). Our aim here is to find analogues of these results for the case

of functions, elements of Sm, with a singularity at O.

Given u ¢ Sm, we wish to show that with an appropriately chosen
mesh the quasiinterpolant is a "good" approximation to u, even though
u ¢ H® for any m > 2. We cope with the singularity in u by grading the
mesh so that the intervals near zero are small. We employ a B-graded

mesh, the definition and properties of which are given in Section 4.3.

In Section 6.2 we prove error bounds for the quasiinterpolant of

functions in S™. S-norm bounds are obtained in Theorem 6.1 and Lz—norm
bounds in Theorem 6.2. In both theorems, we specify a B-grading which

yields optimal-order accuracy. Let k > 2 be the order of the

- 56 -
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polynomials, ¢ = min(k, mt+2), and

= 2(e-1)
By = 1o,
_ 2
By = T2
s = 2 ___ %
3 % 39, T B2

We obtain the following optimal-order error bounds for the

. k
quasiinterpolant FAu € SO(AB,N*E)'
_ -(2-1) o R
lu -Fullg < CN IDGdw) I, if 8 > 8,
-2 g .
lu -Fully < ¢ N~ [ID(x DU)IIL_2 if 8 > B3.

Obviously, since & > 2, By < By < B). Moreover, for fixed %, B, and
82 + o as ¢ + 1, while 83 remains bounded for all 0 < 0 < 1. Thus, far

less B-grading is required to prove the Lz—error bound.

As a corollary to these approximation—-theoretic results we obtain
(in Theorem 6. 3) Lz—norm and S-norm error bounds for the RRG
approximation to the generalized solution of (4.1) - (4.2), provided the
heavy g-grading of Theorem 6.1 (g > Bl) is used. 1In Section 6.3 we show
that the RRG approximation will not achieve the optimal rate of
convergence in the Lz—norm in the spaces S%(AB ,N)° We conjecture that
while g = 33 is too small, B = 82 suffices for3optimal Lz—norm accuracy

of the RRG approximation, while g = B, is required for optimal S-norm

1
accuracy. The numerical results in Section 6.4 include an empirical
study of the effect of the grading parameter g on the error and rate of

convergence of the RRG approximation which tends to substantiate this
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conjecture. Other experiments confirm the approximation-theoretic
results of Section 6.2. In Section 6.5 we consider questions of

computational complexity.

6.2 The Quasiinterpolant in s™

Our proof that splines can approximate a function u(x) which
behaves like x]'_CJ depends on the existence of local approximation
mappings (for example, the quasiinterpolant). For such an approximation

mapping, the error in the interval I, depends only on the behavior of u

in a small number of neighboring intervals. Thus, by using a B-graded

mesh, we overcome the growth of the derivatives of u near 0.

We want the quasiinterpolant to satisfy the boundary conditions of

(4.2). By the Corollary to Lemma 3.3, if we choose

(6.1a) Tl =0 and Td =1,

then FAU € S%(Alg) for all u € S. Here, and throughout the rest of the

chapter, z may be any incidence vector.

We would like to make the quasiinterpolant independent of u near 0

for all but the first subinterval. Therefore, we require that

(6.1b) Tj 2 Xy, 2<j<d

Thus, in the intervals I,, 2 < i <N, 8, < [x),1]. The error bounds of

Theorem 3.1 then apply, since u is smooth in Gi.
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In the first interval, Theorem 3.1 is of no help, since
'3
D'u £ LZ(O,Xl) for any % > 1. But since the mesh is B-graded, so that

B . A ;
x, =N is very small, it is possible t? bound |[lu FA“"S(I) by

bounding first llul|s(1), then IIFAuIIS(I), and using the triangle

inequality.

We first obtain bounds on the linear functionals Xju’ for j € Vl‘

Lemma 6.1l: There exists a positive constant < independent of u and N

. -2
such that, if u ¢ § » 2> 2, A= AB N and the quasiinterpolation
bl
points {Tj} satisfy (6.1), then

1-0 v
(6.2) gl < e x7 IDGDW L, )
for all 2 < j < k.

Proof: Using (6.1b) and the bound of (4.9)(e),

Hyel =g Jog, e 7oy |
< c(8) ; hf [pTulq]

r<?

A

C(B) X%-o . lT§+r-l Dru(Tj) ,
r<i

since hl = X;. Now, using Lemma 5.4 and (4.7),

l-0 o}
C(B) x; I kp-1 ID(x Du)"r—l

[X,u]
J r<®

A

1-0
r-1) ¥

A

c®) (5« IDGpu) I,y
r<t

O
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Using this result, we obtain S—-norm and L2-norm bounds on FA“ in

the first interval.

Lemma 6.2: There exists a positive comstant ¢, independent of u and N

. -2
such that, if u ¢ S s, 2> 2, A= AB N’ and the quasiinterpolation
]

points {Tj} satisfy (6.1), then F,u = Fpz,2 U satisfies

(6.3) e, {17972 Ipepw Il

u||s(11) < ¢

(6.4) | F 3/2=% |1 p(x"Du) |

awllpz ) 2 X 2-2-

Proof: In the proof of Lemma 3.3, it is shown that Alu = u(0) = 0.

Therefore, in Il’ Fpu is given by

k
FAU = jiz(AjU)Nj ,k(X).
Thus,
{ i I
Foull < I Ixcul NINg ol
A S(Il) = 3=2 J jsk S(Il)
and
{ 3 l
Foull;: < I Ax:ul IN; 12 .
ATRLEE,) = j=2 9 3.k TL2(T))

Using the result of Lemma 3.1,

X
1
o 2 1/2
Ny ks PNy 7
l+o
1 1/2
2 'IDNj,k‘IL”(Il) Tro~

(k-1)% _(o-1)/2
(140)1/2

bl

while



X
|1Nj,k|[L2(Il) = (f) (Nj,k)z dx |1/2
< ”Nj,k ”L°°(Il) X%/Z
< x%/z.
Thus, by (6.2),
(k=1)¢;

I F (1= /2 I p Dy Il _,

& ————

and

I (k-1)c; =/~ IDGDu) Il _,.

a¥ ”Lz(Il) <

We now obtain S-norm error bounds for the quasiinterpolant.

with B8 > Bl = ZL&ZLL, and the

Theorem 6.1: If ue S, m>0, A = =

A
8,N
evaluation points {1.} satisfy (6.1), then Fyu=F u € Sk(A,z) and
J A,_z_,l 0 -

-(9=1 o
(6.5) la = Faullg < e O InGDw) Il ,,

where 4 = min(k, m+2) and ¢y is independent of u and N.

Proof: We consider 1. separately from the other intervals. By

1

Lemma 5.4,

"1 * o 2
" u ” g(l = [ XU(DU)de = S (X gu) dx
1) 0 0 N
1-0
Xl g 2

b T [l x Dulle
2 _1-0 g 2
< (MKO) x] I D(x Du)||0.
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By (4.8), xfl'o)/z = N_B(l"a)/2 < N_(l'l), and by the triangle

inequality and (6.3),

< (ukg + cy) xfl-o)/z llD(xoDu)||£_2
(6.6)
-(&-1)

< (kg + ¢y N D) Il ,_,

e, XD ipepuw) Iy,

Now we consider the remaining intervals Ii’ 2 < i < N. The error

bounds of Theorem 3.1 refer to the neighborhood Gi of Ii' Let ji be the
largest integer such that Gi c [xj ,11. By the definition of Gi and the

i
conditions (6.1) on the points {Tj},

ji > max(l, i-k)

(see Figure 6.1).

Figure 6.1: Definition of ji‘
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Using the error bounds of Theorem 3.1,

lu - FAullé(I,) = 5 xX°0ow - FAu))2 dx
i

A
e
. Q
[N,

D - FAu))2 dx

2(2-1) I (Dlu)2 dx.

0,
i

< K x. |6,|
— i

Let € = (1=g) —-%(2-1). Since B(l-o0) > 2(2-1), ¢ > 0. By inequality

(4.9,
lu = F 4 2
A S(Ii)
o, 2(g~1)
x: h.
< ke@Z@ ) L L 4t 0ty dx,
= Z
X ei
I

28 = 3 + 20 + €. (We introduced the term x° so that Lemma 5.5

where

can be used later to bound the integral.) Using the definition (4.8) of

x; and the bound (4.9)(a) on h,,

o, 2(%1)
X4 hi . 32(2'1) ch + 2(%1)(B-1)

x? B j?

R 1
J1

N~B(o+2 (g=1)-g)

Moreover, B(o + 2(%=1) - ¢) = B(l-0-¢e) = 2(&-1),

Bz = B(22 -3 + 20 + ¢€)
= 288 - B(l-0o=-€) - 2B + Bo
= 228 - 2(2~1) - 2B + Bo

= Bo + 2(2-1)(g-1),
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and ~%—_§ k, since j; > max(l, i-k). Thus
i

lu = Ful?
AY S(Ii)

(6.7) < x (8e(8)2UNBL -2 (1) P phy)? ax.
ei
= cg N2 (3-1) I XC(D'Q'U)2 dx.

e,
i

The intervals ei overlap, but no more than 2k of them at any point.

Thus, by Lemma 5.5,

N
z |Ix%/20% | 2, < 2% <%}

ol
~
o©
He
N’
A

In

2 o 2
2k k2 ||pxDu) 112,

(By the assumptions on B, € > 0 as required by Lemma 5.5.) Together
with (6.6) and (6.7), this yields

N

2 2
”11 - FAU ”S = 'E “U - FAU “S(I.)
Ci=1 i
2 2 -2 (2%=1) o] 2
< (c4 + 2k(Kyes)7) N | D(x"Du) || 42+
il
We now consider Lz—norm error bounds.
Theorem 6.2: If ue S®, m >0, A = A with 8 > 8 — and the
—_— ? - B,N 37 3 =20’

R . , k
evaluation points {Tj} satisfy (6.1), then Fyu = Frz,a b € Sp(8,2)

and
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-2 o
(6.8) e = Faully < cg N DD I,

where & = min(k, m+2) and ¢, is independent of u and N.

Proof: Again we consider I, separately from the other intervals. By

(4.8), xf—ZU = N_B(3_20) < N"zl, and by Lemma 5.4 and (4.7),

2 "1 2
full 2, = / u‘dx
L@y
Xl 7
= f (xo_lu)2 %2729 gx
0
v 1 - _
(6.9) < gz %20 1x el 2e
1 3-20 2 o 2
K2l L o
< g N20DGDw 11,

By the triangle inequality, (6.4), and (6.9),

K-l -2
(6.10) [lu - FAulle(Il) < (ey + ) N7 IDDw) 11,
V3-20
_ -2 o]
= C7 N iID(X Du)lIZ-Z‘

We now comnsider I,, 2 <1< N. According to Theorem 3.1 and

(4. 9) (d) b
Xi
;S (u- FAu)z dx < K2 Iei|ZL s ()2 dx
)
*i-1 i
< k% ¢(8)?t hil r 0*w? ax.

o
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Because 8(3 - 20) > 24,

e = (3 ~20)-24/B>0
and

B(3 - 20 - €) = 24.

Let Xj and ¢ be defined as in the proof of Theorem 6.1l. Then

Xi h?l
J (u - FAu)2 dx < K2 C(B)ZL —%_ ! x;(DLu)2 dx
X5 1 X, ei
i 3
.28(g-1)
2 20 4 : -B(2%-2) P )
33 1
(6.11)
< k% (8c8)KP1H)2* N 2% ;i Pu)? ax

0,
i

c N-ZL s x;(D!’u)2 dx, -
8 9

i
since i/ji.ﬁ k, B(2%-%) = B(3 - 20 - €) = 2%, and

Bz = B(22 =3 +20 +€) = 248 - B(3 - 20 - €) = 22(B - 1).

From (6.10) and (6.11),

1 9 N i 9

S (u-F y)° dx r S (u-F ) dx
A . A

0 i=]

N

=24 g %

N C27 ”D(X DU) ” %_2 + C8 I f X;(D u)2 dX .
i=2 Gi

In

No more than Zk of the O, overlap at any point, so by Lemma 5.5,
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1
I xC(Dﬂ'u)2 dx 2k S xC(Dﬂ'u)2 dx
i=2 ei 0

™~ 2
In

< 2kK,_, [ID(x%Dw) Il 2_,,

This yields (6.8), with c = (c% + 2kK2_2c8)l/2'

We now obtain error bounds for the Rayleigh-Ritz-Galerkin procedure

- for approximating the solution of the singular problem (4.1) - (4.2).

Theorem 6.3: Let U € SlS(AB Ns2) be the RRG approximation to the
it tisudthded ,N2Z

= 2(a-1)

generalized solution u of (4.1) - (4.2), where B > B, = Tog  * If p,

q, and f satisfy the hypotheses of Theorem 5.2, then

- A -(2~1)
(6.12) lu=ally < 5oyt N hell,_,
and
(6.13) Nu -3l < (he.0)2 NF £l
0 = 3 L-2°

where £ = min(k, m+2).

Proof: By Theorem 6.1 (the "approximation hypothesis"), Theorem 5.2

(the "regularity hypothesis"), and Nitsche’s trick (Theorem 2.6),

v~ D D (xopu) 11,

A

~ A
”11"11”S Tc3

and

~ 2 -
lu =3ll, < (Aep)” T N D xDu) 1l _,.

We now use Theorem 5.2 to bound the right-hand side of these

inequalities.
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6.2 A Counterexample

To the best of our knowledge, no example has yet been reported in
which the Rayleigh-Ritz-Galerkin method failed to produce an
optimal-order Lz—norm approximation. Eisenstat, Schultz, and the author
[E1] have shown that no such example exists for nonsingular problems.
For the differential equation (4.1) - (4.2) in which p Z'pmin > 0 and a

family {S 0 of Cl—piecewise polynomial subspaces with respect to a

h}h>
quasiuniform mesh,
lu -3l < ¢ inf llu-v il
€
VhESh
where U is the RRG approximation to u in Sh and the constant C is
independent of u and h. However, for the differential equation which
concerns us here, there do exist subspaces for which the Lz—norm of the
error of the RRG approximations do not decrease as fast, as a function

of h, as the error in the best Lz—approximations. We shall now give

such an example.

We restrict our attention to the simple case of continuous,
piecewise linear splines (the subspace SZ(A), which we hereafter refer
to as L(4)). Let u be the generalized solution of (4.1) - (4.2).

0

)
According to Theorem 6.3, if D(x Du) € H” and T € L(AB N) is the RRG
bl

approximation to u, where B > Bl =-T%E, then

-2

lu-%ll, < o8 IDGDw) Il

This much B-grading is not required for a an—order Lz—norm

approximation to exist. The result of Theorem 6.2 is the error bound
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- 9]
lu=u flg < ox™® IIDGDw) I,

where up € L(AB,N) is the quasiinterpolant of u and B > B84 = 3%73-

If we choose as the quasiinterpolation points {Tj} of (3.5) - (3.6)

(6. 14) T = X

j j-l’ l__<_j_<_d=N+l,

then the quasiinterpolant interpolates:

UI(Xi) = u(xj), 0 <i<N.

In other words, the piecewise linear quasiinterpolant with the "obvious"

choice (6.14) for Ty is the familiar piecewise linear interpolate. To

show this, we note that for k = 2, the quasiinterpolation formulae

involve only U(Tj) and Du(Tj). By choosing Ty = Xy we make the

coefficients w, = W, = 1. A = . .
5,1 0 and 5,0 1; thus ju u(xJ_l)

Let us define the "hat functions" Li € L(4) by

(see Figure 6.2).
1
¥i-1 *i *i+1

Figure 6.2: The "hat function" Li(x).

It is easily verified that Li =N;4p.25 i.e., the "hat functions" are
’

the piecewise linear B-splines. We have shown, therefore, that the
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quasiinterpolant ur is given by

N+1
uI = -2 (Aiu)Ni,Z(x)
i=1
N N-1
= X =
IouGpny = Ioulx)n,
i=0 i=1

and that

uI(xi) = U(Xi)Li(Xi) = U(Xi)o

In order to show that the RRG approximation is not optimal in this

case, we need a lower bound on the error |[lu - ﬁllo. But since

”u—‘ﬁno _>_ ”ﬁ-ulno_ ”u-uIHO

-2), 2+€

and llu ~u fly =0 it suffices to prove that ||& - u |5 > cN™

for some C, € > 0. We will in fact show that ||T - uI”0 > CN—l.

&Our plan of attack is as follows. We know that the coefficient
vector of U with respect to the basis {Li} is the solution of the linear
system Ag= £ of (2.10). For a specific problem (that is, a specific
function f and corresponding solution u), we will compute the elements
of A and f. (Fortunately, A is tridiagonal.) Since we know u, we also
can compute the coefficient vector n of u; and the vector g = AN. It
happens that the elements of £ — g are positive and that A_l has
positive elements. Thus the elements of w=§ - n = A_l(£ - g) are also
positive. We then get a lower bound on the norm of u - U by exhibiting
a vector ¢ with the property that Af < Aw and showing that the Lz—norm

of the element of L(A) with coefficient vector § decreases at the rate

o(N'l).
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We now consider the specific example

_ D(xl/Z

B

Du) =.%, 0<x<l1,

u(0) = u(l) = 0,

1/2 3/2

which has the solution u(x) = x - x'% Let A = AB - with
3’
83 =-§%§E = 2. The L(A)-interpolate Uy of u can be written
N-1
uI = .Z niLi(X)
i=1
with
, _ /2 _.3/2 - i i3
(6.15) ni = xj x] N - (N) .

Note that u; e Ly(8) = {v € L(8) | v(0) = v(1) = 0}.

N—-1
Let 1 = I £;Lj. The vector § = [&] = A_yi, where
i=1 2 i
b1+b2 -b2
-bz . .
A= by bytbiy “bit1 ’
. Y —bN—-l
-1 Py-rtby
GOSN Votmd




1 1
bi = [f xl/Z(DL,)Z dx = [ xl/z(h.)_2 dx
1 1
i1 Xi-1
(6.16) = 2372 (32 1302,
3 i i i-1
_ o210 - 1)’
3 2 i
(2i-1)
and
3 1 3 -2
fi = —ié Li(x)dx = 7 (hi + hi+l) 3iN .
From (6.15) and (6.16),
A = =
n =g [gi],
where
81 = 7Pyt by T by )y = By
= 31N—2 1 - 7 1/3 5 + 3 41 .
3(161% - 8i% + 1) 3(16i% - 8i2 + 1)
N-1 N-1
L = - = x - = z
et e up - @ ‘ (ni 51)Li . w,L, . Then
1=]_ l=].
4i f—2
Aw = g-f = i- iN > 0.

3(161% - 812 + 1)

In order to establish a C(N—l) + o(N-l) lower bound on IIeIIO, we
N-1
employ the piecewise linear function @ = I CiLi € LO(A) given by
i=1



(6.17) 0 < ?a(xi) < e(xy), 1<i<N-l

(i.ee, 0<z, <w,, 1 <i<0N-1).
1 1 - -

In order to show (6.17), we make use of the fact that A is an
irreducible Stieltjes matrix +. Thus [V1, Corollary 3 of Theorem 3.11],
A7l > 0. This implies that, for any n-vectors £ and n, if AE > An, then

£ >n,

First we compute ||€||0. Note that, in the interval [x;,1], & is
monotonically decreasing. Thus

N

) . 2

Ilell0 > .2 hy 8(xy)
i=2

A Stieltjes matrix is a symmetric positive definite matrix with
non-positive off-diagonal elements. As in [V1], we say for n x n

matrices A = [aij]’ B = [bij] that A > B if 3y > bij for all

1 <i,j < n. We say A >0 if aij >0 for all 1 < i,j < n. These

notational definitions also apply to n-vectors, considered as n x 1
matrices.
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As we noted above, in order to prove (6.17) we need to compute AL

and check that A < Aw = g - f. But

(AZ); = (b} + by)%; = byly
= 2 16(N-1 7(N-2
= ZNI[ 5 -z —==11
3 9 6N2) 9 6N2)
= 1 ) 1
= W(N ‘g) < g < (Aw)1

since (A_.y_)l =

For 2 < i < N-1, b

i+1 < bi’ whence
1 . . .
(A_E_)i = ZN—Z ['bi(N—1+l) + (by + byyy) (N-1) = by (N-i-1)]
- L (b - b)) < 0 < (Aw)
2 | il i e
~ -1 -3/2
We have shown that Ilello > ||e||0 = CN =~ + O )
Therefore,
~ - -1 -3/2
lu - UIIO > |lg - uIllo - jlu - uI|lo > CN  + O ).

Thus, in this situation, the RRG procedure does not produce an optimal

Lz-approximation.
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6.4 Numerical Results

In this section we present the results of some numerical
experiments which illustrate the computational procedure analyzed in the

previous sections. We consider the problem

2

- D(& Du) = «° sin(nx) + -%—x.( 1 cos(mx) - sin(Tx) Y,

X
u(0) = u(l) =0,

which has the solution u(x) = Eiﬂﬁlfl . The RRG approximations to u

%3

from various spline subspaces were computed and the error tabulated

below.

All computations were performed in double precision on a PDP-10
(with 54 binary digits). The integrals required were computed using
Gaussian quadrature, with k-1 nodes in each interval of the mesh. In
the tables below, ey denotes the error u - i, where U is the RRG

. . . k 2
approximation in SO(A We measure the error in the L“-norm

B,N)
(||eN||0) and the S-norm ( |[[eyllg), which were computed using Gaussian

quadrature with k+l nodes in each interval. We also computed the

quantity

lle = max e (x,)].

Il
N7, h 1<i<N
In the following tables, we use the shorthand notation

5.2 (<4) for 5.2 x 1074,

Next to the error ey for a given value of N, we list the observed rate
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of convergence of the error, computed from the norms of ex and the

previous error ex’ by the formula

log(Clle Il / lleg. I

N T Tog(N° / N) .

For ¢ = .5, the values of 31, , and B, are given (for various k)

By
in Table 6.1.

k By By Bj
2 4 4 2
3 8 6 3
4 12 8 4
6 20 12 6

Table 6.1: Values of B> Byo and Bs at g = .5

First we illustrate the result of using heavily p-graded meshes

AB N’ which were analyzed in Theorems 6.1 and 6.3.
3,
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N lleyllp  RATE  lleylla,,  RATE leyllg  RATE
16 .79 (~02) .11 (-01) .12 (+00)
32 .89 (-03) 3.15 .11 (-02) 3.32 .30 (-01) 1.98
48 «25 (~03) 3.16 .22 (~03) 4,02 .13 (~01) 2,00
64 .10 (~03) 3.09 .64 (=04) 4,22 .75 (~02) 1.98
80 .52 (=04) 3.06 .25 (=04) 4,29 .48 (-02) 1.98
96 .30 (-04) 3.04 .11 (=04) 4,31 .34 (-02) 1.97
Table 6.2: Error in S3(A ) ——8 =8
to 0' 8,N 1
N IIeNllo RATE IleNllw,A RATE [IeNIIS RATE
16 .97 (-03) .11 (~02) .23 (-01)
32 .12 (-03) 3.01 .20 (-03) 2,36 .40 (-02) 2,50
48 .31 (=04) 3.35 .55 (=04) 3.22 .14 (-02) 2.59
64 .91 (~05) 4.27 .15 (=04) 4,44 .63 (-03) 2,81
80 .34 (~05) 4,45 .54 (-05) 4.75 .33 (-03) 2,85
96 .15 (=05) 4,37 .34 (-05) 2.42 .20 (-03) 2,85
. in g% -
Table 6.3: Error in SO(AIZ,N) -~ 12 = Bl
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In order to get some idea of the effect of the parameter B on the

error lleNllO’ we computed the RRG approximations in several cubic

: 4
spline subspaces (the spaces SO(A))' We used meshes with N = 16, 32,
and 64 and B =1, 2, ..., 13. These results are presented in Figure

6. 3.

The results of this experiment lead us to believe that the RRG

approximation in S%(AB N) converges in the Lz—norm at the rate N and

29
that the error will gemerally be smaller than for the more heavily

graded meshes with B = Bj. The results of an experiment to test this

hypothesis are presented in Tables 6.4 - 6.6.
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N llegllp  RATE  lleyll,,  RATE leyllg — RATE
32 .38 (-03) | 3.18 .36 (-03) 3.79 .21 (=01) 1.85
48 .11 (~063) | 3.08 .73 (-04) 3.95 .10 (-01) 1.76
64 .46 (=04) | 3.04 .32 (-04) 2.87 .61 (-02) | 1.71
80 .23 (-04) | 3.02 .17 (-04) 2.90 .42 (-02) 1.68
96 .13 (-04) | 3.01 .99 (-05) 2.91 .31 (-02) | 1.65
. in §3
Table 6.4: Error in SO(AG,N) -6 = 82

N llegllp  RATE  lleyll,,  RATE leyllg — RATE
32 .34 (-04) | 2.95 .53 (-04) 3.38 46 (-02) 1.95
48 .59 (-05) ] 4.32 .79 (~05) 4.70 .20 (-02) | 2.01
64 .17 (-05) | 4.36 .36 (-05) 2.78 .11 (-02) | 2.00
80 .67 (=06) | 4.15 .19 (-05) 2.81 .72 (-03) | 2.00
96 .32 (-06)| 4.00 .11 (-05) 3.07 .50 (-03) | 2.00

- b
Table 6.5: Error in SO(AS,N) --8 =8,

N lleglly  RATE  lleyll,,  RATE leyllg  RATE
32 .34 (~05)| 4.76 .59 (-05) 4.60 .12 (-02) | 2.96
48 .36 (~06)| 5.55 .71 (=06) 5.22 .37 (-03) | 3.00
64 .59 (~07)| 6.26 .11 (-06) 6.35 .16 (~03) | 3.00
80 .15 (=07)| 6.12 .31 (=07) 5.90 .80 (-04) | 3.00
96 .52 (-08)] 5.81 .12 (=07) 5.14 46 (-04) | 3.00

: . : 6
Table 6.6: Error in SO(AlZ,N) --12 = B,
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Note that the Lz—norm of the error for the spaces SS(AB N) and
2’
Sg(AB N) appears to be smaller than that for the more heavily graded
2,
) and S4(A ), while the S-norm of the error is larger.
83,N 0 83,N
Moreover, it appears that the rate of convergence in the S-norm has been

spaces SS(A

reduced from O(N-(k_l)) to O(N—k/z). A slight modification of the proof
of Theorem 6.1 shows that, in general, using B > 82 yields this rate of

convergence in the S-norm.

In order to illustrate the result of Theorem 6.2, we computed the
Lz-projections of u on several spline subspaces using only the grading
required in that theorem, B = 83. The results are given in Tables

6.7 - 6.9, The data confirm that, with B = B the Lz-projection is

2

3’
-norm); it also seems that the rate of

convergence in the S-norm is only 1/4 that of the Lz—rate. Moreover,

kth—order accurate (in the L

the convergence at the knots is only at 1/2 the Lz—rate ~- the opposite

of superconvergence!
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N eyl g RATE HeNIIm,A RATE ey lig RATE
8 .40 (-02) .82 (-02) .19 (+00)
16 .47 (<03) | 3.09 .29 (~02) 1.51 .10 (+00) 0.84
24 .14 (~03) 3.02 .16 (-02) 1.50 .76 (-01) | 0.77
32 .58 (=04) | 3.00 .10 (-02) 1.50 .61 (-01) | 0.76
48 .17 (=04) | 2.99 .55 (-03) 1.50 .45 (-01) | 0.75
Table 6.7: Error in L2-projection on Sg(A3 N) -3 = B
N lleyllg RATE  lleylle ,  RAIE leyllg  RATE
8 .35 (-03) .27 (=02) .99 (-01)
16 41 (-04) | 3.10 .67 (-03) 2.04 .49 (-01) 1.00
24 .76 (<05) | 4.13 .29 (-03) 2.00 .33 (-01) 1.00
32 .24 (=05) | 4.01 .16 (~-03) 2.00 .24 (-01) 1.00
48 .50 (-06)| 3.84 .74 (~04) 2.00 .17 (-01) 1.00
. . 2__ . . 4
Table 6.8: Error in L"-projection on SO(AA,N) -- 4 = By
N lleg Il g RATE ey ll w4 RATE ey Il g RATE
8 .17 (=03) .85 (-03) .58 (-01)
16 .60 (-05) | 4.81 .10 (=03) 2,98 .20 (-01) 1.49
24 .67 (=06) | 5.42 .32 (-04) 2.99 .11 (~01) 1.49
32 .13 (~06) | 5.67 .13 (~04) 3.00 .73 (~02) 1.50
48 .13 (-07)| 5.67 .40 (=05) 3.00 J40 (=02) 1.50
Table 6.9: Error in Lz-projection on SS(A6,N) -— 6 =B
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6.5 A Comment on the Computational Complexity of the Algorithm

Mesh grading, in effect, puts more of the computational effort into
the region where u is badly behaved. The price one pays is the
corresponding decrease in effort (and accuracy) elsewhere. As shown in
Section 4.3, the largest interval in a B-graded mesh is approximately
B times the size of the corresponding interval in a uniform mesh.
Thus, to obtain the same accuracy as we obtain in a nonsingular problem
using a uniform mesh, we might have to take a mesh with 8 times as
many intervals. The computational complexity of the numerical
procedures used in the RRG method is O(N) for a mesh with N intervals.
(To set up the linear system of (2.10) takes O(k3) work in each
subinterval. The order of the system, which is equal to the dimension
of the spline subspace, grows linearly with N; since it is banded with
bandwidth independent of N, its solution requires O(N) work and
storage.) Therefore, this method requires on the order of B times as

much work for the same accuracy as in the nonsingular case.



CHAPTER 7

WEIGHTED SPLINES

7.1 Introduction

In this chapter we consider approximations of the form x_os(x),
where s(x) is a smooth function vanishing at 0 and l. When s(x) is a
piecewise polynomial, we cail these functions "weighted splines'. We
know, from Theorem 5.1, that u = xfov, where v is smooth. Therefore, we
expect that x °% will be a good approximation to u when ¥V is a good

spline approximation to v.

In Section 7.2, we define weighted splines and obtain a useful
bound on the S-norm of a function w, vanishing at O, in terms of the
L®-norm of D(xcw). In Section 7.3, we prove error bounds for a weighted
spline approximation scheme on a weakly B-graded mesh (1 < 8 < 2) and
use this result to obtain optimal-order error bounds for the RRG
approximation. As the approximation ¥ we use the quasiinterpolant of v.
In contrast to the B-grading used in Chapter 6, here B remains bounded

above for fixed k and all 0 < 0 < 1. Moreover, in Chapter 6, for fixed

- 84 -
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g, B+» as k » », but in this chapter, for fixed 0, B + 1 as k * =,

Numerical results are included in Section 7.4.

7.2 Weighted Spline Subspaces

Definition 7.1. If 0 < 0 <1 and Sn is a space of functions defined on

I, let

S z ¢
= {x s s € Sn}'

If Sn is any of the spaces Sk(AgE) (respectively, S%(A,E), S%(A)), then

we call the elements of Sn g weighted splines" and denote the space
b

Sn g by WSk(o,Atg) (respectively, WS%(O,AlE), WS%(O,A)).
b

The following result will be used both to show that WS%(G,AlE) €S

and to prove error bounds in Section 7.3.

Lemma 7.1l. If w(x) = x_cv(x), 0 <x<1, wherev € Wl’°° and v(0) = 0,

then w € S and

Il < b2 ey

s©,b) = 0 for all 0 < b <1,

1L%(0,b)

Proof: By L’HBpital’s rule,

v (x)
o

lim w(x) = lim
x*+0 x*0 X
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= 1lim -inél*
x*0 o 4 -1
= 0
o_
since x Ly while Dv(x) is bounded. Thus, w(0) may be taken to be 0.
Furthermore,

b

2 - Y 2
‘IW!IS(O,b) ! x (DOw(x))” dx
b
=/ xc [x_ch - Ox-o X]Z dx
X
0
b 2 v 2,v.\2
= J x [(Dv)© = 20(=)Dv + 0°(=)"] dx.
x X
0
Since v(0) = 0 and v € Wl’ ,
v 1 J'X
l;| - EICE B 1oV ll =g py
for all 0 < b <1, so that
v ‘
Iz =,y < WDV py-
Therefore
2 2 2 L
o o .
lIWIIS(O,b) < (1 +20+ ) lleI|L (0,b) g X dx
_ 2 ,1-0 2. o
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1,

Corollary: If Sn c wO

(I), then Sn o < s.

bl
Proof: If v € wé’w and w = x—cv, then w(l) = vkl) = 0., The preceeding

°/2hy € L2(1).

lemma shows that w(0) = 0 and that x

In particular, WS%(O,ALE) < s.

7.3 Weighted Spline Approximation

Hm+2

According to Theorem 5.1, if u € S™ then v = xcu € . We now

. . ~ = .—0Oan . o = .
consider using U £ X V to approximate u, where ¥ = FAV is the

quasiinterpolant of v.

B
with 8 = B =—-2—5——Q—-5, and z

. m
Theorem 7.1: If u € ST, m > 0, A 4= 20-1) -

= A
B,N

is any incidence vector, then there exists an element U € WS%(U,ALE)

satisfying

(%= L o
o -allg < o ¥ e,

1

where % = min(k, m+2) and ¢, is independent of u and N.

1

o

Proof: Let ¥V = F,v. We have already shown that if 7. =0 and 7, = 1,

1 d

o~

then ¥ € SE(ALE)’ i.e., it satisfies the boundary conditions. Moreover,

by Lemma 3.3, if we also take T, = 0, then

D(v - v)lx=0 = 0.
This result enables us to use Lemma 2.1 to bound ||D(v - G)IILQ(I )
1

which, in turn, bounds |[lu - ﬁl'S(Il)'
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We first consider Il‘ By Theorem 5.1, v € Hm+2. Thus,

- 1,
v-9VeW” (I) and v(0) = 9(0) = 0. By Lemma 7.1,

w2 2 1-co -
Ilu-ulls(ll) < ¢ hy " DGy -9

2
L (Il)

Since the quasiinterpolant interpolates Dv at 0, Lemma 2.1 applies, and

1/2

ID(v = 9 I !

2 ~
Lw(Il) h ”D (V - V) “LZ(Il)'

Now using the error bound (3.9) for the quasiinterpolant and the bound

(4.9)(d),

1D = D lleg ) < K n’? je 1t ERTITIOR

IA

k c®)2 a7 otv g
1

(By assumption ¥ = min(k, m+2) > 2.) Thus,

a2 £-2.2  2(%=1)-0 L2
Ilu uIIS(Il) < (cOKC(B) )" h] IIDVIILz(el)
(7.1)
- =2 (%~1) L2
= ¢, N IIDVIle(el),
2-1)= - -1)- -2 (R
since hi( b-e N Blz(A-1)-01 _ N 2t 1).
In the other intervals, we have, by (3.9) and the bound (4.9)(d),
lu - a2 = Xt OE-? - 20 YD (v-9) + 2 @)% ax
S(Ii) I X X
i
< =0 Linew=-9) 112, . . + 20 |D(v-9) |l L fv-v
- Ti-1 L(Ii) Lz(Ii) i-1 Lz(Ii)
(7.2)

2

2 =2 o
+0 -
Ll T
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h h
2 -0 ,2(%1) i 2, i (2 L2
< K x.° n (1 + 20 + 07 ()1 lIp*vllf, .
=14 i-1 *i-1 L= (o)
But, by (409)(C)’
hy hy
. . M(AB’N) < c(8),
i-1 i-1
and by (4.9)(a),
2(2~1)(g-1)
XTUl hg(z—l) < g2(+=1) i . N~B 2 (4=1)-0]

22 (2=1) B0 N—B[Z(l—l)—o]
-2(%-1)

< 4'w

(Here we have used the identity

2(8-1)(2~1) = B(2(&=1)-0) - 2(2-1) + Bo = Bo
and the inequalities B0 < B < 2 and -T%T < 2.) Thus, by (7.2),
a2 L 2 . -2(%1) ) 2
lu-lgy, < f ®0+wmn? 125 2 o

N2 =1) ipty g 2

c 2 .
3 L (ei)

Together with (7.1) and Theorem 5.1 (again noting that at most 2k of the

91 overlap), this yields

N
~1 2 ~q 2
fu-3ll5 < Z Jlu-13d]
S i=1 S(;)
< max( 201 3ty 2
= maxlcy, c3) W . MR C
i=1 i
-2 (%=1) L .2
< 2k max(cz, cy) N Il D V||O
2 -2(2-1) -1, © 2
< ZkFl max(cz, cy) N D (x Du)i|0.

O
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We now obtain S-norm and Lz-norm error bounds for the RRG
approximation to u in weighted spline subspaces. The mild B-grading
required in Theorem 7.1 suffices for Lz—norm error bounds of optimal

order.

~ k
Theorem 7.2: Let U € WSO(U,AB N»>2) be the RRG approximation to the
bbb N> 2
generalized solution u of (4.1) - (4.2), where B = B, = 2(2=1) .4
b 2(0e-1) - o

is any incidence vector. If p, g, and f satisfy the hypotheses of

I

Theorem 5.2, then

~ A -( L=
lu=ally < gerw D e, ,
and
-3 2 gt
lu =3lly < (A2 N7 NEN,,,

where 2 = min(k, m+2).

Proof: The result follows from Theorem 7.1, the bounds on the solution

in terms of the data (Theorem 5.2), and Nitsche’s trick (Theorem 2.6).

O

7.4 Computational Considerations and Numerical Results

As a practical matter, the method of this chapter seems to be
sﬁperior to any other so far presented for solving (4.1) - (4.2),
including the techniques of Chapter 6. The rate of convergence in the
theory is optimal. No restriction need be made on the smoothness of the
piecewise polynomials, as is the case in Chapter 8. Furthermore, the

computationally convenient basis of B-splines, used for computing with
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the spline spaces Sk(ALE), may be modified in an obvious manner to
provide an equally attractive basis for WSk(o,AlE). Only the slightest
B-grading is required, and our numerical resultsAshow that the error
actually obtained is markedly less for the weighted spline spaces than
for those of Chapter 6. The reason for this was given in the note on

computational complexity in Section 6.5.

. . _ =0 .
Using the functions Bi = x Ni k(x) as a basis, we are faced with a
s

serious problem when forming the matrix A by numerical quadrature. The
integrands in the inner products of (2.10) have a singularity at the
origin of the form x-o. Using, say, Gaussian quadrature, the error due
to this singularity is so great (especially in the first interval) that
the rate of convergence of the RRG approximation is seriously affected.
Increasing the number of quadrature nodes in the interval does little
good (see Table 7.1 for an example using weighted cubic splines on the
problem of Section 6.4; the integrals were computed using a 5-point

Gaussian quadrature in each interval).



- 92 -

RATE

N lleglly  RAIE lex Nl e, legllg  RATE

8 .56 (-01) .13 (+00) .25 (+00)

16 .24 (=01) 1.24 .58 (-01) 1.16 .13 (+00) 0.96

24 .19 (-01) 0.54 .48 (=01) 0.46 .12 (+00) 0.25

32 .16 (~01) 0.54 42 (-01) 0.48 .11 (+00) 0.25

40 .14 (-01) 0.54 .38 (-01) 0.49 .10 (+00) 0.26
Table 7.1: Effect of Quadrature Error

) 4
Subspace: WSO(’S’A1.09,N) -— 1.09 = 84

The problem is solved by using quadrature formulae which are

adapted to the type of integrand encountered in forming A. Thus, we use

a formula which is exact for integrands of the form

-S
X

p(x)

for p a polynomial of maximum degree.

These "weighted Gaussian

quadrature formulae" may be computed using an algorithm of Golub and

Welsch [Gl].

Finding a k-point formula for the weight function w(x) on

the interval (a,b) requires that the first 2k+l moments of w,

be computed.

s

a

b

xJ w(x) dx,

0<ji<2k

The procedure then takes the Cholesky decomposition of a

k+l x k+l matrix and solves a k x k symmetric tridiagonal eigensystem.

The eigenvalues and the first components of the eigenvectors are the

nodes and weights of the quadrature rule.
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If used in every interval of the mesh, this procedure can increase
the cost of computing A. However, it suffices to chose a point X in
(0,1) (say X = .05) and use the special quadrature rules only in
intervals which intersect (0,Xx). Tables 7.2 - 7.4 illustrate the result

of this procedure, applied to the problem considered in Section 6.4.

Computations were again performed in double precision (54 binary
digits) on a PDP-10. The matrix A and vector f were computed using
k-1 - point Gaussian quadratures in each interval (weighted or
unweighted depending on whether or not the interval intersects (0,.05)).
The errors were computed using k+l - point quadratures, weighted in the
same intervals. Further explanation of notational details is given in

Section 6.4.
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N lIeNllo RATE IleNlIm,A RATE IleNllS RATE
8 .45 (=03) .91 (-03) .17 (-01)
16 .55 (=04) 3.03 .13 (-03) 2.84 42 (~02) 2,01
24 .16 (=04) 3.01 40 (-04) 2,86 .18 (-02) 2,00
32 .69 (=05) 3.00 .17 (-04) 2,87 .10 (-02) 2,00
40 .35 (=05) 3.00 .92 (-05) 2,87 .67 (~03) 2.00
. . 3

Table 7.2: Error in WSO(‘S’ Al.l4,N) —_—1.14 = 84
8 .27 (-04) «53 (~04) .10 (-02)
16 .16 (=05) 4,08 .32 (=05) 4,07 .13 (-03) 3.04
24 .31 (~06) 4.03 .62 (=06) 4,02 .37 (=04) 3.01
32 .97 (=07) 4.01 .20 (-06) 4,01 .16 (-04) 3.01
40 .40 (-07) 4,01 .80 (-07) 4,01 .80 (-05) 3.00

. . 4

Table 7.3: Error in WSO(‘S’ Al.09,N) --1.09 = 8,
N ey Il g RATE eyl e, a RATE eyl g RATE
8 .11 (-06) .21 (=06) .42 (=05)
16 .15 (-08) 6.12 .30 (-08) 6.09 .12 (-06) 5.09
24 .13 (<09) 6.05 .26 (=09) 6.03 .16 (-07) 5.03
32 .24 (-10) 6.02 .47 (-10) 6.01 .38 (-08) 5.02
40 .62 (-11) 6.00 .12 (=10) 5.95 .12 (-08) 5.01

Table 7.4: Error in WSS(.S, Al.OS,N) - 1,05 = 84




CHAPTER 8

GENERALIZED L-SPLINES

8.1 Introduction

L-splines, functions which are elements of the null space of a
differential operator L*L in each interval of a partition 4, are a
natural generalization of polynomial splines (see [$5]). L-spline
subspaces, with L = Yp(x)Du, were used in the RRG method for the
singular problem (4.1) - (4.2) by Ciarlet, Natterer, and Varga [Cl], who
obtained L®-norm error bounds which, for a uniform mesh, are of order
hz-o. They noted that a suitably chosen non-uniform mesh might improve
the rate of convergence; 1in fact, their approximation scheme is

2

second-order accurate if a B-graded mesh is used with B = 5= (This is

a special case of the main result of this chapter.)

L-splines were subsequently generalized by Crouzeix and Thomas
[C4]., Given a partition A, they considered functions which, in the
interval Ii’ are mapped by the operator L*L into a predetermined
finite-~dimensional space of functions Pi' In general, this space can

differ from one interval to another; however, for the purpose of

- 95 -
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obtaining approximate solutions of a differential equation in which the
right-hand side is smooth, it is no handicap to assume that Pi is the
space of polynomials of some given degree. Taking L = /p(X)Du and P,
the space of polynomials of degree < k-2, Crouzeix and Thomas showed
that the L2—norm of the error in the RRG approximation to the solution

k_0). They considered only co subspaces,

of (4.1) - (4.2) was O(h
however, and their results do not apply to smoother generalized

L-splines.

In this chapter, we redevelop Crouzeix and Thomas’s theory.
Because‘we consider only problems of the form (4.1) - (4.2), our
presentation is more elementary; moreover, we have simplified the
proofs of Lemmas 8.1 and 8.2. We then show that, using a g-graded mesh

with B =.23_, the error is of order NK,.
~o

8.2 Generalized L-spline Approximation in s™

Let A be a given partition of I, and let
SO(Ii) 2 {s €5 | s(xy.1) = s(x3) =03}, 1 <ic<N.

Note that SO(Ii) is a closed subspace of S. The following result is an

analogue of the Rayleigh-Ritz inequality (cf. Theorem 2.1) and is

similar to Lemma 5 of [C4&].

Lemma 8.1: For all v € SO(Ii)’

X{ Xq
(8.1) ;ovPax < ocap? g x%(Dv)? dx,

i1 Xi-1
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where
5
7 o i>1,
(8.2) c(1,)2 = T
i
4xf'° i=1.

Proof: For i > 1, by the Rayleigh-Ritz inequality,

Xi Xi
s V2 ax < w2 h% 5 ()% dx
®i-1 *i-1
Xy
< 12 h2x% 5 x°0v)2 dx.
- i Ti-1
X,
i-1

For i = 1, an integration by parts shows that

X1 X1 X1
v2 dx = xv2 - 2 5 xv(x)Dv(x) dx.
0 0

o

Since v(0) V(Xl) = 0, the integrated term vanishes. Therefore, by the
Cauchy-Schwarz inequality,

X] Tl X]

S v2 dx < 2 S v2 dx 1/2 S (xDv)2 dx 1/2.

0 0 0

Cancelling the common factor ||V||Lz(Il) and squaring the resulting

inequality yields

X1 X1
;oviax < 45 x20v)? ax
0 0
X
< 4xf'° ! x°(Dv)2 dx.
0
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Let k be an integer, k > 2. A g-polynomial (of degree k-=1) is a

function of the form

1-0

-] -0
o Feyx e HoC k-1

k-1% '

Note that s is a og-polynomial of degree k-1 if and only if D(x%Ds) is a
polynomial of degree k-3 (the O polynomial when k = 2). We denote by

P(o,k) the space of og-polynomials of degree k-l.

Definition 8.1: A function s(x) € S is said to be a (o,k)-spline with

respect to A if it coincides with a o-polynomial of degree k-1 in each

interval of A. We denote the set of all (o,k)-splines with respect to A

k
by S
y 0(A).

. k
Clearly, if s € SU(A), then there exist polynomials pj, ..., py Of

degree k=3 such that D(x°Ds) = P; in I

i» 1 <1 <N. Integrating by

parts, we have that

Xji X4
S x%DsDv dx = f -D(x°Ds)v dx
*i-1 ¥i-1
(8.3)
Xi
ii-l P;v dx, for all v € 5p(I3), 1 <1i<N.

The converse also holds. Let S(i) denote the restriction of s to Ii‘
If s € S0 satisfies (8.3), then D(xUDs(i)) = py (i.e., S (1) is a

. . : 2
o-polynomial) in each interval Ii’ since Sg(I;) is dense in L (Ii)'
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It happens that the orthogonal projection of a function u on Si(A)

with respect to ("')S(I ) interpolates u at the knots. This result is
i

due to Crouzeix and Thomas [C4].

Lemma 8.2: Given u € S, there exists 1 ¢ SE(A) satisfying

(8.4) ﬁ(xi) =u(x)), 0<1igN

and

(8.5) lu - G = inf fu - sl , l1<i<n.
8(13) seP(g,k) S(Iy) - =

0
Proof: Suppose s € S (Ii) = {(s €8 | D(xoDs(i)) € Lz(Ii)} is orthogonal

to the subspace SO(Ii) with respect to the inner product (.,.)S(Ii),

i.e.,

s x°DvDs dx = 0 for all v ¢ SO(Ii),

Clearly, s satisfies (8.3) with p; = 0. Therefore, S(1) is a

og-polynomial: s € P(o,2) < P(o;k).

(1)
We denote by Xl the space of functions orthogonal (with respect to

("')S(I )) to the set X. We have just shown that
i

s € s°(1)) nspaph = S(1) € P(0,2) € P(0,k),
or

0 1
(s (Ii) N §(1;) ) € P(g,k).

1
Thus P(g,k) < (SO(Ii) n SO(Ii)l)l- Moreover, since SO(Ii) is dense in

S(Ii) (SO(Ii) n SO(Ii)l) is dense in SO(Ii)l; thus, anything

b

orthogonal to (SO(Ii) n SO(Ii)l) is orthogonal to SO(Ii)l' Hence,
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1 11l
since 5,(I;) is a closed subpsace (see Schecter [S1]).

Now let t be the orthogonal projection of u on P(o,k). Since
u-+te P(o,k)l, it follows that u -~ t ¢ SO(Ii); i.e., t interpolates
u. It is now clear how to construct . We simply piece together the
best o-polynomial approximations in each interval; the resulting
function clearly satisfies (8.4) and (8.5), is continuous and satisfies

the boundary conditions.

We now obtain error bounds for u - 4. This result and its

corollary are due to Crouzeix and Thomas [C4].

[=]

Lemma 8.3: Let u € S0 and

€ S1:(A) be the approximation defined in

Lemma 8.2. Then for all 1 < i <N,

(8.6) lu = Gllgq y < o inf  IDGDW = plly
i peP i)
k-2
(8.7) lu -al < (c()? inf  [ID(x%u) - p I .
LAy = 7 pep L3I

k=2

Proof: Let p € Pk—2 be arbitrary. Let vy € P(9,k) be the unique

solution to the boundary-value problem

¢
D(xDv) = p, X, ; <x< x4,

V(xi—l) = u(xi_l), v(xi) = u(xi).
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Obviously u - Vo € So(I). . Integrating by parts, using the boundary

conditions on Vp, the Cauchy-Schwarz inequality, and (8.1),

2 _ o o
lhu - vP”S(Ii) =/ - Vp)[D(x Du) - pl dx

£ el 106 Rl
i 1
[+
Thus
ho - vl <

o
c(1p) DD = pllyzq ;.
i
But G is the best approximation to u in the norm ||.|IS(I y» 8O
i

inf
pePk_2

lu - all

= fu = v_{
(1) p sy

in

C(Ii) inf ||D(x%Du) - p |l

pEP

Lz(Ii)’
k=2

which proves inequality (8.6). Since u - G € So(Ii), inequality (8.7)

follows from (8.1) and (8.6).

Corollary: Let u € S0 and G4 € SE(A) be the approximation defined in

Lemma 8.2. Then

(8.8) lu-8llg < max {C(I)} R(w)
1<i<N
(8.9) le -8ll, < max ()} RQW,

1<i<N



- 102 -

where

N 1/2
3 inf ||DGEDu) - p i

i=l p €Pk_2

(8.10) R(u)

22
L (Ii)

We now bound the quantities C(Ii) and R(u) in terms of N and the

Sobolev norms of D(xoDu).

Lemma 8.4: If A = AB N with B = 3%;, then the constants C(Ii) defined
t

in Lemma 8.1 satisfy

(8.11) c(I1) < 28, 1<ic<N.
Proof: By (8.2) (for i =1),
C(Il)2 = 4xf—° = B 7
By (8.2) (for i1 > 1) and (4.9)(a),
R
c(1,)” = =
1 zxo
T %
B S S Yo
- Tr2 (i—l)Bo
Since B(2-0) = 2, 2(B-1) = Bo, and Bo < B < 2,
2 .2(g=1) .
(i-1)
and
caay? <« Ley? o 4N-2, i> 2.
i - Tr2 =
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Lemma 8.5 (Ciarlet and Raviart [C2]): If u € S*, m > 0, then

2-2 2
(8.12) R(u) < h Il D l(xUDu)llo,

where R(u) is given by (8.10) and % £ min(mt2, k).

Corollary: Let u € S™ and G € Slé(AB N) be the approximation defined in
’

Lemma 8.2 with B =-§%E. Then
- £-2 ~(h- 2-

(8.13) lu-all, < 28 2 -1 IID l(x°Du)IIO
~ L~ - L-

(8.14) lu = a1, < 48' 2y nnlu%wnv

Proof: Use (8.1l1) and (8.12) to bound the right-hand sides of (8.8) and

(8.9).

Crouzeix and Thomas obtain error bounds for the RRG approximation @
to u in SE(A) by showing that G - U is small. We prefer, however, to

use Nitsche’s trick (Theorem 2.6).

k

Theorem 8.1: Let 4 € SU(AB N) be the RRG approximation to the

b

generalized solution u of (4.1) - (4.2), where B . If p, q, and f

2-0°
satisfy the hypotheses of Theorem 5.2, then
N A Lo —(8-1)
lu ~3lly < @x8 T)N £, _,
L2 2 -4
- U A
lu -8ll, < @ &% Jel,_,

where ¥ = min(m+2, k).



PART III

CHAPTER 9

SPHERICALLY SYMMETRIC PROBLEMS

9.1 Introduction

In Part III, we consider the numerical solution of spherically
symmetric, elliptic partial differential equations. There are numerous
applications in engineering and the sciences in which the solution of a
spherically symmetric, elliptic equation is desired (see the references
in [R3]). Since all the functions involved are spherically symmetric
(that is, they depend only on distance from the center of the domain),
the problem can be replaced by an equivalent two-point boundary value

problem.

When an n-dimensional problem is so simplified, the resulting

problem has the form
- (™ p (o)D) + lg(r)u = le(r), 0<r <1,
u(l) =0, Du(0) = 0 (alternatively, u(0) finite).

In marked contrast to the singular problems of Part II, the solution is

smooth despite the singularity in the equation. It should therefore be
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possible to approximate the solution accurately using the
Rayleigh-Ritz-Galerkin method with a piecewise polynomial subspace,
without any sort of mesh grading. In Chapter 10, we obtain
optimal-order error bounds, showing that this procedure is theoretically
well-founded. Instead of the usual one-dimensional Sobolev norms, we
use norms which are appropriate to the original n-dimensional setting of

the problem.

In 2 and 3 dimensions, Russell and Shampine [R3] proved error
bounds for approximation procedures specially designed to deal with the
apparent singularity at the origin. In particular, they treated
collocation in which the basis is augmented by singular basis functions,
RRG using singular patch bases (L-splines), and a finite-difference
scheme of Jamet [J1] designed to handle the singularity. Crouzeix and
Thomas [C4] and Reddien [Rl] considered this problem as part of a wider
class and obtained similar results for subspaces which include singular

basis functions.

Dupont and Wahlbin [D6] and Jesperson [J3] analyzed the RRG
procedure with piecewise polynomials, and obtained error bounds of
optimal order in the one-dimensional Sobolev norms. The import of their
results, together with those of these two chapters, is that no special
measures are required for this problem: the Rayleigh-Ritz—Galerkin
method using high-order piecewise polynomial spaces on a uniform mesh is

a highly effective numerical method.



- 106 -

Section 9.2 is a summary of the variational form of the problem and
the properties of its solutions. Bounds on solutions of Hermite
interpolation problems, required for the error bounds of Chapter 10, are

proved in Section 9.3.

9.2 Spherically Symmetric Elliptic Problems

Let B(b) be the open ball of radius b in Rp, i.e.,

B(b) {x e " | r(x) < b},

where r(x) = //xf + xg + ... + xi , and let B = B(l) be the open unit

ball. We say that a function V(x) defined on B is spherically symmetric

if it depends only on distance r(x) from the origin. If V is
spherically symmetric, we call the function v(r) such that

v(r(x)) = V(x) the radial part of V.

Consider the spherically symmetric, elliptic partial differential

equation
(9.1) - V(p(r(x))VU) + q(r(x))U0 = f£f(r(x)), x € B,
(9.2) U(x) = 0, x € 3B,

where p, q, and f are given functions defined on [0,1]. We assume that

a) p(r(x)) Cl(B),

m

(9.3) b) p(r(x))

|V

Ppin > 0 for all x € B,
c) q(r(x)) € c(B),

d) q(r(x)) >0 for all x € B.

|v
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Since the data of the problem are spherically symmetric, an obvious
symmetry argument shows that U is too. (A change in coordinate systems
by rotation around any axis passing through the origin leaves the

problem, and hence its solution, unchanged.)

By transforming equation (9.l1) to spherical coordinates and setting
\
to 0 all partial derivatives with respect to angle, one obtains a

singular two-point boundary value problem for the radial part u of U:
n-1 n-1 n-1

(9.4) - D(r “p(r)Du) + r ‘q(r)u=r f(r), 0<r«<l,

(9.5) u(l) = 0, Du(0) =0 (alternatively, u(0) finite).

When n = 3, the change of variables v = xu results in the nonsingular

problem
- Dzv(r) + q(r)v(r) = rf(r), 0<r«l,
v(0) = v(1) = 0.
Unfortunately, we know of no such trick when n # 3!
Another one-dimensional analogue of (9.1) - (9.2) is
(9.47) = DCIxI™p(IxDDw) + =™ Lq(lxl)u = [xI™e(IxD), -1 < x <1,
(9.5%) u(-=1) = u(l) = 0.

The relation to (9.4) - (9.5) is that the solution u(r) of the former

problem is the restriction to [0,1] of the solution of the latter.
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Suppose that G is spherically symmetric and that g is the radial
part of G. Using an (r,g) coordinate system in which r = r(x) is given

by (9.1) and § represents an n-1 dimensional vector of angles, we have

b
I gax = 4 5 ™ ler,e) dedr
B(b) 0 9B
b n-1
= Hn J r g(r) dr,
0

where I is the area of the unit hypersphere in R" [M3]. This
n

observation motivates the following definition.

Definition 9.1: For real-valued functions f,g defined on (0,b), let

b
(f’g)B(b) = 6 rn_lf(r)g(r) dr
and
- 1/2

Definition 9.2: Let J"(b) (respectively, JIg(b)) denote the closure of

the C® functions with all odd derivatives vanishing at 0 (respectively,
the C® functions which vanish in a neighborhood of b with all odd

derivatives vanishing at 0) with respect to the norm

9 1/2

e | : 2o |

m
m,B(b) .

D3t ||
j=0

Note that J™(b) (respectively, Jg(b)) may be identified with the
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restriction of the spherically symmetric functions in H(B(b))
(respectively, HE(B(b)) to any line segment from the origin to the

boundary of B(b).

Our assumptions on p and q imply that there exist positive

constants A and A such that

2 2 2 2
(9.6) by |]Du|lB(b). < a(u,u)B(b) < A IlDuIlB(b)
for all u € Jl(b), where
b n-1
a(u’v)B(b) = J r " [pDuDv + quv] dr.
0

The results of Sections 2.2 and 2.3 apply to (9.4) - (9.5). JO is the

underlying Hilbert space, and Jé the space S of admissible functions,

with norm Ilv]IS = IIDVIIB.

Our approximation-theoretic results in the spaces J® will rely on

the following basic result.

Lemma 9.1 (Friedrich’s inequality [M3]): 1If v € Jé(b), then

(9.7) v il < b flov ]l

B(b) B(b)*

Inequalities (9.6) and (9.7) show that the bilinear form a( s )B is

positive definite over the space Jl Thus, for each f € JO, there

0

. . 1
exists a unique u € J

0 the generalized solution of (9.4) - (9.5), such

that

a(u,V)B = (f,v)B’ for all v € Jé.



- 110 -

Regularity results for the problem (9.1) - (9.2) are well-known,

and corresponding results for (9.4) - (9.5) follow immediately.

Lemma 9.2 [F3]: There exists a constant I such that for all m > 2, if

f e Jnr2’ then the generalized solution u € J™ and

(9.8) Ilullm’B < v el 5 -

We now state a variant of the Sobolev lemma. Let

my = my(n) = L—‘zl-l + 1.

Lemma 9.3 [F3]: There exists a positive constant Cn such that,>if

u e Jm(b), m Z_mo, then

m

0 . .
(9.9) (w©n* < ¢z & p?I™ pluy
3=0

2
B(b)*

When bounds on the value at a point (other than 0) of a function in
Jm(b) are desired, the Sobolev lemma is not the best result. The
following stronger result shows that Jm(b) behaves more like a
one~dimensional Sobolev space. Let m be the largest odd integer less

than or equal to m - mo, i.e.,

m-m, -1 (m - o, even)

m - m (m - m odd)
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Lemma 9.4: If v € Jm(b) then, for all 0 < a < b,
a) v € H%a,b);

b) v e c®™liab;

i 2
c) “D v “ L°°(a,b)
2 1l-n -1 i 2 j+l 2
< - —
s Cl a [ (b-a) [ID V”B(b) + (b a) [ID V“B(b)]
0<j<ml;
d) v has m = m, continuous derivatives at 0, and its odd

0

derivatives vanish there, i.e.,
(9.10) Dv(0) =0, i=1, 3, ¢o., m
e) if in addition, v € J%, then

plv(b) =0, 0<i< ml.

Proof: First, note that

m
2 n-1 i 2
lell gy 2 2 7 x 0@ dx
i=0 a
m b ,
> a1 o5 oig? ax
i=0 a
-1 2
= a7 e’ .
H (a,b)

Thus, if a sequence of functions {v } converges to v with respect to the
n

m . . m . . .

J7(b)-norm, it also converges in the H (a,b)-norm. This immediately

implies (a). Next, (b) follows from (a) by the one-dimensional Sobolev
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inequality (Theorem 2.3). Moreover,

Il iy im(a,b)
< e v+ e 0TI e )
_<_ Ci al—n [(b—a)—l ” Djv “ ;(b) + (b—a) " Dj+1V ” g(b)] ,

which proves (c).

‘By the inequality (9.9), convergence in the J®(b)-norm implies
convergence at zero of derivatives up to order m - mye Since v is the
limit in this norm of a sequence of smooth function satisfying (9.10),

v does too, proving (d). Finally, (e) follows by the same argument,

using part (c) rather than Lemma 9.3.

9.3 On Hermite Interpolation

In Chapter 10, we will obtain an error bound involving the

(spherical) norms of a polynomial characterized by interpolation
conditions on the polynomial and its derivatives at two points. In this

section we consider bounds on the solutions of such problems.

Let k be a positive integer, e be integers such that

0’ €1

e, + e = k, and b > 0 be given. The two-point Hermite interpolation

problem is to determine a polynomial pk(x) of degree k-1 such that
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Dka(O) = yéJ), 0<j< eg>
(9.11)

j (3) .
D-p, (b) =y;7", 0<j<e.

(3)

It is known that (9.11) has a unique solution for arbitrary data yi

[s2].

We shall need bounds on the norm of the solution of an Hermite

interpolation problem in terms of the size of the data.

Lemma 9.5: There exists a constant Ce = C(eo,el) independent of b and

yij) such that
0 1 e.~1
< c, pZ 78 5 g I Iy§3)|
i=0 j=0

L
CREIN | S

for all 0 < ¢ < k, where pk is the polynomial which satisfies (9.11)

with data yij).
. (3) _ .3 (3 .

Proof: Let 2,70 = b vy and 9 be the polynomial of degree k-1 such
that

i _ D .

D qk(O) z0 . 0<j«< >
(9.13)

J N G D) .

D qk(l) =z;7, 0<jcx e.

X - - i

Clearly, pk(x) qk(b)' The coefficients y = (Yi) of 9 satisfy

My = z,

where M = M(el,ez) is a nonsingular k x k matrix and z is the data of

(9.13), in some given order [S2]. Hence,
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Nyl < Ity fizl
L% = 1 Hzly

where ]I_EIIl =X lzil is the usual vector l-norm and HM—lll1 the
i
corresponding matrix norm. Therefore

2 _ 2 X
k-1 L, X, 1
= ” lio Yi D ((1_)-) ) ”B(b)
k-1 g, x. 1
L 'Z IYil D ((g) )”B(b)
i=0
b -1 e s
< iy ll; max L0 (- bt kT2 ax |12
2<i<k { O j=0
n
= cvZ P i,
n
<c ity w2 iz,

where C depends only on k, n, and &.



CHAPTER 10

SPHERICAL SPLINE APPROXIMATION THEORY

10.1 Introduction

If V € Hm(B) is a spherically symmetric function, we propose to
approximate it with smooth spherically symmetric functions. Let v ¢ J
be the radial part of V and ¥V € J™ be a spline approximation to v; we

take as our approximation to V the function V whose radial part is ¥.

As a measure of the error DJ(V - V), we use the norm IIDj(v - V)||B(b).

Spline subpaces SSk(Atg) of J™ and SSE(ALE) of J® n Jé are defined
in Section 10.2. First, we construct spline spaces ESk(A’tE’) and
ES%(A'xE') whose elements are even functions on (;1,1), requiring
sufficient smoothness at 0 for odd derivatives of the appropriate orders
to vanish. The restriction to [0,1] of s € ESk(A',E') is an element of
J™. we then define the space of spherically symmetric splines,

SSk(AxE), to be the space of all such functions.

Section 10.3 deals with approximation by spherical splines. As the
approximation ¥, we use a quasiinterpolant FAV' In Theorem 10.1, we

show that for v € J&,
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Iy - m-j o
I3 - F iy < ¢ ™3 vy

for a partition with mesh-length h, where the constant C is independent
of v and h. We obtain similar error bounds for the Rayleigh-Ritz-
Galerkin approximation in Theorem 10.2. Numerical results are included

in Section 10.4.

10.2 Spline Subspaces of J"

We shall construct a space of splines SSk(A,E) c Jm (respectively,

1

0). In view of Lemma 9.4, we must force the

sS(8,2) € 3%y
derivatives of orders 1, 3, ..., m of such splines to vanish at 0. Let

k be a positive integer, A a partition of [0,1], and z an incidence

vector. Define the symmetric partition o” by

AT:i=1l = x <

N X_y4l < ees <Xy = 0 < X < eee < %y = 1,

§
)
a]
)
»
|
"
|
>

», 1 <i < N; and the symmetric incidence vector z” by

z (Z-N+1’ ees Zgs eees zN—l)’

where z |, z
-1

i 1 <i<N-l (z0 is as yet arbitrary). The resulting

knot vector t(A°,z”) is also symmetric.

Definition 10.1l: Let ESk(A',E') (respectively, ES%(A'tE')) be the space

of even spline functions of order k with respect to A’ and z’
(respectively, the even spline functions of order k with respect to A’

and z’ which vanish at -1 and 1). Let SSk(A,E) (respectively, SS%(A,Z))
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be the space of functions on [0,1] which coincide with the restriction

k ’ ’ : ’ ’
to [0,1] of an element of ES (A",z°) (respectively, ESIS(A »27)) .

O

To motivate what follows, we shall outline the proof of error
bounds given in Section 10.3. Let {Tj} be quasiinterpolation points for
t(r”,2°) which, like A’ and z’, are symmetric about 0; by the symmetry
of t(A",2°) and {Tj}, the quasiinterpolant maps even functions into even
functions, i.e., into ESk(A’,g'). We shall also require that the Tj be
bounded away from 0, because we want to use Lemma 9.4 (part (c)) to
bound the value of a function at Tj' To enforce both this requirement

and symmetry, z . must be chosen so that the dimension of Sk(A',g')

0

(which is the number of quasiinterpolation points) is even.

Another constraint on z0 is that we shall not be able to prove

error bounds for even splines which are forced to be too smooth at O.

In particular, we want z,. to be sufficiently large so that elements of

0

ESk(A’,g’) aren’t required to have m + 1 continuous derivatives at 0.

Let
max(k=l-m, 1) (k odd)
z0 = _ .
max(k=l-m, 2) (k even)
Then
i) 1<z <k-l,-

0

ii) the dimension of Sk(A’zE’) is an even number,
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iii) elements of Sk(A',gf) and ESk(A',E') are not required

to have a continuous derivative of order m + 1.

Indeed, (i) is obvious. For (ii), note that

K N-1
d = dim(s%(a’,z°)) = k+ I =z,
z . i
i=1-N
N-1
= k + zO +2 I z,3
i=1
d is even since k + z, is even. Finally, the elements of Sk(A',E') and
ESk(A'tE') have
‘min(ﬁ, k-3) (k even)
k -1- z, =

min(a, k-2) (k odd)
< m
continuous derivatives at 0, which proves (iii).

Because the partition t(A”,z”) is symmetric, the B-spline basis

functions have the symmetry property

(10.1) N, (-x)

i,k = Nd+l—i,k(x)’ -1 <x<1, 1<i<d.

The functions

B N

+
5 5,0 T Nar1-g,k0

ol

1<3X

are a basis for ESk(A'xE'), and their restrictions to [0,1l] are a basis

for SSk(AZE). (Bl must be deleted from bases for ESE(A'aE') and

SS%(ALE).) Clearly, SS%(AtE) is a subspace of J%n Jé.
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10.3 Error Bounds for the Quasiinterpolant

We first consider approximation by polynomials in a neighborhood of

the origin.

Lemma 10.1: If v € Jm(b), m > 1, then there exists a polynomial Tbv of

degree m~1 satisfying

(10.2) Dl -1 Wl < BTty

B(b)’
Proof: According to Lemma 9.4, v has m~1 continuous derivatives at b.

Let Tbv be the first m terms of the Taylor series for v at b, i.e.,

m-1
D “v(b) m-1
T TP

Tbv(x) = v(b) + Dv(b)(x-b) + . . . +
We prove (10.2) inductively, starting with the case j = m and proceeding
downwards. For j = m, (10.2) holds trivially. By the interpolation
conditions which define T v, Dj(v - Tbv) € Jé(b) for 0 < j < m.

b
Therefore, by (9.7) and the inductive hypothesis,

: j+1
ol (v - 1,9 |l b D (v - T |l

IA

B(b) B(b)

b (™ D)yl )

In

B(b)]‘

O
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Lemma 10.2: If v € Jm(b), m > 0, then there exists a polynomial Sbv of

degree m-1 such that

(10.3) 103 (v = s,.v) |l < o ™ Dl

B(b) 1 B(b)

(where ¢, is independent of v and b), and the odd derivatives up to

1

order m of Sbv vanish at zero, i.e.,

(10. 4) DiSbv(O) =0, i=1, 3, ..., m.

Proof: If m < mys then (10.4) is vacuous; choosing Sbv = Tbv gives the

desired result. Now assume that m Z-mo. According to Lemma 9.4, v has

m-1 continuous derivatives at b and m-m. continuous derivatives at O.

0
Let Sbv be defined by the my = 1 conditions
pis v(b) = piv(b), i=0, 1, coo, m -2,
b 0
and the m - m.0 + 1 conditions
. i ‘
(10.5) Dlsbv(O) =Dv(0), 1=0,1,2, ..., m~ m.

Sbv is well-defined since it is the solution of an Hermite interpolation

problem. Moreover, (10.4) is satisfied, because by Lemma 9.4 part (d),

the odd derivatives up to order m of v vanish at 0.

We shall bound lIDj(v - Sbv)ll by showing that

B(b)
j - . . j _
ID (Tbv Sbv)llB(b) is of the same size as || D (v Tbv)IIB(b). But
if E = - h
i bv Tbv Sbv, then
(10.6) DlEbv(b) =0, 1=0,1, ..o, my -2,
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and by the conditions (10.5),
(10.7) DiEbv(O) - Di(Tbv -w©), i=0,1,2 ..., n-m,.

Since E v solves the Hermite interpolation problem (10.6) - (10.7),

b
bounds on Ebv follow from Lemma 9.5. We have
m-m,
i < (n/2)-j+i i _
D E v [|B(b) < c iio b D™ (v - T,V (O],

and by Sobolev’s lemma and (10.2),

DI v | < c m;mo p(n/2)-3+1 (ci I:Ob“'“ 0¥t (vt v) | 2 1/2
b B(b) — “e 1=0 \ n 20 b B(b)
-y
<o, p pWDTIL | g2 gy 2Dy 2 L2
€ i=0 \ 7
= C_C_(mmy+l)/ (m+1) p=d I D"v IIB(b)-
0

We require the following bounds on weighted norms of derivatives of

the B-splines.

Lemma 10.3: For i > 0 and each integer & > O,

n/2
(n~1)/2 _2 i
”x D N. ” 2 < c s

3.k TLA(I)) 2 2

i
where c2 depends only on n and &.

Proof: By Lemma 3.1,
*q
(n-1)/2 % 2 _ n-1, % 2
I x D Nj,kl!Lz(Ii) i X ® Nj,k(x)) dx



Xn
1
X.n
< (Blh;l)z — .

We now show that to every v € J® n Jé there corresponds an

mth—order accurate approximation ¥ in SS%(A,Z), We first extend v to

x € (-1,1) by setting
v(-x) = v(x), 0 < x< 1.

Next, we show that the quasiinterpolant FA'V € ES%(A'lg') is mth—order
accurate; its restriction to [0,1] will be the desired approximation in

k
SSO(AxE)'

Theorem 10.1l: There exists a positive constant cy
local mesh ratio M(a) such that, if v ¢ J® n Jé, m < k, then there

which depends on the

o~

exists V € SS%(ALE) such that

I v -9l < cgn™"

T
5 1™ Il

for all 0 < & < m.
Proof: Let {Tj} be quasiinterpolation points for t(4”,z”) satisfying

a) T, =

3T e 123

(10.8) b) T

1 -1 and Td = 1;

c) Ti £ (x_l,xl).
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The requirements (10.8)(a) and (10.8)(c) are compatible since the

number d of basis functions is even. Let ¥ =F ,v =T

A’ oV be the

LAY 4
A9£’

quasiinterpolant of v with points {Tj}. At this point, all we know is

that FA,V € Sk(A'XE').

By the symmetry of the function v, the partition t, and the

quasiinterpolation points {Tj},
A(v) =
]

Thus,

which shows that FA'V € ESk(A',g'). By (10.8)(b) and Lemma 3.3, FA,V
interpolates v at -1 and 1. Thus, FA,V € ESE(A'xE') and
- = k
v = FA’V € SSO(A,E)Q
[0,1]
We now consider error bounds. Since we are concerned with

restrictions to [0,1], we need to bound

X

i
-1 2
r ot - FAV))Z dx, 1 <i<N.

i,%
i-1

We consider two separate cases, depending on whether or not

6 N (- =
i ( Xl,xl) a'
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Let i be such that ei n (-xl,xl) # ¢. Then O < i < k. Let b be

the smallest number such that @i € [~b,b] and b > X, Then
(10.9) h, < b < x_, , < @k-Dh.
Moreover,
(10.10) For all 1 < j < i,
2k-1
I h
b oa=t
h, -—
J min hi
1A<i
2k-1 .
< I (M@))
=1
k
cowmen®a
- M )-1 - 4°
(see Figures 10.1 and 3.2).
0, ’
i
I,
i
% |
b ¥i-1 X5 b

Figure 10.1: The neighborhood (-b,b) of I

Let Sbv be the local polynomial approximation to v given by Lemma

10.2, and extend S, v to (-b,b) by reflection about the y-axis:

b

- 3 < .
5, (-%) = 8, (x), 0<x<b
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Then

1) S, v is a polynomial of degree m-1 in each of the

intervals (-b,0) and (0,b);
ii) Sbv is even;

iii) Sbv has m + 1 continuous derivatives at 0.

For (iii), note that the (one-sided) even derivatives agree at 0 since

Sbv is symmetric about the y-axis, while the odd derivatives of

appropriate orders all vanish at 0 by (10.4).

{

Let Sbv be defined for x £ (-b,b) by extending each of its two

polynomial pieces. Clearly S v ¢ ESk(A',E'). Let Ebv =v - Sbv. Since

b

the quasiinterpolant reproduces elements of ESk(A'xg'),

_ (n-1)/2 1
Ei,ﬂ, = ”X D (V = FAIV) "Lz(Ii)
(n=1)/2 % (n-1)/2 & -
< =z D Ebvlle(Ii) + {Ix D (Sbv FA'V)lle(Ii)
(10.11)
(n-1)/2 2 (n=1)/2 _g
Il x D Ebvlle(Ii) + |Ix D FA,EbV‘ILz(Ii)
L (n~1)/2 _%

We want to get bounds like those of (10.3) for Ei . In view of

(n-1)/2 p*

(10.11), we only need to bound |[[x FA,Ebvlle(Ii). By (3.4)

and the triangle inequality,
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~-1)/2 % (n-1)/2 _%
lx 2 DFLEVIL 2 < oz AEW] Nx DN, ¢ liapq e
b” L) jev, b Jok "L

By Lemma 3.4, (10.8)(c), and (10.9),

A (E < z w, Dr T,
Pyl < By | DR
a)) nt |IDF ®
< COGM) B IR e,
A r r [<~] .
S COOHY) BT DRV o,
1 1 S
Since b > xz, YB~:~;IT_§-H;_§'S—. Thus, by Lemma 9.4, Lemma 10.2, and
(10.10),
r 2 1-n -1 T 2
Ixj(Ebv)l < CMA)) BT | cp ok [=x) T DRV LG
r+l1 2 1/2
+ (b xl)llD EbleB(b)]
T (l-n)/2 .m-r-(1/2) m
< C(k,M(A)) b Clclc4 x) b [ID VllB(b)'

r
Wh < i =
(When Tj 0, we use the fact that Ebv is even, whence |D Ebv(rj)l

lDrEbv(-rj)l.) Thus, by (10.10),

m

4

iA

Ilj(Ebv)[ C(k,M(8))Cic; ¢

e, b (0/2) poy

5 B(b) "

Together with (3.2)(b), Lemma 10.3, and (10.10),
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(n-1)/2 %
”X D FA'EbV "LZ(I.)
i
- L
< 2 opawl D2 0N e
jev, I i
(10.12)
m
b m
< keyeg R D™ I gy
i
£ m-2 m
<
< kc2c5c4 b D vllB(b)'

It follows from (10.11), (10.3), (10.12), and (10.9) that

L m~% m
E, < e, + kc2c5c4] b ID vl'B(b)

i,2 1

(10.13) @ k=1)"" 2™ %

In

2
[c1 + kc2c5c4] B(b)

-2
c. h™ 7 |ID™v |i

6 B(b)*

We now turn to the case that Gi n (—xl,xl) = ¢. Let xj be the
i
first knot to the left of Oi (see Figure 6.1). Note that

|©.] = length of ©, < 2kh
i i -

and

]

.__i__ < k‘
X, -
Iy

We have, using the error bounds of Theorem 3.1,
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2 -1 L 2
E vy (D*(v - F,.v))" dx

A
M
Mo

< ®@)™H2 anml p2h) o pne)2 g,
0,
1
< ®@)™H?2 (x/x, )L R2EH L0l g2 gy
B 3y )
i
L - 2 -
< ®@E)TH2 7 2@ poyemlpgngy 2 gy
0,
1

2
c

2(m=2%)
7 J

Ch
i

h xn—l(Dmv)2 dx.

Together with (10.13) and the usual observation that not more that

2k of the ei intersect at any point, we have

2 2
<
i, = %3

m 2

2 o ) 2,

N
L 2

i=1

2 2 2
where c3 = 2k max(c6, c7).

We now consider the error in the RRG approximation to the

generalized solution u of (9.4) - (9.5) and show that the RRG

. AP k . . .
approximation U in SSO(AzE) is an optimal-order approximation to u.
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Theorem 10.2: Let u be the generalized solution of (9.4) - (9.5). let

i ¢ SSE(AxE) be the RRG approximation to u. If f ¢ erz, then

~ A -1
D - < = h
ID(u - W) ”B < LT

5 el g

~ 2 .4
la =8l < (egn? n® HEll,_, 4

where ¢ = min(m, k).

Proof: By Lemma 9.2, the generalized solution u ¢ J q Jl The error

0
bounds then follow from the approximation results of Theorem 10.1, the

regularity theorem (Lemma 9.2), and Nitsche’s trick (Theorem 2.6).

10.4 Computational Aspects of the Method

Other authors who have treated the problem (9.4) - (9.5) have
imposed either no constraint, or, at most, the natural boundary
condition Du(0) = O on the space of approximate solutions ([R3], [J3],
[D6]1). The resulting approximation to u, while accurate, will not give
rise to a smooth function in the original domain B c R, By using the

space SS%(Atg), this smoothness is obtained.

An alternative is to deal with the problem (9.4°) - (9.57). 1In
that case, rather than enforcing the requirement of evenness on the

subspace, as we did with ESE(A'xE') (and SSE(A*E))’ we take the RRG
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approximation to u from the space S%(A'tg') . Since the basis functions
are no longer even, we would have to take the inner products over (-1,1)
instead of (0,1). Surprisingly, the restriction of this spline to [0,1]

is the RRG approximation to u from SS%(AxE)!

It suffices to show that the RRG approximation U € SE(A',Z') is

even. Clearly, by the symmetry property (10.l) of the B-splines,

d
i= I Eij k 1s even if the vector £ 1is symmetric about its middle,
j=1 ’
i.e.,
(10.14) £ = & 1<i<d.

h| d+l-j»

These coefficients are obtained as the solution of the linear system
Ax = f of (2.10). Because of the evenness of the data (functions p, q,
and f) and the basis functions, the matrix A will be symmetric about
the alternate diagonal and the vector f will be symmetric about its

middle. Thus, the coefficients of G will satisfy (10.14).

It might appear that by dealing with a two-point boundary value
problem on (-1,1) in which all the functions- involved are even, we would
do twice as much work as is necessary. This is incorrect. It does not
cost any more, in work and storage, to use the (-1,1) problem than the
(0,1) problem. Suppose, for example, that we use the space S%(A'xé') .
Because of the symmetries of the matrix A, only 1/4 of its elements need
to be compﬁted. Moreover, using an algorithm of Evans and Hatzopoulos

[E3] which takes advantage of symmetry about the alternate diagonal, the
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equations (2.10) can be solved in half the time required by the usual

band Cholesky algorithm.

The effect of numerical quadrature (used to compute the matrix A
and the right—hand'side vector f) on the accuracy of the RRG
approximation has been analyzed by Fix for nonsingular problems [Fl].

He showed that if the integrals are computed using composite Gaussian
quadrature with k-1 points in each interval, then the error due to the
quadrature is asymptotically as small as the discretization error. We
conjecture that this result applies to the singular problem

(9.4) - (9.5) and that k-1 points suffice., The numerical results of the

next section strongly support this viewpoint.

10.5 Numerical Results

In this section we present the results of a numerical experiment,
which illustrates the utility of the computational procedure analyzed in
the previous sections. Following Russell and Shampine [R3], we consider

the problem

- D(XzDu) + 4xPu = - 20x%
u(-1) = u(l) = 0
which has the solution u(x) = 2—5322—35 - 5.
X sinh 2

The RRG approximations to u from several of the ESE(A’,E') spaces

were computed, and the error tabulated below. The partition 4° of
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(-1,1) was uniform, with 2N subintervals and mesh-width h =.§. All

computations were performed in double precision on a PDP-10 (with 54
binary digits). The integrals required were computed using Gaussian
quadrature, with k-1 nodes in each interval of the mesh. We give the
norms lIeIIB and || De || 3, computed using k+l - point composite Gaussian
quadrature rules, and also the quantity ‘IeNllw,A' Fugther details
concerning notation and the observed rate of convergence (RATE, below)

are given in Section 6.4.

As predicted by the theory, the rate of convergence appears to be
hk for the error and hK-l for the derivative. Moreover, k-1 quadrature
nodes per interval are sufficient to maintain the predicted rate of

convergence.,



- 133 -

N lleg Ity RATE lleyll, , RATE liDey Il 3 RATE

4 | .48 (-01) .38 (+00) <42 (+00)

8 | .12 (-01) | 1.98 .12 (+00) | 1.68 .21 (+00) | 1.02
12 | .54 (-02) | 2.00 .58 (~01) | 1.75 .14 (+00) | 1l.01
16 | .31 (-02) | 2.00 .35 (~01) | 1.78 .10 (+00) 1.00
20 | .20 (-02) | 2.00 .23 (-01) | 1.79 .82 (~01) | 1.00
24 | .14 (-02) | 2.00 .17 (-01) | 1.80 .69 (~01) | 1.00
28 | .10 (~02) | 2.00 .13 (-01) | 1l.81 .59 (~01) | 1.00
32 | .76 (-03) | 2.00 .10 (-01) | 1.82 .51 (-01) | 1.00

Table 10.1: Error in ESS(A')

N leyllg RATE IIeNllm,A RATE IDey il g RATE

4 | .11 (-02) .15 (<02) .19 (-01)

8 | .10 (-03) | 3.40 .12 (-03) | 3.63 .46 (=02) | 2.06
12 | .28 (-04) | 3.20 .26 (-04) | 3.82 .20 (=02) | 2.02
16 | .11 (-04) | 3.11 .90 (-05) | 3.74 .11 (-02) | 2.01
20 | .57 (-05) | 3.07 .40 (-05) | 3.60 .72 (~03)| 2.00
24 | .33 (<05) ] 3.05 .21 (~=05)| 3.63 .50 (-03) | 2.00
28 | .21 (-05)} 3.03 .12 (-05) | 3.65 .37 (-03) | 2.00
32 | .14 (<05)| 3.03 .73 (-06) | 3.67 .28 (~03){ 2.00

Table 10.2: Error in ESS(A')
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N eyl g RATE lleyllw o RATE liDey Il 3 RATE

4 |.41 (-04) .96 (-04) .11 (-02)

8 .28 (-05) 3.83 .64 (~05) 3.91 .15 (-03) 2.86
12 .59 (~06) 3.86 .14 (=05) 3.72 46 (=04) 2.90
16 .19 (-06) 3.90 .47 (-06) 3.80 .20 (~=04) 2.93
20 .81 (=07) 3.93 .20 (-06) 3.84 .10 (~04) 2.94
24 | .39 (~07) 3.94 .99 (-07) 3.87 .60 (=05) 2.95
28 .21 (~07) 3.95 54 (~07) 3.89 .38 (=05) 2.96
32 |.13 (~07) 3.96 «32 (-07) 3.90 .26 (~05) 2.96

Table 10.3: Error in ESS(A')

N IIeNlIB RATE HeNlIm,A RATE IIDeNllB RATE

4 .18 (-06) .12 (-05) .42 (=05)

8 ].36 (-08) 5.65 .82 (-08) 7.21 .17 (-06) 4.60
12 | .33 (~09) 5.91 .76 (-09) 5.85 24 (-07) | 4.85
16 .60 (-10) 5.95 .14 (=09) 5.86 .59 (~08) 4.91
20 .16 (~10) 5.97 .38 (-10) 5.88 .19 (-08) | 4.94
24 .53 (~11) 5.97 .13 (~10) 5.89 .79 (-09) 4.95
28 .21 (-11) 5.98 .52 (-11) 5.90 .37 (-09) 4.96
32 .96 (-12) 5.97 .24 (-11) 5.89 .19 (-09) 4.97

Table 10.4: Error in ESS(A')




CONCLUS IONS

For the two important classes of singular two-point boundary value
problem, we have shown how finite element methods can accurately
approximate the solution. We feel that for linear, one-dimensional
problems with a singularity at one of the endpoints, many of the
important problems have been solved. Also, our results probably can be
extended without great difficulty to time~dependent and mildly nonlinear

problems.

In a few areas, we have no satisfactory theoretical results. How
much B-grading is required for the subspaces of Chapter 6? It seems
that a B,-graded mesh is the thing to use (if L2-norm error is
important), but we have not been able to prove this. The lack of any

local error bound for the RRG approximation has defeated our attempts.

We have said nothing about the collocation method. Nevertheless,
theoretical results for nonsingular problems and numerical experiments
for singular problems indicate that it is an attractive alternative to
RRG for singular two-point boundary value problems. Using splines on a
B-graded mesh (as in Chapter 6), collocation produces an optimally
accurate Lz-norm approximation, provided we collocate at the Gaussian

points. Unfortunately, these methods apply only to cl spline spaces.

- 135 -
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The results of a numerical experiment on the problem of Section 6.4
are given in Tables C.l1 - C.3. It appears that, unlike RRG, collocation
succeeds in producing an optimal=-order Lz—norm approximation in the
spaces Sk

0 83,N
weighted Gaussian points is effective in the weighted spline spaces of

(A )! Other experiments show that collocation at the

Chapter 7.

We have not given any theoretical justification for the use of
numerical quadrature in the RRG method. It appears that, just as in the
nonsingular case, k-1 quadrature nodes in each interval are sufficient

to preserve the rate of convergence, but we have no proof of this.

The generalized L-spline spaces of Chapter 8 suffer from a severe
restriction: beyond continuity, no smoothness my be imposed. For the
same partition, a smooth space would have smaller dimension, making the

RRG approximation less costly to compute.

For the spherically symmetric problem, we feel that the theory is
more solid. Jesperson has already succeeded in obtaining L®-error
bounds [J3], while de Hoog and Weiss have some results on collocation
[D4]. The effect of numerical quadrature, however, still remains to be

analyzed.
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N lleylly  RATE leylla s  RATE leyllg  RATE
8 .37 (-01) .46 (~01) .17 (+00)
16 .94 (-02) 1.99 .13 (-01) 1.79 .89 (-01) 0.95
24 42 (-02) 2,00 .72 (-02) 1.51 .64 (-01) 0.80
32 .24 (-02) 2,00 47 (-02) 1.50 .52 (-01) 0.77
48 .11 (-02) 2.00 .26 (-02) 1.50 .38 (-01) 0.76
. A . 3
Table C.1l: Collocation: Error in SO(A3,N) --3 = B4
N IleNllo RATE lleNIlm’A RATE lleNlls RATE
8 .70 (-03) .80 (-02) .85 (-01)
16 .76 (=04) 3.22 .20 (-02) 2,00 .43 (-01) 1.00
24 .17 (-04) 3.72 .89 (-03) 2.00 .28 (-01) 1.00
32 .55 (=05) 3.85 .50 (-03) 2.00 .21 (-01) 1.00
40 «23 (-05) 3.89 .32 (-03) 2.00 .17 (-01) 1.00
. R . 4
Table C.2: Collocation: Error in SO(A4,N) -4 = 33
N lleNIIO RATE lleN“m,A RATE IIeNIIS RATE
8 .36 (<04) .12 (-02) .40 (-01)
16 .69 (-06) 5.69 .15 (-03) 3.00 .14 (-01) 1.50
24 .69 (-07) 5.69 45 (-04) 3.00 .77 (=02) 1.50
32 .13 (-07) 5.72 .19 (-04) 3.00 .50 (-02) 1.50
48 .13 (-08) 5.79 .56 (-05) 3.00 .27 (-02) 1.50
. s . 6
Table C.3: Collocation: Error in SO(A6,N) — 6 = 83
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